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Chapter 1

Introduction

Let U be a non-empty open subset of C. Denote by HL?(U,«) the space of
all holomorphic functions on U which are square-integrable with respect to the
measure a(w) dw.

For any ¢t > 0, consider the Gaussian measure

1 —|z
du(z) = —e =P/t

Then the space HL?(C, y1;) is called the Segal-Bargmann space. In this space, it

is well-known that a pointwise bound for any function f € HL?(C, y;) is given by

22
FEP < e f T (1.1)

Indeed, for any space HL?(U, «), there exists a function K(z,w) on U x U, called

the reproducing kernel, such that

If(F < Kz 217200 (1.2)

for any f € HL?*(U,«) and any z € U. The pointwise bound (1.1) for HL*(C, p;)
follows from the following formula of the reproducing kernel for the Segal-Bargmann

space:

K(z,w) = /1, (1.3)



In this work, we study a pointwise bound for a function in a more general
holomorphic function space. Note that A (|z|?/t) is a positive constant, so we
first replace the Segal-Bargmann space HL*(C, u;) by HL?*(C,e %), where Ay is
a positive constant. The technique used will be that of holomorphic equivalence.
Two holomorphic function spaces HL?*(U, ) and HL?*(U, ) are holomorphically

equivalent if there exists a nowhere zero holomorphic function ¢ on U such that

_ al2)
6(2)2

We will show that if HL*(U,«) and HL*(U,3) are holomorphically equivalent

for all z € U.

B(z)

spaces, then

a(2)Ky(z,2) = B(2)Ks(z, 2) (1.4)
where K, and Kj are their respective reproducing kernels. If Ay = ¢ > 0, then
HL?*(C, e~*) is holomorphically equivalent to the Segal-Barmann space HL?(C, y;)

where t = 4/c. It follows from (1.2), (1.3) and (1.4) that

C z
f(2)]* < Eew()HfH%z((C,e—ﬂo)?

for any f € HL?(C,e %) and any z € C.

Next, we turn to the space HL?(C, e~ %), where Ay is positive and bounded,
ie. 0 < Ap < M for some M > 0. This space is not holomorphically equivalent
to a Segal-Bargmann space, so we cannot apply the same technique here. Our
proof can be divided into the following steps:

First, at 2 = 0, we show that for any f € HL?*(C, e %),

O < Ces© / F@)2e 7 du

D(0,1)

for some C depending only on M. Next, by translation to any point z € C, we

have

F(2) < Ceo / |F(w) 269 duy,

D(z,1)



Finally, a pointwise bound for a function in HL?(C,e™%) where 0 < Ap < M is
given by

1f(2)]? < 0630(2)’\16”%2(@,67@-

Here is a brief summary of this work. In Chapter 2, we study basic properties of
a holomorphic function space. After that, we introduce the concept of holomorphic
equivalence and establish a necessary and sufficient condition for two spaces to
be holomorphically equivalent in Chapter 3. In the remaining two chapters, we
estimate a pointwise bound for functions in some holomorphic function spaces. In
Chapter 4, we use some properties in Chapter 3 to estimate a pointwise bound for
a function in HL?*(C, e=?) where Agp is a positive constant. Finally, in Chapter 5,
we use the technique outlined above to estimate a pointwise bound for a function

in HL?(C,e %) where 0 < Ap < M for some M > 0.



Chapter 2

Holomorphic function spaces

Let U be a non-empty open subset of C. Denote by H(U) the space of all holo-
morphic functions on U. If « is a strictly positive function on U, let L*(U, «) be
the space of all functions on U which are square-integrable with respect to the

measure a(w) dw. That is,

L*(U,a) = {f U—>(C‘ /@\f(w)]%c(w)dw<oo}.

Then L*(U,«) is a Hilbert space. Let HL*(U,a) = H(U) N L*(U,a). Then
HL*(U,«) is a closed subspace of L?(U, ) and hence a Hilbert space. Moreover,

it is well-known that HL?*(U, «) is separable.

Definition 2.1. A Segal-Bargmann space is the space HL*(C, ), where

1 —|z
[(z) = —e =12/t

for some t > 0.

Theorem 2.2. Let z € U and s > 0 be such that D(z,s) C U. Then

1

2 112
SO < o |

«

XD(z,s) U.a) HfH%Q(U,a)’

L3(

for all f € HL*(U,a).



Proof. Let z € U and s > 0 be such that D(z,s) C U. We claim that

1
z)= — w) dw.
&=z e

Ts?

Since f is holomorphic on U, we can expand f in a Taylor series at w = z, that is,

[o.¢]
—i—E an(w—2)"
n=1

for all w € U. This series converges uniformly to f on the compact set D(z, s).

Thus

f(w)dw:/ dw+/ an(w—2)"
/D(z,s) D(z (2,8) ;

= ﬂszf(z)—l—Zan/ (w—2)"dw
n—=1 D(z,s)
If we use polar coordinates with the origin at z, then (w — 2)" = r"e™. Hence,
forn > 1,
o s 2
/ flw)dw = ws2f(z)+2an/ / re™r df dr
D(z,s) n—1 0 Jo
o s 2m
= s’ f(2) + Zan/ 7‘”“/ e df dr
n=1 0 0
= 75’ f(2).
It follows that
1) = = [ s
z) = — w) dw
ms? D(z,s)
: (@)= f()alw)d
= — 2oy (W) ——=f(w)a(w) dw
7ws? Ji XD(zs) a(w)
1 1
- E<XD(Z,S)E? f>
By the Schwarz inequality, we have
P < g xoea|, 1R
>~ 7T82 XD(z,5) L2(Ua) L2(U,a)"



By Theorem 2.2, we have that the pointwise evaluation is continuous. That is,
for each z € U, the map that takes a function f € HL?*(U,a) to the number f(z)
is a continuous linear functional on HL?*(U, ). Then, by the Riesz representation
theorem, this linear functional can be represented uniquely as an inner product

with some ¢, € HL*(U, «). That is,

f@z«%ﬁzéamﬂwmmw,

Define K(z,w) = ¢,(w) for any z,w € U. We call K the reproducing kernel for
the space HL*(U, «).
We summarize important properties of the reproducing kernel in the next the-

orem. The proof can be found in [H].

Theorem 2.3. Let HL*(U,«) be defined as above. Then there exists a function

K(z,w), where z,w € U, with satisfies the following properties :

(i) K(z,w) is holomorphic in the first variable and anti-holomorphic in the sec-

ond variable, and

K(z,w) = K(w, 2).
(ii) For each f € HL*(U,«),
16) = [ K(ew)f@)alo) do

(iii) For each f € L*(U,«), the orthogonal projection of f onto HL*(U,«), de-

noted by Pf, is
Pf(z) = /U K (2,0) f(@)a(w) do.
(iv) For each z,u € U,

K(z,u):/UK(z,w)K(w,u)a(w)dw.



(v) For each z € U,
IF() < Kz ) f 12200 (2.1)
and the constant K(z,z) is optimal in the sense that for each z € U there

exists a nonzero function f, € HL*(U,a) for which equality holds.

(vi) For each z € U, if ¢, € HL*(U, ) satisfies

- / 6-(@) f(@)a(w) duw

for all f € HL*(U, ), then ¢,(w) = K(z,w).

Corollary 2.4. Let K(z,w) be the reproducing kernel for HL*(U,«). Then for
each z € U,

K(z,2)= sup  |f(2)]".

Hf”LZ(U,a):l

Proof. 1t follows from inequality (2.1) that

s f()F < K (2 2).
”f”LQ(U,a):l

Since for each z € U there exists a nonzero function f, € HL?(U, «) such that

()1 = K (2, )|l £l L

we see that g, = € HL?*(U, a) satisfies

\f l

lg9llr2,a) =1 and ]gz(z)]2 = K(z, 2).

Hence,

K(z,2)= sup  |f(2)]".

Hf”LQ(U,Q):l
O
By inequality (2.1), we obtain a pointwise bound for a holomorphic function
f € HL*(U,«) from the reproducing kernel. Next, we express the reproducing

kernel K in terms of an orthonormal basis for the Hilbert space HL?(U, ).



Theorem 2.5. Let {e;}2, be an orthonormal basis for HL*(U, ). Then for all

z,weU,

o0

2

=0

ei(z)ei(w)) < 00

and the reproducing kernel for this space is given by

K(z,w) = Z ei(z)e;(w).

1=0

(2.2)



Chapter 3

Holomorphic equivalence

Definition 3.1. Holomorphic function spaces HL?(U, «) and HL?*(U, 3) are said
to be holomorphically equivalent spaces if there exists a nowhere zero holomorphic

function ¢ on U such that

B(z) = a(z) for all z € U.

Proposition 3.2. Let HL*(U,«) and HL*(U,3) be holomorphically equivalent
spaces and ¢ defined as above. Let A: HL*(U, o) — HL*(U,(3) be defined by

Af =ao¢f. Then A is unitary.

Proof. Let g € HL*(U, 3). Then g/¢ is holomorphic. Since

lg@)I*
|¢(w /] )?B(w) dw < oo,

g/¢ € HL*(U,«). Thus A is onto. Then for any f € HL*(U, a),

[ePa s = [ lorrier e i

- / IAF(@)PB(w) do.

Hence, A is unitary. O
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Theorem 3.3. Let HL*(U, o) and HL*(U, 3) be holomorphically equivalent spaces.

Let K, and Kg be their respective reproducing kernels. Then for each z € U,
a(2)Ka(z,2) = B(2)Kp(z, 2).

Proof. Let {e;}32, be an orthonormal basis for HL*(U, «/). Since any unitary map
preserves an orthonormal basis, {¢e;}%°, is an orthonormal basis for HL*(U, 3).

Then, by Theorem 2.5,

Kp(z,w) = Z p(2)ei(z)¢(w)ei(w)

Hence,
Ks(z,2) = ¢(2)p(2)Ka(z, 2)
= |¢(=)[*Kal(z, 2)
_ al®) 2,2
B
Therefore, a(2) K. (z, z) = 5(2)Ks(z, 2). O

The next goal in this chapter is to establish a necessary and sufficient condition
for two spaces to be holomophically equivalent. This is given in Theorem 3.8.

Before that, let us recall some facts from complex analysis.

Definition 3.4. Let z = 2+ iy € C and f(z) be a complex-valued function in an
open set U such that f,, and f,, exist at every point of U. Then the Laplacian
of f is defined by

Af = f:m + fyy-
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In the (z,Z)-coordinate, the Laplacian is given by the formula

402

Af = 0207 f

If f is continuous and Af = 0 at every point of an open set U, then f is said to

be harmonic on U.

Proposition 3.5. If a function f(z) = u(z,y) + iv(z,y) is holomorphic on an
open set U, then Ref and Imf are harmonic on U. Conversely, if u: U — R s

harmonic on a simply connected domain U, then there is a holomorphic function

f on U such that uw = Ref.
Proposition 3.6. The following assertions are equivalent :
(1) U is an open simply connected set in C;
(2) If h e H(U) and + € H(U), then there exists g € H(U) such that h = e9;
(8) If h € H(U) and + € H(U), then there exists f € H(U) such that h = f?.
Proof. See [R], page 274. ]

Lemma 3.7. Let U be an open simply connected set in C and « a strictly positive
smooth function on U. Then there exists a holomorphic function ¢ such that

|6]? = « if and only if log a is harmonic.

Proof. (=) Since ¢ € H(U), by Proposition 3.6, there exists a function § € H(U)
such that ¢ = €. Let u = Ref. Thus, |¢| = ¢* and hence a = €2*. Then
log a = 2u, which implies that Aloga = A2u = 0.

(<) Assume that u = log v is harmonic. Then, by Proposition 3.5, there exists
a holomorphic function f such that © = Ref. Then e/ is also holomorphic.
Thus, by Proposition 3.6, there exists ¢ € H(U) such that e/ = ¢?. Hence,

a=e'=lef|=[¢? = || =
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Theorem 3.8. Let U be an open simply connected set in C and «, (8 strictly pos-
itive smooth functions on U. Then HL*(U,«) and HL*(U, 3) are holomorphically

equivalent spaces if and only if Aloga(z) = Alogf(z).

Proof. The following statements are equivalent :

HL*(U,«) and HL*(U, 3) are holomorphically equivalent spaces

a(z)
()

<= 3¢ € H(U) such that ¢ # 0 and |¢(2)|* =

a(z)
8(z)

< A(loga(z) —logfB(z)) =0

@

is harmonic

< log

< Aloga(z) = Alog B(z).

This immediately implies the following corollary:

Corollary 3.9. A holomorphic function space HL?(C, ), where o is a strictly
positive smooth function on C, is holomorphically equivalent to one of the Segal-
Bargmann spaces if and only if Aloga = ¢ < 0. In particular, if ¢ is a smooth
function and Ay is a positive constant, then the space HL?(C,e %) is holomoph-

ically equivalent to a Segal-Bargmann space.

Proof. Note that if

1
pe(z) = %6442/1&’
then
z|? 4 0 4

Thus if HL*(C,«) is holomorphically equivalent to the Segal-Bargmann space

HL*(C, pt), then Aloga = Alog s < 0.
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Conversely, if Aloga = ¢ < 0, then Aloga = Alog py where t = —4/c. Therefore,
HL?*(C, ) is holomorphically equivalent to the Segal-Bargmann space HL?(C, p;),

where t = —4/c. O



Chapter 4

Pointwise bound for a function in

HL?(C,e~¥) where Ay is constant

In this chapter, we obtain a pointwise bound for any function in the holomorphic
function space HL?*(C,e™¥), where Ay is constant. First, we recall the pointwise

bound for a Segal-Bargmann space. In [H], we have

{/::7 neNU{O}}

is an orthonormal basis for the Segal-Bargmann space HL?(C, ;). Then, by

Theorem 2.5,
s
K(z,w) =
( ) nz_% vVnlth V/nltr
B i 1 (zw)"
— ol
—n t
_ 6zw/t‘
Thus,

K(z,z) = ekl

By Theorem 2.3, we have a pointwise bound for functions in HL?*(C, y;).
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Theorem 4.1. For any f € HL*(C, u;) and any z € C,

22
FP < Il (4.1)

Next, we will obtain a pointwise bound for a function in a holomorphic func-
tion space HL?*(C,e %) where Ay is a positive constant. This is a generaliza-
tion of Theorem 4.1 since A|z|?/t = 4/t > 0. Note also that, by Corollary 3.9,
HL*(C,e %) is holomorphically equivalent to HL?*(C, u;). Hence, we can obtain
a pointwise bound estimation for functions in HL?*(C,e %) from the pointwise

bound estimation for functions in HL*(C, p;).

Theorem 4.2. Let ¢ be a smooth function such that Ay = ¢ where ¢ is a positive

constant. Then, for any f € HL*(C,e %) and any z € C,

C z
f(2)]? < E@”( A1z (e (4.2)

Proof. By Corollary 3.9, HL?(C, e~¥) is holomorphically equivalent to HL?*(C, ),
where t = 4/c.

Then, by Proposition 3.3,

/ 2
Keo(z,2) = T cll/!

By Theorem 2.3, we have

C z
f(2)]* < Ee“’( F 1 Z2(c.eme),

for any f € HL*(C,e %) and any z € C. O

Corollary 4.3. Let p be a smooth function such that Ap = ¢ where ¢ is a positive

constant. Then, for any f € HL*(C, £e™¥) and any z € C,

P < e DIfl1ac, 2 ev)-

an
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In the remaining of this chapter, we give an alternative proof of a pointwise
bound for a Segal-Bargmann space. This method uses the estimate in Theorem 2.2
and avoid an explicit formula for an orthonormal basis for HL?*(C, ;). Although
this method usually gives a less sharp estimate, it is more applicable because in the
next chapter we will establish a pointwise bound for a wider class of holomorphic
function spaces and we generally do not have explicit formulas for orthonormal

bases of these spaces.

Lemma 4.4. Let U = D(0,1). For any space HL*(U, p;), there exists a constant

C' depending only on t such that for any f € HL*(U, i),

1F(0)] < O/ | F (W) (w) dw.

D(0,1)

Proof. By Theorem 2.2, for any f € HL*(U, p;) and s such that 0 < s < 1,

_ 1
FOF < (52| x|

2
2
Lz(u’m)||f||L2(u,m)~

Consider

2 2

! () d(w)

XD(0,5)
oo

t

1
= XD(0,s) "7~
/u‘ (©2) phe(w)
1
= / dw
D(0,s) pe(w)
= / mtell’/t du
D(0,s)
27 s )
= 7Tt/ / ety dr do
0 0

= 27r2t/ Eder2/t
0 2

= 22t - 1).

Let C' = 5(e¥/t —1). If 0 < s < 1 is fixed, then

FOP < CllfZgeny = C / @) ) do,
D(0,1)

for any f € HL*(U, ). O
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Theorem 4.5. For any Segal-Bargmann space HL*(C, ;). There exists a con-

stant C' depending only on t such that, for any f € HL*(C,u;) and any z € C,

P < C T fll e - (4.3)

Proof. Let K, be the reproducing kernel for HL?*(U, y1;). By the previous lemma
and Theorem 2.4,

K,,(0,0) < C.

Let z € C and 3, (w) = %e"”“"z/t. Then A@ = A@. Hence HL*(U, y;) and
HL*(U,[3,) are holomorphically equivalent spaces. Let Kj be the reproducing
kernel for HL*(U, 3,). Then

11:(0)
ﬁz (0) KMt

= e|2‘2/tKMt (07 O)

K/@z (070) = (070)

< Cel??/t.

Let f € HL*(C, ) and g,(w) = z + w. Then g, € H(C) and f o g. € H(C).

‘u € HL*(U,3.). Then

Hence, h = fog,
FRIP = 1f0g:(0)F = [h(O)* < Ce/MIhl|Zag 0.,

1
= (e ’ w)|*—e ’ w
Clel?I/t h 2 4w/t g
D(0,1)

7t

_ Cele/t/ ‘fogz(w)pief\zwl?/tdw
D(0,1) mt

1
= (Ce ’ 24+ w)|"—e ’ W
Clel?l°/t f 2 lz+wl?/t g
D(0,1) mt

1
= Cez|2/t/( |f ()P = e 1"/ dw
D(z,

7t

z,1)
< Cglzl?/t/ F(w) PPl g
C 7t

22
= Ce™| F1132ic -



Chapter 5

Pointwise bound for a function in

HL?(C,e~ %) where 0 < Ap < M

We recall that the function I' defined by
[(2) = - log|2|
2T
is the fundamental solution for the Laplace’s equation on R?. Thus if ¢ € C>(C),
then
B(2) = Truls) = [ TOWE-0)de

C
satisfies AP = ).

Proposition 5.1. Let K be a compact subset of C and O an open set containing
K. Then there exists a function g € C°(C) such that 0 < g<1,g=1 on K and

g = 0 outside O.
Proof. See [F], page 245. ]

Lemma 5.2. Let ¢ € C™(C) satisfying 0 < Ap < M. Then there exists a

constant C depending only on M such that for any f € HL*(C,e™%),

FO) < Ce?© / (@) 269 day,

D(0,1)
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Proof. By Proposition 5.1, there exists a function g € C2°(C) such that g = 1 on

D(0,1) and g = 0 outside D(0,2). Let v = g- Ap. Then ¢p € C(C), » = Ap on

D(0,1) and ¢ = 0 outside D(0,2). Thus ¢ = I x ¢ satisfies

Ad(2) = ¥(z) = Ap(2) (5.1)

for all 2 € D(0,1). Let h € HL*(U,e~*). Tt follows from Theorem 2.2 that for all

0<s <1,
RO < (75) [ xX00.9¢" |[r2qeo) 1P 2000-0-
Let 0 < s <1 and w e D(0,s). Then
o) = [ TOww -0
C
- / D(Q)(w — ) de
D(w,2)
-/ M- Odc+ [ TQww o) de
D(w,2)\D(0,1)

D(0,1)
/ (O — €) d¢
D(w,2)\D(0,1)

/ MT(¢) d¢
D(w,2)\D(0,1)

= M I(¢) d¢

D(w,2)\D(0,1)

M
= 2— log |C|dC-
T JD(w,2)\D(0,1)

IN

IN

Because fD(w 2\D(0.1) 108 |¢| d¢ is a function which is bounded above on D(0,1)
and so is @. Let Cy = sup,ep(1) P(w). We note that C; depends only on M. Tt

follows that
HXD(D,S)@QHiQ(u£74)) — /D(&S) ) g

< / et dw
D(0,s)

Ci,_ .2

= e TS,
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Thus
2 et 2
RO < Sl s

for all h € HL?*(U,e~®). Therefore, by Theorem 2.4,

Cy

e
Ko-2(0,0) < —

where K, is the reproducing kernel for HL*(U, e~ %).

Let K .-+ be the reproducing kernel for HL?(U, e ?). Then, by equation (5.1)
and Theorem 3.8, HL*(U, e ?) and HL*(U,e ®) are holomorphically equivalent
and hence, by Theorem 3.3,

o—®(0)
Ke-2(0,0) = —— 5 Ke-2(0,0)

e

o~ ®(0) ,#(0)

IN

82

Let C = %e*‘b(o). Thus
()] < Ce?Ohl|72040

for any h € HL*(U, e %).
It remains to show that C' depends only on M. Now, consider
2(0) = [ T(Ow(=0)dc
[ rw-0d
D(0,2)

- / L(O(—C) d¢ + / L(CO(—C) d¢
D(0,1) D(0,2)\D(0,1)
I —0O)d 52
> /D IRAGTERES (5.2)
>m [ rd (5.3)
D(0,1)
M

- (5.4)
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For inequality (5.2), we use the fact that fD(O 2\D(0 1)F(C)w(—§) d¢ > 0. For
inequality (5.3), we use the fact that I" is negative on D(0,1) and 0 < ¢ < M on

D(0,1). Equation (5.4) follows from the computation below:

1
/ reyde = = [ toglelde
D(0,1)

27 Jpon

1 2w 1
= — / rlogrdr df
2m Jo 0

1
= / rlogrdr
0
1 T2 1
= d{—(1 - =
1 1 12 1
= (§<log1—§>—1£%5<logt—§>)
1

1
Thus e~®©® depends only on M and so does C.

Let f € HL*(C,e™#) and h = f|,,. Then h € HL*(U,e™¥) and

[FO)1* = [R(0)*

< Ce“D(O)/ |h(w)[?e?“) dw
D(0,1)

= C’e‘p(o)/ | f(w) e duw.
D(0,1)

O

Theorem 5.3. Let ¢ € C°(C) satisfying 0 < Ap < M . Then there exists a
constant C' depending only on M such that for any f € HL?*(C,e %) and any

z € C,

FRP < CefD| flT2ceey:
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Proof. Let z € C and g,(w) = z 4+ w. Then 0 < A(pog,) < M. Let f €

HL*(C,e %) and h = fog,. Then h € HL?*(C,e #°%) and by Lemma 5.2,

I = 1fog-O)
= [h(O)?

< Cero-©) / () e
D(0,1)

= CesD(Z)/ |ngz(w)|26_“0°92(“’) dw
D(0,1)

= Oe<ﬁ(2)/ |f(z+w)|26“P(z+‘”) dw
D(0,1)

— CGW(Z)/ ’f(w)|2€*<p(w) dw
D(z,1)

< Ce“"(z)/|f(w)|2e_‘p(w) dw
C

= Ce#O| fl Lo cev):
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