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CHAPTERI

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

For many years, wavelet transform has been shown to detect singularities.
Independently, Jaffard(1991) and Holschneider and Tchamitchian(1991) gave a
characterization of point singularities by using the continuous wavelet trans-
form. In fact, while the continuous wavelet transform is able to detect singular-
ities of function, it lacks the ability to capture directional and linear singularity.
Since then, there are several transforms which are similar to wavelet transform,
such as curvelet transform, Smith transform and shearlet transform. They all
have parabolic scaling and are able to detect directional and linear singularity.

The shearlet transform is extended from the classical wavelet transform. The
continuous shearlet transform is defined via a collection of scaling, shearing and
translating of a single function. Moreover, the shearlet transform have a simple
reconstruction formula. Kutyniok and Labate(2009) obtained the decay rates of
continuous shearlet transform of distributions with point, linear or polygonal
singularities. Recently, Lakhonchai, Sampo and Sumetkijakan(2010) proposed
the linear singularity of functions satisfying a set of directional Holder regular-

ities. They obtained the same decay rates as the results of Kutyniok et al.



This thesis is organized as follows. In the Preliminaries we recall the nota-
tions and definitions of Holder regularities, the continuous wavelet transform,
the continuous curvelet transform and then introduce the continous shearlet
transform. In Chapter 2 we will investigate vanishing directional moments and
decay properties of shearlet functions. In Chapter 3 we show a relationship of
linear singularities of function and the decays of its continuous curvelet trans-
form and continuous shearlet transform. The main result of this work is proved
in Chapter 4, in which we give a local version of the Lakhonchai et al., where
the singularity line is replaced by a singularity line segment. We then consider
the situation where singularity on a line segment in a perpendicular direction is

significantly lower than that in the direction along the line in a neighborhood.



1.2 Preliminaries

In this section, we recall necessary definitions and properties involving our
work.
Notation

All through this thesis, we will consider
1. € R?is a column vector, that is z = (21, z5)7.
2. £ € R? (the frequency domain) is a row vector, that is £ = (1, &).
3. Forz = (z1,72),y = (y1,92) € R?and v = (v, 1) € NZ,

° :U+y:(:c1+y1,a:2+y2)

e ar = (axy,axs) wherea € R

]l = /i + 23

V| =11 + 1

v __ 2 14
e |

0'f = 0y fo f

The L?- spaces : Let f in R? be a real measurable function on (R?, £, \) (here
L is the Lebesgue measurable sets, and ) is Lebesgue measure on R? ).We shall

denote the integral of f with respect to Lebesgue measure by [, f(x)dz. Then
f e L*(R?) iff / |f(z)]Pdz < oo,
R2

and || fll> = (fyo |f (@) Pdz)?.



Theorem 1.1. (Fubini’s theorem) If f(z,y) is Lebesgue measurable on R? and

fR fR |f(z,y)|dxdy < oo, then

[ [t sty = [ ] [ 1rlan] as
—/R {/le(%y)ldx} dy.

A Hilbert space H is a real or complex inner product space that is also a
complete metric space with respect to the distance function induced by the inner

product. (-,-) : H x H — F is an inner product if

e (v,u) is the complex conjugate of (u,v) :

(v, u) = (u,v)
e (u,v) is alinear in its first argument

(auy + bus, v) = aluy, v) + b(ug,v), foralla,b e C.

e The inner product (-, -) is positive definite :
(x,z) >0,
where the case of equality holds precisely when z = 0.

A standard example of a Hilbert space is L2(R?), with (f, g) = [5. f(2)g(z)dx.

A standard inequality in a Hilbert space is the Cauchy-Schwarz inequality,

[ (v, w)| < fJofffjw]].



Fourier Transform

The Fourier transform of f € L'(R?) is defined by

A~

fle)= [ s

where © = (z1,7)7 is a column vector and ¢ = (£;,&,) is a row vector in R2
The Fourier transform of f € L*(R?) is defined in the limit. So the Plancherel’s

formula becomes
(f.9) = (£, 9)-

Inversion of the Fourier transform is then given by

J@)= | f©ed.

Holder Regularities

Holder regularities of a bivariate function is defined as follows.

Definition 1.2. Let @ € (0,00) \ N and u € R?. The function f : R? — R is said
to be pointwise Holder regular with exponent « at u, denote by f € C*(u), if
there exists a polynomial P = P, of degree less than «a and a constant C = C,

such that for all z in a neighborhood of u
|[f(#) = Pz —u)| < Cllz —ul|*. Q)

Let Q be an open subset of R?. If there exists a uniform constant C so that for
all u € Q) there is a polynomial P, of a degree less than « such that (1) holds for
all z € Q, then we say that f is uniformly Holder regular with exponent o on

Qor f e C*Q).



For a fixed unit vector v € R?, f is said to be pointwise Hélder regular
with exponent « at v in the direction v, denoted by f € C“(u;v), if there exist
a constant ' = C,, and a polynomial P = P, , of a degree less than a such
that (1) holds for all  in an open line segment that contains the point u and is
parallel to v.

Let ; be a subset of R? and ), be an open neighborhood of ;. Then f is
said to be in C*(€)y, 2y; v) if there exists a constant C' = C,, so that for all u € {4
there is a polynomial P = P, , of a degree less than (1) holds for all z € 2, on
the line passing through v and parallel to v. If ©; = € is open, then we denote
C*(Q, Qa5 0) by C¥(82y; ).

Continuous Wavelet Transform
Let us recall the definition of the wavelet transform. Continuous wavelet trans-
form (CWT) is an integral transform like the Fourier-transform defined in the

previous section.

Definition 1.3. (Continuous Wavelet Transform) The continuous wavelet trans-

form of an L?(R) function f is defined by

Wito) = [ Seius@ide = 1 [ oy (22 )do

a

where this Lebesgue integral is well-defined for all @ € (0,00) , b € R, ¢ €
L*(R) and ¢, 5(2) = a *¢(a~*(z — b)). The parameter b is a position(translation)
parameter and a is interpreted as a scale parameter. v is called Mother wavelet

which satisfies vanishing moment, i.e.

4¢@ﬂ:u



This means that a wavelet should have a zero-order vanishing moment. Also
higher order vanishing moments are demanded. For comparsion, curvelets and
shearlets have directional vanishing moment defined in Definition 1.6, which
wavelets do not necessary have. Moreover ¢ satisfies admissible condition that

ensure the existence of inverse transform, i.e.
R da 9
0<cy= [W(af)|— < oo forae. §€R"
0 a

Then (see Daubechies [1]) for f,g € L*(R)

/OOO/RWJ“(C" BB} o = (. g)

a

We have Parseval’s Formula that for f € L*(R),

7 dbda
| [ Wsta S = ol

The local regularity of a function implies an equivalent local decrease of its

wavelet coefficients at small scale as shown by the following theorem.

Theorem 1.4. Let f be a bounded and f € C*(u) at some point u € R. Then its

wavelet transform with respect to a wavelet ¢ satisfies
We(a,b) < C(a® + |b—ul|) a € (0,1]

where C independent of a,b. The wavelet is supposed to satisfy v € L'(R),

) € L*(R) and [¢ = 0.

Continuous Curvelet Transform
There exists different constructions of curvelets, we choose definition in Can-

des and Donoho(2005). Continuous Curvelet Transform (CCT) is defined in the



polar coordinates (r, w) of the Fourier/frequency domain. Let W be a positive
real-valued function supported inside (1/2,2), called a radial window, and let V/
be a real-valued function supported on [—1, 1], called an angular window. Func-

tions W and V have the following admissibility conditions:

= o dr ' 2
W(r)*—=1 and V(w)*dw = 1.
0 r _

1

At each scale a, 0 < a < ag, Yq00 is defined by
Ya0o(r cos(w), rsin(w)) = a%W(ar)V(w/\/E) forr > 0and w € [0, 27).
For each 0 < a < ag, b € R* and 6 € [0,27), a curvelet , is defined by
Yabo(T) = Yaoo(Re(x — b)), for z € R?.

Notice that now curvelets have a little bit different generating function ~ for
each scale. This is different from wavelet transform. Also, because of definition

of radial window, 7,9 are high frequency functions.

The continuous curvelet transform is defined as, an integral transform
Ff(a, b, 0) = <'7ab97 f> where 0 < a < ag, b € R?and 6 € [0,27’(’)

Notice that Candes and Donoho(2005) assume V' and W are C*°, even though
we can assume only C for N large enough for which curvelets and their deriva-
tives up to desired order decay fast enough. Lemma 1.6 will show that curvelets
have vanishing directional moments with increasing number of directions when

a decreases.



The admissibility conditions and the polar coordinate design of curvelets

yields the following reconstruction formula for all f € L*(R?).

Theorem 1.5. There exists a bandlimited purely radial function ® such that for

all f € L*(R?),

ao 2 d
f= <<I>b,f><1>bdb+/ / / <%b9,f}dbd6—§,
R? 0 0 R2 a
where &,(z) = ®(z —b).

For analysis of singularities, the low frequency part [.,(®s, f)®ydb is not a
problem as it is always C*°.
Properties of Curvelet Transform
For any vectors v and v' in R?, let us denote the angle from v to v" in clockwise

direction by /(v,v").

Lemma 1.6. There exists C' < oo (independent of a, b and #) such that the curvelet
functions 7, have directional vanishing moments of any order L < oo along

all directions v that satisfy 7 /2 > | £ (v, v)| > Cal/2.
Some results on the decay of v, are given below.

Lemma 1.7. Suppose that the windows V' and W in the definition of CCT are
C* and have compact supports. Then for each N = 1,2, ... there is a constant

Cy such that

Cna=3/41!

Ve e R |0%Ya(2)] € ———~
10" Yaba ( )|—1+Hx_bH(21{g

where ||z — b||a0 = || D1/aR-o(x — b)||.
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Continuous Shearlet Transform

We choose definition in Kutyniok and Labate(2009).

Definition 1.8. Given ¢; and ¢, € L*(R), let ¢y € L*(R?) be defined by

1/;(5) = 2&1(51)&2(%) fOI'g = (51,52) € (R AN {O}) x R.

Then v is called a continuous shearlet function if:

i. Y1 € L*(R) satisfies the admissibility condition, that is

/ |1ﬂ1(a§)]2%a =1 forae £ €R,

and 1, € C(R) with supp ¢, C [~2,—3U[L,2];

ii. [[¢a]l2 = 1, 4y € C(R) with supp ¢y € [~1,1] and ¢, > 0 on (—1,1).
A continuous shearlet system is the set of functions generated by ), namely,

{Yast = a*%w(Magl(- —t):a €I CR" s€SCR,teR?},
where M,, = B,D,, B, is the shear matrix and D, is the diagonal

a 0
matrix . The continuous shearlet transform of f € L*(R?) is then de-

0 Va
fined by
SHyf(a,s,t) = (f, as), fora € (0,1),s € [-2,2] and t € R?,

Here I = (0, 1) (a set of parabolic scales) and S = [—2, 2] (a set of shear parame-

ters). A direct computational shows that

Vast(€) = a~Te 80 (agy, \/a(Es — 1))
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= He G (06 i = ).
Then, each function @ast is supported on the set
R 2 1 1 2 &
C : - - - >4 < )
Suppwast = {(51752) 51 S [ aa 2a:| U |:2a7 CL:| ) 51 S| > \/a}
Let £ C R? be given by E = {(&,&) € R? : |&1] > 2 and g—j < 1} and define

L2(E)Y = {f € L*(R?) : suppf C E}. Then, there is a reconstruction formula

for functions in this proper subspace.

Theorem 1.9. Let ¢y € L?(R?) be a shearlet function. Then, for all f € L*(E)Y,

B 2 1 @ 3 ) y
f= /R2 /2/0 <¢ast,f>¢asta3dsdt in L*(EY).

Moreover, we obtain a reproducing formula for all f € L*(R?) by defining a

vertical shearlet function () by

B = §O (€, &) = 1&1(52)&2@—;)

where 1/31, 1/;2 are defined as in Definition 1.8 above.

The shearlets ") are defined by W) = a3 Mp((MP,) (- — t)), where MY =

NGé Ja o0
B DI such that B = and D" = . Therefore {17, }

-5 1 0 a
is the continuous shearlet system for L?(E™)Y where EV) = {(£,,&) € R? :

|&2] > 2 and |£; /€| < 1} and the associated vertical continuous shearlet trans-

form is SHQEJV)f(a, s,t) = (f, ?/%(z‘s]b
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Properties of shearlet functions

Definition 1.10. The function f of two variables is said to have L - order vanishing

directional moments along the direction v = (vy,v2)T # 0 if
/b"f(bv—i—w)db: 0, forallweR*and0<n < L.
R

Lakhonchai et al.(2010) proved vanishing directional moments and decay
of shearlet functions, which are used frequently in our regularity analysis and

shown below.
Lemma 1.11. Foralla € (0,1),s € [-2,2] and ¢t € R?, the following hold.

1. The shearlet function v, has vanishing directional moments of any order

L < oo along any direction v = (v1, v9)? satisfying |vas + vi| > |v2|v/a.

2. Foreach N = 1,2, ..., there is a constant Cy independent of ¢, s and ¢ such

that

Cya /' /a + |s))"

a'/ as <
0 e N < T D, B e = 0P

forall z € R? and v € N2.



CHAPTER II
VANISHING DIRECTIONAL MOMENTS AND DECAY

PROPERTIES

In this section we will investigate vanishing directional moments and decay
properties of 1,,.. This properties will be needed in proving theorems in Chap-
ter III.

Vanishing Directional Moments and Properties of Shearlet Function

We define definition of an L - order vanishing directional moments along a di-

rection v.

Definition 2.1. The function f of two variables is said to have L - order vanishing

directional moments along the direction v = (vy,v9)" # 0 if
/b”f(bv—l—w)db =0, forallweR?*and0<n < L.
R

The above definition mean essentially that any 1-D slices of the function have
vanishing moments of order L. Notice from the definition that f has vanishing
directional moment along direction v if and only if the same holds along direc-
tion —wv.

In the following Lemma, we found a condition under which v, have vanishing

directional moments of any order L < oo along the direction v.



14

Lemma 2.2. The shearlet function 1, has vanishing directional moments of

any order L < oo along any direction v = (v1, v2)” satisfying |ves + v1| > |va]y/a.

Proof. Because supp (i) C {(¢1,6) 1 £ < |&] < 2and & < Val|&|} and
s + 3] > /a, it follows that supp(@) N{(&,&) « & = (s+2)a} =

Consequently, we have that all partial derivatives of @D@)t vanish on the &;-
axis. Next, we show that ¢, ool has vanishing directional moments along the
direction of xy-axis of any order L. Let g(z1) := [ 251),,, » Lo (xl, xg)dzy. For each

51 EISRI

36 = / g(a1)e T 8,

= (3P )(60,0)
= (~2m0) "0 s 161, 0)

=0,

so g(x1) = 0. Therefore ¢, =, has vanishing moments along the direction
v
(0,1)". Hence 9,5 has vanishing moments along the direction B_ (0,1)”

v2

1 =
(0, )" = (2,17, ie. Yy has vanishing moments along the direc-

0 1
tion v. Finally, If v, = 0, then we use the fact that, for all a > 0, t € R? and

€ [-2,2], supp(@) N{(&,&) : & = 0} = g} and hence, by the same line of

proof, we have v, has vanishing moments along the direction (1, 0)”. O

In the following lemma we obtain a decay property of all partial derivatives

of shearlet functions.
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Lemma 2.3. Foreach N = 1,2, ..., there is a constant Cy independent of @, s and

t such that

< Owva T (a |s])”
= 1+ [DyjaBos(z — OIPY

’ay¢ast<x>

forall z € R? and v € N3.

Proof. We restrict first to the case s = 0 and ¢t = 0. Fix an index vector v := (4, 1)

and define
ha(z) = Pao(Dax) and go(x) i= 0"h(2) = a7 (0" Va00) (Dat).
By a straightforward computation we have
Gal) = (27€)"ha(8)

= (27€)*a™* *thao0(D1/af)

= (2m€)"a=*2a= M (¢)a*”

= (2r€) a9 ).

Now, replacing x by D, .z in the equation (—47%||z*)*g.(z) = [ A¥ga(§)e*™ ™ dE,

where A is the Laplacian, yields

| (=47 Dy o) (0" a00) (2)| = [(—47®(| Dy ja)) a1 42D g, (D o) |

_ a—(V1+V2/2)

/R2(AkgAa)(§)€27riazfd€‘

S G_(3/4+V1+V2/2) /RQ Ak((Qﬂf)V?&(f))) dg

S Cka—(3/4+ul+ug/2) )

In the last step we used the notation that [,

A’“((27r£)”g[}(£))) d¢ < O, where O},
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is in fact independent of k. Consequently, if £ = 0 then we have inequality
(0" a00) ()| < Ca~B/4Hvi42/2)
Since

(1+ 2m)*)[[D1/a )]0 (a00) ()| = 10" (Wa00) ()] + [ (47| Dy o *)* (8" tao0) ()

< Ca 3/4+V1+V2/2)

We have

5 Oa—3/4 v1— V2/2 Oa—3/4—1/1—V2/2
10" (Ya00) ()] < 2k T 2%
L+ (27)2%||. Dy o) L+ || D1jqz||

Next, we show how to estimate for general s € R :
82”81”7/}1150(5@ = 85281”_1(81@%80({17))
= 652811/1_1(81@/}%0@1 + 579, 32))

= 852 (aillqﬁasO(xl + 82, 5(12))

1) vy
=3 Sy2ilalyl+y2_laéwaoo($1 + ST, .7?’2).
1=0 I
Therefore, we have
Vo Vo l
0520 Yaso ()] < 5|20y 2T O thago (w1 + s, 2)|
1=0 I
_ V2 Vs |S|y2_l Ca—3/4—u1—ug+l—%
= ; L+ || D1ja(x1 + 829, 2)T |2
Ca—3/4 v1—Uv2 V2 Vy

o vo—1 L
1 I HDl/a$||2k Z |5| 272
l
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_ Carn(a b))
T I Dyl

_ Ca ¥ i(ya |s)”
T 1Dyl

It is clear that all above hold also for a general ¢ because translation does not

change regularity properties. O



CHAPTER III

LINEAR SINGULARITIES AND DECAY OF TRANSFORMS

In this chapter, we show a relationship between linear singularities of bivariate
function and decay rates of its continuous curvelet transform (and continuous
shearlet transform).

Continuous Curvelet Transform

Theorem 3.1 (Sampo and Sumetkijakan(2009)). If a bounded function f € C*(R?),

then there exist a constant C' and a fixed coarsest scale a, for which

[ (o, ] < Ca*
forall 0 < a < ag, b € R*and 6 € [0, 27).

Pointwise Holder regularity estimates are harder to obtain than those for
uniform regularity. The following theorem gives decay of curvelet transform

for pointwise Holder regularity.

Theorem 3.2 (Sampo and Sumetkijakan(2009)). Let f € C*(u) then there exists

C' < oo such that

a3 - a
|(Yave, [)] < Ca2™2(1+ HWH)

forall 0 < a < ag, b € R* and 6 € [0, 27).
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Next, the following theorem be the case of directional Holder regularities

and decay of its.

Theorem 3.3 (Sampo and Sumetkijakan(2009)). Let f be bounded with local
Holder exponent a € (0,1] at points u and f € C?*TT¢(R? v,) for some 6, €
[0,27) with any fixed € > 0. Then there exist ' € [a — ¢,a] and A, C' < oo such

that for @ > 0 and b € R?,

Ca®*i, if 0 ¢ 0y + Aa'/?[—1,1],
| (Vavo, )] <

Ca® 5 (14|22, if6 ¢ 6 + Aa"/2[~1,1].

Continuous Shearlet Transform

In the following, we will examine the behavior of the continuous shearlet
transform of several distributions containing different types of singularities.
This will be useful to illustrate the basic properties of the shearlet transform,
before stating a more general result in the next section. Indeed, the rate of decay
of the continuous shearlet transform exactly describes the location and orienta-
tion of the singularities. Interestingly, despite the different mathematical struc-
ture, the decay rates found for the continuous shearlet transform are consistent
with those found using the continuous curvelet transform in by Candes and
Donoho(2005).

In order to state our results, let us recall computations of decay rates of the
continuous shearlet transform of some distributions with point and linear sin-
gularities by Kutyniok and Labate(2009). They extended the definition of con-

tinuous shearlet transforms to the tempered distributions, so that it is defined
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for the Dirac § and the linear delta distribution v,(z1, z2) = d(z1 + pz2), p € R.

They showed that

N[

fort =0, SHyd(a,s,t)~a + as a—0

and for t # 0,
SHyd(a, s,t) decays repidly as a — 0.
And if t; = —pty and s = p, we have
SHyvp(a, s, t) ~ a~i as a— 0.

In all other cases, SHyv,(a, s, t) decays rapidly as a — 0.
For f be a distribution on R? SH, f(a, s,t) be defined as in Definition 1.7, and

let r € R. Then SHy f(a, s,t) decays rapidly as a — 0, if
SHyf(a,s,t) =O(a") asa— 0 forevery k > 0.

We use the notation: SH, f(a, s, t) ~ a” as a — 0, if there exist constants 0 < a <
[ < oo such that

aa” < SHyf(a,s,t) < Ba” as a— 0.

The following theorem gives decay of shearlet transforms for Holder regu-

larity.

Theorem 3.4 (Lakhonchai et al.(2010)). If a bounded function f € C*(R?), then

there exists a constant C such that

‘<wa3t7 f)’ S C’aa+%

forall0 <a<1,s€[-22] and t € R%.
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Proof. Since uniform regularity is translation invariant, we can without loss of
generality assume that ¢ = 0. By assumption f € C*(R?), there exists a constant
C > 0 such that for each = € R, there exists a polynomial Py ,,)r such that for

all r; € R,

| f(Bsz) = Pp, (0,097 (Bst — Bs(0,22)")| < C|| By — By(0,z2)" ||
< C||By(x1,0)"

< Ce(s)? | (21, 0)|* = Cla |,

when ¢(s) = [|Bullop = (a+ $2/2 + (s2 4 s7/4)V%)* < \/3+ V8 = 1+ v2 By
Lakhonchai, Sampo, Sumetkijakan (2010)). By the rapid decay of shearlets 1/

the integral

/ |PBS(0,z2)T(BstU TS Bs<9€17 O)T)@Z)aoo(fﬂl, $2)|d$1dI2 < o0
R2 JR2

So by the assumption that 490 has vanishing directional moments of any order

along the z; - axis for a € (0,1) and Fubini’s theorem, we have

/ / | P, (0.20)7 (Bst — Bs(21,0) ) a00(21, 22)|dz1 ds
Rr? JR?

= /2 ( ) |PBs(0,12)T<Bsx =1 Bs(.rl’ 0)T>1/Ja00($1,$2)|d1}1) de
R R

R

Therefore

|<wa50f> | =

/ F(Bot) — Py oy (Bs — Bu(ar, 0) Wouoo(2)de
R2

< | 1(Bsw) = P, 027 (Bow = By(w1,0)") | [toano () d
R
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dz

q-3/4
§C/ x ’
| T Dy ealP
q—3/4
_C/|%1'L+MWN

< Caa+3/4'

dx

]

Next, a function is a pointwise regularity estimates on the shearlet transform.

Theorem 3.5 (Lakhonchai et al.(2010)). If a bounded function f € C*(u) then

there exists C < oo such that

[(Wast, f)l < CaZ¥a(l+ | a:/Q 1)
forall0 <a<1,s€[-22andt € R%

Proof. By definition, the polynomial approximation property holds only in some
neighborhood of point u but f is bounded and so this property holds in all R*.

Since

¢a5t( ) (l' = U)dlﬂ = waOOPu<Bs(x "~ u) + t)da: =0.

Therefore

(Wasts f |</‘wm I () = Pl — w)|da

< Ca‘3/4/ |z — ul|* i
N Rz 1+ ”Dl/aB—S(x —1)[|2Y

HBsDay“—t_uHa
O O o 7]

| BsDayl|™ + ([t — ul|®
R L+ [[y[]*¥

< Cg3/4+3/2

S Ca3/4

dy
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o [ R el
S

t —
< C«a3/4+oz/2 (1 + H uHa) :

al/2

since we can choose NN as large enough so that the last integral is finite. We have
also used the fact that B, D, is a bounded linear operator with norm || B;D,| =

c¢(s)a'/? and ¢(s) < 1+ V2. O

DIRECTION OF SINGULARITY

In the following theorems, for any given L > 0, s¢ € [—2,2]and u = (uy,us) €
R?, let I, denote the vertical line passing through v and let T', 5, denote the line
passing through u with slope —%. Observe that we may write I', = I, o so that
(w1, 22) € 'y s, if and only if 27 = —s¢(x2 — u2) + u;. Recall that for a subset NV
of R?, N(L) denotes the L-neighborhood of IV, i.e. the set of all points whose

distance to N is less than L.

Theorem 3.6 (Lakhonchai et al.(2010)). Let f be bounded with f € C*(I'(, o), R?; (1,0))
when a € (0,1] and f € C?**1¢(R?; (0, 1)) for any fixed € > 0 and u; € R. Then

there exist C < co such thatfor0 < a < 1,t = (t1,t,) € R?, and s € [-2, 2],

Ca®ti, if |s| > /a,
‘<¢ast;f>| S
Ca™ (1 + [15))e, i |s| < Va

Proof. For u; € R and |s| < \/a, we have that

’<¢astf>‘ =

[0 o, 7t

03/
SC’/ T — U a( )dx
R2| 1 1 1+ [Di1juB_(z — )PV
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a3/
= C/ lay1 — sv/ays + t1 — ug|” (—> dy
RZ

L [yl

43/
< (07 « t _ « - d
< [ ottt + 16 = ) (57 ) o

Next, let |s| > /a. We denote the rectangle R, := [—a™¢,a ] for some 0 <

th —uy

— Caa+3/4 (1 +

a

¢ < 1/2, to be determined later. We notice that B;D,R, is sheared similar to
the essential support of ¢, and R, — R? while B;D,R, — 0 when a — 0.
We will also use here the notation v(z) = (zq, %') Since the line x5 = I is
parallel to major axis of B;D,R,, v(z) lies on major axis of B;D, R, and v(z) — z

is always parallel to x, - axis. Let h;(y) := f(y + t). By assumption if f we have

he € C2H+<(R2, (0, 1)).

|<77Z)astf>| = |<77Z)a807 ht>|

/W(ht(x) = Pyay(z = 0(2)))¢as0 (@) d

<

/R2 B.DuR (he(2) = Po@) (2 = 0(x)))thaso (€) dx

+

/B - (4(@) = Poy (@ = 0(@))) Yo (@)

Since h, is bounded by M. So the first integral can be bounded by

/RQ BsDuR (he(2) = Po) (2 — 0(2)) )thaso (€)dx

copmn [ MO Pt
R2 B, DR, 1T |[D1jaB_s||

M+ P, (C
< (Ja3/4/ + P 2le”)dy (for some C’ > 0)
rr, 1+ [yl

_ Ca3/4+c(2N—1—degreePy/)
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where y' = v(BsD,y). Since c is fixed, we can choose N such that 3/4 + ¢(2N —
1 — degreeP, ) as large as necessary.
Assume that f € C?*T'+¢(R? (0,1)). Thus, for every y € R?, there exists a

polynomial P, such that for z in a neighborhood of y such that (z — y)||(0, 1)
|f(z) = Py(z — y)| < Cllo — y|[**H

Since a is small enough, we can choose r > 0 with B;D,R, C B(0,r). Therefore,
for x € B;D,R,, ||z —v(z)|| is less than the length [ of the part of the line parallel
to the z, - axis lying inside the rectangle B,D,R,. Observe that |I| < 2a!/?7¢,

hence
7() = P @ = v@) < Clle — vla) 2414 < Ottt < gat/2-otemsaso

Note that we can choose any ¢ € (0,1/2) and hence for any small ¢ we can

choose ¢ = . With this ¢, we obtain an estimate for the second integral

€
da+2+2€

/B Do R (f(x) - Pv(w)(l‘ - U(x)))¢a50($>d$

< /B (@) = P (o — @) (@)l

a(1/2-0) 20+ 1+¢) —3/4
< C’/ dx
B.DuRa 1+ || D1jaB_sz||?N

a(1/2—c)(2a+1+e) ;3/4
SC/ dy
. Lyl

< Oa(2a+1+e)(1/2—c)+3/4 < C«aa+5/4'

O]

Theorem 3.7 (Lakhonchai et al.(2010)). Let u; € R and f be bounded with f €

Ca(]-—‘(uLO)a F(u1,0)(L)7 (L O)) whena € (Oa ]-]1 L >1land f € C2a+1+6(1—‘(u1,0)([’); (07 1))



26

for any fixed € > 0 and u; € R. Then there exists C' < oo is that, for 0 < a < 1
and ap < 1,if 0 < a < apand t = (t1,t3) € I'(y, 0)(r) withr < L/2and s € [-2,2],

we have

< = v
asts >~

Cati (14 [Bm))e, if |s| < va.
Proof. We assume that u; = 0, the general case follows by the simple translation.

Let |s| < /a. Since

(Gu§)l = | [ (5= 0.20)us(a)dn

q=3/4
<C a d
< /R gl (1+y|D1/aBs(:c—t>H2N> !

43/
- C/ lay, — sv/ays + t1]* <—> dy
R2

L+ [yl

a3/
<0 [ ot allely + 1) (7 ) o
R2

L+ [yl
a3/
<o [ IR (s )
L [yID® + 1£11%) T ) Y
= Ca®+3 41+ b :
a
Next, let |s| > /a. We denote the rectangle R, := [—a ¢, a “]* for some 0 <

¢ < 1/2, to be determined later. We notice that B, D, R, is sheared similar to the
essential support of ¢, and R, — R? while B;D,R, — 0 when a — 0. We will
also use here the notation v(z) := (1, %') Since the line z, = 7} is parallel to
major axis of B;D,R,, v(x) lies on major axis of B;D,R, and v(x) — x is always
parallel to x, - axis. Let ¢ € I'(,, 0)(r) and hs(y) := f(y + t). By assumption of f

we have hy € C**T1H¢(T,, 0)(r), (0,1)) and h; is bounded.

|<77Z)astf>| - |<a_3/4¢(D1/aB—s(' - t))a f()>|
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= ‘<a73/4w<D1/ans('))7 f( + t>>‘
= [(a™"(D1jaB-s()), ha ()]

- |<77Z)a507 ht>|

/R?(ht(x) — Po)(x — v(2)))thaso (x)d

<

/R2 BsDoR (he(2) = Py@y (@ — v()))thaso (€) dx

+

/B (@) = P = 0(@))aro(@)de

By the proof of previous Theorem, we have that the first integral can be bounded

by

< Ca¥

/R? BsDuoR (hi(#) = Py (@ = 0()))aso(2)dz

where ' = v(B;D,R,y) and K can be chosen arbitrary large.
Let ay < 1be such that, forall 0 < a < apand s € [-2,2], B,D,R, C I'(y, 0)(r) C
L w0y (L). Since by € C?*HH(T(,, 0y(r), (0,1)) i.e. for every y € R? there exists a

polynomial P, such that
[he(x) = Py = ) < Cllz = y[**™7 , when (z - )]|(0,1)

for all z in some neighborhood of y. Hence, for x € B,D,R,, |x — v(x)] less
than the length [ of the part of the line parallel to the z, - axis lying inside the

rectangle B,D, R, is at most |I| < Ca*/?~¢ and so
|he(2) = Poay(x — v(2))| < Cllz — v(x)|| < ClIP*H1He < Call/2-o)Cetttd

We can choose any ¢ € (0,1/2) and hence for any small ¢ we can choose ¢ =
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Tasooc- With this ¢, we obtain an estimate for the second integral

/B DR (f(z) = Py (z — v(x)))Yaso(x)dz

< /B ) = Pafe = o))l

a(1/2—c)(2a+l+e)a/—3/4
< C’/ dzx
B:DuRa 1+ [ D1jaB-sz||?N

/ a(l/?—c)(2o¢+1+e)a3/4
~ Jre LAYl

dy

< CqRat1+9(1/2-0)+3/4 < Ciga+5/4,

Lemma 3.8 (Lakhonchai et al.(2010)). Let L > 0 and f be bounded with f €
C*(Tu, .50, R% (1,0)) for some sy € [—2,2] and v = (u;,uz) € R% Then f o By, €
C(T (w1 +s0us,0), R%; (1,0)).

Moreover, if f € C*(Ty, s0: Dupso(L); (1,0)) for some sy € [—2,2] and v =

(u1,uz) € R2. then fo By, € C(I (uy +s0us,0) L (ua+s0us,0)(L); (1,0))

Proof. Assume that f € C*(T',, s, R?(1,0)). Then, for each z € T, ,, there

exists a polynomial P, and a constant C' > 0 such that
[f(y) = Py —2)| < Clly = [|* ., when (y = 2)[|(1,0).

We have that B, Iy, +sous,00 = Twiso and By (1,0) = (1,0). Then, for 2’ €

[y +s0us,0) and ¢ € R? with B, (v — 2/)||(1,0). Therefore
|[f 0 Bsy(y) = Por 0 Byo (y' — )| < C| By (y — 2)||* < Clly’ — ||

So we have that f o By, € C%(I'(4,+suz,0), (1,0)). The latter part of the Lemma

can be proved in a similar way. O
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Lemma 3.9 (Lakhonchai et al.(2010)). Let f be bounded with f € C%(R?; B, (0, 1))

for some sy € [—2,2]. Then f o B,, € C*(R%(0,1)).

Moreover, if f € C*(T,5,(L); Bs,(0,1)) for some s¢ € [—2,2] and u = (uy,ug) €

R2. then f o By, € C°(T(uyssgus0) (L): (0, 1))

Proof. Assume f € C*(R?; B,,(0,1)). Then, for each y € R?, there exist a poly-

nomial P, and constant C' > 0 such that
[f(@) = By(z =yl < Cllz =yl , when (z —y)[|Bs(0,1).
Let (x — y)|](0,1). For sy € [—2,2], we have B,,(z — y)||Bs,(0,1). So
| © Buy(w) — Py Buy(t — )| < Cl|Buy(z — )|* < Cll — g

From this inequality we have f o B,, € C%(R? (0,1)). The latter part of the

Lemma can be proved in a similar way. O

Theorem 3.10 (Lakhonchai et al.(2010)). Let f be bounded with f € C*(T,, 4, R?; (1,0))
when a € (0,1] and f € C?*"!¢(R?; B, (0,1)) for some s, € [—2,2] with any

fixed ¢ > 0 and u = (u;,uz) € R% Then there exists C' < oo such that for
0<a<l,t=(t1,t) ER*and s € [-2,2],

Ca®ti, if |s — so| > V/a,
|<¢astaf>| S

t to — Uy —
CGOH_% <1 + | 1 T Sote Uq SoU2 |a) ’ if |3 . SO| S \/a
a

Proof. Consider

<77Z)ast, f> = a_3/4<¢(D1/aB—s(' - t))a f()>
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= a N P(D1jaB-sBsy By, (- = 1)), f(Bsy Bsy"))

= a " *(Y(D1/oB_sBsy(B_sy - —B_st)), f(Bsy B—sy"))
= a 3/ ()(Dy/aB_sBsy (- — B_st)), [ (Bsy"))

= ™ Y(D1aB—(s—s0) (- = B_sot)), f(Bsy"))

= (Va(s—s0)B_sgts f © Bso)-

By the two previous Lemmas, f o By, € C*(I (4 450us,0), R%; (1,0)) and f o By, €

C?e+1t€(R% (0, 1)). Using Theorem 1.9 with above equation we have

Ca*ti if s — so| > Va,
|<¢ast7 f>| = <wa(3*80)3_30t7 foBso> <

Cacts (a+ }w‘“) if |s — so| > V/a.

a

]

Theorem 3.11 (Lakhonchai et al.(2010)). Let f be bounded with f € C*(T' (4, us),505 I (1,u0),50 (L); (1
when a € (0,1], L > 1 and f € C** (D (4, us),5 (L); By, (0,1)) for some sy €
[—2, 2] with any fixed € > 0 and u = (u1, us) € R% Then there exists C' < oo is
that, for 0 < a < landag < 1,if 0 < a < ag and t = (t1,t2) € I'y, 5, (r) with

r < L/2and s € [-2,2], we have

< 4 C s =l = v
asts -~

Ca®ti(1+ | ftsatamtinzsouz o) - f |5 — 50| < /a.
Proof. By Lemma 3.8, Lemma 3.9 and the same way of the proof of theorem 3.10,

the proof is complete. O

Theorem 3.10 says essentially that, a bounded function f has low regularity

on L in the horizontal direction (f € C*(Ty, s,, R? (1,0)) is that the continuous
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shearlet transform (¢, f) decays like a®*1 in directions away from the direc-
tion of L and that needed decay rate in directions near the line is half an order
lower and depends also on the horizontal distance from the line to the parallel
line containing the ¢. Theorem 3.11 can be considered as the same result with
weakened conditions where only regularity information on a neighborhood of

the singularity line is assumed.
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Figure 3.1: (a) An illustration of regularity in Theorem 3.6. (b) An illustration of

regularity in Theorem 3.10
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Figure 3.2: (a) An illustration of regularity in Theorem 3.7. (b) An illustration of

regularity in Theorem 3.11



CHAPTER IV
LOCAL LINEAR SINGULARITIES AND DECAY OF THE

CONTINUOUS SHEARLET TRANSFORM

In this chapter, we will prove the main result that singularity on a line segment
of a function in a perpendicular direction is significantly lower than that in the
direction along the line in a neighborhood. These results are similar to those in
[10].

Notation of line segment

First, we give notations of a line segment and its neighborhood. Let s, € [-2, 2]
be given and P(uy, up) and Q(vy,v,) be points in R? for which the slope of line
segment P() joining P and Q is —% ie 1= = —s). Observe that (21, 22) € PQ
ifand only if 2; = —sg(zy —us) +u;. For L > 0 and a vector (wy, w;)” not parallel
to PQ, let PQ(L : (w,w)) denote the set of all points whose distance to PQ in

the direction (w;, w,)? is less than L. It is easy to see that PQ(L : (wy, w,)) is the

interior of the parallelogram whose the four corners are (u; +mp, us+mp) , (u; —

L

—— and
(w2 /w1)?+1

mp, us —mp), (v1+mp, ve+mp) and (v —mp, vo—mp) where p =
m = 2. Note that such a parallelogram can be written as a shear (B, ) of a corre-

sponding parallelogram whose vertices are P’ (u; + sous, u2) and Q' (uq + souz, v2)

. R R 41353
that is B,, P'Q'(L' : B_,,(1,5)) = PQ(L : (1,s0)) where L' = L,/ ojg’gl“.
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Denote P*Q* C PQ where P*((u; + (w1 + v1)/2)/2, (us + (ug + v3)/2)/) and

Q*((v1+ (ug +v1)/2) /2, (V24 (ug+1v9) /2)/2).Denote D = /(uy — v1)2 + (ug — v)?

and 0 < 6 < 1, let P°Q° C PQ defined by P°(u; + 2\‘5/’%,112 + 2\/5%) and

Q% (v £ 2\‘5/’%, vy 2\/_) depend on P and Q).

Decay of the Continuous Shearlet Transform

Let us first consider the case where the line PQ is vertical (u; = v;).

Theorem 4.1. Let 0 < o« < 1,0 <0 < 1 and r € [~2,2]. Suppose f : R? — R is

bounded and let P(uy,us), Q(ur, v9) € R? and L > 0 be given.

1. If f € C*(PQ,PQ(L : (1,7));(1,r)) then there exist a constant C' < oo
such that for all @ € (0,1), ¢t € P°Q°((1 — )L : (1,r)) and s € [—2,2] if

|s+1/r| > /a and |s| < y/a, then
[{Past, F) < Ca*H (0 + [ty — wa|*)
2. If f € CU+IB(PQ(L : (1,7);(0,1))) then there exists a constant C' < oo and

a fixed coarse scale ag € (0,1) such that for all a € (0,a0),t € P*Q*(L/2 :

(1,7)) and s € [—2,2] if |s| > v/a, then
[ (W, f)| < Caz®s

3. If f € CUFIB(PQ(L : (1,r);(0,1))) and 0 < v < & < 1 then there exists
C < oo and a fixed coarse scale ag € (0, 1) such that for all a € (0, aop),

t€ P*Q*(L/2:(1,7)) and s € [-2,2] if |s| > a7, then

|(Vast, f)| < CaP*i
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Proof. Letu; € R. For each (x1,72) € PQ(L : (1,7)) there exist y = (y1,y2) € PQ
such that 2= = 7. In fact y = (w1, 7(21 — w1) + u2) and (z — y)//(1,7). Hence
there exists a polynomial P, = f(uy,7(z; — u1) + 22) such that for all z € R? and
(z—w)//(L,r),

1f(2) = f(y)l < Cllz —yll*.
Since 145 has rapid decay (Lemma 1.11(1)), the integral
/ / flug, r(xy — uy) + x0)Yus (1, o) dx1dry < 00.
R JR

So we use Fubini’s theorem, letting p; = (21 —u;) — rze and po = r(z1 — uy) + 2.
Since |s + 1/r| > y/a, Lemma 1.11(2) implies that ¢, has vanishing directional

moment of any order along (1,7)”. So we have

/ / Jlur, m(@r — ur) + 22) Vet (@1, T2)dr day

//fu P2 (rp2+p1 u pQ—Tpl) (21, z2)
1, M2)Wast 2+1 L —7‘2—|—1 a(plap?)

dp,dps

1

_ 1 r TPy Do + 2rp;
R

Therefore we have that

rz2 41

‘<¢ast7f>| -

) gse()dx

<

/R? (f(x) - f<u1, T’(:El - Ul) + :L‘g)) ¢ast($)d$

. flug, r(zy — up) + x0)es(x)dx

+0

/R2 (f(z) = f(r(zy = wa) + 23)) Yot (w)d

D dp;
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/ (f(x) = flr(zr —u1) + 22) )Wast(x)d
PQ(L:(1,r))

+

[ (@) f( = w) + 09 buala)do
R2PQ(L:(1,r))

= lin + Iout-

Consider /i, : By a change of variable y = D/, B_;(x — t) in (3), the assumption

|s] < v/ain (4) and the fact that (a + b)* < 2%(a® + b*) in (5), we have

I < / (F@) = Flun, r(@r =) +22)| o ()] da
PQ(L:(1,r))

=3

a4
<C B / o d
<C | M@z, oo Sl <1+||D1/QB_s<x—t>H2N> '

kel PR (1 A t>|r2N) “ ©
SCCL% /RQ‘ayl—sx/Eyg—i-tl—ul‘a <W) dy 4)
< cat [ (all + ol + =l (o ) oo
< cat [ (el ali = (o ) d
<cat [ @alyl+ =) (o ) ®)

5 1
< Ca4/ 2%(2ally)® + [t = wa|*) (—) dy
R2

1+ [jy[2Y
8 2%y~ 1
= Cai laa/ SV gy | —ulya/ — _dy
r2 1+ [y r2 14 [y
< Cai [Ca® + Clty — u1|]

Cat (0 + |t; — u1|*).

IA

Consider I,y : Since f is bounded and decay properties of v,; (Lemma 1.11(2)),

we have
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Iout <

/ _ (f(z) = flur,r(71 — up) + 22)Yast(v)d
R2\PQ(L:(1,r))

-3
<C a dx

|z1—u1|>L or r(z1—u1)+uz>wz2 or x2>r(T1—u1)+v2 1+ ||D1/aB—S(x - t)H2N '

By a change of variable y = D, ,B_,(x —t),so x = B,D,y+tand dy = a~3dz s0

1

3
Iout §0a4/ T a8 Y-
lay1+sv/ay2+t1—u1|>L or r(z1—u1)+uz>/ayz+ta or Jayz+to>r(z1—ui)+ve 1+ HyH2N
Since s < v/a,a < +\/a, |ty —ui| < (1 —0)L and r(x1 — uy) + ug — 0(va — ug) < ta <
r(:vl — Ul) + vy — 5(7]2 — Ug)

1

/ L+ [ly|[*¥
lay1+ay2|>6L or §(va—u2)<rayi+(r—1)ayz or (r+1)ayz—rayi >6(va—u2) Y

>

Iowt < Ca dy

By another change of variable z = ay, so y = a™ 'z and dz = ady. Denote
A:={(z1,22) : |21+ 22| > ILord(vy —ug) <71z + (r—1)zgor (r+1)ze —rzg > 6(v2 — u2)}

-1

3 a
Iowi < Cas | ————dz
= /Al+|l§|l2N

<C fi/ gt d
a —_——=UZ
= A @+ ||2| [PV

SCa2N1+i/ ;dz
A

A
1
SCa2N_1+Z/ ———dz
a =P

3

We just choose N as large that the integral is finite.
To prove supposition 2,3 we assume without loss of generality that u; = 0.

Let ¢ € (0,1/2) to be chosen later depending on which statement we want to

1—c

prove and R, = [—a ¢ a ‘]? then D,R, = [—a' ¢ a'™¢] x [—az7¢, a27¢], and
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hence B,D,R, — {0} while R, — R? as a — 0'. We notice that B,D,R,
is sheared similarly to essential support of ¥u, let v, = (z1,%) so v — v, =
(0,22 4+ %). For w € R, denote [, = {(w, z3) : x; € R*}. For each z € B,D,R, =

B, ([—a'~¢, a'] x [—a'/?~¢, a'/?7°)), x € B,l,, where |w,| < a'~¢. Therefore ||z —
1

1—c

IN
IS]

= Joa + 2| = 1] < 2

Let AB be such that for each t € P*Q*(L/2 : (1,7)), (AB +t)(L/2: (1,1)) C
P*Q*(L/2 : (1,7)). Choosing ay < 1 be such that for all 0 < a < ag and s €
[—2,2], B;D,R, C A*B*(L/2 : (1,7)). Lett € P*Q*(L/2 : (1,7)) and denote
hi(x) = f(z +t). Then h, € CUTI5(AB(L/2 : (1,7))). Hence, for each z €
B,D,R, € A*B*(L/2 : (1,7)) and |s| > /4, |z1] < |a'™¢ + sa'/*¢| so | 2] <

% 4 q}/?7¢ < 2¢1/?7¢, Therefore v, € AB(L/2 : (1,7)), there exists a polynomial

P,, of a degree less than (1 + €)/ such that

|hi(z) — P, (z —vg)| < Cl(z — v,)||1F9P < Call=90+98,

T



POMLI2:(17)

POLL: (L=

AB(LI2:(LrY)

(AB+IXL/2: (L)
:".”’.

AB(LI 2 (L)

—— {*BYL/2: (Lrn

Figure 4.1: A picture of parallelogram involved in the proof of Theorem 4.1(2).
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If |s| > V/a, choosing ¢ = 575, we have |f(z +1t) — P, ((x — v,)| < Ca”?.

While if [s| > a” then |f(z +t) — P,,((z — v,)| < Cal=¢=)(+98 Choosing ¢ =

~ — 7,50 |f(z+1t) = P, ((z — v,)| < Ca’. Consider

|<¢a5ta f>| = |<7v/}a507 ht>|
S /RQ ht<l’)1/1a$0<l’)dl’

< /R (ul) = P (=00 aso (@)

< / o ) = Pl =)ol

+

/B v (flx+1t) — P, (x — vy))uso(z)dx

This inequality on B;D, R, for |s| > a” yields the estimate,

< c/ o’ d
x
%) B.DoRa \ 1 T | D1/a Bz ||V

1
:Caﬂ+i/ ———dy
r, L+ [lyllY

< Calti,

/B . (f(x+1t) = P, (x = v3))aso(@)dz:

If we only assume |s| > /a, similar we have

+

NI
1w

< Ca

/; DuR (f(l‘ f t) — b, (Q? B Ux))waw(l')dl'

Next, we will bound the integral on R? \. B,D,R,. By the decay estimate of
450 from Lemma 1.11(2) and change of variable = = B,D,R,y, if M is an upper

bound of | f(- +t)|,

/Rz - (hie(z) — P, (z — v2))Yaso(w)dx| < (ja‘f/R hue) = Po(@)]

2 B.DuR L T [|D1/aB_sw + t[|2N

/ M+ By (Cllyl)
R, L [lYlPY

S

<Ca dy (for some C' > 0)
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M+ P, (C'a™||z])
I2l>1 L+ |22

c g/ C'(a[|z]) 8" g
a a y4
lz>1 1+ [la=ez[]2

! degP, ,
< (gitel-1-degPy) / U s

le>1 L+ [la=ez |2

_ v 34¢(2N—1—degP,/) (||Z||)degpy'
= Cat ! c(2N) 2N
l[2l|>1 @ + |||

3 _
Cat a “dz

IN

IN

dz

< Oa%-&-c(QN—l—degPy/) / HZ”degPy/—QNdZ
ll=1>1
= Ca%—&—c(?N—l—degPy/)
O
where y' = vp,p,, and K can be chosen arbitrary large as c is fixed and N is

arbitrary. O

The following Lemma extends Lemma 5.1 in Lakhonchai, Sampo and Sumetk-

ijjakan(2010).

Lemma 4.2. Let 0 < a < 1, P(uy,u3), Q(vy,v5) € R%, L >0and f : R? — Rbe a

bounded function.

o If f € C*(PQ,PQ(L : (1,50)); (1 50)) then f o B, € C*(P'Q, P'Q'(L" :

B*80<1730>>;B*80<1750>>'
b Iff € Ca(%([] : (1750)); <_507 1)) then fOBso < Ca(P/—Q(L/ : B*SO<17 30))3 (07 1))

Proof. Assume f € C*(PQ,PQ(L : (1,50));(1,50)), so there exist C' > 0 such

that for each y € P(Q) there is a polynomial P, degree less than o,

[f(z) = By(z —y)| < Cllz —y*
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for all » € PQ(L : (1,s0)) and (z — 3)"//(1,s0)". Since B,,P'Q’ = PQ, for

each y' € P'Q’ we have B,y € PQ. there exists a polynomial P, such that for

allx € PQ'(L' : B_,,(1,50)) and By,2' — Byy' = B, (' —4)7//(1,50)7 that is

(«/ — )T //B_y (1, 50)" we obtain
|f o By (2") — Pp,yy (2" — )| < OBy (2" =)
< OBy lop(=" — 911
<Ol =)l

where [|Byllop = (1+ 52/2 + (52 + s4/4)/2)? < /34 V8B = 1 + v/2 (See Ku-

tyniok, Labate( 2009)). Next, since B;,(0,1) = (—so, 1) so we prove similarly. [

The following Theorem generalized Theorem 4.1 to the case with a sheared

singularity line segment.

Theorem 4.3. Let 0 < o < 1and 0 < é < 1. Suppose f : R? — R is a bounded

and let P(uy,us), Q(v1,v2) € R* and L > 0 be given.

o If f € C*(PQ,PQ(L : (1,50));(1,s0)) then there exist a constant C' < oo
such that for all a € (0,1),t € P°Q°((1 — &)L : (1,7)) and s € [-2,2] if

|s — so] < V/a, then

|(Vast, )] < Oa3/4(aa + [t + Sota — u1 — Soual|®)

o If f e CUTIF(PQ(L : (1,50);(—50,1))) and 0 < v < = < 1 then there

1+e€

exists C' < oo and a fixed coarse scale ag € (0, 1) such that for all a € (0, ay),
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te P*Q*(L/2: (1,s0)) and s € [—2,2],

s 1) Cort il =
asts S

CaPti if |s— so| > a.
Proof. Since B, P'Q'(L' : B_.(1,50)) = PQ(L : (1,s0)). It is easy to see that
|(Vast, )| = |<%(5730)B,30t, f o By,)| and using Lemma 4.2, we have f o By, €
C*(P'Q', P'Q'(L' : B_4,(1,50)); B_s,(1,80)).Since t € P3Q((1 — )L : (1,50)), SO
B_,t € (PY)(Q%)((1=0)L) : B_y(1, s0)). Consider B_,, (1, s0) = (1+52,50) we

see that |(s — sg) + 11_33‘ =

|s + il Next, we will show that for each s € [-2, 2]
if |s — 59| < y/a then |s + %| > Va. In case sg = 0, trivially. For so > 0,
since (so — 1) > 0 we have so+% > 2. Since 0 < a < 1, so+% > 2y/a. So
—% +va < sp — y/a. While if sy < 0, Let m = —so > 0 by above case we got
- +va < —t—y/athen - +./a > —so++/a. So clearly on the real line we have

that |s + %\ > /a. So by Theorem 6 we have,

[(Yasts )] = [{(Ya(s—sa)B_ogts f © Bso)| < Ca®’*(a® + [t1 + sota — us — soua|*).
Supposition 2 we prove similarly. O]
As a result of theorem, we model a linear singularity situation.

Corollary 4.4. Let 0 < a < 1, P(u1, ug), Q(v1,v2) € R?, 59 € [-2,2]and 0 < v <

— Ris a bounded in C*(PQ, PQ(L : (1,5s0));(1,50)),

CY(PQ(L : (1,50)) \ PQ; (1, 50)) and CUHIN(PQ(L : (=50, 1)) \ PQ;(—s0,1))

for some L > 0. Then there is a constant C' < oo and ag < 1 such that for all
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a € (0,ap),t € P*Q*(L/2:(1,s9)) and s € [-2,2],

;

Ca*t1 if s=spandt € P*Q~

|<wast7f>| < CCLN+% if S =38y andtgéP*Q*

CaN*ti if |s — so| > a.
\

Consequently, for s = sg and t € P*Q%, |(Vas, f)| = O(a*™/*) as a — 07 for all

other cases |(Vust, f)| = O(aNT3/*) as a — 0F.

Proof. Lett € PQ(L : (1,s0)). If s = 5o and ¢ is on the line P*Q* then |s — s¢| =
0 < yaand so(ta — us) + (t1 — u1) = 0. So Theorem 4.3 gives |(Vust, )| < Ca®+i
forall0 <a <1.

Let s = spand t ¢ P*Q*. In light of Theorem 4.3 on the line P*Q*, the
assumption that f € CN(PQ(L : (1,50)) ~ PQ; (1, s9)) implies that |(1as, )] <

Ca*i forall0 < a < 1.

If |s—so| > a” then, by Theorem 4.3, |(¢ust, f)| < CaN*i forall0 < a < ag. O
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Figure 4.2: An illustration of a vertical line segment singularity in Theorem 4.1.

(a): directional Holder regularity of function. (b): decay rate of the continu-

ous shearlet transform in a direction (1,7)”. (c): decay rate of the continuous

shearlet transform in a direction (0, 1)7.
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PO(L :(1,5,))

PO ((1-F)L:(Ls,)
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Figure 4.3: An illustration of a sheared line segment singularity in Theorem 4.3.

(a): directional Holder regularity of function. (b): decay rate of the continu-

ous shearlet transform in a direction (1, sy)”. (c): decay rate of the continuous

shearlet transform in a direction (—sg, 1)7.
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