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CHAPTER I
INTRODUCTION

In view of the celebrated theorem in probability theory, the central limit
theorem (CLT) says that the distribution function of the sum of a large number
of independent identically distributed random wvariables, suitably normalized to
have zero mean and unit variance, converges to the standard normal distribution
function.

In 1941 and 1945, Berry [2] and Esseen [5] applied CLT in particular, further
assuming the finite third moment to investigate bounds of the difference between
the distribution function above and its limit. Since then, many authors, e.g. [11],
[13], [7], improve the bound in the Berry-Esseen theorem and the method that
they used is Fourier method. In 2001, Chen and Shao [4] used a new method,
Stein’s method, to establish Berry-Esseen bounds for the sum of independent and
non-identically distributed random variables without assuming the existence of
third moment.

In many situations, we would like to apply CLT to randomly indexed sums.
The CLT for random sums was obtained by many mathematicians, e.g. [8], [10],
9], [14], and they still used Fourier method. In this work, we give both uniform
and non-uniform Berry-Esseen bounds for random sums of independent and not
necessarily identically distributed random variables with finite third moment by
using the concentration inequality approach of Stein’s method. A uniform bound

is introduced in Chapter III and also, a non-uniform bound is in Chapter IV.



1.1 Uniform Berry-Esseen Bounds

In 1977, Batirov, Manevich and Nagaev [1] obtained a uniform Berry-Esseen

bound for random sums by using Fourier method. The following is their result.

Theorem 1.1. [1] Let X3, Xo,... be independent and not necessarily identically
distributed random variables with EX; = 0, EX? = 0? and E|X;|*> = v; < 0o and

i
N a positive integral-valued random variable such that N, X1, Xo, ... are indepen-

N N
Xy 4+ X044+ X
dent. Denote s3 = Zaf, By = Z% and W = =1 AL B N Then

i=1 i=1 V ES%V

there exists a constant C such that

EﬁN \/E|S?V — ES%VP
P(W <z) - <C
supl P(W <) 2@@)| <Clegamt ™z — )

where ® is the standard normal distribution function.

In 2008, N. Chaidee and K. Neammanee [3] applied Stein’s method to
obtain the constant C' in Theorem 1.1 in the case that X, Xy, ... are identically

distributed random variables.

Theorem 1.2. [3] Let X, Xo,... be independent identically distributed ran-
dom variables with EX; = 0, EX}? = o® and E| X, =~ < o0 and N a positive

integral-valued random variable with EN®/? < oo such that N, X1, X,,... are
Xit Xt Xy

vVENo
0.125 “ 1.56 EN3/2 E|N — EN|

independent. Denote W =

PW <xz)—o <.10.326
Vi
where § = ——=—"
VENG&3
In this work, we generalize Theorem 1.2 in the case that X, X,,... are not

necessarily identically distributed random variables. We use the concentration
inequality approach in Chen and Shao [4] to approximate a uniform bound for W

satisfying condition in Theorem 1.1. The following are our main results.



Theorem 1.3. Let X, Xo,... be independent and not necessarily identically dis-
tributed random variables with EX; = 0, EX? = 02 and E|X;|*> =; < o0 and N a

positive integral-valued random variable such that N, X1, Xs, ... are independent.

N N
X1+X2_|_...+XN
Denote 3 = o2, By = i and W = .

Then

BT5E[0n /5% , 2 13/2 ' 9
sup]P(ng)_q>(x)|<6875 O v/ 53] +15E[5N(SN) | 0.945E[0ys%]

reR - /Es} (Esy)?/? Esy
B 2 — F 2
+100E5?V+-—!8N 5 x|
LS5

where Oy = H—N
s3\/ Es%
Corollary 1.4. Under the conditions in Theorem 1.2, we have
100~2 1 1.56EN®?  E|N — EN|
sup|P(W < z) — &(x)| < 7.820 + b +
zeg ( ) @] (\/ENaﬁ)\/EN (EN)3/2 EN

f)/
VENg3

Observe that in the case of EN is large, the bound in Corollary 1.4 is better

where 0° = EX2, v= BIX > and 6 =

than the bound in Theorem 1.2.

1.2 Non-Uniform Berry-Esseen Bounds

In 2008, N. Chaidee and K. Neammanee [3] gave a non-uniform Berry-Esseen

bound for random sums. The following is their result.

Theorem 1.5. [3] Assume the conditions in Theorem 1.2 and that EN® < oc.

Then there exists a constant C" such that for every real number x,

(o) EN? CE|N? — EN?|
PW<zx)—® < —— (1
POV <) =2l < Gy U vy * (T vy
where 0> = EX?, v = B| X[ and § = ——
17 | 1| \/WO"?
In this work, we generalize Theorem 1.5 in the case that Xy, Xs,... are not

necessarily identically distributed random variables. The followings are our main

results.



Theorem 1.6. Assume the conditions in Theorem 1.3 and N is a positive integral-
valued random variable such that N > 5. If s> > 4 max o? for all positive integer

n > 5, then there exists a constant C' such that for every real number x,

[P(W < x) — ®(x)]

C oN §2 )2 E[(SN(S?\/)S]
¢ B L ER(R)] Bl — ()
tarep Pl B E e T Eay )

where Oy = 6—N
s3\/ Es%
Corollary 1.7. Assume the conditions in Theorem 1.5 and N is a positive integral-

valued random variable such that N > 5. Then there exists a constant C' such that

for every real number x,

POV < 2)— B(x)
s EN 02 EN5 . CE|N?— (EN)|
S Trer T @t el t e T T eEny

2

where 02 = EX?, v = E|X;|® and 6 = )
107 ‘ ll \/WO’S




CHAPTER I1
PRELIMINARIES

This chapter contains fundamental concept in probability and the idea of

Stein’s method for normal approximation.

2.1 Fundamental Concept in Probability

Probability theory is a part of mathematics concerned with the analysis of
random experiments. The result of an experiment is called its outcome. An
experiment is called random if its outcome cannot be predicated with certainty.

A sample space is the set of description of all the possible outcomes or
elementary events of an experiment and is denoted by 2. The subset A of (2
that some elementary event in its occurs is said to be event. The collection of
events is a subcollection F of the collection of all subsets of (2.

Given a measurable space (£, F), a measure P on (2, F) is called a proba-
bility measure if P(€2) = 1. In such a case, the measure space (2, F, P) is said
to be a probability space. Now, we can associate a probability space (2, F, P)
with any experiment, and all questions associated with the experiment can be
formulated in terms of P(A) the value-of the probability of event A in this
space.

There are circumstances in which the experimenter is only interested in some
numerical aspects of the elementary event. After the experiment is done and the
outcome w € () is known, it is convenient to set up special numerical functions
defined on the sample space and describing these aspects. In general, this numer-
ical value is more likely to lie in certain subsets of the real line R than in certain

others.



Let (Q,F, P) be a probability space. A function X : Q@ — R is said to be a
random variable if X is F-measurable i.e. X 1(B)={w e Q| X(w)e B} € F
for all Borel set B of R.

We shall use the notation P(X € B) in place of P{w € Q | X(w) € B}) will
be written as. In the case where B = (—o00,a] or [b,00) or [a,b], P(X € B) is
denoted by P(X < a) or P(X >b) or P(a < X <b), respectively.

Lex X be a random variable. A function F': R — [0, 1] which is defined by

F(r)=P(X <7

is called the distribution function of X.

A random variable X is said to be a discrete random variable if it takes
values in some countable subset of R. The discrete random variable X has mass
function f: R — [0, 1] given by f(z) = P(X < x).

A random variable X with the distribution function F is called a continuous

random variable if F' can be written in the form

£y = [ o

for some integrable function f: R — [0, 00) called the density function of X.
We shall now list some examples of random variables. A type of example of

discrete random variables is the indicator function of an event A in F given by

1 if weA,
Ia(w) =
0 if we A

A random variable X is said to be a normal random variable with parameter
w and o > 0, denoted by X ~ N(u, o), if its density function f satisfies that
() = — e BT

_cr 2

In the special case, if Z ~ N(0,1) then Z is said to be a standard normal

random variable. We also denote the distribution function by the letter ®. Thus,

P(Z < 2) = d(z) = \/% / 5 dy.



The followings are useful fact, for z > 0

,L
2

1 & y y2 6_7
1—®(z — Ze 2 dt = , 2.1
\/ 2 / \/ 2 /Z Z 2Tz (2.1)

and for z < 0, we have

P(z)=1—-P(—2) < Var(—2) = Nk

Let (2, F, P) be a probability space, and for each ¢ from the index set Z, let

(2.2)

F; be a sub o-algebra of F. A collection of o-algebras {F; : i € T} is said to be

independent if every finite subset {iy,s,...,7;} of Z, we have
k
2] ) = [] A
m=1 m=1

where A; € F;, for all m.

For each 7 € Z, let &; be any collection of events in F i.e. & C F. We will say
that {&; : ¢ € T} is independent if the collection of o-algebras {o(&;) : i € T} is
independent, where o(&;) is the smallest o-algebra which contains &;.

A collection of random variables {X; : i € Z} is said to be independent if

the collection of o-algebras {o(X;) : i € Z} is independent, where
o(X)={X (B)| B is a Borel set of R}.

Remark 2.1. Random wariables X1, X, ..., X, are independent if for any Borel
sets By, By, ..., B,, we have

P(ﬁ{Xi e Bl-}) - ﬁP(Xi c B)).

=1

Let X be arandom variable on a probability space (2, F, P). If/ | X|dP < oo,
Q

= / XdP.
Q

we define its expected value to be



Proposition 2.2. Let X and Y be random variables such that E(|X|) < oo and
E(]Y|) < co. Then

1. E(aX +b0Y)=aE(X)+bE(Y) for all a,b € R.
2. If X <Y then E(X) < B(Y).
3. If X and Y are independent, then E(XY) = E(X)E(Y).

Proposition 2.3. Let fi, fa,..., f. be bounded measurable real-value functions.

If random variables Xy, Xs, ..., X, are independent, then we have
E(floXl"'anXn) :E(floX1>"'E(fnoXn>'

Let X be a random variable with E(]X|*) < co. Then E(|X|*) is called the
k-th moment of X about the origin and E[(X — E(X))¥] is said to be the k-th
moment of X about the mean. We call the second moment of X about the mean,

the variance of X, and we write
Var(X) = E[(X — E(X))?).

We note that the following expression of the variance in term of two moments.
Var(X) = E(X?) — B*(X).

Remark 2.4. If X ~ N(u,0), then E(X) = pu and Var(X) = o2.

Proposition 2.5. Let X andY be random variables such that E(|X|?) < oo and

E([Y']?) < 0o. Then we have for any real numbers a and b,
Var(aX + bY) = a* Var(X) + b* Var(Y).

Let X and Y be random variables. We will note famous inequalities which are

written as follows.

1 1
Theorem 2.6 (Holder’s inequality). If p,q > 1 and — + — = 1, then
p q

E(XY]) < Er(|X|)E(|Y]9).



Theorem 2.7 (Chebyshev’s inequality).

P(X ~ B(X)| 2 2) < Y

for all e > 0.

Theorem 2.8. Ifp > 1, then for alle >0

B(X - EXP)
(EX —c)p

P(X - EX)[=¢) <

Theorem 2.9 (Rosenthal’s inequality). If X, Xs,..., X, are independent
random variables such that F(X;) = 0 for-all i, then for p > 2,

2y {ZE|XV’ (ZEXZ?)M}

where C(p) is a positive constant depending only on p.

Let (2, F, P) be a probability space and X a random variable with
E(]X]) < co. Let D be a sub o-algebra of F. Define a probability measure
Pp : D — [0,1] by

Pp(E) = P(E) for any F € D,

and a sign-measure Qx : D — R by
Ox(E) = / XdP for any E € D.
E

Then, the definition of the integral implies that Qx is absolutely continuous
with respect to Pp. Applying Radon-Nikodym theorem, give the existence of a
unique measurable function P (X) on (2, D) such that for any F € D,

/E D(X)dPp = Qx(E /XdP

The D-measurable function EP(X) is called the conditional expectation of
X with respect to D. Moreover, for any random variables X and Y on the same
probability space (€2, F, P) such that E(|X|) < oo, we will denote E7)(X) by
EY(X).
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Theorem 2.10. Let X be a random variable on a probability space (2, F, P) such
that E(|X|) < co. Then the followings hold for any sub o-algebra D of F.

1. If X is random variable on (Q, D, Pp), then EP(X) = X a.s.[Pp).
2. BT (X) =X a.s.[P].
3. If o(X) and D are independent, then EP(X) = E(X) a.s.[Pp].

Theorem 2.11. Let X and Y be random variables on the same probability space
(Q, F, P) such that E(|X]) and E(|Y]) are finite. Then for any sub o-algebra D
of F the followings hold.

1. If X <Y, then EP(X) £ EP(Y) a.s. [Pp).
2. EP(aX +bY) = aEP(X) +bEP(X) a.s. [Pp| for any a,b € R.

Theorem 2.12. Let X and Y be random wvariables on the same probability space
(Q, F, P) such that E(|XY|) and E(|Y|) are finite and Dy, Dy be sub o-algebras
of F. If X is a random variable with respect to Dy, then

1. EP'(XY) =XEP'(Y) a.s. [Pp,]-
2. EP2(XY) =EP*(XEP(Y)) a.s. [Pp,].
For any event A on F, we define the conditional probability of A given D by

P(A| D)= EP(I,).

2.2 Stein’s Method for Normal Approximation

In 1972, Stein introduced a powerful and general method for obtaining the
Berry-Esseen bounds for a sum of dependent random variables. In previous work,
tools such as Fourier methods were used to derive such estimates in Berry [2] and
Esseen [5]. Stein’s technique is differed because he used a characterization of the

standard normal distribution to construct the bounds.
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Let Z be a standard normally distributed random variable, and let Cpy be the
set of continuous and piecewise continuously differentiable functions f : R — R

with E|f'(Z)| < co. Stein’s method rests on the followings characterization.

Lemma 2.13. Let W be a real valued random variables. Then W has a standard

normal distribution if and only if for all f € Cpg,
Ef(W) = EW f(W).
For a real valued measurable function h with E|N(h)| < oo,
f(w)=wf(w) = h(w) = N(h), w € R (2.3)
is Stein’s equation for normal distribution where
N hy= L A Ba)e 5 d
= = r)e 2 dx.
(= = [ #ta)

If hy = I(—oo 4, then the solution f = f, of Stein’s equation (2.3) is given by

Sre’s d(w)(l— o(c if w<zx
fo(w) = ) el ) h (2.4)
2re T ®(2)(1 — ®(w)) if w >z

The lemmas in this section are basic properties of f; which is defined by (2.4)

and have been introduced by Chen and Shao [4] as the followings.

Lemma 2.14. For all real numbers w and v, we have

V2 1

1. 0 < folw) < min{T7 m};
2. wf,(w)| <1
g | fa(w) < 1;

4 | fo(w) = fr(v) < 1.



Lemma 2.15. For each s,t,x

folw+5) = fo(w+1) <

fo(w+s) — folw+1) >

For given z > 0, let

Then

€ R, we have

¢

1

(lwl +0.63)([s[ + [¢])

0

\

¢

—1
—(Jw| +0.63)(]s| + [¢])

0

\

g(w) = (wfa(w))"

12

fw+s<z,w+t>zx
if s>t

otherwise.

ifw+s>r,w+t<zx
if s <t

otherwise.

{Vor(1+ w2)e%q>(w) +wl(l-—9() fw<a

(2.5)

{Vor(1 + 11)2)6%2 (1= ®(w)) —w}d(z) ifw> =z

Lemma 2.16. We have

1. g(w) >0 for all weR.

2. g(w) <2(1= &(z)) for allw < 0.

. <
Fog(i)s 1+ wsd

4. g is increasing on [0, x).

Lemma 2.17. For s,t,u € R,

for all w > x.

we have

fi(w+s)— fi(w+t) — /tsg(w+u)du’ < I(z —max{s,t} <w <z —min{s,t}).



CHAPTER III
A UNIFORM BOUND FOR RANDOM SUMS
OF NON-IDENTICALLY DISTRIBUTED
RANDOM VARIABLES

In this chapter, we apply Stein’s method for the standard normal distribution
function and concentration inequality to approximate a uniform bound for random

sums. The followings are our main results.

Theorem 3.1. Let Xy, X,,... be independent and not necessarily identically dis-
tributed random variables with EX; = 0, EX? = 07 and E|X;|> = v; < cc and N a

positive integral-valued random wvariable such that N, X1, Xs, ... are independent.
N
Xi+Xo+--+Xn
Denote 53, = oF, By = v and W= . Then
(5 /s 3/2 El§ 2
sup |[P(W < z) — ®(z)] <6875 20N VSN] | 5—% 0.945[L25N]
z€R \/ESN (Es%)3/ Esy,
E|s2a=F
1 100B62, + 2oy = Enl - S|
Esy
By
where Oy = ———.
N JBE,

Corollary 3.2. Let X1, Xo, ... be independent identically distributed random vari-

ables with zero mean and N a positive integral-valued random variable such that

X, 4y e L
N, X1, Xs,... are independent. Denote W = 1A T N Then

vVENo

10072 | 1 1.56EN3/?  E|N — EN|
sup|P(W < z) — &(x)| < 7.820 + + +
xeg W< 2)=2)l < <\/EN06)\/EN (EN)3/2 EN

where 0* = EX?, v = E|X,> and § =

N
VENg3
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3.1 Uniform Concentration Inequality

Throughout this work, we construct some notations for a positive integer n by

B
s2\/ Es3%

Op =

where
n n
2 2 _
sn—Zai and ﬁn—Z%.
i=1 i=1

For all i € {1,2,...,n}, we denote

X; & .
Y=y Wo=) Y WP=W,-Y,
i=1

Es%’

Then EY; =0,

52 2
2 _ 24 Sn 3 B - OnS;,
EW;? El FY, ——E b and E ElY|° = (Es?\,)3/2 = ES?\,' (3.1)

In this section, we use the concepts from Chen and Shao [4] to approximate a
bound for P(a < Wi < b) where a < b, which will play the key role in the proof

of a concentration inequality as follows.

Proposition 3.3. For all positive integer n and a < b, we have

25E E
Pla<W® <b) < SN{( b—a)+6,) E2+4052+5 EQ}

foralli=1,2,....n

Proof. Define f,, : R — R by

(

(b=a)=9, fort<a—od,

1
2

fat) =9t —1(b+a) for a — 8, <t <b+d,

T(b—a)+ 6, fort > b+ 0,

and M : R? — R by
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For given w, by integrating of M (w,-) over [t| < y we get

M(w, t)dt = |w| min{y, |w|}. (3.2)

[tl<y

Next we note that f,, is a non-decreasing function satisfying

10 1 ifa—90,<t<b+9, (33
() = :
0 ift<a—96,orb+56,>t,

and
3 \ 1
WL < (&

Since Y; and Wi — Y are independent for j # 4, EY; = 0 and M(w,t) > 0 for

(b= a)+ 0,) E|WY)]. (3.4)

all w,t € R,

EWD £, (W ZEan (Wi
3792

=Z VA S (WD) = £, (W — V)]

J#Z

i (i) >
N B8(y / £ VD )t
Ve

n 0

=3 20140 :

=3-r / I O
i

:ZE/ (W M(Y;, t)dt
3752

). ZE/ (66, «W9D 44 < b4 5IM(Y;, 0)de (by (3.3))

7=1
J#
> E/ Ha =6, < WD+t <bt8,) MY, )t
= |t <6
J#
> ZE(I(@ < WO < p) M(Yj,t)dt>
j: |t|<§n
i
= B[ I(a < W <) 3 [ min{o,, %3]} (by (3.2))

j=1
G
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Therefore,

EWY f,(W) > ElI(a < W < b)S] — Pa < W < b)E[|Y;| min{d,, |Yi[}],
(3.5)

where
S=> " |V;|min{é,, |Y;]}.
j=1

b2
From the fact that min{a,b} > b — y¥s for all a,b > 0 ([4], p.238) and (3.1), we

obtain
ES > E E( Y | JIS > E EY2 1 En E\Y-]S’:—SEL (3.6)
- (5n - J 2E5?V' ’

Moreover, we have

n n

Z E[|Y;| min{6,,, [Y;]}]? + Z Z EY;| min{é,, | Yx|}Y;| min{o,, |Y;|}]
L — 1
7k

n n 2
< 3 Bl | min{o |V 12+ | Y0 BY; [min{e,, Y[}
j=1 j=1

<6> EY?+E’S
j=1
52 2 Y
— ‘% B3, 3.7
=B (3.7)

By Chebyshev’s inequality (Theorem 2.7) implies that for 0 < ¢ < ES,

E(1-S/c)I(S<c¢)<P(S<c)<P(S—ES|>ES—¢)< %. (3.8)
482
From (3.6) we can choose a constant ¢ = Es2n in (3.8), which implies that
N
2.55Es3; 0.4s2 100(Es%,)?
_ ZOPTON < 20y <
E(1 2 JI(S < Es?v) S ) Var(S)
_ 100(Es%)? (BS? — B2S)
(s7)?
10002 Es%
< — (3.9)

where we have used (3.7) in the last inequality.



From the fact that ([4], p.238)

17

IHa<w<by>c{Ila<w<b)—(1-y/o)l(y<c)}

for a < b, y > 0 and ¢ > 0, we have

E(I(a < W <b)S)
O s2

~ nIPla< WP <b) - B(1— )I(S <
By (3.5) and (3.10), we obtain

EWW f,(WW) > E(I(a <WY <b)S)=Pla< W) <bE
2.5S5FEs3; 0.4s2

2.5SEs% 0.4s2

B 2y} (3.10)

[Yi| min{d,, [Y;[}]

Pla<W® <b)— EQ - I(S <
ES?V{ / ) ( s2 (S = Es?\,)}
= P(a< Wi <b)E[)Y;| min{d,, |Yi[}]
0.4s7 ; 10052Es
> g g L0nEow ) (by (3.9))

=P(a <W) < b)B|lY| min{5m 1Yil}]

_ 04s? . 10002
E§ 2{P(a < WD <b)

4
> 0 S”P(a < WD < b) — 4002 — 6,/ EY?
ESN

4 2
oL S”P(a<W’) = e e g
\ 7Es5; ESN

Hence, by (3.4), yields
- 2.5E 5% : :
Pla<W® <b) < 222N Lpw O £ (W) 44082 + 6,
S

n

< 2. 5ESN

§25E8N{( b—a)+6,)\/ EIW2 +

< 2.5Es%
=T

25E%%( b—a-+51/E2 + 406

where we have used (3.1) in the last equation.

(b—a)+9, EWl + 400;, + 0,
{( ) EIW,7| + 400

2F's% .
— =5} = B[Yi| min{5,, |[Yi[}]

2

0-7/
Es?% J

0;
ES?V}

4002 + 0,

2}

2
(2b—a-+6)w W2 + 40672 + 0, 2%7}

v+ on E2}
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3.2 Proof of Main Theorem

To bound P(W < z) —®(z) in Theorem 3.1, it suffices to consider = > 0 as we
can apply the result to —W when x < 0. Let f be the unique bounded solution

fo of the Stein’s equation
F(w) = wf(w) = I(w < 2) — (). (3.11)
For a positive integer n, if we replace w in (3.11) by W,,, then
Ef'(Wn)=EW,f(W,) = P(W, < z)— ®(z). (3.12)
Define K; : R — R for all 7 =1,2,... n, by
K@) =E{NV(I0<t<Y)—-1Y;<t<0))}.

We note that K;(t) is non-negative for all ¢ € R, and satisfies the followings

/ Ki(t)dt — BY? (3.13)
and
S ElY;|?
/ 1)K (£)dt = % (3.14)

Also, since Y; and W,gi) are independent and EY; = 0,

EW, f(W,) =Y EY:f(W,)

b Zn: E{Y; /Y £ VoL t)dt}
0

i=1

Y;
=Y E / F WD 4 1)K, (t)dt
0

I AR (319
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Let p, = P(N = n). By Stein’s equation (3.12) and (3.15), we obtain
P(W < z) — &(x)
_an (W, < ) an
=§;pn{P<Wn <)~ (2}
:i Pl Ef'(Wy) — EW, f(W,)} (by (3.12))
—2)43f Zﬁj"f ww} (by (3.15))
—an ZE/ FW) Kt )t ZE/ POV 1), ()t
+an{Ef ZE / 1OV K, (1)t}

=A; + As, (3.16)

where
Alzipn iE/OOf’(Wn dt—ZE/ 71w, ()dt}
4, = an{Ef ZE/ 7V, Kty )

By Lemma 2.15 (1), we have

E3m DB [ (W] 063V + ) Kt

=Ap + Ajg, (3.17)
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where

Ay =anZE/ I(x—t < WP <z —Y)Ki(t)dt,

A _anZE / (WO + 0.63)(|Yi| + |t K (1)t

Yi>t

By concentration inequality (Proposition 3.3), we have
A=Y paY. E/ Iz =t < W9 <o- Y)K,(t)dt
n=1 =1 t>Y;
:anZEEYi/ Iz —t < W9 <z =¥)K,(t)dt
—anZE/ BYI(z—t < WO <2~ Y)K,(t)dt
:anZE/ Plz—t <WD < g —Y; | V) K;(t)dt
n=1 =1 Jt>Yi
> _ 2.5Es> s2
WD (G ETOREN
n=1  i=1 >y Sn Es

2
N

+4082% + 5n, 7 }K (by Proposition 3.3)

—Z 25ESNZE/ { (t] 4 [Y3]) +26),/ +4052}K
>~ 25E oo il [ g2
Szpn 828N ZE/ {(§(|t|+|Y;~|)+26n) EL%V+405§}Ki(t)dt
n=1 n i= -
—  2.5Es} 52
=; NZ{ + E|V,|E|Y] )+25nE}g2),/E—S?V+4053E}7}

(by (3.13), (3.14))

CUN 2.5 0% \d/ B &
<3 23 VB 25n§jEY2) 4052§ EW}
- nzlp s2 {(4 p il™+ — ' ESN +

f: 25E3N 35nsi 20,52 s2 406282
- Pn

s2 4E3§V Es% ) Es% + Es%
2
:an{(1.8575n + 50, [ Sn_ ok 2 + 10062} (by (3.1))
6875E[5 V.o ]+1OOE(52 (3.18)

2
Esy,
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Also, we have

A —anZE [ Qw1+ 0301 + K

Yi>t

< an Z(E|W,§i)] + 0.63)E/ (|Y;| + [t) K (t)dt
n=1 i=1 -
=2 ) (BIWP |+ 063) (BB, + SE[Yi")  (by (3.13), (3.14))

<1.5 an Z(E|Wn| + 0.63) E|Y;|? (by Hélder’s inequality)

gazpn( BIW,J> +0.63) > " B|Y;[?
= sl

~1. 5an , / - A0 63)%55 (by (3.1))

_1.5E[6N(SN)3/2] 0.945 [0 s3]

N T (3.19)
Combining (3.17), (3.18) and (3.19), we obtain
E[on+/s3 L5E [0 (s%)*? : 2
4, <88TELN : v fo0Ee + o (s )*?] | 0.945E [0 sR] (3.20)

(Esiy)*? Esy

SRR

Similar to (3.17), we can use the fact in Lemma 2.15(2) to prove that

E 1.5E [0y (s3)%/?
A > - 6.875E[0n /5% 10088, [on (s%)%?] 0945E[5N5N]

= JB, (Es2, )32 Es%,

Hence,

L.5E[0n (5%)%? . 2
‘Al‘_6875E[5N\/ | rgomsal 4 [ (s%)%2] 0.945E [0nsh]

VB, (B30 R
By [ethial. 14(3), ek have
|A2|—(an{Ef ZE/ POVt |
<an\Ef ZE/ Kt dt‘
< Zp - ZE / R (by Lemma 214 (3))
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=> pu|l =) _EY? (by (3.13))
n=1 i=1
S pf1- o (by (3.1)
= Pnll — == by (3.1
— Es%
Elsy — Es}|
= ZON_ ONT (3.22)
Es?%
Combining (3.16), (3.21) and (3.22), we have the theorem as desired. O
3.3 Proof of Corollary 3.2
Since X1, X5, ... areidentically distributed random variables,
N, N
sy =2 _EX}=Nd’ fy=Y BE|Xi|=Ny and
F 7=l
Sy = By - Ny - 2
s%\/Es%  No2v/ENg? +ENo3
It is immediate from Theorem 3.1 that
[PW < x) — ®(x)]
2 21\3/2 2
S6.875E[6N Al 1.5E[5N2(3N) | 0.94550Ns}] | 10055,
Bs2 (Fis2 3312 Es?
E|si = Esj|
Es?%
_6.875E[6VNo? 1.5E[5(No?)*?]  0.945E[§No?| 100562
B VENG2 (ENo?2)3/2 ENo?
B|No? - ENo?|
ENo?
EVN _ 1.56EN3/? E|N — EN)|
=6.8750—== 0.9456 + 1006% + —————
1 N + + 2
1.56EN3/2 E|N — EN|
<6.8750 + ———— 4+ 0.9455 + 1006* + ————
< + BN + - + =¥
1.50 EN3/? 10002 | 1 -
7825 + = 00y | LIV - EN

(ENPR <\/W06)\/W EN

where we have used Holder’s inequality in the second inequality. U



CHAPTER IV
A NON-UNIFORM BOUND FOR RANDOM SUMS
OF NON-IDENTICALLY DISTRIBUTED
RANDOM VARIABLES

In this chapter, we give a non-uniform bound for random sums W. We also
use the same notations as in Chapter III, and write C' instead of a positive value

with possibly different values in different places. The followings are our results.

Theorem 4.1. Let X, X5, ... beindependent and not necessarily identically dis-
tributed random variables with EX; =0, EX? = 07 and E|X;|> = v; < 0o and N
a positive integral-valued random variable such that N > 5 and N, X1, Xo,... are
independent. If s> > 41r£11a<>; a? for all positive integer n > 5, then there exists a

constant C' such that for every real number x,

[P(W <) — O(x)|

C on S22 E[‘SN(S?\/ 5]
S Al @) + — gy )

C B 1oy BRI Bl — (B
e P B —Eays T Eaye )
B

where (SN——S?V\/E_S?V.

Corollary 4.2. Let X1, Xs, ... be independent identically distributed random vari-

ables with mean zero and N a positive integral-valued random variable such that
X1_|_X2_|_..._|_XN

vENo

N > 5 and N, X1, Xs,... are independent. Denote W =

Then there exists a constant C' such that for every real number x,
|P(W < z) - ()|
Co EN® C6? EN? CE|N? — (EN)?|
S—S(l—'— 5)+ 2(1+ 5)+ 2 2
(1+=zl) (EN)>" (L+]z]) (EN) (1+ [z])*(EN)

where v = E|X,|?, 0 = EX? and § = \/%03.
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Remark 4.3. Let X1, X5, ... be independent random variables such that
1
P(X;=Vi+5)=P(X;=—Vi+5) = §f07‘ alli=1,2,....

Then EX; =0, EX? =i+5 and

n 11
E EX@?:%24n+20:41rga<xEXi2f07’alln25.
i1 SIsn

Therefore, X1, Xa, ... satisfy the condition in Theorem 4.1 that

531 > 4 max 07-2 for alln > 5.
1<i<n ~

4.1 Auxiliary Results

In this section, we begin with some notations and their conclusions. Then we
provide a concentration inequality in Proposition 4.5. For a positive integer n and
forall i =1,2,...,n, let us define

T\ =3 Z; where Z; = Y;I([V;| <1+ a) — EY;I(]Y;| <1+ a) and
=1
i
re=r; = EY;I(|]Y;]| >1+a) for a > 0.
=1
i
Because EY; = 0, we first observe that

W — 76 _p, (4.1)

n

whenever max |Y;| <14 a. Also, we note that
1<j<n

J#i
n n 2
r <Y EYZI(Y)|>1+a) <Y EY?< ES;Q (4.2)
j=1 j=1 ¥
J#i JF#i
Lemma 4.4. We have
2
1 EITOP <2 foralin €N andi=1,2,... n.
Esy
2. There exists a constant C such that
: 1+ a)d,s? (s2)?
E Téz) 4 <C ( n°n n
=R )

foralln e Nandi=1,2,...,n.
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Proof. (1) Since EZ; = 0,

. n 2
BTV =E( Y 7))
j=1
J#i
N
j=1
J#i
= ABVZI(Y;| €14a) - BYI(|Y;| < 1+0a)}
j=1
i
<NTEVZI(Yi| < 1+a)
j=1
J#
2
<D _EY;
j=1

JF#i
&2

< & 4
— 2 F
Esy

(2) Now we remark some useful fact ([6], p.320) that for all a,b € R and p > 0,
a8 < 22=X(Jal” + [b]"). (4.3)

By Rosenthal’s inequality (Theorem 2.9) and EZ; = 0, we have

, . L 2
BT <c{ Y Bzl + (3 BZ) |
j=1 j=1

J#i J#i

:C{ SCEZ| + (E‘ 5.2 ) }
P L
J#i J#i

SOLDENI(YES1+a) SEY (Y1 & ol £ (B0}
i#i

SO{ S HEY (Y <1+4a) + E'YI([Y; < 1+a)} + (E|Tr(f)|2)2}
j=1
J#i

(by (4.3))

<o{ SR, < 1+ a) + (EITOP))
=1
7
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gc{(1+a);E1Yj\3+ (gj%)v;} (by (1))

ot ah | (P
N Es% (Es%)?
where we have used Holder’s inequality in the third inequality. O

We also use the idea from Chen and Shao [4] to prove the following non-uniform

concentration inequality.

Proposition 4.5. There exists a constant C' such that

A C(b—a+6,)  (Fs%)? (s2)

Pla < W< p) < S N n
@SS T e Ly T s
where()§a<b,nGN(.s’uchthatsizélrnaxai2 andi=1,2,...,n.

1<i<n

Proof. We begin by noting that

=P(a < W <b, max |Y;] < 1 +a)+ Pla < WP <b, max |Y;| >1+a)
1<j<n 1<j<n

J# J#
<Pla+7<TY <b+47r)+ P(max [Yj|>1+a) (by (4.1))
S)sn
J#i

<Pla+r<TM<b+r)+ > Py >1+a)
j=1

1 3
T 21

J=1

<Pla+r<TY <b4r)+

OnS (4.4)

=P <TW <p —
(a+r <T)Y < +T)+(1+a)3ES?V

where we have used Chebyshev’s inequality in the last inequality.

To complete the proof, it remains to bound P(a 4 r < T < b+ T).
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We divide it into two cases.
1
Case 1. (1 +a)d, > 7

By the fact that < 49, and Lemma 4.4, we have

1
(14+a)
Pla+r<TW <b+r)
<Pl+a<1-r+T%)
E|l—r+ T

- (1+a)t
8(1—r)* + SE|LJ*
< 170 (by (4.3))
C(1+7* + BB
= (+a) (by (4.3))
C (s2) G (1+ a)d,s> (s2)2
“Trot tmad firet B2 sy Ve
Con (s2) Sa (s2)°
Srar B B (B2
o6, (s2)4
Case 2. (1 +a)d, < i
Let
U= Z M55
i
where

ny =|Zjimin{k,, |Z;|} and kK, = 44;.

Define f,, : R—.R by

(
0 fort<a+r—=x,

fa@) = Q1+t —r+r)2(t—a—r—+k,) forat+r—r, <t<b+r+r,

(1+t—7+4r,)%b—a+2k,) fort > b+r+ ky,

\

and M : R?> — R by
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Next we note that f, is a non-decreasing continuous function that satisfies
fit)> (1 +a) for a+r—rk, <t<b+7r+r, (4.6)
and
ETWDf(T) < (b—a+26,)E(TO(1+ T — 1+ 5,)%). (4.7)
Because Z; and T — Z; are independent FZ; = 0 and M(w,t) > 0 for all
w,t € R, we have
ET{ f,(T)

= Z EZ; f. (T

J#z

_ Z EZA{flTD) 2 fu (T = 2Z;)}]

j=1
/ FATD +¢) df}
J#Z

j#i
n 0 )
:ZE{/ FATO )M (Z;, t)dt
=1 —Zj
J#
_ =)
- E{/ (T —i—t)M(Zj,t)dt}

j=1
JF

e

> (1+a)32E/ IHa+r— kK, §T7(f)+t§ b+7r+ k) M(Z;,t)dt
5 4-4
7
(by (4.6))

Z(1+a)3iE{](a+r<T <b+r)

j=1
i

M(Zj,t)dt}

[t|<kn

—(1+ a)3E[I(a +r < T <b+1) Y |2 minf,, Zj}}

i=1
i#i

=(1+alE(I(a+r<TY <b+7r)U). (4.8)



29

2

From the fact that min{a,b} > b — 2— for all a,b > 0 ([4], p.238), we obtain
a

EU =

v

v

v

A%

> E|Zj| min{k,, | Z;]}
=1
i

ZE 72 |Z|

J#Z

S {BEYAI(Y;] <1+ a) = EVI(¥] < 1+ a)}

=1

i

——ZEiYHY\<1+a) EYI(|Y;| <1+ a)|”

175%

S EV(GI<A 4 6) « BYI(%] 511 o)

v

——ZE (112 1(Y;| < 1+4a) + |EV;I(|Y;]| < 1+a)®) (by (4.3))
J#Z

Z{EY2—2EY2 (Y] > 1 +a) }——ZE|Y|3I(|Y| <1+a)

7=1
J# J#z

(by Hélder’s inequality)

Z{EY2——E|Y|3J(|Y| >1+a) }——ZE\YP (IY;| <1+a)

Jj=1 Jj=1
J#i J#i

1
(by the fact that — < 1)

n

> v Yk

j=l ~
J#i J#i
2 2 2
Sn o 0; o Sn
2 2 2
Esy,  Esy  2Esy,
2 2 2
Sn (Sn — 40i )

T ABs, | 4Es

2 T
4E's%;

2
Sn

(4.9)

where we have used the fact s> > 4 max o7 in the last inequality.

1<i<n
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By Chebyshev’s inequality (Theorem 2.8) implies that for 0 < ¢ < EU,

E|U — EU|*
BEA-U/IU<e) < PU <) < P(U - BU 2 BU =) < —pr— -
(4.10)

2
From (4.9), we can choose a constant ¢ = 52"2 in (4.10), which implies that

El(1 - 2SI < )
Scf))EW EUL
C’(Es?\,
< SR (e s Sost s
J#Z ]#z

(by Rosenthal’s inequality)

(S 4 S

J#z J

gCESN { (5. ZE\Z!) +54ZE|Z|}

]#1 J#l
C(Es%)* R i
< S { (B S ABMPING] < 1+ @) RIBYAY) < 1+0)F))
n e
G

FOS BV <14 )+ BYI(%] < 1+a)'} ) (by (43))

j=1
J#i
< SR SIS T+ ) s D v < 1+ o))
n j=1 7=1
i i
gCESN {(5. ZEm) @+ a)ot Y BV, PIGY; | <1+a)}
j=1
J#% J#i

C(Es%)*

< T {( ZEm) 1+a54ZE\Y|}

S5 5nsn 2 a)ods?
- CERR Gy L

n

5, (Bs2)? (B2
vt @ @ I
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1
where we have used the fact that (1 + a)d, < 1 in the last inequality.
From the fact that ([4], p.238)

Ia<w<by>c(lla<w<b)—(1—y/o)l(y <o)
for a < b, y > 0 and ¢ > 0, we have

E(I(a+r <T <b+r)U)

s2 . 5U Es? s>
> _nIp <TY <b+r)-B(l- MU < 25)) (412
_5ES?V{ (a—i—r_ n — +’r) ( S% ) (U_E)ES?V)} ( )
By (4.8) and (4.12), we obtain
E(T) fu(T37))
2(1+a)3E([(a+r<T <b+r7)U)
(1+a)3s? SUESs% s
> ——"1P( < T <b E(1 - (U < —+
T 5Esy R w5 z ) (U—5Es?v)}
(1+a)®s? o, (Es%)? (Bs%)?
>l p( <TY <b
N i e e
where we have used (4.11) in the last inequality.
Hence, by (4.7), yields
Pla+r ST(i) <b+r)
2 2 \3 2
< Coy, { Esy)? | (Esy) } SE sy E éi)f(Téi))
(I+a)*™ (32 (s2)° sp(1+a)?
2 \2 213
< C'oy {(E ) (Bsy) }
(1+ a)3 (s2)% 1 (s%)°
1+a3{ —a+26,) E|TO (1 + T — vt k,)%[}
C’(5 { ESN) (Es?v)?’}
T (Haep () ()
CESN —— L (b—a+26,){(1L+r*)EIT| + E|T '} (by (4.3))
]_ + CL 3 n n n Y .

05 (Es%)?  (Es%)?
SArapl@p T wp )

CEs% (s2)3 (s2)? (l —l— a) 5 ns2
—|——Si<1+a)3{(b—a+2/§n){(1+—(ESN) WEITY ]2 + Fovt H
(by (4.2) and Lemma 4.4)




Cé, ((Es%k

~—

 (BR)

< (1+a)3{ (s2)? + (s2)3 }
CEs% V52 s2 (32) (52)7/2
m{ a2 {\/_ Ess T B T (B )7/2}}
Coy, (Esy)® | (Es})? CEs%(b—a+6,) \/_ (s2)7/2
§(1+a3{ 2)2 (s2)3 }+ 2(1+a) {\/F (Es? 7/2}
Clb—a+56,)  (Es¥)? (Es¥)? Es% (s2)5/2
= (1+a)? { (s2)2 (s2)3 ) NE + (Es2,)5/?
Cb—a+56,)  (Es¥)? (s2)%/2
ST TR @R (Esy
Combining (4.4), (4.5) and (4.13), we have
P<a<W(Z < b) (16:5@3{ J (E2) 4}
C(b—a+d,) { (Bs%)3 . (s2)°/2 \ 5,52
(F+a)? (523 (BEs%)32)  (1+a)PEsy,
G206 AR (ERP | P 8
Aoy Mm@y eyt ER

Clb 4o+ ) (R ('
S b g

This is complete the proof.

Let f, be the solution of Stein’s equation (2.4) and define g : R — R by

g(w) = (wfe(w))"
Theorem 4.1 will be obtained from the followings two lemmas.

Lemma 4.6. There exists a constant C' such that

C 52

for any positive integer n and x > 1.

Proof. By (2.4), we note that for w < z,
w2
fo(w) = (1 —@(2))(1+ vV2rwe = ®(w)).
From above and (2.2), it follows that for w <0,

0< fi(w) <1—o(w),

32

(4.13)

}



and by Lemma 2.14 (3), we have

|F(w)| <1 for all w.

Therefore,

E|f,(Wn)]
=E|fi(W)|[I(Wy < 0) + E|fo (W) I (W, > ) + E|f,(Wa)[1(0 < Wy, < x)
<1 —@(x))P(W,, <0)+ P(W, > x)

2

+ (1 — ®(@)E[(1 +V2rWye 2 )I(0 < W, < )]

§(1—<I>(x))+%}_?)/—g)+(l— B(2))(1 + vVIrze)
C (1+ EW?) C

STror AR o

< ¢ (14 8’2“‘)

“(1+2)? Es3%

where we have used Chebyshev’s inequality in the second inequality.

Lemma 4.7. There exists a constant C' such that

, C (Es3)3 (s2)*
EgW +u) < ——={(1 + 0,2) (-2 + %
(14 x)3{ ( S0 (ES?V)4)}
where x > 4, |u|<1+Z n € N such that s2 >4lma<xa andi=1,2,...,n.

Proof. By Lemma 2.16, we have

Eg(W + u)

:Eg(w,g@ + u)l (W #u <0)
LEqWYD )10 < WD 40 <z —1)
+ EgWD +u)I(z —1 < W9 +u < 2)

+ EgWD + ) I(W +u > )
2
1+ a3

<21 = &)+ gz —1) + EgWD 4+ u)I[(z —1 < WD 4 u <)+

C , ,
§(1+x)3 +yg(z—1) —|—Eg(W7§Z) +u)l(z—1< W,E’) +u<ux).
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By (2.5) and the fact that

2 1
h(z)={(x =2+ =)e "2 +
T
is decreasing on [4,00), we obtain

(x— 1) ={Vor(1 + (x — 1) T bz — 1) + (x — 1)} (1 — 3(x))
<Var(1+ (= 1)2)e " (1= d(2)) + 2(1 — D(x))

2 1 2
=z —2+ —)e_”% +—c 7
x

\ 27
C
<

STFa

Also, by Proposition 4.5, we have

EgW® +u)[(z=1< WP +u<a)

/ w)dP(w < W + u < )

(x —1)P(w < WY 4 u <) +/ g (w)Plw < W +u < z)dw
=11

C S?V 3 5727’ 4 ,
(1+x)? ((Z%)g % (28%)4) /H g'(w)(x — w + d,)dw

¢ ¢ (B (sn) o
§(1+m) + (o) = (32)3 == (Es2y ){5ng(x)+/mlg(w)(a:—w)dw}

< f@ EsN3 1 gl / g (w)(x — w)dw

il
S(153:) ESN3 ESN {1+M+/ w)dgtw )}
91

C ESN y
- 1 —g(r—1)
i+ x) + 0px —g(z /x—1 g(w)dw}

O (ESN) (S ) X T emma
C . (ES?v)?’ (sn)"
S<1+ac>3{<”‘5" ey + )

<g(z—1)+

2

This completes the proof. n
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4.2 Proof of Theorem 4.1

To bound P(W < z) — ®(x) in Theorem 4.1, it suffices to consider z > 0.
We divide the proof into two cases.
Case 1. 0 < x < 4.

By Theorem 3.1, we have

P(W < 2) - ¢<x>|

EPnysk] | | o BOoN(sk)*” Elos | Blsk — Bs}

1/E3?V (Es3, )3/2 - Bs% Es%
C 5]\[\/ 5]\7 SN 3/2] [5N3N]

S(14—|:15\)( VEs%, + (Frs%; )3/ Es?% )

C s Blsk — Es%||s% + Bs%l
e O (B3, )
C ON 2\2 E[‘;N(S?V)S]
<Tr ey Elia i+ =gy )
¢ B s BIRRY] | Bl) — (B
rEre Sl o s e o o s P

where we have used (4.14) in the last inequality.

Now, we remark the above line of the proof, one can be obtained it by a technique

2
in analysis. Considering an event A ={w € Q|0 < sg(zu) < 1}, for i = 1,2 and

N
—2 < p <5, we have

By (3] [ O(s3) S ()P
(B ‘/A C“”/Ac By

312 ()"
< tharrir < | G
TBR o [ Shlsh)?
g/ﬂ(82—N)2dP+/ (ESN)5 INSN) p

|

; 2 )2 O (si)’]
51(Esy) +W'

=F]| On

AL (4.14)
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Case 2. © > 4.

By the same argument as (3.16), we have
PW <z)—®(x)

= o { Ef (Wo) — EW,f(W,)}

— ;pn ;E{J(my <1+3) /_: V9 +Y) = WD + O} K1)t
+ipniE{f<rm Sead / TEEWO Y - PO+ O}t
+an{Ef ZE/ 1 (W) Kbyt

== Al —+ A2 + Ag, (415)

where

A = anz { (| €1+= / {r'w, — f(WD + )} K (t)dt
Ay = anz (v > 142 / (POVD 4 Y) = PV + ) K. (t)dt
AS an{Ef ZE/ f n z }

By Lemma 2.17, we have

A < fjpni L < 15D 2 A0 230 = g v+ 0} Kaoar|
< an
+anz { (Y| <1+4)

« / (e —max(¥,, 1) < W < & — min(Y;, 1) Ki(t)dt |

Y;
{ (vl <1+= / Ki(t /Eg(W,(f)Jru)dudt}‘

= [Au| + [Ara], (4.16)
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where
Y;
|A11|—ZPnZ‘ [ivi<1+? / Kt /Eg<wy>+u)dudt}‘,
t

« / I — max(¥;,t) < W < & — min(Y;, 1) Ki(t)dt }.
By Lemma 4.7, we have
|A11|—anZ‘E{ (YL + — / Ki(t / gW">+u)dudt}(
1+x3zp”Z‘E{ (ilj<dek )
Y 2\4
, ; (Esy)® | (s7)
X/_mK’(t)/t (14 6,2)( @2y +(ES?V4)dudtH
2 n
S

)
¢ By () =y |
< (1+x)3;pn(1+5n )( 2 T (ES?V)4);E/OO(IKI+|t|)Kz(t)dt
(

RS

1
) D (BB + SEY[)

E -
Sﬁ;pn(l—l—énaﬁ)((iﬁl)) ](3 ZE]YF’

(by Hélder’s inequality)

sv)!

2
0nS;,

(B
il R ] o



38

Concentration inequality (Proposition 4.5) yields

| A

n

_anZE{ (vl <1+7)

” / (o — max(Y,,1) < WS < o — min(¥,, 1)) K(1)dt

—anZE{ (Vi < 149)
X/OOP(x—max(Y;,t) W) <z —min(Y, t)|V;) K. ()dt}

¢ ) Z n((ESN) (Sn) )

RCEE (2)F " (Bs})

XZ { |Y|<1+4)/OO (max{Y;, t} — min{Y;, t} +6,) K ()dt}
S ESN (s7)"
(14 2z)3 Z 7 (ES?V)4)

xz { |Y|<1+4)/

[t<1+%

(el + Vil + 0 (1)t}

ﬁZPn(ESiN é ZE/ (It] + ¥i] + 6,) K (1)t
= ﬁ an((i?)vg* + (S;%)LL) Z(%ED@-I?’ 1+ E|Yi|EYi]? + 8,E|Yi?)
< e e (T + ) SO+ 8Bl

; N

_C R BAY L1 S s 0
" e 2 et B VB

R
-5 fx)3 (Bl (S(S%Q](Es?\,)? + L E‘Eg;vﬁ). (4.18)
Combining (4.16), (4.17) and (4.18), we have
A < (B B+ AT
b Bl e+ B )
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By Lemma 2.14(4), we have
| As| <anz { (1vi] > 1+ 4)/_Z\f’(W,§”+K~)—f/(W7§i)+t)|Ki(t)dt}
< anZE{mm >149) / K}
—anZP Vil >1+4)E ?)
< ;pn;mm > ”3’;%

C > s2 = . _
< (14 2)3 an Es?, Z ElY|® (by Chebysev’s inequality)
n=1 i=1
C o 0u(sh)
T (L+a)P ;pn (Es3)?
2 \2
CEén(sy)] (4.20)

T (14 ap(Es)?

By Lemma 4.6, we have

| A3 <an Ef(W, ZE/ 1w, i(t)dt‘
<an|Ef

n=1

:an\Ef%W
n=1
C - S s
_(1+a:)2;p ( +E3§V)| Es

_CBI(sk)? < (B
(14 z)2(Es3)?

(4.21)
Combining (4.15), (4.19), (4.20) and (4.21) yields,

[PW < z) — &(x)]

C 0% gy EOYR)T | Blon(s)"
e gl OV “mgy e )

C o B ey FRGRY] | Bk~ (s
P PN g T mRe )

Hence, the theorem is proved by applying (4.14) again. O
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4.3 Proof of Corollary 4.2
Similar to the proof of Corollary 3.2 and by Theorem 4.1, it is trivial that

[P(W < z) — &(x)]

C on §2)2 E[(SN(S?VP]
¢ B o EBAR)Y] B30 — ()
F v Pl p B ey T Eay )

Co ((EN02)2 E(No?)®
(1+ |z|)® ‘E(Na?)?  (ENg2)5
N Cs? ((EN02)2 E(N02)5) CE|(No?)? — (ENo?)?|
(1+|z|)2 \E(Ng?)?  (ENo?)5 (1+ |z|)2(ENo?)?
o5 (EN) - ENP
[+ olF CENE BN
C® (ENP | [EN" ), CEIN2—(ENY:
(L +[z)** BN?5 S(EN)>T (1 +|z])2(EN)?
< O 4 BNS ) o1k A\ EN® )+(JE|N2—(EN)2|
()Pt (ENPS S ()2 (BN (14 [x])*(EN)?

where we have used Holder’s inequality in the last inequality. 0
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