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CHAPTER |

INTRODUCTION

For a system of non-interacting electrons confined in two-dimensions under the
influence of a transverse magnetic field, an electron occupies the discrete level known
as the Landau level [1]. In real systems, in which impurities are present, each Landau
level is broadened into a band, which is called “ Landau band” [2]. The state of electron
in Landau band consists of extended (delocalized) state and localized state [3]. This

gives rise to the quantum Hall effect [4].

If the magnetic field is very strong, the localization in quantum Hall effect can be
discussed in terms of semiclassical approximation and percolation [5]. In semiclassical
limit, the motion of electron is decomposed into a rapid cyclotron orbiting and a slow
drift of orbit guiding centers move along equipotential line of impurity potential.
Therefore, in the region where the potential forms hills or valleys the equipotential line is
closed corresponding to localization. At the saddle point in potential, the equipotential

line percolates and the corresponding state is extended.

From a semiclassical picture, Fertig and Halperin [6] were the pioneers in
studying the motion of electron in a saddle point potential under the influence of a
transverse magnetic field.. They proposed that in vicinity of the saddle point potential,
tunneling of electron can occur. In order to study tunneling of electron in this region they
were assumed an electron mass m moving in xy-plane and the saddle point potential is
in the form V(X y) =V, +(m/2)(Q5x* —Qfy?) where Q, and Q, are parameters
representing the saddle point potential and V, is the height of the saddle point
potential. They calculated the exact transmission coefficient of an electron in this

potential and an arbitrary uniform perpendicular magnetic field.

Recently, the model of Fertig and Halperin has been widely used to study the

levitation of extended state in quantum Hall effect [7-10]. Therefore, the propagator and



density of states of electron are necessary elements of this model. In this thesis, we use
the Feynman path integral to evaluate the propagator and density of states of electrons

in this model.

This thesis is organized as follows. In Chapter 2, we review the quantum Hall
effect, semiclassical approximation and the work of Fertig and Halperin. In Chapter 3,
we review the Feynman path integral approach to calculate the propagator of electron
and density of state. In Chapter 4, we present an exact evaluation of a propagator for
electron moving in the a two-dimensional saddle point potential V,(x,y) under the
influence of a transverse magnetic field and apply our result to calculate density of

states. Discussion and conclusion are present in Chapter 5.



CHAPTER 11

QUANTUM HALL EFFECT

As mentioned in the previous chapter, we are interested in the problem of
electron in a saddle point potential with a transverse magnetic field, which plays an
important role in delocalization in a quantum Hall system. In this chapter, we will review
the topic that led to this problem. The contents in this chapter are as follows: Section
2.1, we present an exact evaluation of Landau gquantization by solving the Schrodinger
equation for an electron moving in two-dimensions under the influence of a transverse
magnetic field. Section 2.2, we review the quantum Hall effect that has been a direct
consequence of Landau quantization and impurity effect. Section 2.3, we discuss the
behavior of electron in quantum Hall effect using semiclassical approximation. Section

2.4, we present the work of Fertig and Halperin.

2.1 The Landau Level

The knowledge of the quantum mechanics of a free electron moving in a two-
dimensional plane, subject to a magnetic field directed perpendicular to the plane, is
central to the understanding of quantum Hall effect [11]. In this section we will describe
the quantum mechanics of a two-dimensional electron in a magnetic field using theory

developed by Landau [12].

Let us assume that a two-dimensional free electron gas, with effective mass m*,
is maving in a time-independent and uniform magnetic field B applied along the z
direction. The magnetic field affects both the orbital motion and the spin dynamics of the
electrons. For simplicity we will neglect the interaction between electron spin and the
magnetic field. The Hamiltonian, H,, for an electron moving under the uniform magnetic

field is given by




where e is the magnitude of the electronic charge, c is the speed of light, p = zV is the
i

electron momentum operator, 4 is the Planck’s constant and A is the vector potential

associated with the magnetic field.

Landau simplified (2.1) by introducing the gauge (known as Landau gauge) in

which
A= (0,Bx,0). (2.2)

One can show that this gauge satisfies the requirement that B = VxA . Using Eq. (2.2) the

Schrodinger equation corresponding to the Hamiltonian H becomes

02 o ieB Y 2m'E
{ax2 +(W+%Xj Y }W(X'y)zo' 29

which can be solved by writing the wave function y(x,y) in the form
w(X,y) = U(x) exp(ik,y) . (2.4)
Substituting Eq. (2.4) into Eqg. (2.3), the wave equation for U(x) can be expressed as [1]

~n? 2Y(X) ) m"
2m” | o x? 2

2
(e*B x-hk*yJ U(x) = EU(X) . (2.5)
m C m

Eqg. (2.5) is equivalent to the Schrodinger equation for a one-dimensional simple

harmonic oscillator with cyclotron frequency o and equilibrium position




The eigen value E of Eq. (2.5) is given by the well-known expression for simple harmonic

oscillators
1 _
E:(n+§)hm, n=0,1,2,... . (2.7)

These quantized energy levels are known as Landau levels. If we put the system in the
plane of size L,L, where L,and L, are the dimensions of the system in the x and y
direction, respectively. From Eg. (2.6), the x dimension of the system is confined to 0< x
<L, we see that 0 < K, < m oL, /7. Let us impose the periodic boundary conditions
v(x,y) =w(x,y +L,) . Then k, =2mp /L, with p an integer. Together with the condition

on the range K this implies that the total number of states or degeneracy N in a Landau

level is 2LZLXLy , or the number of states per unit area of full Landau level is
4

1 eB
e L W 2.8
B" ow?  2mhc 2.8)

where (¢ =.ch/eB is called magnetic length. From Egs. (2.7) and (2.8) the
corresponding density of states is in the form of delta functions at energies E, as shown
in the Fig. 1. In a real sample, the impurity potential lifts the Landau levels degeneracy,

and leads to the localization and delocalization of an electron that we will discuss it's

mechanism in Section 2.3.

The filling factor is defined as the ratio between the density of the electrons, N

and Ng

It is an integer,v=n+1, if the states of the lowest n+1 Landau level are completely filled

with electrons and the other levels are empty.



Density of states

Fig. 1. The corresponding density of states for the free electron confined to move in a

plane perpendicular to the magnetic field.

2.2 Quantum Hall Effect

The quantum Hall effect was discovered by Klaus von Klitzing in 1980 [13]. He
investigated the electrical transport properties of silicon MOSFET (metal oxide
semiconductor field effect transistor) subject to a magnetic field of about 18 T at a
temperature of about 1.5 K. The geometry of the sample used by von Klitzing et.al. is
shown in Fig. 2. The cross section of the sample is shown schematically in Fig. 3. The
two-dimensional electron gas, which is central to the experiment, is confined in an
inversion layer at interface between the silicon dioxide (SiO,) and the p-type Si
substrate. The band bending at this interface, when the substrate is biased to produce
an inversion layer, is shown in Fig. 4. The substrate, SiO,, layer and top metal electrode
(known as the gate) form a parallel plate capacitor. The total amount of charge on these
electrodes is proportional to the gate voltage V. As-a result, the electron density N can
be varied continuously by changing V,. In the experiment a constant magnetic field was
applied perpendicular to the sample along the z direction. A constant current was
maintained in the sample in the x direction via an applied potential while the voltage
drops across the sample in the x and y directions (denote by U and U,, respectively)

were measured.



Si p-Substrate  Hall probe
l: Drrain
r Surface chanel

Source _J dw — Gate

Potential probes

Fig. 2. Top view of the MOSFET Hall “bar” used in experiment of von Klitzing et.al.

Si
p—S__ut:n strate

Fig. 3. Cross-sectional view of the sample in MOSFET along the surface channel

showing the two-dimensional electron gas (2DEG) under the gate.

Si
Si0, 5 p-substrate

Fermilevel

ZDEGIn inversion layer

Fig. 4. The spatial variation in electron energy across the MOSFET when the gate
voltage is biased such that an inversion layer is formed at the Si substrate and

the oxide interface.



From the experimental result, they found that the transverse resistance or Hall
resistance Ry exhibits plateaus that were given by integer fractions of h/e?when gate

voltages are varied (Fig. 5)

Ry :—_L2 (j=1,23..). (2.10)
e
At the same gate voltages they observed the longitudinal resistance was extremely

small. Since the Hall conductance, the inverse of the Hall resistance, was quantized in

30 |F-——-- , I 3.0
25 -~ 25
20 - ~ 20
|
L, fmd 15 - 13 Lfmy
10 |- Lo

05

Fig. 5. The integer quantum Hall effect as discovered in 1980 by K. von Klitzing using
silicon MOSFET. The Hall voltage U,, and the voltage V at two contacts parallel
to the source-drain current (I=1 pA), U are shown as a function of the voltage
V, at the gate of the MOSFET at the temperature of T= 1.5 K and magnetic flux
of B=18T.



integer units of e?/h, this was called later on the integer quantum Hall effect. The

quantization of Hall resistance can be as precise as a few parts in 10°, Explicitly
R,=(25,812.807)Q/|. (2.11)

This precise quantization leads to a very accurate determination of the fine

structure constant o, o™t =137.035, in accordance with

= 212
a - (2.12)

where p, = 4nx10~" H/m is the permeability of vacuum and ¢ is the speed of light
299,792,458 m/s. Since the speed of light ¢ is known very precisely, the determination of
Hall plateaus provides a very accurate method of determining a . At the same time the

quantized Hall resistance can be used as an absolute resistance standard.

The experiments show that between two adjacent Landau levels, the Hall
resistance has fixed values and the longitudinal resistance vanishes, which means that
the electrons are localized in this region. Localization is a key point to interpret the

integer quantum Hall effect.

Due to impurities, the density of states will evolve from sharp Landau levels to a
broader spectrum of levels (Fig. 6). There are two kinds of levels, localized and
extended, in the new spectrum, and.it is expected that the extended (delocalized) states
occupy a core near the original Landau level energy while the localized states are more
spread out in energy. Only the extended states can ‘carry-current. Therefore, if the
occupation of the extended states does not change, the current will not change. An
argument due to Laughlin [14] and Halperin [15] showed that extended states indeed
exist at the cores of the Landau levels and if these states are full, (i.e., the Fermi level is

not in the core of extended states) then they carry exactly the right current to give (2.10).
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Fig. 6. In the presence of impurities, the Landau levels broaden to a band. Regions of

extended state are shaded.

The existence of the localized states can explain the appearance of plateaus. As
the density of electrons is increased the localized states gradually fill up without any
change in occupation of the extended states, thus without any change in the Hall
resistance. For these densities the Hall resistance is on a step in Fig. 5 and the
longitudinal resistance vanishes. It is only as the Fermi level passes through the core of
extended states that the longitudinal resistance becomes appreciable and the Hall

resistance makes its transition from one plateau step to the next.

2.3 Semiclassical and Percolation Picture

In Section 2.2, we have shown that existence of localized state is centrally
important to understand integer ‘quantum Hall effects. In this section, we will show that
for the disorder potential, smooth on the scale of the-magnetic,length, the localization in

integer quantum Hall effect can be discussed in terms of semiclassical approximation.
From Hamiltonian H, in Eq. (2.1), the semiclassical approximation is most
conveniently derived by replacing the coordinate (x,y) by guiding center coordinates

(X,Y) and relative coordinate (&,m) given by

X =X+8, (2.13a)



1"

where
c e
§=—£(py—€Ay), (2148)
n=—(py - =A). (2.14b)
eB c

From the Heisenberg equation of motion, we get
s
§=£{Hm§]=wn, (2.15a)

il = [y ] = ¢ (2.16b)

We see that (§,1n) indeed rotate with angular frequency o around guiding center
(cyclotron motion). Due to the commutation relation of p and r, both guiding center

coordinate and relative coordinate obey canonical commutation relations,
[e.ml=if?, (2.17a)
[X Y] =-i¢?, (2.17b)

Using Eq. (2:14), the Hamiltonian H, can be written in terms of € and 7,

Ao

_?(gz ) (2.18)

0

which expresses the degeneracy of Landau levels as H  does not depend on X and Y.

In the presence of a disorder potential V(x,y), the degeneracy is lifted. The

equations of motion for the center coordinates are
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: i — 02 oV
ng[HoﬁLV(X,Y); X]:TW' (2.19a)
o e Voy), v] = 2V (2.19b)
= + X! ) = .
nt y h OX

Due to impurity ions which are randomly located in sample, creating fluctuations
in V(x,y). If the sample is penetrated by a strong magnetic field, the cyclotron radius is
much smaller than the potential fluctuations in the sense that W V(X, y)‘ << hol ¢ .
Consequently, the potential V(x,y) is smooth on the scale of magnetic length ¢ , we can

replace V(x,y) by V(X,Y) and obtain a drift of the guiding center along equipotential,

29
, o\ \%. (2.20a)
hoY
(2350240 \)
Y=——. (2.20b)
n oX
In this limit, the eigen energies are
E=(n +%)ha)+V(X,Y). (2.21)

This discussion shows thatin the semiclassical limit the motion of electrons can
be decomposed into guiding center motion along equipotential-line of disorder potential
and cyclotron motion with frequency o around guiding center. It then seems very
reasonable that in the presence of smooth disorder potential the eigenfunction will live
on contour lines of constant energy on the random energy surface. Thus low energy
states will be found lying along contours in valleys in the potential energy landscape
while high-energy state will be found encircling hills in the landscape. In both cases the

corresponding states are localized.
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For the delocalization in the smooth disorder potential landscape, Trugman [16]
pointed out that in this limit the delocalization of electronic states is associated with the
percolation of equipotential lines which percolate at the saddle points in potential
landscape. The energy of extended state is thus clearly determined by saddle point
potential in this limit. For a disorder potential symmetrically distributed about zero, then

all saddle point in potential landscape are identified with zero energy.

In order to understand the electron transport from the above picture, it is useful
to imaging gradually filling a random landscape with water, in this analogy sea level
represents the Fermi energy for electron. When only a small amount of water has been
added, the water will fill in the valleys to form small lakes. As the sea level is increased,
at a “height” of a saddle point in potential energy landscape (zero energy) their
shorelines will be percolate from one side of the system to the other (Fig. 7). As the sea
level is raised still further, the ocean will cover the majority of the landscape and only the
hill will stick out above the water. The shoreline will no longer percolate but only

surround the hill.
2.4 Fertig and Halperin Model

In the previous section we presented that behavior of an electron moving in two-
dimensional disordered system with strong magnetic field can be understood using a
semiclassical picture. However, semiclassical picture dose not include the effect of
quantum tunneling which can occur in the vicinity of saddle point when two orbits on
equipotential line at the same energy.approach each-other on the distance less than the
cyclotron radius (Fig. 8). In this section, we present the work of Fertig and Halperin who
studied tunneling in this region by assuming the saddle point potential in the form
Vg (X, y) = (m/2)(Q§x2—Q§y2)+V0. The parameters Q, and Q, are representing
the harmonic and inverted harmonic of saddle point potential in the x and y directions,
respectively, and V, is the top of the saddle point potential. The Hamiltonian for this

system is



Fig. 7.

Fig. 8.

14

Left: Schematic plot of smooth random potential V(x,y) with
equipotential lines at E equal to the “height” of the saddle points

in the potential energy landscape. Right: Equipotential lines of the
same potential for E equal to valley, zero energy (“height” of saddle
point), and hill corresponding to long dashed, solid and short dashed
lines respectively. Note the solid line percolating the system

from top to bottom as indicated by the arrows.

[

Sketch of the saddle point potential corresponding to the model of Fertig and
Halperin. The electron drifts along-equipotential lines (a and b) and can tunnel
between different contours where they get close in distance less than cyclotron

radius (c< /).
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2
He (52 4] +(3)@ix -0y +Vo, (2.2

By using symmetric gauge A:%(—y,x,O) there is coupling between x and y in
the Hamiltonian. In order to decouple this Hamiltonian, they express Eq. (2.22) in the

form

H=w(aja; +aza, +1) +;(51+52 —8,8,) +7[(a; +3,)° - (af +a,)’1+V,, (2.23)
i

P o S o X 2 Q; +Qf
where © = mT+Q2 , Q? :—Xz—y, y:QT, Q% = T and operators a;and a,
(0]

are given by

a, =71.2—{ MaX + — aix} (2.24a)

sj
el

1{x/—Y+

} (2.24b)
V2

vmo 0Y
sothat[a,,a; ]=[a,,a;]=1and [a;,a, ]=[a,,a; ]=0 (omitted # in momentum operator).

Hamiltonian Eq. (2.23) can decouple into a sum of two commuting Hamiltonian

by introduce a Bogoliubov transformation

a, _(icos ¢ sind 61 (2.25)
a,) \-sing ~icos)p, ) |

with tan(2¢) = — Eq (2.23) becomes H,+H, , where
4y

Eo 2 0, 2
2o Y ;
(b; b, | ® ’ [bl) (2.26a)
© 2

by
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o %ﬂ/v”(%)z —y »
( ; b, _ Bi +V,. (2.26b)
_ o 2 (Ov2 P2

Y 2+,/v +(4)

Operators b, and b, satisfies commutation relation [b,,b,]=[b,,b;]=0 and
[61 ,61*]:[62 ,6;]21. From Eg. (2.26) H, can be diagonalized with a second Bogoliubov

transformation of the form

th i c_osh 0, sinho, fz | (2.27)
by sinh 6, cosh 0, ) c;

with

tan( 20,) = — A

Q) 2 o,
5 ,/v (4)

For this transformation, [c,,c3 ]=1, Eqg. (2.26b) becomes

Hy = 2E, €36, +2) + b, (2.28)
where
E,= %((m4 +4020% + 4012 1?2 120212, (229)
2

Equation eq. (2.28) shows that H, has the form of harmonic oscillator

Hamiltonian. Unlike H,, H; cannot be written in the harmonic oscillator
form. However, H; can be written in a convenient form, which preserve
the commutation relation [c, ,c; ]=1,

H, =E,(c2 +¢7), (2.30)

when
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kEl _ c_osh 0, sinh @, fl | (2.31)
by sinh ©;  cosh 6, )\ c;

2 Q)

o) 2
2 Y +(Z)
tan(20,) = (2.32)
-
and
1 4 252 4\1/2 2 53241/2
Ei= —— (0 + 40202 +40*)2 _ o2 —202)1/2, 2.33
1 2\/5 ( )
Using Egs. (2.28) and (2.30), full Hamiltonian may be written as
A0 B ANA N TSSO
HZEl Cl +Cl +EE2(C2C2 +E)+V0, (234)

with [¢;,¢,]=[¢;,¢51=0, and [¢, ,¢; [=[c,,c; I=1.

In order to solve the Schrodinger equation from Eq. (2.34), it is convenient to define the
following operator:

X7 %(Ef 5. (2.35a)
T (2.35b)
\/E 1 17 '

219. 15
s =E(c2 ¥ co (2.35¢)
pr Ll Léy (2.350)
5 C0 ). .

Using Eq. (2.35), the Hamiltonian H, and H, may be written as

H, = El(P2 _ Xz), (2.36a)
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H, =%Ez(p2 +s2)+vo, (2.36b)
with [ X, P]=i, [s,pl=i, and [s, X]=[s, P]=[p, X 1=[p, P]1=0.

The full Hamiltonian is a sum of two commuting Hamiltonians, the first (H,) being
equivalent to that of a one-dimensional inverted harmonic oscillator, and the other (H,)
representing the one-dimensional particle in a confining harmonic potential. Physically,
the coordinate s is associated with the cyclotron motion of electron, and the coordinate

X with the guiding center motion.

Thus, the wave function of this system can be written in the form ¥(X,s) where
X and s are real numbers. Since H, -V, is Hamiltonian of one-dimensional harmonic
oscillator, Y(X,s) can be chosen to be O(X) 0, (5) where

H, ¢, (s) :{(n +%) E, +V, }(pn(s), and ¢,(s) to be normalized to unity ( Ids | 9n(5) |2 =1).

—00

This implies that energy spectrum is unlike discrete Landau levels, the saddle-point
potential allows for a continuous energy E for each discrete state n. For Qi,Qf, — 0 the
energy E becomes discrete Landau level [8]. Consequently, Schrodinger’s equation for

wave function of this form may be written as
1
M%) = E: (P2 - X2 Jo(20) = €~ (n+ 2)E; ~ )d(X) (2.37)

where E—(n +%)E2 is the guiding center energy of electron. Eq. (2.25) implies that the
probability that the electron in this system will go through the saddle point is equivalent
to the probability that the "one-dimensional electron will be transmitted through the

inverted harmonic oscillator potential.

From the work of Fertig and Halperin, in Chapter 4, we will use the Feynman
path integral to derive the exact propagator and evaluate the density of states of

electron in this model.



CHAPTER 111

THE PROPAGATOR AND FEYNMAN PATH INTEGRAL

Motivated by the work of Fertig and Halperin, who treat the problem of two-
dimensional electron in a saddle point potential with a transverse magnetic field by
solving Schrodinger equation, we will study the electron energy spectrum in this system
by using Feynman path integral approach. Before we present our calculation in next
chapter, in this chapter we will review the Feynman path integral and some applications

that can be applied to our work.
3.1 The Propagator and Feynman Path Integrals

In quantum mechanics, the dynamical information of a quantum mechanical
system is contained in the wave function. It is a function, sometimes called the
probability amplitude that determines the wave associated with a particle. In practice,
we can obtain their wave function by solving the Schrodinger’s equation.

In Schrodinger’s picture [17], there exists the state vector |‘P(t)>that evolves as
|w()) =U(t, t) | ¥(t)) (3.1)

where U(t,t') is the time evolution operator satisfying the following properties,
.0
I n—U(t,t") = HU(t,t’
) i P (t;t') (t,t)
i) Ut th=1 {initial condition}
i) Ut HU(t, t) = ut”, t) {composition law}

iV ) U+ (tﬂ, tr) — U—l (tﬂ, tr) — U(t,, trr)

and H is the Hamiltonian. If the Hamiltonian is not an explicit function of time then the

evolution operator is of the form

Ut t’ = exp{—%H(t”,t’)} : (3.2)
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In the configuration representation Eq. (3.1) becomes

(x"

w(t") = Ofd3x'(>”<"|U(t", t)[ %) (X[ (), (3.3)

where the complete set

o0
Jadx %) (x| =1. (3.4)
—40
We can rewrite Eq. (3.3) as
(@)= Ta8x KR (3 |#(D)) (3.5)
—
where
K(X", 17X, 1) = (X"|u(t’, 1) |x). (3.6)

K(x",t";x',1") is called the “propagator” as the probability amplitude of a particle to go

from x' attime t'to x” attime t”.

According to Feynman’s idea [18], there are infinitely many paths for a particle to
go from the initial point to the final point under the restrictive condition that x(t) = x’,
x(t") = x". Each trajectory_contributes to the total amplitude, to go from x’ to x". They
contribute equal amounts to the total-amplitude, but at different phases. The phase of
the contribution from a given path is the action S for that path in unit of action 7. That is,
to summarize, the probability P(x”, X') to go from the point X' at t' to the paint x"at t” is
the absolute square of an amplitude K(X",t";X',t'), P(X",X) = |K(X",t"; X', t')|2 to go from
X' to x". This amplitude is the sum of all amplitude contributions <D[>?(t)] from each

path, that is

KX t5x, 1) = > k)] . (3.7)
over all path
from x' to x"
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The contribution of a path has a phase proportional to the action S,

(D[)"((t)] =[constant] exp {%S[ﬁ(t)]} , (3.8)
and 5= [dt L, ), (3.9)
with the Lagrangian L( ): =mx% = V(). (3.10)

Actually, we can not evaluate K(x’,t";x’,t") from Eq. (3.7) directly because of

the infinitely many paths contributing. Feynman [18] proposed another way to perform a
new formalism of K(x’,t";x/,t). By dividing the time variable into steps of width ¢—0,
this gives us a set of value t; spaced at a distance ¢ apart between the values t' and t”
At each time t; we select some special X; and construct a path by connecting all

points. It is possible to define a sum over all paths in this manner by taking a multiple

integral over all values of x; for i between 1 and N-1, where

Ne = t"-t
e =t—t
t =4l
t, = t"
X, =X'; Xy =X"
The resulting equation is
K(X 1% X, 1) :NlmiA”...jds':l d3:2 ds’:‘-l exp{%sﬁ((t)]}, (3.11)

where S = Idt L(x x)and the normalizing factor A= (271[;18)3’2
m
t'
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ty
t1+1 élr i
5 ; ,
il
ty

X’ Xl X1+1 ¥ X

Fig. 9. The sum over paths is defined as a limit, in which at first is specified by giving
only its coordinate x at a large number of specified time separated by
very small interval . The path sum is then an integral over all these
specified coordinates. Then to achieve the correct measure, the

limit is taken as € approaches zero.

For small time slices,

£
S(t;, ti4) = jdt L(X, X) = %(xi — %y P -evx;). (3.12)
Lics

so that Eq. (3.11) can be written as

3N

| s - N
K(X", " X', t) =h|lm[2:h8) ? J’J’...jdsxldaxz...o|3xN_l exp{%'zgn—g(ii —%.)f -¢ ii)}.

(3.13)

Feynman wrote this sum over all paths in a less restrictive notation as

K& 5%, ) = [ DI exp{%S[i”, x]} (3.14)
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which is called the Feynman path integral. Here the symbol J.D[?((t)] is defined by Eq.
(3.13) and represents an integration over all possible paths connecting the point (x',t")

and (x",t").
3.2 Path Integral of a Free Particle

From Eq. (3.13) we can compute the propagator of a free particle. The

Lagrangian for a free particle is

L(X, X) :%QZ. (3.15)

The three dimensional propagator is simply the product of three one-dimensional
propagators, so that these is no point in cluttering our equation with vector. We wish to

evaluate

N
N

"o | m _ 2
K(X",t"; X' t)_Nll_r)r;(zmhgj II Idx dx, .. delexp{%ZZx Xi1 } (3.16)

i=1

This is an integral of the form J-dx exp[—ax? +bx], which is called a gaussian integral.

—00

Since the integral of a gaussian is again gaussian, we may carry out the integration on

one variable after the other with the help of the formula.

de ( ; ]_Mex o, —x)? - (4 - x0)?]
° Y 2nine P 2ning )2 7Y s
A 1/2
:(Znih(Ze)j exp{zmh(Z)j( 2 )}'

After the integration is completed, the limit may be taken. The result is

(3.17)

1

Shoam S m 2 im or o on?
K(x", t"; x', t" _(—Znih(t"—t’)j eXp{(—Zh(t”—t’)](X X" } ) (3.18)
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3.3 The Quadratic Lagrangian

In principle, if the path integral is still in a gaussian form, it is possible to carry
out the integral over all paths in the way described in the previous section. But in real
practice it is too complicated to perform, for example, the harmonic oscillator problem.
We now introduce some additional mathematical techniques, which help us to sum over
paths in some certain situations. The simplest example to be studied is a quadratic
Lagrangian, this corresponds to a case in which the action S contains the path x(t) up to
the second power.

To illustrate how the method works in such case, consider a particle whose

Lagrangian has the form
L(X, X, t) = a(t)x? + b(t)xx + c(t)x? + d(t)x + e(t)x + f(t) . (3.19)

The action is the integral of this function with respect to time between two fixed end

points. We wish to determine
i 7
K(X", "X 1) = _[D[x(t)] exp {Ejdt L(x, X, t)} , (3.20)
i

the integral over all paths which go from (x’,t") to (x”, t”). Of course, it is possible to
carry out this integral over all paths in the way which was first described by dividing the
region into short time elements; and so on: But we shall'not go through this tedious
calculation, since we can determine the most important characteristics of the propagator
in the following way.

Let X(t) be the classical path between the specified end points. This is the path,

which has an extremum for the action S. For this notation we will use
Sqlx", x'T = S[x(1)] . (3.21)

We can represent x in term of xand y
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X=X+Y. (3.22)

That is to say, instead of defining a point on the path by its distance x(t) from an
arbitrary coordinate axis, we measure instead the deviation y(t) from the classical path,

as shown in Fig. 10.

Fig. 10. The difference between the classical path X (t) and some possible alternative

path. The end point y(t" )= y(t")=0.

At each t the variable x and y differ by the constant x . Therefore, clearly, dx, =
dy, for each specific point t; in the subdivision of time. In general, we may say D[x(t)] =

Dly(t)] . The integral for the action can be written as
t" .
S[X(1)] = S[X + y(t)]= j dt[a(t)(%2 + 2%y + y2) +.] . (3.23)
Y,

If all the terms, which-does not involve y are collected, the resulting integral is
just S[x(t)] =S . If all the terms, which contains y as a linear factor, are collected, the
resulting integral vanishes. This could be proved by actually carrying out the integration,
however, such a calculation is unnecessary, since we already know the result is true.
The function X(t) is determined by this very requirement Eq. (3.21). That is, X is so

chosen that there is no change in S, to first order, for variation of path around x. All that
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remains are the second order term in y. These can be easily picked out, so that we can

write
o
S[X(1)] = Sy[x", x7+ jolt[a(t)y2 +h(t)yy + c(t)y?]. (3.24)
J

The integral over paths dose not depend upon the classical path, so the
propagator can be written
K(x", t"; x', ") = exp {%Scl[x”, x’]}
i (3.25)
1 . .
[pryiexp {5 [dtTa®y? +b®yy + eyl
"

Since all path y(t) start from and return to the point y=0, the integral over paths
can be a function only of times at the end points. This means that the kernel can be

written as
K(x", 1% X', ') = F(t", t) eXp{g'Su[X”, X’]} : (3.26)

So the propagator is determined except for a multiplying factor F(t",t’), which
may be determined by some other known properties of the solution. However, for a
quadratic Lagrangian, van-Vleck [19] and Pauli [20] had verified that the pre-factor

F(t",t") can be evaluated exactly by using the formula

i o 07
F(t7,t) = |detd———2 " s Ix" xT'", 3.27
(50 \/e {2717‘1 ox"ox’ alX X]} (3.27)

so that Eq. (3.26) becomes

” ”. ’ r i 62 ”n r i n r
K(x", 1" x",t") =\/det{ﬁmsd[x ,x]} exp{gsd[x ,x]}. (3.28)
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It is interesting to note that the expression K~ eXp[%ISd] is exact for the case

that S is a quadratic form.

3.4 Path Integral of a Harmonic Oscillator

From Eq. (3.28) we can compute the propagator of a harmonic oscillator. For a

harmonic oscillator the Lagrangian is
L(x, X) = L2 —Lmen? .
2 >
This Lagrangian leads to equation of motion [21]
X +0°x? =0,

Subject to the boundary condition

and has the solution
x(t) = Acos ot +Bsin ot .

After applying the boundary conditions, Eq.-(3.32) becomes

1
sinoT

x(t) =

{xT sin ot + X, sino(T - t)}.

Using this result, the action for the classical trajectory Eq. (3.33) is given by

Sy :%idt{[j—?f —mzxz} = 25?:1(2)T {(xg +x2T)cos mT—2xoxT}.

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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The pre-factor associated with the propagator can be evaluated exactly. It is found that

maow
F(T) = W/W . (3.35)

From Egs. (3.26), (3.34) and (3.35) we obtain the propagator

mo imo 5 o
K(x7, T;%,.,0 =,/ o~ ex : x2 + x% )cos oT — 2x X1 |+. (3.36
(Xr 00) 2nik sin oT p{ZhSIn(nT[( o T) © 0 T]} (3.36)

3.5 Density of States and Energy Spectrum

The fundamental quantity that calculated from a path integral is the time
evolution amplitude or propagator of a system K(x",t”; x',t") . In this section we give a
general method of evaluation the density of states and energy spectrum from the

propagator [22].

For a system with a time-independent Hamiltonian, the propagator can be
written as matrix element of the time evolution operator U(t", t") = exp {—%H(t" - t')}:

el )

K(X", 1 X', 1) = (X"|ut”, t) [X') = (6(”

which implies

(%, 1) = <§(”|exp{—%Ht"} 5 )= exp{;i Ht’}| ). (3.37)

We now want to use the explicit form of the propagator in order to calculate the energy
spectrum of a particle in the potential. To this end we consider the trace of the time-

evolution operator:
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G(t"-t') = Tr{exp {—%H(t" - t')H
_ jd3xo<g0|exp{__;Hm_t'>}|xo>

4 - jo|3xO K(Xg,t"; Xo, 1)

—00

= [0 2 lenho)f exp{—%En(t"—t')}

G(T) = i exp {— %En T},
n=0

i.e., where o,(Xq) = <>?0 |n) is the eigenfunction with eigenvalue nand T =t"-t', we

have found

G(T) = Tr[exp {— % HTH = i exp {— % E, T} ) (3.38)
n=0

With the Fourier transform

G(E) = J' dT exp {iETT}G(T) , (3.39)
0

we immediately obtain

GE) = deT exp{%(E —En)T}
0

n=0

> ih
:ZE—E '

n=0 n

(3.40)

As an example of the foregoing formalism, we consider the harmonic oscillator. It

is easy to deduce the energy levels E, by forming the trace
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G(T) = Idx K(x, T; x,0)

2 ; 2
= 1/$ J‘dx exp L MeX (cos oT —1)
2niasin T . i sin T
1

(3.41)
The Fourier transform is
G(E) = i—ih , (3.42)
- 9
P =0\E —[n + jh(o
2
which gives the energy level
1
= =(n +Ejhm ,n=012,.. . (3.43)
From Eq. (3.38), G(T) can be rewritten as an integral
o(T) = [ 4E p(E) exp {%ET} ; (3.44)
0
with
p(E) = D B(E-E,), (3.45)
n

being the density of states available tothe system in an energy interval (E+dE). The

density of states may also be written formally as

o(E) = ——Re de TH[K(F;, T;7,.,0)|exp {E}] . (3.46)
mh 3 /]
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3.6 Path Integral of an Electron Confined in Two Dimensions with Perpendicular

Magnetic Field
We now return to the system of an electron confined in two dimensions under the

influence of a transverse magnetic field B, in z direction. Using the symmetric gauge

A=B(-y/2,x/2,0), the Lagrangian of the corresponding classical system is
N g B2 492 4 olxy - X)), (3.47)

where o =eB/mc is the cyclotron frequency. Eq. (3.47) leads to the equation of motion

[21]

X-—oy=0, (3.48)
Yy+ox=0. (3.49)

Subject to the boundary condition
X(0) = Xo , X(T) =x7.,¥(0) =¥, ¥(T) = yr- (3.50)

In order to solve the classical motion, we substitute Eq. (3.49) into Eqg. (3.48), then we

have

3
G5 + 0 o _ 0,
dt® dt
which has the solution
x(t) = Asin ot + Bcos wt + C. (3.51)

Using Egs. (3.51) and (3.48), we obtain

y(t) = Acos ot —Bsin ot + D (3.52)
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where A,B,C and D are arbitrary constants. After applying boundary condition, Egs.

(3.51) and (3.52) becomes

x(t) = X, +M[sin oTsin ot + (cos oT —1)(cos ot —1)]
4sin2 O
2 (3.53)
+ M [(cos oT —1)sin ot + sin ®T(cos ot — 1)],
4sin? 2%
y(t) =y, + M[sin oT(cos ot —1) —sin ot(cos oT —1)]
asin? O
2 (3.54)
+ M[(cos ®T —1)(cos ot —1) +sin T sin ot].
4 sin? %

Using Eqg. (3.28) we obtain the propagator

K(f, TiTy,0) = — [ @T/2
2miAT ( sin(oT /2)

im ¥
EXP{ g( _(;‘COt%‘((XT _Xo)2 +(yr —YO)Z +o(XeY T —X7Y0) ) }

(3.55)

Because K(ry, T; 1;,0) obtained in Eq. (3.55) is translation invariant, having the property

so that for finding the density of states, the end point ry and initial paint r, must be the

same. It therefore follows that [23]

At iET
o(E) :EReL[ dT K(0,0, T) exp{7} , (3.57)

where A is area of the system.
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Now applying Eqg. (3.57) to Eg. (3.55), one finds the density of states of an

electron,

_ MoA

p(E) Py

iS(E— (n +%)ho)). (3.58)
n=0

Eq. (3.58) consists of discrete energy level at each Landau levels (n +%)h0) separated

by cyclotron energy #o, and degeneracy per Landau level per unit area is ;n_o;l which is
T

equivalent to Egs. (2.7) and (2.8).

3.7 Path Integral of an Electron Confined in Two-Dimensional Harmonic Potential with

Perpendicular Magnetic Field

From Eqg. (3.47), in the presence of an isotropic quadratic potential,

2
Vk(x,y):%(x“ryz), where A is a parameter representing this potential. The

2
Lagrangian in Eq. (3.47) becomes

Lz%{)’(2 +y2 + olxy — yx)- 22 (x? +y2)} (3.59)

the equations of motion are in the form
X—oy+22x =0, (3.60)
V+ox+A%y =0. (3.61)

In order to solve these equations, Papadopoulos [24] introduced a 2x2 matrix

(]
Il

‘0 ‘1‘ . (3.62)

1 0
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Using this matrix, Egs. (3.60) and (3.61) can be written as

F+adr+2%r =0, (3.63)

where the matrix r =

X‘. Writing the solution of Eq. (3.63) in the form r ~ exp(yt), the
y

auxiliary equation associated with Eq. (3.63) is

72+ 0y +2%1 =0. (3.64)
. = |10 , . —r .
where the unit matrix | = l > ‘ This equation is satisfied by the matrices
H=-gitol, (3.65)
T2 =)o, (3.66)
(02
where o' = e +% . Thus, the solution of Eq. (3.63) is
= i jt ETSWN ETE Y=Y
r(t) = exp{ 5 }(exp{m Jt}A + exp{—o'Jt}B ) (3.67)

where A and B are arbitrary constants. Using the property exp{+JB} = 1cos p+ Jsinp,

and applying boundary condition F(O):FO=;° and (T)=r; = XT Eqg. (3.67)

0 T

becomes

exp{ oﬁt} _
F(t) = —2( exp{ 3Ty sin 't 77 + sin (T - t) FOJ . (368)
sino'T 2
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Using this result, the classical action is given by

mo’

Sy=———((x2+x%+y2+y2)cos o'T
o Zsinm'T((o T+Yo+tYT)

oT ol
—2(XoX1 —YoY ) COS T+2(XOyT _XTyO)SmT ).

(3.69)

Substituting Eqg. (3.69) into Eq. (3.28), we obtain the exact propagator

m
27 sin 'T
{ imo'
" 2hsin ©'T

((x3 +x5 +y2 +y7)cos o'T
ol . oT
=2(XoXt —YoYT)COS 7+2(XOyT _XTyO)SmT ) }

(3.70)
After taking the trace Eq. (3.70), we obtain

o(T) = = L

AT D .., o
2isin(o +E)T 2isin(® _E)T (3.71)

= Zexp{— i(p +%)(0)' +§)T}Zexp{— i(q+ %)(0)' —%)T}.
p=0 q=0
In comparison with Eq. (3.41), it is found that this is a product of two harmonic oscillators
with renormalized frequency (o’+§ and m’—g. Substituting Eqg. (3.71) into Eq. (3.46),

then the density of state is given by

o0

1., ...,
p(E) = p;o S(E - (p+)n(o + %) ~(@- o —g». (3.72)

Eqg. (3.72) indicates the discrete level at each index p and qg.
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The matrix method of Papadopoulos has been used by Kagalovsky [25] to
evaluate the exact propagator of a two-dimensional electron system in the model of

Vep (X,Y)

Fertig and Halperin. Since of Fertig and Halperin is anisotropic which matrix

method is not applicable, Kagalovsky assumed the saddle point potential in the

m)? 2 2 -
— (7 =y A=B(-y/2,x/2,0)

isotropic form VA (%:¥) . By using symmetric gauge

for magnetic field in the z direction, the Lagrangian of the corresponding classical

system is presented as

L= % (72 = 226,72 + oflF), (3.73)

1 0) . j [ N W .
where o, :(0 J is a Pauli matrix. The action is calculated along the trajectory

evolving via the equation of motion
F+@lf =2265T =0 . (3.74)

The solution of Eq. (3.74) may be written in the form ¥ ~ exp( Rt), where the matrix R

has the structure

ﬁ:[o BJ. (3.75)
a0
After this substitution, Eq. (3.74) becomes
R? +w3§—}\,263 =0, (3.76)
. , — 0 -o — 0 o,
which  has two solutions, R; = and R, = where
o, 0 03

03 = 2(0? —2)% o’ +4)3%) /20, ®p.4 = 22002 (02 + 222 £Vo® +420%). The

exponentials can be presented as matrices
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' (,01 B 2
B cos o't —-sinw't
exp( Ryt) = . © , (3.77)
-—2sino't cos o't
()]

Q) .
cosh 0"t  —2sinh @'t
(O]

exp( R,t) = ) (3.78)

(V] .
——4 sinh ®"t cosh w"t
0)”

where o' = /0,0, and o" = /030, .
Therefore the general solution of Eq. (3.74) is T(t) = exp( Ryt)a +exp( R,t)b .
Matrices a and b are determined from the boundary conditions T(T) =rr, 1(0)=Ty.

Since the Lagrangian in this case is quadratic the classical action can be evaluated

from
'R 5. - -

After applying boundary condition to r(t) then substituting into Eqg. (3.79), the classical

action is given by the following formula:

3 +w)sine'Tcosh T

m Wy M
Sa = 5 AT F X

— (2% 4 o cos o'T sinh o'T]
(O]
+ (2% X =22 ) sin /T + (224 4+ ") sinh ©'T]
o (0]
3 + Yo =224 sinw'T cosh T
()]

W, ® .
~ (22~ o) cos @' Tsinh 0"T]
()

+(2yYo)( “)1(0‘?4 — o) sin T + (0" - %) sinh &"T]

+ (X1YT1 = Yo Xo)(0 —®; — w3 —w,)(1—cos &'T cosh @"T)

s 03 =04) _”(D“) o' sin o'T sinh o"T + M o'}, (3.80)

(O] (O]
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03 — 00 . . . .
314 sine'Tsinh®'T. Using Van Vleck-Pauli
[ONO)

where A=2-2cos o'Tcosh @'T +—2

formula to evaluate the pre-factor, the exact propagator is given by

o m .
K(fr, T;7,,0) = ﬁ{4 sin? o' T[o,0, — 0,05 + 0" — @]
I

2 2 2 2
. . o o W;0; + 050
+ 4 sin ®'T sinh 0)”T[20)’0)" + (0)10)4 - 0)20)3)(3 - —”) + %]

"

+4sinh? 0" T[o" + 0,0, — 0,05 — o'

+(cosh "T —cos @'T)? [0 +©, + 05 — 0,]?}'? exp{;isc,} (381)

This is the exact propagator of Kagalovsky, which can be used to consider the
behavior of a tunneling electron. Kagalovsky pointed out that the propagator might be
transformed to new coordinates is product of two independent propagators, K, for the
inverted harmonic and K, for the harmonic oscillator. The relation between the
propagator in “old” coordinate Eq. (3.81) and in coordinates from the work of Fertig and

Halperin is given by the following integral:

K(FT,T;FO,O):I j j IdX’ds’dX"ds"Kl(X”, T; X',0)K, (s", T; s,0)

B(xr = | (02X = B8Ny = 40X - B5)

i m " ” I m 4 4
eXp{E T(O(BgX + 0yS )yT}eXp{E‘/T(D(BSX +048) Yoh

(3.82)

where o;and B;-are coefficient dependent.on.m, o,.and A. In.this thesis, we will show
that the exact-propagator in the case of anisotropic saddle point potential Vsp(x,y) can
be obtained. Since. the matrix-method- cannot use-in the case-of anisotropy, we will
develop a new method to solve the classical ‘motion.” The detailed calculation is

presented in the next chapter.



CHAPTER IV

EXACT PROPAGATOR FOR TWO-DIMENSIONAL ELECTRON
IN AN ANISOTROPIC QUADRATIC SADDLE POINT
POTENTIAL IN A TRANSVERSE
MAGNETIC FIELD

In this chapter, we derive the exact propagator for a two-dimensional system in
the presence of transverse magnetic field and anisotropic quadratic saddle point
potential. As presented in Chapter 3, when the potential is in the form of an isotropic
quadratic potential the propagator can be evaluated exactly by using two-dimensional
matrix of Papadopoulos. However, the matrix method is not applicable in our case due
to the anisotropy of saddle point potential. In stead we introduce the complex variable
path to decouple the two classical equations of motion. The classical solutions are
obtained and used to calculate the classical action. Since the action is quadratic one
can obtain the pre-factor by employing the Van Vleck-Pauli method which leads to the
exact propagator. The propagator can be used to obtain the density of states and

energy spectrum.

4.1 Classical Action and Exact Propagator

We now consider the problem of an electron-confined in a two-dimensional
2,2 2.,2
quadratic saddle point potential Vo (4 Y) VO +(m/2) (@x® = Qyy7) with a magnetic
field B-has the direction along the z-axis. The Lagrangian of the corresponding classical
systemis'presented as
m,. . m . ..oom
L= 208 +3) + 20 - y%) - 2@ - Qfy?) -V, (4.1)

where o=eB/mc is the cyclotron frequency, o, and @, are

parameters representing the harmonic and inverted harmonic of saddle point potential
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in the x and y directions, respectively, and V; is the top of the saddle point potential.

The required propagator can be written in the path integral form,

K(rr, T; 15,0) = ID[F(t)] exp {EI S[ry, Fo]} ) (42)

:
wherer =(X,y) , stir.i]1=[ati,iy IS the action and oy denote
0

measure of the path integral to be carried out with the boundary
conditions ) =r,and #m =r,. The propagator in eq. (4.1) can be

rewritten as

. J
K(fy, T; T5,0) = ”D[x(t)] Dy ()] exp { %Jdt( 6 +92) +
0

o(xy = yX) = (Q5x* =03y*) )- VT }
(4.3)
Since the Lagrangian given by eq. (4.1) is quadratic the path

integral can be evaluated exactly as

K(fr, T;1,0) =F(T) exp{%sc,}, (44)

where F(T) is a pre-exponential factor which can be calculated
by using eq. (3.27).

We now wish to. calculate the classical action S
corresponding to the Lagrangian in &g (4.1). The constituent

equations of motion for this Lagrangian are
X -y +O2x =0, (4.5)
j+ox-02y=0, (4.6)
which are subject to the boundary condition

X(T) = X7, X(0) =Xo,Y(T) =y7, Y¥(0) =Y, . (4.7)
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We can express the equation of motion egs. (4.5) and (4.6) in the

form
7 +i0z + 027 = —Q?%7,

7-iwz+Q%2 =-0%7,

(4.8)

(4.9)

where o? - (@2 +02)/2 , 0% = (@%-0% /2 and the variables : and 7

are given by

Ea. (4.9) can be rewritten as

E :-é(z—imnézz).

Substituting eq. (4.12) into £q. (4.8), we obtain

d4Z 2 =9 dZZ ~4 4
il +202 <+ (@* -QY)z=0 .
dt4 ( )dtZ

The auxiliary equation associated with eq. (4.13) is
B* + (mz +2§2)32+(Ez4 -0%=0.

Solving eq. (4.14), we obtain four roots

By =y,
By = -y,
Bs =iy,
By = -y,

where
1

V2

o (w* + 40?02 +40M)H2 _ @2 —2522)1/2,

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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0, :i((co‘l + 40202 +40")1? 4 2 +2§22)1/2 . (417)
2

72

The solution of egs. (4.8) and (4.9) are
z(t) =C, exp{colt}+ C, exp{— u)lt}+ Cs exp{iwzt}+ C, exp{— imzt}, (418)

() =, C, exp{colt}+ g—zexp{— mlt}+ Q,C, exp{imzt}+g—4exp{— imzt}, (419)
1 2

where le—é (01 (0p~Ti0) 4 0%, Q, =—é(m2(m—m2)+§2), and C; , C,

, C3, C4are arbitrary constants.

To obtain the complete solutions, we assume o, = exp{io}
and o,=exp{y}, Eq. (4.19) becomes

Z(t) = C, exp{ot +0]+ C, exp{= @t — 0]+ Cy exp{im,t + v}+ C, exp{-iw,t —y}. (420)

Z+2 Z-2
oy = and
; - 16 1 L _®
arranging the arbitrary constant, C;e? +Cjye 2 =A, C1e2-Cye 2 =B,

(Caez+Cye2)2 o, =C, i(Cze2-Cye 2 )12 Jar, =D, we get

From ecs. (4.18), (4.20), using relation x) -

x(t)=cos g(Acosh o, t+Bsinh mlt)+ (Q2 +1)(Ccos ®,t —Dsin o)zt). (421)
Similarly,
y(t) =sin g(Acosh ot +Bsinh o;t)+ (Q, —1)Ccos w,t — Dsin w,t), (4.22)

where o =arctan( -oo, (o? +0?). After applying the boundary
condition, egs. (4.21) and (4.22) becomes

X(t) = XoF (1) + Yoy (1) + X 1F5 (1) + y 1Ry (1) (4.23)
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V(1) = XoFs (1) + YoFs (1) + X1y (1) + yrFy (1) (4.24)
where

F(t) = %{ (Q§ —1)[cos o, Tcosh o, (T —t) +cos w, (T —t) cosh o, T
—cosh ot —cos w,t]

+ (Qz +1)2 tan gsin @, (T-t)sinho, T
—(Q, —1) cot gsin @, Tsinh o, (T-1) },

Fy(t) = %{ (@, +1)[sin o,t = sin w, T cosh o, (T —t)
+sin @, (T —t) cosh o, T]
+ (Qg —1)cot g[cos @, (T =1t) sinh ©, T —sinh ot
—C0S ®, Tsinh o, (T —t)] }
Fa(t) :%{ (Q% —1)[cos ®,t cosh @, T + cos o, T cosh o;t
— cosh @, (T —t) —cos o, (T —t)]

+(Q, +1) tan gsin o,tsinh o, T
2 == )
—(Q2 —1) cot Esm ®, T sinh o;t }

Fu(t) = %{ (Q, +1)[sin ©, (T = t) + sin w,t cosh o, T
— sin @, T cosh o, t]
i (Q% —1)cot g[cos o,t sinh @; T =~ sinh o, (T —t)

—C0S ®, T sinh o, t] }

Fs (t) = %{ (Q§ fl)tan g[cos ®, (T —t) sinh @yt~ cos o, Tsinh o, (T -1)
—sinh o]

+(Q, —1)*[sin ®, Tcosh @, (T —t) —sin®, (T —t) cosh &, T
—sin w,t] }

Fs(t) = %{ (Q% —1)[005 @, Tcosh a; (T —t) +cos w, (T —t)cosh @, T
—cosh w;t —cos w,t]

+ ((22 +1)2 tan gsin ®, Tsinh o, (T-1t)

—(Q, —1) cot gsin o, (T—t)sinh o, T },
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F (1) = %{ (Q, ~1P[sin @, (T — t) + sin w,t cosh w, T
—sin o, T cosh o, t]
+ (Q% —1)tan g[cos o, T sinh ot +sinh o, (T - t)
— €0S w,t sinh @, T] }

Fg (1) :%{ (Q% —1)[cos o, Tcosh ot +cos o,tcosh o, T
—cosh o, (T —1t) —cos o, (T —1)]
+ (Q2 +1)2 tan gsin ®, T sinh ot
~(Q, —1) cot gsin o,tsinh o, T },

and

- 2
2(@bs 0 =20putellaic0s 6) ;, o, Tsinh o, T. (425)

A=2(1-Q3%)1-cos »,Tcosh w, T) -
( 2 )( 2 ) —

We now focus our attention on the classical action

:
Sy :%Idt( (X% +¥2) + oy —yx) - (Q2x2 =Q%y?) )-\,T. (4.26)

0

Integrating by parts the first term of eq. (4.26) and applying the
equation of motion eqs. (4.5) and (4.6), we obtain

S = 2 (X(DX(T) = X(OX(O) + YT - ¥(©)y(0)- % T (4.27)

The complete solution for the action is
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m
S, =

cl ZA{

[0, (2, —1)? cot g + @, (Q3 —1)] sin o, T[(x2 + x3) cosh @, T — 2x,X1]
—[0,(Q3 -1) + 0,(Q, +1)? tan g] sinh @, T[(x2 + x23) cos @, T — 2X,X1]
+ [0, (5 -1) — o (Q, +1)° tan g] sin 0, T[(y2 +y%) cosh o, T -2y, y]
+[0p(0 ~1)? cot 2]~ @, (9 -] sinh 0, TI(y3 +y3) cos 0, ~2y,y+]

+ _Le[(cos o, T —cosh @, T)(®, cos B(Q5 —1)
Sin
+ @, SInO(Q3 + )Xoy —X1Ys)
+_Le[(2032£22 sin 6 — ©, (Q5 —1)) cosh », Tcos ©, T
sin

— (20,9, Sin 0 + @, (Q5 —1)) sinh ©, Tsinw, T
~ (20,9, 5iN 0 — 0, (O3 ~I(XeY, —X7Y7) |

7. (4.28)

The pre-factor associated with the propagator can be evaluated
exactly. It is found that (see appendix)

F(T) = { (02 —02)(Q3 1) sin 0 — 20, 0, (€os 6 —2Q, + Q2 cos 6) }%. (4.29)

m
2nihv Asin 0

From eqs. (4.4), (4.28) and (4.29) we obtain the propagator

oo m 2 2 2 i
K(rr o3 T) = ———=—===1 (01 —2)(Q3 ~1)sin b
Tre 2nih\/Asin6{ ‘oo
1 iV T i
— 2070, (cos 6—2Q, +Q§ cos 0) }z ex|0{—I ; }EXP —zlg]h{

[, (Q, —1)® cot g + @, (Q% —1)] sin ©, T[(x + x3) cosh o, T — 2X,X]

— [0, (9% 1) + 0,(Q, +1)° tan g] sinh o, T[(X5 + x2) cos @, T — 2X,X;]



46

+[0,(Q% 1) — ©,(Q, +1)° tan g] sin 0, T[(y2 +y3) cosh o, T —2y,y]
#[02(0 ~1)? oot 5] - 0, (93 D] sinh 0, TH(y? + ) 005 0, T = 25,y-]

+ _Le[(cos @, T —cosh o, T)(w, cos B(Q3 —1)
SIn
+ o, Sin 6(QF + )XY 1 — X1Ys)
+ %[(2@292 sin 0 — w; (Q3 —1)) cosh w; Tcos ©, T
SIn
— (2w, Q, siN 6 + @, (Q3 —1)) sinh 0, Tsinw®, T
— (20,02, 5in 0 — 03 (Q5 ~I(XeYo = X7Y7) |-

(4.30)
4.2 Two Limiting Cases

Ea. (4.30) is the exact propagator of an electron moving in

two dimensions under the influence of transverse magnetic field
and a saddle point potential. To check the validity of our result,
we consider the two limiting cases:

a) When the saddle point potential approaches zero, the
system of interest corresponds to the Vy— 0, o2 -0 and o? - o

case. We first consider the pre-factor of eq. (4.30). In this case

lim F(T)= lim —
Q%,Qb 50 Q4,9 >0 27 ifi/Asin 0

1
— 20,0, (c0s B —2Q, + Q3 cos 6) |2

{ (0 = 03)(Q3 -1)sin o

= fim { (07 = 03)(Q% -1 sin 6

m
2mihv A sin O

1
= 20,0, (COs 0 =2Q5 + Q5 cos 6) }E

. m o?
2nih | 2(1 — cos ®T)

m ol

2ninT 2 sin %T

Wy >0
o, =0

(4.31)
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One can verify that when o, >0 and », » o the exponential term
of £q. (4.30) reduces to

exp{ [(XS +x2T)sin oT = 2XX1sinoT

2h 4 gin2 ©T

+ (yS + sz)sin oT -2y,ytsineT

+2(xoy T —X7Yo) L —cos oT )}

im, o ol
= axp{ (et Z=(0xr —%0)* + (y1 ~¥o)?
+o(XgYT —X1Yo) )}.

(4.32)

Thus, from egs. (4.31) and (4.32) we get, when V- 0, o2 -0 and

2
Qy—>0

- - m ol
K(rr, T; 15,0) = — :
(Fr. Tito 0) 2th[23|anj

exp{ 0 (2 oot T ((x7 = )7+ (v - ¥o)’
o(XoY 1 = X1Y0) ) }
This is the propagator of an electron confined in two dimensions

in the presence of a transverse magnetic field.

b) When the ‘magnetic field goes to zero, this limiting case
corresponds to the case when » - 0. Then the pre-factor is
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lim F(T) = lim

m
©—0 =0 27/ Asin O

1
— 20,0, (C0s 6 —2Q, + Q2% cos 0) |2

{ (0 —03)(Q% -1)sin6

= lim { (0 = 02)(Q3 —1)sin6

m
@ 2 ik ASin O
0 >Qy

1
— 20,0, (C0s 0 —2Q, + Q3 cos 0) |2

m Q,Q,
2nin \[sin Q, Tsinh Q, T

(4.33)
and the exponential term of £q. (4.30) when « -0 becomes
im ®
expi 27

4 tan 9sin Q,TsinhQ, T
P
[4Q, tan gsinh QyT((xé + sz)cos Q,T —ZXOXT)

0 .
+40, tan 5 Sin QXT((y(Z) +y2T)cosh QyT—ZYOYT)]}

= exp»i{ L ((x(2,+x?r)costT—2xoxT) (4.34)

H—2-SI QO
mQ
2 2o /- SSSS
2 sinh Qi

((Y(ZJ ar Y'zr)COSh QT - ZYOYT) }

From egs. (4.33) and (4.34), it follows that

K(rz, Tog ) = 2m'h \} i Qg;xsg'znyhg T
Tl Sin X I y (4 35)

exp {;l 5 sriT:E;XT ((xé + xZT)cos QT - 2X0X-|—)

2 sir:r?sy)_yT ((yé + yZT)cosh QT- 2y0yT) 1

This is the propagator of an electron in the saddle point
potential, which is represented by a product of two independent
one-dimensional propagators, one for the harmonic oscillator
(along x-axis) and the other for the inverse parabola potential
(along y-axis). One can also show that for the case of an
isotropic saddle point potential, parameters », and », reduce to
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(m:%(((ﬂ4+4§24)“2'm2)1/2 and mz:%«w“ﬂa“)“z+w2)“2WhiCh was

given in the work of Kagalovsky [25].

4.3 Density of States and Energy Spectrum of the Fertig and
Halperin Model

Starting from the exact propagator given in eq. (4.30), it is
possible to obtain the density of states by using eq. (3.46). In
order to obtain the trace of eq (4.30), we set x,-=x,=x and

yr=y,=y that lead to varnishing of coupling
terms, x,y, - xoy-@Ndx,y, —x;y;, iN the propagator. Then eq. (4.30)

reduce to

im
K(x,y,T;X,y,0) =F(T) exp{ —
(x,y y,0)=F(T) exp{ "= (
2x?[sin @, T(cosh o, T —1)(@l (Q, —1)% cot g + o, (Q3 —1))
— sinh @, T(cos @, T —1)[@1(95 ~1) + @, (Q, +1)? tan gj]
+2y2[sin w, T(cosh &, T —1)(@2 (QF -1) - 0, (Q, +1)* tan gj
. 2 .0 2
+sinh o, T(cos @, T —1)| @, (22, —1)? cot 5" Q-1
iV, T

.

This is an exponential of the form exp[iax2]. Thus the trace of Eq (430) can

be evaluated exactly by using Gaussian integral, which can be
performed immediately,

K7, T, = [ [ay K(x,y, Tix,v,0),

—0 —0

= F(T) exp{——03 = | 200

{ [sin o, T(cosh &, T —1)[031 Q, -1)2 cothrwz(Qg —1)J

—sinh o, T(cos w, T —1)(@1(95 ~1) + @, (Q, +1)° tan g]]
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[sin ®, T(cosh &, T —1)(0)2 Q% -1) — o, (Q, +1)° tan g]

+sinh o, T(cos ©, T —l)[mz(Q2 ~1) cot g— o (QF —1)j] je

This is the product of two independent terms which consist
of the first factor (Zsinn "%T)'l representing the one-dimensional

propagator in an inverted harmonic potential and the second
exp{‘i;’”} (2isin 22T 225+ for the harmonic potential ~with

renormalized frequency o, and o,, respectively. For the case
which magnetic field goes to zero, Eq. (4.36) reduces to the
trace of propagator of a two-dimensional electron in the
anisotropic saddle point potential.

In order to evaluate the density of states we use the following
identity

Thus the density of states becomes

how,

i 2 , (4.37)

2 A 2
(E (n + )h(o2 voj +(°2°1j

p(E) =

.:1||—\
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Eq. (4.37) is in the form of a summation of Lorentzian functions
that have peaks at e= v, + (n +%)ho)2 and broadening of each peak is

proportional to the parameter o, /2 (Fig. 11). Therefore, the first
term in the denominator gives the renormalized energy spectrum

E, =V, +(n +%)hu)2, n-=0,1,2,... (438)

From Egs. (4.26) and (4.27) one can show that the energy spectrum is

unlike discrete Landau levels, the saddle-point potential allows for a continuous energy

E for each discrete state n. Furthermore, for Qf,Q%,\, >0 then o, >, o, >0,

energy E, — (n +%)h0) corresponds to the usual discrete Landau levels.

f ]
2
M
pE)
B Sho Shao -
vu+72 wu+_2’~’ i 22 E

Fig. 11. Schematic diagram of the density of states which is
given by Eq. (4.37).



CHAPTER V

CONCLUSIONS AND DISCUSSION

In this thesis, we have studied the system of non-interacting electron confined in

two-dimensions under the influence of a transverse magnetic field and an anisotropic
quadratic saddle point potential V,,(x,y) =V, +%(Q§x2 - Qly?). This system was
introduced by Fertig and Halperin to study tunneling and delocalization of electrons in

the quantum Hall problem.

In the work of Fertig and Halperin, the symmetric gauge has been used for

magnetic field in the z direction. The Hamiltonian of this system is given by Eq. (2.22),

1 eBy., eBx m 2.2 2
& F £ o Y i v, +—(Q2x% - Q 5.1
{uax I (nf 2)}+0+2(xx Y% . (5.1)

By using Bogoliubov transformations, they were able to decouple the

Hamiltonian into a sum of two commuting Hamiltonians in Eq. (2.36),

H={E1(P2—Xz)}+{%E2(p2+sz)+V0}. (5.2)
where parameters are given by Egs. (2.29) and (2.33),

(0" ¥40°0% + 40" 2 — 2 —202)/2,

2J_
E,= (0" 4 40707 +40412 4 o? 4 202)1/2
V2
The first El(P2 —X2) is equivalent to that of a one-dimensional particle in an
inverted harmonic potential and the other iEz(p2 +32)+ \, represents a one-
2

dimensional particle confined by a harmonic potential. This implies that energy
spectrum is unlike discrete Landau levels, the saddle-point potential allows for a

continuous energy E.
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Kagalovsky used the Feynman path integral to calculate the exact propagator of
electrons in this system. Since the system is quadratic, the path integral can be carried

out exactly by using Eq. (3.26),
K(fy, T;F,.,0) = F(T) exp{%sd} , (5.3)

where S is the classical action ,and pre-factor F(T) is given by Eq. (3.27),

- D _
F(T):‘/det{ﬁﬁscl[ﬁ-%]} : (5.4)

The classical action is evaluated along the trajectory via the equations of motion EQgs.

(4.5) and (4.6),

X—ay+Qix=0, (55)
j+ox-Q2y=0. (5.6)

In order to evaluate classical action from Egs. (5.5) and (5.6), Kagalovsky used matrix

methods which are not applicable to a potential of anisotropic form. Therefore, he
assumed Q% =QF =% or \, (x,y) in the isotropic form %kz(x2 —y?) . After solving the

classical action and using formula Eq. (3.26), Kagalovsky obtained the exact propagator

Eq. (3.81),

K(rr5 Ti1p40) = %{4 sin% o' Tlo,0; — 0,053 +0"2 — @]

. . o o 0’0’ + 0in?
+4sin ®'Tsinh 0"T[20'0" + (0,0, — ®,03)(— ——) + M]
1%4 273 0)! " (D'(D”

+4sinh? 0"T[0" + 0,04 — ©,05 — 02

+(cosh ©"T —cos @' T)?[0; + 0, + 05 —n,]>}'? exp{%sd} ,

where classical action S in Eq. (3.81),
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S = %{(XZT +x2)[(2222 4 ') sin 'T cosh ' T
()

(1)1(1)4

- ( (,0"

+ ®") cos ®'T sinh ©"T]

+ (2xTx0)[—(°°;‘?3 + o) sine'T + (‘”;# +@") sinh ©"T]

+(y% +y2)(o — 2224 sin o'T cosh o'T
(O]

- (_032(?3 - ®") cos 'Tsinh ®"T]
®
+ 2y 1Yo I(ELL — @) sino'T + (o — 2223) sinh o"T]
()

+(X7Yg —Y1Xo)(0; + ®y + ©3 —®,)(C0S ®'T — cosh »"T)

+ (X7Y1 = YoXo)(0 —® — 03 —w,)(1 —cos o'T cosh »"T)

MW — ® ’ ) P
+ (—?STQ o' sin®'T sinh ®"T + (1_’2)0)"]}

(O}

003 — 0Oy
’(,0”

o3 =H0® ~202 tVo! +401) 120, ©,, =200 (0° + 222 tVo' +41Y), o = |00, ,

0" = Jos0, . To relate the path integral approach to the work of Fertig and Halperin,

,A=2-2cos ®'Tcosh &"T + sin®'T sinh ®"T and parameters w; are given by

Kagalovsky pointed out that the propagator may be transformed to a product of two

independent propagators,

K(Fr, T;1,,0) = Ky (X)K,(S) (5.9)

K, (X) for the inverted harmonic and the other K, (s) for the harmonic oscillator in new

coordinate.

In Chapter 4, we presented the exact evaluation of the propagator for an
electron in the model of Fertig and Halperin. By introducing the complex variable path
z=x-iy and z = x +iy instead of the matrix method, the classical action for the case of
anisotropy Q2 = Qf, can be obtained. By solving equation of motion from complex path

and using Eq. (3.26) we obtain the exact propagator Eq. (4.30),
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Tz m 2 2\ 2 ;
K(re,r ;T):—{(m —05)(Q5 -1)sind
e 2mnihvASIN O ! 2 ?
1 iV, T im
—2m,m,(Cos 020, + Q2 cos 0) 12 expl——2—texp —
10 ( 2 2 )}2 p{ h } pZAh{

[o,(Q, —1)% cot g + ©,(Q5 —1)] sin @, T[(x5 + x2) cosh o, T — 2XX1]
— [0 (Q3 - 1) + ,(Q, +1)* tan g] sinh o, T[(X3 + x2) c0s ®, T — 2XyX1]
+[0,(Q3 -1) — o (Q, +1)* tan g] sinw, T[(y2 +y%)cosh a; T —2y,y+]
+[w,(Q, —1)? cot g- — @, (Q3 ~1)]sinh w; T[(y2 +y%)cos 0, T-2y,y+]

+ _Le[(cos o, T —cosh o, T)(@, cos B(Q3 —1)
sin
0, sinB(Q3 + L)I( XY 1 ~X1Yo)
+—_£6[(20)292 sin® — o, (Q5 —1)) cosh @; Tcos w, T
sin
— (20,9, siN 0+ w,(Q3 —1)) sinh 0, Tsinw, T

— (20,9, SN0 - ; (3 ~1(X,Y, —X1Y7T) |4

(5.10)

where
2(cos 6 —2Q, + Q5 cos 6)
sin 6

A=2(1-0Q2%)(1-cos m,Tcosh o, T) - sin @, Tsinh o, T.

0 = arctan( —oo,; /(©®? +E)2)) A= —é—Z—{wz(m—wz) +E22},

(91:%((0)4 +4020° +4Q4M 12 _ 2 —2522)1/2,
o, 2%((034 +402Q% +40%)M2 L e? +20%)M2 0% = (Q2 + Q%) /2 and
2

0% =(Q2-0?)/2.

One can easily check that if the saddle point potential
approaches. zero, oz »o and o2 -o.then o, »0.and. o, > . Then

the propagator reduces to the well-known propagator for an
electron in perpendicular magnetic field. In other case which
the magnetic field goes to zero, this case corresponds to o,
o, >0, and », >0, then we obtain the propagator of electron in

the anisotropic saddle point potential, which can be written as
product of two independent one-dimensional contributions, one
representing for the harmonic oscillator (along x-axis) and the
other representing the inverse parabola potential (along y-axis).



56

From our propagator (5.10), one can show that for the isotropic case

Q} =0} =)> parameter o, and o, are reduced to o, 2%\/\/0)4 +4)' —0® and
2

032:%\/\/0)4+47u4+w2 equal to " and ', which given by Kagalovsky,

respectively.

By taking the trace of the propagator, we can show that our result is consistent

with the two commuting Hamiltonian of Fertig and Halperin, and the two independent

propagators of Kagalovsky. The trace, Tr[K(FT,T;FO,O)]: J.de.dy K(x,y,T;x,y,0), can

—00 —00

be evaluated exactly is Eq. (4.36)

)
K, Ti6 .0)] = —2 | (5.11)

T
Zsinhﬂ 2isinmi
2 2

This is in the form of a product of two independent terms. The first factor represents the
one-dimensional particle in an inverted harmonic potential characterized by parameter
o, and the second for harmonic potential characterized by parameter o, . This trace
corresponds to the Hamiltonian H,, H, of Fertig and Halperin and propagator K, ,K, of

Kagalovsky respectively.

For applications, we evaluated the density of states by using Eq. (3.46),

p(E) = —Re Jor Tk, T FO,O)]exp{E} . (5.12)
h : h
In order to obtain the density of states, we expand

1/2isin(m2T/2):iexp{—i[n+%}ozq and for large T approximation we
n=0

approximate 1/2sinh(o,772) DY exp[-o, T/2]. Thus the density of
states can be expressed in Eq.(4.37),
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ho,
TCEES) : , (5.13)

2 2
- h
" 0[E—(n +%)hoo2 —voj J{mlj

2

This result is shown to be a series of a set of Lorentzian delta functions that have peaks

atenergy E, in Eq.(4.38),

E, =(n +%)hw2, n=0,1,2,...

The Lorentzian shape gives information about the renormalized Landau level and a
continuous energy E for each discrete state n. The number of continuous states between
E. is proportional to the parameter o, . From Eq. (4.16), we find that parameter o, goes
to zero when inverse parabola term of V, (x,y) approach to zero Q§ — 0. Therefore,
the continuous state represents the unbound state of an electron in y direction reflecting
delocalization which is a direct consequence of the inverse parabola term (—Qf,yz) in

the saddle point potential.
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APPENDIX

SIMPLIFICATION OF THE PRE-FACTOR F(T)

In order to simplify the prefactor to the form given by Eq. (4.28), we use the Van Vleck-

Pauli formula for a two-dimensional system,

F(T) = \/;et {ﬁ —aa;?rlo } . (A1)

After substituting the classical action from Eq. (4.27) we obtain

m 2 2 2 ; 2
FT)=—7"—"— - 5)(Q5 =1)sin6 -2 cos 6 —2Q, + Q5 cos 6
(T) 2nihASin6{{[(w1 2)(Q5 -1) @10, ( 2 2 )]
x[(©5 —1)sinB(sinh ? @, T —sin® ©, T—cosh® 0, T—cos? w, T
+2cosh o; Tcos w, T) (A.2)

—2sinh o, Tsin®, T(cos 6 —2Q, + Q2 cos 0)]}
+(cos @, T —cosh o; T)? ©(0)}*'?,

where parameter A is given by Eq. (4.25) ,and

0(0) = 0 (Q3 —1)% cos? 0 + 5(Q3 +1)2 sin® O + 2a,m,(Q5 ~1) sin Bcos 6

(A.3)
+ (5 =1)sin O[(@F — 5)(Q3 —1) sin 6 — 2w,m,(cos 6.~ 20, + Q3 cos 6)].
From Eq. (A.3) we find that ®(8) can be written as
O(0) = (o, (2 —1) + 20,0, sin 6)*. (A.4)

Substituting parameter Q, :—é{ﬁ)z(ﬁ)—mz)%—ﬁz} and sinez% from Eq

(4.19) into Eq. (A.4) we obtain

o(6) =g—£{@;‘ — (0% +20%)0d + Qf — %), (A.5)



Substituting «, from Eq. (4.17) we find that e() =0, thus the
(A.2) becomes

m .
F(T) = m{{[(wi - 03)(Q% —1)sin 0 — 20,0, (cos O —2Q, + Q3 cos 0)]
x[-(Q3 —1) sin (2 — 2 cosh ®; T cos w, T)
—2(cos 6 —2Q, + Q3 cos ) sinh o, T sin o, TI}}*/ 2.
When term

—(Q3 —1) sin8(2 —2cosh m, Tcos m, T) —2(cos B -2, + Q3 cos 6) sinh ©, Tsinw,T =

Asin 0, thus

1
F(T) = { (0 —03)(Q3 ~1)sin 6 — 20, ®, (cos 6 —2Q, + Q% cos ) |2.

m
2nihv Asin 0
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