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(S +, ) with zero 0 such that (S{ 0}, -) isagroup.

For asemigroup S, the semigroup S’ is defined to be Sif Shasazero and S
contains more than one element, otherwise, let S’ be the semigroup S with a zero 0
adjoined. A semigroup S is said to admit a skew-ring structure if there exists an
operation + on S such that (S, +, -) is a skew-ring where - is the operation on &. A
group admitting skew-semifield structure is defined similary.

Let R be acommutative ring with identity 1 # 0, My(R) the semigroup of all
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

The multiplicative structure of any ring is by definition a semigroup with
zero. Then it is valid to ask whether a given semigroup S has S° isomorphic to
the multiplicative structure of some ring. If it does, we say that S admits a ring
structure. If the multiplicative structure of a ring R is a group with zero, then
R is a skew-field. Thus if a group GG admits a ring structure, we may say that
G admits a skew-field structure. Semigroups admitting ring structure have long

been studied. For examples, see 9], [12], [15], [16], [17], [13], [3], [18] and [10].

By our definitions, skew-rings and skew-semifields are generalizations of
rings and skew-fields, respectively. Also, the multiplicative structure of a skew-
ring is a semigroup with zero and that of a skew-semifield is a group with zero.
Semigroups admitting skew-ring structure and groups admitting skew-semifield
structure are defined analogously and they are also valid to be studied. Matrix
semigroups and semigroups of linear transformations are considered important in
the area of semigroups. Also, matrix groups and groups of linear transformations
are also important groups. The first section of Chapter II gives characterizations
determining when some matrix semigroups admit-a skew-ring structure while in
the second section, we do the same way on some semigroups of linear transfor-
mations. Certain matrix groups are considered in the first section of Chapter
II1. They are characterized when they admit a skew-semifield structure. In the
second section of Chapter III, we are concerned with some groups of linear trans-
formations. The results of determining when they admit skew-semifield structure
are provided. In our work, all matrices are over a commutative ring with identity

1 # 0 and all vector spaces are over a division ring.

In the remainder of this chapter, we shall give precise definitions, no-



tations, and basic results which will be used in Chapter II and Chapter III.

Moreover, many examples are provided.

For any set X, the cardinality of X will be denoted by | X |. For a
semigroup S, the semigroup S is defined to be S if S has a zero and S contains
more than one element, otherwise, let S° be the semigroup with a zero 0 adjoined.
Observe that by the notation defined above, we have that for any group G, 0 is

a zero adjoined in G°.

A system (S, +, ) is called a semiring if (S,+) and (.5, -) are semigroups
and - is distributive over +, that is, z(y + 2) = 2y + 2z and (y + 2)z = yz + 2z
for all z,y,z € S. A semiring (9,4, ) is said to be additively [multiplicatively]
commutative if (S, +)[(S,+)] is commutative. We say that (S, +, -) is commutative
if both (S,4) and (S,-) are commutative. An element 0 of a semiring S =
(S,+,-)iscalled a zeroif t4+0=0+z =z andz-0=0-z=0forallz € S. A
semiring (S, 4+, ) is said to be a skew-ring if (S,+) is a group. An element e of
a skew-ring (S, +, -) is called a left [right] identity of (S,+,-) if ex = z [re = x]
for all x € S and e is called an identity of S if it is both a left identity and a
right identity of S.

The following proposition shows basic properties of skew-rings.

Proposition 1.1([2]). Let (S,+,:) be a skew-ring. Then the following state-

ments hold.
(i) 0z =x0 =0 for all x-.€ S where 0 is the identity of the group (S, +).
(11) — (—x) =z for all x € S where —z is the inverse of x in (S,+).
(1ii) 2(—y) = (—x)y = —(zy) and (—x)(—y) = zy for all z,y € S.
(v) For all z,y,u,v € S, xy + uv = uv + xy.
(v) If S = S? where S? = {zy | z,y € S}, then S is a ring.

(vi) If S has a left identity or a right identity, then S is a ring, hence if



S has an identity, then S is a ring.

We shall give some examples of skew-rings which are not rings.

Example 1. Let (S,+) be a group. Define a binary operation - on S by -y =0
for all x,y € S where 0 is the identity of the group (S, +). Then (S, +, -) is clearly
a skew-ring and in this case, (9, +, -) is called a zero skew-ring. If (S, +) is non-

abelian, then (S, 4, -) is not a ring.

Example 2([2], page 6). Let (R, +,:) be a skew-ring and M, (R) the set of all
n x n matrices with entries from R. Then (M, (R),+,-) is a skew-ring where
+ and - are the usual addition and multiplication of matrices, respectively. If

(R,+,-) is not a ring, then (M, (R),+,-) is not a ring.

The next three examples of skew-rings which are not rings follow from the fol-

lowing proposition. Its proof is straightforward and we omit it.

Proposition 1.2. Let (S;+) be.a group. Let A be a subset of S such that
(i) 0 € A where 0.is the identity of (S,+),
(i9) there is an element b € A% such that b+ b = 0 where A° = S\ A,
(1ii) A+ A° C A° and A°+ A C A° and
(iv) A+ AC A and A°+ A C A.

Define an operation - on S by

0 if reAoryeA,
b if z,ye A



Then (S, +,-) is a skew-ring and it is not a ring if (S, +) is nonabelian.

Example 3. Let G,,(IR) be the set of all n x n invertible matrices over IR,
A={X € G,(R) | detX > 0} and Z a matrix in G,,(IR) defined by

[ 10 0]
01 .. 0

7 =
00 .1

Define an operation ® on G, (IR) by

I, f XeAorY € A,
7 if XY ¢ A

XOY =

Then (G,(IR),®,®) is a skew-ring and it is not a ring if n > 1 where @ is the

usual multiplication of matrices and [, is the identity n x n matrix over IR.

Example 4. Let V,,(IR) be the set of all n x n matrices X over IR with detX =
+1. Then V,(IR) is a group under the usual multiplication of matrices. Let
A={X| X € V,(R) and detX =1} and let Z be defined as in Example 3.
Define an operation ® on V,(IR) by

I, f XeAorY €A,
Z it XY ¢ A.

XOY =

Then (V,(IR), ®, ®) is a skew-ring where & is the usual multiplication of matri-

ces. It is not a ring if n > 1.



Example 5. Let S, be the symmetric group of degree n where n > 1, let

A={a €S, |aiseven} and v = (1 2). Define an operation ® on S,, by

I ifaeAorfeA,
v if o, 0 ¢ A.

a®f=

where [ is the identity of S,,. If @ is the composition of functions, then (S, ®, ®)

is a skew-ring. It is not a ring if n > 2.

A semigroup S'is said to admit a ring [skew-ring] structure if there exists
a binary operation +on SY such that (S, +, ) is a ring [skew-ring] where - is the
operation on S°. Let SR [SSR]| denote the class of all semigroups admitting
ring [skew-ring] structure. Then SR € SSR. As was mentioned previously,
semigroups belonging to the class SR have long been studied. We note here
that by Proposition 1.1(vi) a semigroup with a left identity or right identity
belonging to SSR must be in SR.

An additively commutative semiring S = (S, +,-) with zero 0 is called
a skew-semifield if (S\{0},-) is a group. A semifield is a multiplicatively com-
mutative skew-semifield. In fact, a semifield from this definition is referred as a
“semifield of zero type” in [14]. By our definition, we see that every skew-field
(division ring) and every semifield is a skew-semifield. Skew-semifields are gen-
eralizations of both skew-fields and semifields. These are shown by the following

examples.

Example 6([11]). Let n be a positive integer greater than 1 and S the set con-

sisting of the zero n x n matrix and all n X n matrices over IR of the form

aq 0 0 ... =«

0 as 0O ... 0 .
where a; > 0 for all i =1,2,....n.




Then under the usual addition and multiplication of matrices, S is a skew-
semifield but neither a semifield nor a skew-field. Note that the multiplicative

inverse of the above matrix is

a;' 0 0 .. —mai'a;?
e 0 .- 0
0 0 0 ™

For any group G, the center of G' will be denoted by C(G).

A group G is said to admit a skew-semifield structure if there exists a
binary operation + on GY such that (GY +,-) is a skew-semifield where - is
the operation on G°. Let GSSF denote the class of all groups which admit a

skew-semifield structure.

The following two known results are required for our work.

Proposition 1.3([11]). If G is a group such that a* = 1 and b*> = 1 for some
distinct a,b € G\{1}, then G ¢ GSSF.

Proposition 1.4([11)). If G is a group such that.a®* =1 and ab # ba for some
a,b € G\{1}, then G ¢ GSSF.

Next, let R be a commutative ring with identity 1 # 0 and M, (R) denote
the multiplicative semigroup of all n x n matrices over R. Then M,(R) is a
semigroup having 0 and [, as its zero and identity, respectively where 0 and I,
denote respectively the zero n x n matrix and the identity n x n matrix over R.

For A € M, (R), the entry of A in the i*" row and j column will be denoted by



A;;. It is known that for A € M, (R), A is invertible over R if and only if detA
is an invertible element in R ([1], page 204). Let
Gn(R) ={A € M,(R) | A is invertible}.

Then we have that

Gn(R) ={A € M,(R) | detA is an invertible element in R}

and G,(R) is the greatest subgroup of M, (R) having I, as its identity. For
A € M,(R), Ais called an orthogonal matriz if AA* = I,,. A matrix A € M, (R)
is said to be a permutation matriz if every entry of A is either 0 or 1 and each

row and each column contains exactly one 1. Let

On(R) = {Ae€ M,(R)]| A is orthogonal},
P,(R) = {Ae€ M,(R)| A is a permutation matrix}.

Since for every A € P,(R), AA" = I,,, we have that P,(R) C O,(R). Clearly,
both O, (R) and P,(R) are subgroups of G, (R). Next, let

Vi(R). = {A € My(R) | detA=+£1},
Wo(R) = {AEM,(R)| detA =1V,

Then W,(R) C V,(R). Since detAB = detAdetB for all A, B € M,(R) ([8],
page 351), it follows that both V,,(R) and W,,(R) are subgroups of G, (R). Next,
let

U(R) = {A€G,(R)| Ais upper triangular},



L,(R) = {Ae€G,(R)| A is lower triangular}.

Then U, (R) and L, (R) contain every diagonal matrix in G,(R). To show that
Un(R) is a subgroup of G, (R), it is clear that for A, B € U,(R), AB € U,(R).
Next, let A € U,(R) be fixed. Then A = D + C where

——) =
b 0 A 0|
o0 A
0 Ap Az ... Aipn A
0 0 A23 AQ’n_Q Agn
T i . .
0.0 0 0 Apin
0 0 0 0 0

Since A is invertible, detA = Aj3 Agy...A,,, which is invertible in (R, -). Thus

Azl 0 L
5 oV 143 L) dd
N |..1 4Y

and there is a unique element x in R\{0} such that (detA)x = 1. For i =

1,2,...,n, set

~

Ay = A A Aivris - Ann.

Let



1’12111 0 0
p_ O Q?ziizz O
0 0 .. 24,

Then DP = PD = 1I,, so D' = P € U,(R). Since A € G,(R), there is
B € G,(R) such that AB = BA = I,,., We now have I,, = AB = (D+C)B =
DB+ CB,so D' =D ', = D '(DB + CB) = B + D"'CB which implies
that B= D' — D'CB. Fori,j € {1,2,...,n} with ¢ > j, C;; = 0, so

k=1

since (D7) = 0 for all k # i. Thus D='C is of the form

0 % % *1
0 0 =% *
000 *
0.0 0 0

that is, (D~'C");; =0 for all 4, 7 with i >j. Consequently, for j € {1,2,...,n},

n

(D'CB)n; =Y (D7'C) By = 0.

k=1
Hence D~'CB is of the form
* ... % ]
D'CB =
* ..k
0 ... 0




and so D' — D7'CB is of the form

_* * *_

D_l _ D_ch 1 . . . _ B
* N
0 0 %

10

Now we see that B,; =0 forall j € {1,2,...,n — 1}. But since (D7'C),_1, =0

for all K < mn — 1, we have that for j € {1,2,...,n — 1},

(D7'CB)n-1j = > (D7'C)p-14By;
k=1
n—1

= Z(Dﬁlo)n—l,kBkj + (D7'C) 1.0 Buj

k=1
= 008

Hence D~'CB is of the form

DIlCB=a h© L0 %%

0 ... 0 =

0 00
and so D! — D7'CB is of the form

* * * *x

D'—D'CB=| % ...  x «
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By continuing this process, we have that B is of the form

_ * Kk * ok |
0 « ... *x %
D*'-D'CB=|: i . i ! |=B.
0 ey *
0 0 0 %

Therefore B € U, (R). This proves that U,(R) is a subgroup of G, (R).
Similarly, we can show that L, (R) is a subgroup of G, (R).

Next, let V' be a vector space over a division ring R and L(V') denote the
semigroup under composition of all linear transformations o : V' — V. Then

the zero map 0 and the identity map 1y on V' are respectively the zero and the

identity of L(V'). Let

G(V)={a € L(V) | a is an isomorphism}.

Then G(V) is the greatest subgroup of L(V) having 1y as its identity. Since
Imap C Img foralla, § € L(V), we have that [F (V) is-a subsemigroup of
L(V') where

IF(V)={a € L(V) | dim(Imc) is finite}.

The following two subsemigroups of L(V') contain G(V):

MV) = {a€ L(V) |« is one-to-one},

EWV) = {ae L(V)|Ima=V}.
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Note that M(V)NE(V) = G(V) and dimV is finite if and only if M (V)[E(V)] =
G(V). Let

AM(V) = {a€ L(V) | dim(Kera) is finite},
AE(V)) = {ae L(V) | dim(V/Ima) is finite}.

Then M(V) C AM(V') and E(V) € AE(V). These two sets may be respectively
considered as the set of all “almost one-to-one” linear transformations of V
and the set of all “almost onto” linear transformations of V. To show that
AM (V) and AE(V) are subsemigroups of L(V), let o, 5 € L(V). It is clear that
Ker(a |kerap) = Kera. Since (Ima N KerfB)a ™' = Kera/3, we have Im(« |keras)

= Ima N Kerfg. But

dim(Keraf) = dim(Ker(a |kerag)) + dim(Im(e |kerag)),

So we have

dim(Keraf) = dim(Kera) + dim(Ima N Kerf)

< dim(Kera) + ‘dim(Kerg). (1.1)

Define 5* : V/Ima — Imf/(Ima)S by

(v + Ima) 5" = v6 + (Ima) 5

for all v € V. Then 3* is clearly well-defined and a linear transformation of
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V/Ima onto ImB3/(Ima) 3. Hence

dim(Imf3/(Ima)5) < dim(V/Ima).

Because Imaf C Im/j, we have

V/Imf = (V/ImaB)/(ImfB/Tma ),
which implies that
dim(V/Img) = dim((V/Imag)/(ImG/Imaf)).

Also, we know that

dim(V/Imaf) = dim(Img/Imaf) + dim((V/Imaf)/(ImG/Imaf)).

All of these facts yield the following inequality:.
dim(V/Imaf) < dim(V/Ima) + dim(V/Img). (1.2)

By (1.1) and (1.2), we have that AM (V') and AE(V/) are subsemigroups of L(V).
Observe that dimV is finite if and only if AM(V)[AE(V)] = L(V'). Moreover, if
dimV is infinite, then neither AM (V) nor AE(V') contains a zero.

To characterize when any subsemigroup of L(V') containing G (V') belongs

to SSR, the following two known results are useful.

Proposition 1.5([10]). Let S be a subsemigroup of L(V') containing G(V'). If

there exists an operation & on S° such that (S°,,-) is a ring where - is the
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operation on S°, then

Sa = aforalaecS®or Oa = —a foralac S

where Sa is the additive inverse of a in (S° @,-) and —« is the inverse of a

under usual addition in L(V').

Proposition 1.6([10]). G(V) € SR if and only if dimV < 1.

Now, let

OM(V) = {ae€ L(V) | dim(Kera) is infinite},
OE(V)) = {a€ L(V) | dim(V/Ima) is infinite}.

Assume that dimV is infinite. Then 0 € OM(V') and 0 € OE(V). Since for
a, B € L(V), Keraff D Kerq, it follows that a«f € OM (V) for all a, 5 € OM (V).
Thus OM (V) is a subsemigroup-of L(V'). It may be considered as the “opposite
semigroup” of M (V). Since for o, € L(V), Imaf C Imf3, we have that

dim(V/Imaf3) > dim(V/Img).

This implies that af € OFE(V) for all o, 5 € OE(V), so OE(V) is a subsemi-
group of L(V'). We can consider this semigroup as “the opposite semigroup” of

E(V).

Following the definition of the Baer-Levi semigroup on a countably infinite

set ([5], page 14), we define



15

BL(V) = {a€ L(V) | «is one-to-one and dim(V/Ima) is infinite}

where dimV is infinite.

Then BL(V) = M(V)NOE(V). Let B be a basis of V' and let B; C B be such
that | By | = | B\By | = | B|. Let ¢ : B — By be a bijection. Define n € L(V)
by vn = vy for all v € B. Then 7 is one-to-one and

dim(V/Imp) = dim(V/ <B;>)
= dim(< {v+ <By>|v € B\B;} >)
= | B\Bi ],

son € BL(V). Hence BL(V) is a subsemigroup of L(V'). The following subset
of L(V') should be also considered:

OBL(V) = {a€ L(V)| dim(Kera) is infinite and Ima = V'}

where dimV is infinite.

Then OBL(V) = OM(V)) 0 E(V). Let p€ L(V) be defined by

vt if ve By,
v =
0 if ve B\B.

Then Kerpy = < B\B; > and Impyy = < B> =V, so up € OBL(V). Hence
OBL(V) is a subsemigroup of L(V') which can be considered as “the opposite
semigroup” of BL(V). Observe that neither BL(V) nor OBL(V') contains a

Zero.
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For a € L(V), define

Fla)={veV |va=nuv}.

Then for every a € L(V), F(«a) is a subspace of V and « is said to be almost
identical if dim(V/F(«)) is finite. Next, let

AI(V) = dae L(V) | a is almost identical},
GAI(V) = {a e G(V)| «ais almost identical}.

Then 1y € GAI(V) € AI(V). To show that AI(V) is a subsemigroup of L(V)
and GAI(V) is a subgroup of G(V), let o, € AI(V). Then dim(V/F(«))
is finite and dim(V/F(f3)) is finite. Note that F'(a) N F(B) € F(apB). Let
By be a basis of F(a) N F(B). Then there are bases By of F(a) and By of
F () such that By C By and By € B,. Thus By € B; N By. It follows that
Fla)N F(f) = < By > C < BN By, > Since By N By, C F(a) N F(B),
< BiNBy > C F(a)N F(B). Hence By N By is a basis of F'(a) N F(3). We also
have By U Bs is linearly independent. Let B be a basis of V' containing By U Bs.

Then we have

B\(B1N.Bs) = (B\By)U (B\Bs),

and so

| B\(B1 N By) [< | B\B1 | + | B\B | .

But
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dim(V/F(a) N F(3)) = dim(V/< BiNBy>) = | B\(B1 N By) |,
dim(V/F(a)) = dim(V/< B;>) = | B\B, |,
dim(V/F(B)) = dim(V/< By>) = | B\Bs |

and both dim(V/F(«)) and dim(V/F(3)) are finite, so dim(V/F(a) N F(B)) is
finite. Since F(«a) N F(B) € F(af),we have dim(V/F(af)) < dim(V/(F(a) N
F(3))). Thus dim(V/F(ap)) is finite, so aff € AI(V). Hence AI(V) is a
subsemigroup of L(V). If @ € GAI(V), then F(a) = F(a™), so GAI(V) is
clearly a subgroup of G(V'). Note that if dimV is finite, then AI(V) = L(V)
and GAI(V) = G(V). If dimV is infinite, AI(V') does not contains a zero.

A subgroup of G(V) defining by a fixed basis of V' is given as follows:
Let B be a basis of V. For finite distinct elements wqy,us,...,up € B, let

(u1,ug, ...,ur)p € G(V) be defined by

uiyp if v=wufore=1,2,.. k-1,
U(Ul,U/Q, "'7uk)B = Uy if v= U,

v if ve B\{Ul,ug, -"auk}a

and let G(V) be the subgroup of G(V') generated by the set

{(wy, usy ...;ug)p | w1, usys...;ux are distinct elements of B and k € IN}

where IN is the set of positive integers.



CHAPTER II

SEMIGROUPS ADMITTING SKEW-RING
STRUCTURE

In this chapter, we divide into two sections. In the first section, we con-
sider some matrix semigroups over a commutative ring with identity 1 # 0 under
usual multiplication and investigate them when they belong to the class SSR.
Likewise, in the second section some semigroups under composition of linear
transformations of a vector space over a division ring are considered and inves-

tigated in the same way.

2.1. Matrix Semigroups

Throughout this section, let n be a positive integer, R = (R, +, ) a com-
mutative ring with identity 1 # 0. Recall that M, (R) is the full n x n matrix
semigroup under usual multiplication and G,,(R) the unit group of M, (R), that

is,

Gn(R) ={A € M,(R) | A is invertible}.

For k,l € {1,2,...,n}, let E¥ € M,(R) be defined by

1 ifi=kandj=I,

0 otherwise.

Then det E¥ = 0 for all k,1 € {1,2,...,n} if n > 1. As was mentioned in Chapter

1, page 7,
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Gn(R) = {A € M,(R) | detA is invertible in R}.

In particular, if R is a field, then

Ga(R) = {A € My(R)| detA # 0}.

Then G,(R) N {A € M,(R) | detA = 0} = (). In fact, {A € M, (R) | detA = 0}
is clearly an ideal of the semigroup M, (R). Since (M, (R),+, ) is a ring where +
and - are the usual addition and multiplication of matrices, respectively, we have
that M, (R) € SR. However, the first theorem shows that if n > 1, then M, (R)
itself is the only subsemigroup of M, (R) containing {A € M,(R) | detA = 0}
which belongs to SSR.

Theorem 2.1.1. Let n > 1 and S a subsemigroup of M, (R) containing every
matriz A € M, (R) with detA =0. If S € SSR, then S = M,(R).

Proof. First, we note that S contains the zero matrix 0 of M,(R), |S|> 1 and
EF € S for all k,1 € {1,2,...,n}. Assume that there exists an operation & on

S such that (S, @,-) is a skew-ring where - is the multiplication on S. To show

that S = M, (R), let A € M,(R). Define B,C € M,(R) by

and
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Then detB = 0 = detC, so B,C € S. It follows that B&C € S. But CE™ =C

and BE™ =0 = CE* forall k € {1,2, ...,

n— 1}, so

(B@C)E™ =C and (B® C)E® = BEM for all k € {1,2,....,n — 1}.

Hence for ¢ € {1,2,...,n},

[M]=

(B®Cin = (B & C)unLiy

and for i € {1,2,...,n} and 5 € {1,2, ...

(B & C)inEl;

hE

(B C)y\ =

Consequently, A=B®C € S.

Hence the theorem is proved.

since £ =01if k #nand £, =1

,n—1},

since Eﬁ =0if k#j and E'JJI1 =1
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If I is the ideal {A € M,(R) | detA = 0}, then n = 1 implies that
I° = (Zsy,-). The following corollary is obtained directly from Theorem 2.1.1

and the above fact.

Corollary 2.1.2. The ideal {A € M, (R) | detA = 0} of M,(R) belongs to the
class SSR if and only if n = 1.

Recall the subgroups V,(R) and W, (R) of G,,(R) that

Vi(R) = {A€ Gu(R)|detd =1},
Wa(R) = {A€Gu(R)|detA = 1}.

The next theorem shows that every subsemigroup of G, (R) containing V,,(R)

does not belong to SSR if n > 1. The following lemma is required.

Lemma 2.1.3. IfA € M,(R) is such that AB=BA for every B € W,(R), then

A =al, for some a € R where I, is the identity n X n matriz over R.

Proof. It is trivial if n = 1. Assume that n.> 1. Let s.t € {1,2,...,n} be such
that s < t. Define B, C' € M,,(R) by

WLEAY,
Bij=4q 1 ifi=sand j=t,
0 otherwise
and
1 ifi=y,
Cij=1{ 1 ifi=tandj=s,

0 otherwise.
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Then detB = 1 = detC. By assumption, AB = BA and AC = CA. Thus

(AB)SS = Z Agp Brs = Ags,
k=1

(BA)ss < Z BskAks = Ass + Atsa
k=1

(AC)tt = Z Atkckt == Att
k=1

and

(CA) = Z CieAie = Ast + Ay

k=1

Consequently, A;s = Ay = 0. This proves that
Ag = 0 for all distinct s,¢ € {1,2,...,n}. (2.1.3.1)

For k € {1,2,...,n}, define D® € M, (R) by

1 ifi=j,
D =41 it = 1and =k
ij ifir=1andj =k,

0 otherwise.

Then detD® = 1 for all k € {1,2,...,n}, so AD® = D®A for every k €
{1,2,...,n}. From (2.1.3.1) and the definition of D, we have that for i €

{1,2,...,n},

(ADD)y; = 3~ AuDy) = An

k=1



23

and

RVNTESY D) A = Aqi
k=1
It then follows that
Ay ="A;for every i € {1,2,...,n}. (2.1.3.2)
From (2.1.3.1) and (2.1.3.2), A = al where a = Ay;. O

Theorem 2.1.4. Ifn > 1 and S is a subsemigroup of G,(R) containing V,(R),
then S does not belong to the class SSR.

Proof. Suppose that there exists an operation @ on S%such that (S° @,-) is a
skew-ring where - is the operation on S°. Since I, € V,,(R) C S, by Proposition
1.1(vi), (S% &,-) is a ring. Let A € S be such that I,, & A = 0. Then for every
B eSS,

B@®AB =1, 8 AYB=0=B(, ® A)= B® BA.

This implies that AB = BA for every B € S. By Lemma 2.1.3, A = al, for
some a € R. Therefore I, & al, = 0. Next, let C € M, (R) be defined by

010 ..0
100 ... 0
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Then C # I,,, C # al,, C* = I, and detC = —1. Thus C € V,,(R) C S. Since
I, ®al, =0and C # al,, we have I, & C' # 0. Because S is a subsemigroup of
the group G,(R), S is cancellative. But

and I, & C' # 0, so we have C = I,,, a contradiction.

Hence the theorem is proved. O

Corollary 2.1.5. G,(R) € SSR if and only if n = 1 and Up € SSR where

Ugr denotes the multiplicative group of all invertible elements of R.

Proof. If n > 1, then by Theorem 2.1.4, G, (R) ¢ SSR. Next, assume that
n=1and Ugr ¢ SSR. But since G{(R) = Ug, we have G1(R) ¢ SSR.

Conversely, if n =1 and Ugr € SSR, then Ug = G(R) € SSR. O

Corollary 2.1.6. V,,(R) € SSR if and only if n = 1.

Proof. If n > 1, then V,,(R) ¢ SSR by Theorem 2.1.4.

Since

(Zs,-) if charR # 2,

VI(R) =2 ({0,1, =1}, )= { .
(Zs,-) if charR = 2,

the converse holds. O

The last theorem of this section shows that if n > 2, there is no subsemigroup

of G,,(R) in SSR which contains W,,(R).
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Theorem 2.1.7. Ifn > 2 and S is a subsemigroup of G,(R) containing W,,(R),
then S does not belong to the class SSR.

Proof. Suppose that there exists an operation @ on S° such that (S° @,-) is a
skew-ring where - is the operation on S°. Since I,, € W, (R) C S, (S, ®,-) is a
ring. Let A € S be such that I, & A = 0. Then

B AB=(I,®A)B=0=B({{,®A)=B®BA
for every B € S, so AB = BA for all B € S. By Lemma 2.1.3, A = al, for some

a € R.

Case 1: charR = 2. Let C € M, (R) be defined by

200 N1
o4 . AR
C=+1t001 . 0

OOO...lJ

Then detC = 1, so €' € S. Since charR = 2, C? = [,. Also, we have C # I,
and C' # al, = A. Thus I,, & C' # 0. Since S is cancellative and

CL,eC)=Cal?=Cal)=1,9C,

it follows that C' = I,,, a contradiction.

Case 2: charR # 2. Then 1 # —1. Let D € M,,(R) be defined by

-1 0 ... 0 O
01 .. 0 O
D=
0 0 1 0
0 0 0 —1
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Then D? = I, and detD = 1, so D € S. Since charR # 2, D # I,. Also,
D # al,, = A because n > 2 and charR # 2. Thus I, & D # 0. But

D(I,®D)=D&D*~D& L, =1, D,

so we have D = I,,, a contradiction. O
Corollary 2.1.8. W, (R) € SSR if and only if n = 1.

Proof. If n > 2, then by Theorem 2.1.7, W,,(R) ¢ SSR.

Next, Assume that n = 2 and suppose that there exists an operation &
on W2(R) such that (W2(R),®,-) is a skew-ring where - is the operation on
W(R). Since I, € Wyo(R), (WE(R), &, ) is a ring by Proposition 1.1(vi). Then
I, ® A =0 for some A € Wy(R). It therefore follows that for every B € Wa(R),

B®AB=(L®AB=0=B(l,®A) =B BA.

Hence AB = BA for all B € Wy(R). By Lemma 2.1.3, A = al, for some a € R.
Thus

2
1 11

Case 1: charR = 2. Then ] € Wy(R) and { ] = 5. Since
0 1

1 1
]#al}, by (2.1.8.1), I & ]7&0 But
1 1
11 11 11
IL® Slo=01L® ,
0 1 0 1 01
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11
and Wy(R) is cancellative, so { ] = I, a contradiction.
01
1 0 —
Case 2: charR # 2. Then € W5(R) and # 1. We
AR ! 0 -1
have that
-1 0 ) ~ -1 0
Lo 5 SlL=01Lo :
0 —1 0 -1 ! 0 —1
— 0
Since Wh(R) is cancellative and { ] # 1o, it follows that
=]
L < )il
Lo =08 (2.1.8.2)
(-l

Consequently, Io® Iy # 0, so [yd Iy € Wo(R). 1t is clear that I, € C(Wa(R)).
By Lemma 2.1.3, Iy ® I, = bl, for some b € R. Hence 1 = det(bly) = b?. It
follows that

(I @ bI5)(bls) = bly & I = I, @ bls.

If Io ®bly # 0, then bly = I, so b= 1. Thus I, & Iy = I, which implies by

-1 0
(2.1.8.2) that Iy =0, a contradiction. Thus Iy & bl = 0, so bly = { ]
0 —1

-1 0
by (2.1.8.2). It follows that b = —1. Hence by (2.1.8.2), [y ® I, = { ],
0 —1
so Iy @ I, ® I, = 0. We there have

A A® A=0 for all A € Wy(R). (2.1.8.3)
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It can be seen easily from (2.1.8.3) that

(IQ D A)3 =1, P A3 for all A c WQ(R) (2184)
Since e Ws(R) and
1 0
3
1 -1 071 | S 1 0
1 0 /70 ) N 0 -1 |

by (2.1.8.4) and (2.1.8.2), we have

3

il 1 =
I ® =1, ® = 0.
1 0 0 -1
1 —
This implies that I, & = 0 which is contrary to (2.1.8.2).
1 0

The converse holds since WP(R) = ({0,1}, ) & (Zs, -).

Hence the theorem is proved. O

2.2. Linear Transformation Semigroups

In this section, we investigate when some semigroups of linear transfor-
mations belong to the class SSR. Let V' be a vector space over a division ring
R. The following semigroups of linear transformations on V' given in Chapter I

are recalled as follows:

L(V) = {a:V — V |ais alinear transformation},

G(V) = {a:V =V |ais an isomorphism},
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IF(V) = {ae€ L(V)|dim(Ima) is finite},
MV) = {a€ L(V)| «is one-to-one},
E(V) = {acL(V)|Ima=V},

= {a € L(V) | dim(V/Ima) is finite},

) (V)
) (V)
) (V)

V) = {a€L(V)]|dim(Kera) is finite},
) (V) | dim(
) (V) | dim(
) (V) | dim(
) )

OM(V) = {ae€ L(V) | dim(Kera) is infinite},
OE(V) = {ae L(V)|dim(V/Ima) is infinite},
BL(V) = {a€ L(V) |« is one-to-one and dim(V/Ima) is infinite}

where dimV is infinite,
OBL(V) = {a€ L(V) | dim(Kere) is infinite and Ima = V'}
where dimV is infinite,
AI(V) = {a € L(V) | «ais almost identical}
( = {ae L(V)]|dim(V/F(@)) is finite}
where F(a)={v € V |va=v}).

Since (L(V), +, -) is a ring where + and - are respectively the usual addition and
composition of linear transformations, we have that L(V) € SSR. If dimV is
finite, then for each a € G(V), (L(V)\G(V))U{«, a?, a?, ...} is clearly a subsemi-
group of L(V') containing L(V)\G(V'). Then we ¢an deduce that in general, there
are many proper subsemigroups of L(V') containing L(V)\G(V). The following
theorem shows that there is no proper subsemigroup S containing L(V)\G(V)
such that S'e SSR if dimV > 1.

Theorem 2.2.1. Assume that dimV > 1 and let S be a subsemigroup of L(V)
such that LIV)\G(V) C S. If S€ SSR, then S = L(V).

Proof. Let @& be an operation on S such that (S, ®, ) is a skew-ring where - is
the operation on S. To show that S = L(V), let « € G(V). Let B be a basis
of V. Then | B | > 2. Let u € B be fixed. Then {ua} and (B \ {u})a are not
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bases of V. Let 3,7 € L(V) be defined by

vf =
0 fv=uw

{v& if v e B\ {u},

and

ua if v = u,
(Yo'B—
0 ifoveB)\{u}

Then we have 3,7 ¢ G(V), so 8,y € S by assumption. Thus ® vy € S. We
claim that 5 @ v = a. For each w € B, let A\, € L(V') be defined by

w if v = w,
VAy =
{O if v € B\ {w}.

Then A\, € S for all w € B, and so

Ao(BBY) = A8 B Ay forall we B.

We clearly have

A3 =0, u(Ayy) = ua, (2.2.1.1)

and also
v(A,0) =wva forall v e B\ {u} and
Ay =0 forallve B\ {u}. (2.2.1.2)

From (2.2.1.1) and (2.2.1.2), we have respectively that
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and for v € B\ {u},

V(DY) =vA(B DY) =v( AN D AY) = VA0 = va.

Hence a = f @&y € S. This proves that S = L(V), as required. O

From [8], page 415 and 424, we have that [F(V) is a unique minimal
ideal of the ring (L(V),+,+) where + and - are respectively the usual addition

and composition of linear transformations. Then

Theorem 2.2.2. I[F(V) € SSR for any dimension of V.

We recall that if dimV is finite, then M (V) = G(V) = E(V) and
AM(V) = L(V) = AE(V). We also note that for every dimension of V, in
M°(V) and E°(V), 0 is a zero adjoined. Moreover, if dimV is infinite, then
AM(V) and AE(V) have no zero. Next, the subsemigroups M (V), E(V),
AM(V), AE(V) are characterized when they belong to the class SSR in terms
of the dimensions of V. We give two proofs for each characterization for M(V),
E(V), AM(V) and AE(V'). However, every proof need suitable constructions
of linear transformations. The first proof of each one refers Proposition 1.5. We

use Proposition 1.6 for the second proofs of both M (V') and E(V).

Theorem 2.2.3. M (V) € SSR if and only if dimV < 1.

Proof 1. Assume that M (V) € SSR. Since 1y € M(V), by Proposition
1.1(vi), M(V) € SR. Then there exists an operation & on M°(V) such that
(M°(V), @, ) is a ring where - is the operation on M°(V'). To show that dimV <
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1, suppose on the contrary that dimV" > 1. Let B be a basis of V and let u,w € B
be distinct. Then (u,w)g € M(V), (u,w)p # 1y, (u,w)p # —1y and (u,w)% =
ly. By Proposition 1.5, 1y & (u,w)p # 0. Therefore 1y & (u,w)p € M(V).
Thus

(u,w)p(ly & (u,w)p) = (u,w)p B 1y = 1y & (u,w)g € M(V).

It follows that

u(w, w)s(ly ® (u,w)p) =u(ly ® (v, w)p).

But 1y @ (u,w)p is a one-to-one map, so u(u,w)p = u and hence w = u, a

contradiction. Therefore dimV < 1.

The converse holds because

(Zs,+) it dimV = 0,

MUV) =GoV) = {
(R,-) if dimV =1.

Proof 2. Let @ be a binary operation on M°(V) such that (M°(V),®,-) is a
skew-ring where - is the operation on M°(V). Suppose that dimV is infinite.
Let B be a basis of V. Fix u,w € B with u # w. Then there is-a bijection ¢
from B onto B\{u,w}. Define o € L(V) by

vaa = vy forallve B.

Then o € M (V). Since Ba = B\{u,w}, it follows that va(u,w)s = va for all

v € B, so we have a(u,w)p = a. Consequently,

O=a0a=oa(u,w)pa=al(u,w)s o ly),
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But since a # 0, we have (u,w)p © 1y = 0 so (u,w)p = 1y, a contradiction.
Hence dimV is finite and thus M (V) = G(V'). We then have by Proposition 1.6
that dimV < 1.

The converse is obtained as in the first proof. a

Theorem 2.2.4. E(V) € SSR if and only if dimV < 1.

Proof 1. Assume that F(V) € SSR and let & be an operation on E°(V)
such that (E°(V),®, ") is a skew-ring where - is the operation on E°(V). Since
ly € E(V), (E°(V),®, ) is a ring. Suppose that dimV > 1. Let B be a basis
of V and uw,w € B such that u # w. Then (u,w)p € E(V), (u,w)p # 1y and
(u,w)p # —1y. By Proposition 1.5, 1y @ (u,w)s # 0. Hence 1y & (u,w)p €
E(V), so there exists z € V such that

2(ly @ (u,w)p) = u.

But

(1y & (u, w)p)(u, w)g = (u,w)g B 1y = 1y ®(u,w)p,

so we have

2(ly & (u,w)p)(u,w)p = 2(1y & (u,w)p).

It follows that u(u,w)p = u. Hence w = u, a contradiction. Therefore dimV <

1.

We obtain the converse similarly to the first proof of Theorem 2.2.3.
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Proof 2. Let & be a binary operation on EY(V) such that (E°(V),®,") is a
skew-ring where - is the operation on E°(V'). Suppose that dimV is infinite and
let B be a basis of V. Fix u,w € B with u # w. Then there is a bijection ¢
from B\{u,w} onto B. Let a € L(V') be defined by

0 if vefuw},
v =
ve if veB\{uw}

Then Ima = < Ba> = < B> = V. It follows that & € E(V'). By the definition

of a;, we have

u(u,w)pa = wa =0 = ue,  w(u,w)pa =ux =0 = wa,

v(uyw)pa =va  for all v € B\{u,w}.

Then (u,w)pa = a, and hence

O=a6a=(uwpaeoa=((uwpelya.

But since a@ # 0, (u,w)p © 1y = 0. Thus (u,w)p = 1y, a contradiction.
Therefore dimV _ is finite, and so E(V) = G(V), hence we have by Proposition
1.6 that dim V. <'1.

The converse is obtained as in the first proof. O

Theorem 2.2.5. If S(V') is AM(V) or AE(V), then S(V) € SSR if and only
if dimV s finite.

Proof 1. Assume that there exists an operation & on S°(V') such that (S°(V), &, -)
is a skew-ring where - is the operation on S°(V). Then (S°(V),, ") is a ring
since 1y € S(V). Suppose that dimV is infinite. It follows that S(V') has no
zero. Let B be a basis of V' and let u,w € B with v # w. Define o € L(V') by
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0 if v=wuorv=uw,
v =
v if ve B\{u,w}.

Then o? = a, Kera = <u,w> and Ima = < B\{u,w} >. It follows that

dim(Kera) = 2 and dim(V/Ima) = dim(V/ < B\{u,w}>) = 2.

Hence a, —av € S(V'). Since e # 1y and a # —1y, it follows from Proposition
1.5 that Iy ® o # 0 and 1y @ (—a) # 0. Thus 1y @ «a, 1y & (—a) € S(V).
Consequently,

04 (ly aa=ada’*=ada (2.2.5.1)

and

Hence Proposition 1.5, (2.2.5.1) and (2.2.5.2) yield a contradiction:

Conversely, assume that dimV is finite. Then S(V) = L(V), so S(V) €
SSR.

Proof 2. Define « as in the first proof. We have by the definition of « that

u(u,w)pa = wa =0 =ua, w(u,w)pa=ux=0=wa,

v(u,w)pa =va  for all v € B\{u,w}.
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Then (u,w)pa = . Hence

O=aca=a6 (u,w)pa = (ly & (u,w)p)a.

But since o # 0, we have 1y & (u, w)p = 0. Thus (u, w)p = 1y, a contradiction.

Then dim V is finite.

The converse holds as in the first proof. O

The next two theorems show that for any infinite dimension of V', neither

OM (V) nor OE(V) is in SSR.

Theorem 2.2.6. OM (V) ¢ SSR where dimV is infinite.

Proof. Assume that OM (V) € SSR. Let @ be a binary operation on OM (V)
such that (OM (V') @, +) is a skew-ring where - is the operation on OM (V). Let
B be a basis of V. Then there are subsets B; and Bs such that B; N By = 0,
B =B UByand |B| = |B;| =|By|. Thus V is a direct sum of < B; > and
<By>. Let a, 8 € L(V') be defined by

v if v € By,
va =
0 if w c B2

and

0 if ve Bl,
vl =
v if v e By

Then Keraw = < By > and Ker3 = < By >, so dim(Kera)) = | By | and dim(Kerf3) =
| By|. Thus o, 3 € OM(V). Clearly, a® = «, > = 8 and a3 = 0 = Sa. Thus
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(adBla=a’dpa=a’=a (2.2.6.1)

and
(@ p)f=af®p? =5 =p. (2.2.6.2)

By the definitions of o and 3, we have

va =wvand v@3 = 0 for all v €< By >,

vB = and va =0 for all v €< By >. (2.2.6.3)

Let u € Ker(a® ). Then u(a®f) = 0. Since V.= < By > + <By>, u = uj +uy
for some u; €< B; > and uy €< By>. By (2.2.6.1), (2.2.6.2) and (2.2.6.3),

ula® B = ua = (ug + uz)a = uy,

u(a® B)f = uf = (ur +uz)B = us.

But u(a@® ) =0, so u(a ® f)a =0=u(la® 8)3. It follows that u; = 0 = us.
Hence u = 0. This proves that Ker(a ® ) = {0}, so a® 8 ¢ OM(V), a contra-
diction. Therefore wehave OM (V') ¢ SSR; as required: O

Theorem 2.2.7. OF(V) ¢ SSR where dimV 'is infinite.

Proof. Assume that OE(V) € SSR. Let & be a binary operation on OE(V)
such that (OE(V),®,-) is a skew-ring where - is the operation on OE(V'). Let
B be a basis of V. Then there are subsets B; and By such that B; N By = (),
B=ByUByand |B| = |By| = |By|. Let a, 8 € L(V') be defined by

v if v € By,
v =
0 if w GBQ



and

0 if ve Bl;
vf =
v if v e Bs.

Then Ima = < By > and Imf = < B, > which imply that

dim(V/Ima) = - dim(V/ < B, >) = |B\Bi|= |Bs|,

dim(V/ImpB) = dim(V/<By>) = |B\Bs|= | B .

Thus o, € OE(V) and so a @ € OE(V). Since

for v € By,vaf =95 =0 and vBa = 0a =0,
forv € By,vaf =08 =0 and vBa = va= 0,

we have a8 = 0 = fBa. Clearly, a®> = o and 3* = 3. Consequently,

ala @ 8) = dand Bl ® 8) = 5.

Claim that v € Im(a @ ) for all v€ B. Let v € B. Then v € By or v € Bs.

Case 1: v € By. Then (va)(a @ ) = v(a(a® [)) = va =v.

Case 2: v € By. Then (vf3)(a @ ) = v = v.

38

Hence V = < B> = Im(a & (), it follows that dim(V/Im(a & 3)) = 0, a con-

tradiction. Therefore OE(V) ¢ SSR.

O
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We show next that neither BL(V') nor OBL(V') belongs to SSR. Each

proof needs one lemma.

Lemma 2.2.8. If 5 € E(V) and o € OE(V), then Ba € OE(V).

Proof. It is clear since Imfa = Va = Va = Ima. O

Theorem 2.2.9. BL(V') ¢ SSR where dimV' is infinite.

Proof. Assume that there exists a binary operation & on BLY(V) such that
(BLY(V),®,-) is a skew-ring where - is the operation on BL°(V). Let B be a
basis of V. Then there are subsets B; and B, such that BiNBy, =0, B = B{UB,
and | B| = | By | = | Ba|. Let ¢ : B — B; be a bijection and let « € L(V') be
defined by va = vy for all v € B. Since @ is ono-to-one, « is one-to-one. Also,

Ima = < B; > and hence

dim(V/Ima) = dim(V/<B;>) = |B\By | = | B, | .

Then o € BL(V). Let u,w € By with u # w. Then ua # wa. Since Ba = By,
it follows that wa(u, w)p = va for all v € B. Hence o(u,w)p = « and thus

a(u,w)pa = o?. By Lemma 2.2.8, (u,w)pa € BL(V). Thus

0= a(u,w)pa ©a® = a(u,w)pa © a)

which implies that (u, w)pa = a. Therefore ua = u(u, w)pa = wa, a contradic-

tion. Hence BL(V') ¢ SSR. O

Lemma 2.2.10. If € M(V) and o € OM(V), then af € OM (V).
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Proof. It is directly obtained from the fact that for v € V', va3 = 0 if and only

if vae = 0 since ( is one-to-one. O

Theorem 2.2.11. OBL(V') ¢ SSR where dimV is infinite.

Proof. Assume that there exists a binary operation & on OBL°(V) such that
(OBL°(V),®,-) is a skew-ring where - is the operation on OBL’(V). Let B be a
basis of V. Then there are subsets B; and Bs such that BiNBy = (0, B = B;UB,
and | B| = | B;| = | Bz|. Let ¢ be a bijection from By onto B. Define a € L(V') by

v if w € By,
Vo =
0 if ve BQ.

Then dim(Kera) = dim(< By >) = | By | and Ima = < B> = V.Thus a €
OBL(V). Choose u,w € By with u # w such that ua, wa € B,. Since « |p, is

one-to-one, ua # wa. We have a(ua, wa)pa = o by the following equalities.

u(a(ua, wa)g)a = wa? = 0 = ua?,
w(a(ua, wa)p)a = ua® = 0 = wa?,
for v € B\ {u,w}, v(a(uc, wa)p)a = va?,

for v € By, v(a(ua, wa)g)a = 0 = va.

By Lemma 2.2.10, we have that a(ua, wa)p € OBL(V'). Thus
0 = a(ua, wa)pa © o® = (a(ua, wa)p © a)a.

It follows that a(ua, wa)p = a. Therefore ua = ua(ua, wa)p = wa, a contra-

diction. Hence OBL(V') ¢ SSR. O
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Finally, we prove that the semigroup AI(V') belongs to SSR if and only
if dimV is finite.

Theorem 2.2.12. AI(V) € SSR if and only if dimV is finite.

Proof. Assume that AI(V) € SSR. Then there exists an operation & on
AI°(V) such that (AI%(V),&,-) is a skew-ring where - is the operation on
AI°(V). Suppose that dimV/ is infinite and B a basis of V. Fix u € B. Define
a e L(V) by

0=11s, v\,
Vo =
v if . ve B\{u}.

Then F(«a) = < B\{u}>, so dim(V/F(a)) = 1. Thus o € AI(V). We see that

a? = a, so

0=aca=ad’0a=alacly)

which implies that @ = 1y, a contradiction.

Conversely, if dimV-is finite, then AI(V)) = L(V), so AI(V') belongs to
the class SSR. O



CHAPTER III

GROUPS ADMITTING SKEW-SEMIFIELD
STRUCTURE

In this chapter, we also divide into two sections. For the first section,
we consider when some matrix groups over a commutative ring with identity
1 # 0 belong to the class GSSF'. For the second section, some subgroups of
linear transformations of a vector space over a division ring are investigated in

the same way.

3.1. Matrix Groups

Throughout this section, let n be a positive integer and R a commutative

ring with identity 1 # 0. The following matrix groups are recalled.

Gn(R) = {A € M,(R)| A is an invertible n X n matrix over R},

U.(R)[L,(R)] = {A € G,(R)| A is upper[lower| triangular},
P,(R) = {Ae€G,(R)| Aisapermutation matrix},
On(R) = {A€G,(R)]| A isorthogonal},
V.(R) = {A€G.(R)| detA=+£1} and
W, (R) = {A€GL(R)| detA=1}.

The purpose of this section is to characterize in terms of n and R when the
matrix groups mentioned above belong to the class GSSF'.

In [11], the matrix groups G, (F), U,(F)[Ln(F)], P.(F), On(F), Vo (F)
and W, (F') have been completely characterized in terms of n and F' when they
are in GSSF where F is a field. In this section, we generalize these characteri-

zations by replacing F' by R. We obtain more general results and the mentioned



43

results in [11] become our special cases.

Theorem 3.1.1. G,,(R) € GSSF if and only if n =1 and Ur € GSSF where

Ugr denotes the multiplicative group of all invertible elements of R.

Proof. Assume that n > 1. Define A, B € G,(R) by

1 1 0 0
0 —1 0 0
0 0 0 —1
()92 flr2 40) 0
7500 0

B = 0 0 1 0
0 0 0 1

Then A, B € G,(R)\{I,}, A> = B> = I, and A # B. By Proposition 1.3,
Gn(R) does not belong to the class GSSF.

Next, assume that n = 1 and Uz ¢ GSSF. Then Up = G1(R) ¢
GSSF.

The converse holds because G1(R) = Ug. O

Theorem 3.1.2. P,(R) € GSSF if and only if n < 2.

Proof. Assume that n > 2. Define A, B € G,(R) by
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010 ..0
100 .. 0

A= 1001 . 0],
000 "
(1000 .. 0]
0010 .0
0100 ..0

B =
0001 ..0
(0000 .. 1

Then A, B € P,(R)\{I,}, A> = B> = I, and A # B. By Proposition 1.3,

P.(R) ¢ GSSF.
} 7') = (Z?n ')7

Since P)(R) = ({0,1},-) = (Zs, -) and
we have that P (R) and P»(R) belong to the class GSSF'. Hence the converse

0 0 0 1 0 0 1
P2 (R) = ) )
00 01 10
holds. O

Theorem 3.1.3. U,(R)[L,(R)] € GSSF if and only if (i) n = 1 and Ug €
GSSF or (ii) n=2 and |R| = 2.

Proof. We prove the theorem for U,(R). For L,(R), the proof can be given
similarly. Assume that (i) and (#) do not hold. Then one of the following
conditions holds: (1) n > 2, (2) n = 1 and Ug ¢ GSSF and (3) n = 2 and
|R| > 2.
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Case 1: n > 2. Then the matrices A, B € G,,(R) defined by

11 0 0
0 -1 O 0
A = Ov R I0F /-2 01,
0 0 O =4
7740} O\ 0™ 0
oF 13 1 0
B = 00 —1 0
00 0 5

are in U, (R)\{I,.}, A> = B* = I,, and A # B. Then by Proposition 1.3, U,(R) ¢
GSSF if n > 2.

Case 2: n=1and Uz ¢ GSSF. Then Ugr = U,(R) ¢ GSSF.

11 1 a
, S
0 1 01
2
ENL
. Since charR = 2, =1, =

Case 3: n=2and |R| > 2.

Subcase 3.1: charR = 2. Let a € R\{0, 1}. Then

Uy(R)\{D} ‘and [1 1] " {1
0 1 01

. Thus for this subcase, Uy(R) ¢ GSSF by Proposition 1.3.

Subcase 3.2: charR # 2. Then —2 # 0 in R,

1 1 ’
Us(R)\{ 12}, { 0 1 ] =1, and
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1 1 1 -1 1 =2 B 1 -1 1 1
[0 1”0 1 7&{0 1]{0 1”0 1]'
From Proposition 1.4, Uy(R) ¢ GSSF' for this subcase.
Conversely, assume that (i) n = 1 and U,(R) € GSSF or (ii) n = 2 and
|R| =2. If n=1and Uy € GSSF, then Up = U,(R) € GSSF. Next, assume
that n =2 and | R| = 2. Then

w FAND -~

so Uy(R) € GSSF. O

1 0
0 -1

Theorem 3.1.4 . O,(R) € GSSF if and only if (i) n=1 and H € GSSF or
(1) n =2 and | R| = 2 where H is the subgroups of Ur consisting of all elements

of R of order < 2.

Proof. Assume that (i) and (i7) are not true. Then one of the following condi-

tions holds: (1) n > 2, (2) n=1and H ¢ GSSF and (3) n=2 and |R]| > 2.

Case 1: n > 2. Observe that since the matrices A, B defined in the proof of
Theorem 3.1.2 are symmetric, they are also orthogonal, hence O,(R) ¢ GSSF'.

Case 2: n=1and H ¢ GSSF. Then H = O1(R) ¢ GSSF.

Case 3: n =2 and |R| > 2.
Subcase 3.1: charR = 2. Let a € R\{0,1} and define C' € My(R) by

a 1+a
1+a a

Then C = C* and
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o2 a?+1+2a+a®> a+a®+a+a?
a+a+a+a? 1+2a+a®+ a?

since charR = 2. Thus C' € Oy(R)\{/l>}. Also,

2

# C. Thus O9(R) ¢
.y

€ Oy (R}, [ ‘1)

0
= [, and [

GSSF by a Proposition 1.3.

Subcase 3.2: charR # 2. Then

=N W0 1 0
and are distinct
0, N\ 0 —1

2 2
1 0
= = I,. It then follows
0y =

0
elements of Oy(R)\{/2} and

from Proposition 1.3 that Os(R) ¢ GSSF.
The converse holds because of the following facts.
OYUR) = H.

If |R| =2, it is clear that

(it

The last theorem of this section, we investigate when the matrix group

W, (R) belongs to the class GSSF'. The result is the following theorem.

Theorem 3.1.5. V,(R) € GSSF if and only if n = 1.

Proof. Assume that n > 1 and define the matrices A, B as in the proof of
Theorem 3.1.1. Then detA =1 or -1 and detB = —1, so A, B € V,,(R). Hence
V.(R) ¢ GSSF by Proposition 1.3.
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Since

(Zs,-) if charR # 2,

VY(R) = ({0,1,—1},) = { .
(Zsy,-) if charR =2,

the converse holds. O

Theorem 3.1.6. W, (R) € GSSF if and only ifn=1.
Proof. Assume that n > 2.

Case 1: n > 3. Let A, B € W,(R) be defined by

0 1 0 0 0

1 0 0 0 0

00 =1 0 0
A—

0 0 O 0

and

0. 010 ..0

0 =1 0 0 .00

1 000 .. 0
B:

0O 001 ..0

Then A> = B?> = [,, A # I, and B # I,, so by Proposition 1.3, W,(R) ¢
GSSF for this case.

Case 2: n = 2.
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01 1 1
Subcase 2.1: charR = 2. Then the matrices { } and { ] are
10 0 1

2
11 0 1 11

) 7&]2 and 7&]2
01 10 01

Hence W3 (R) ¢ GSSF for this subcase.

2

in Wa(R)\{12}, =1 =

Subcase 2.2: charR # 2. To show that W5(R) ¢ GSSF, suppose on
the contrary that there exists an operation & on W3(R) such that (W3 (R), ®,-)

is a skew-semifield where - is the operation on W3 (R). Now we have

o DA

-1 0 2}
It I, ® # 0, then
0 —1

} = [, 50 1 = —1, a contradiction.
0 -1

Therefore

1 0 ]
=l (3.1.5.1)

and (W2(R)),®) is an abelian group. Since I, ® I € C(W2(R)), by Lemma
2.1.3, Iy® I, = al, for some a € R. By (3.1.5.1), a # 0. Then det(aly) = a* = 1,

SO

(]2 D alg)((llg) = CLIQ D ]2 = IQ D alg‘

If I ®aly # 0, then aly = I, and so a = 1. Hence I, & I = I, which
implies by (3.1.5.1) that I, = 0, a contradiction. Therefore I, @ al; = 0, so

-1 0
aly, = { ] by (3.1.5.1) which implies that a« = —1. Now we have
0 —1
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-1 0
Lol = .
0 -1
Thus Io ® I & I, = 0 by (3.1.5.1). Hence
ADAGA=0 forall AecWy(R). (3.1.5.2)

We obviously obtain from (3.1.5.2) that

(fp@ AP =1, ® A® for all A€ W(R). (3.1.5.3)

1 -1
Since { ] € Wa(R) and
1 0

AN 2

we have from (3.1.5.1) and (3.1.5.3) that

3
1 =l

Iy @ =1L ®
1 0

1 -1 1 -1 —1 0
This implies that I & = 0. By (3.1.5.1), = :
L, 0 1 0 0 —1

The converse holds because

a contradiction.

WY (R) = ({0,1},) = (Zs, ).

Remark 3.1.7. It follows directly from the definitions of skew-rings and skew-
semifields that if G is a group such that G € SSR, then G € GSSF. Thus
any group which is not in GSSF must not be in SSR. Hence Corollary 2.1.5,

Corollary 2.1.6 and Corollary 2.1.7 can be considered respectively as corollaries
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of Theorem 3.1.1, Theorem 3.1.5 and Theorem 3.1.6.

3.2. Groups of Linear Transformations

First, we characterize the group G(V') when it belongs to the class GSSF'.

Theorem 3.2.1. G(V) € GSSF if and only if dimV < 1.

Proof. Assume that dimV > 2. Let B be a basis of V. Fix u,w € B with
u # w. Then (u,w)y = ly and (u,w)p # ly. Since u,u + w are linearly
independent, there exists a basis B’ of V containing v and u + w. We now have
(u,u 4+ w)% = 1y and (u, u + w)p # ly. Since u # w, (u,w)p # (u,u + w)p.
By Proposition 1.3, G(V) ¢ GSSF.

Conversely, assume that dimV < 1. Then G(V) = {1y} or G(V) =
(R\{0},-). Thus G(V) € GSSF. 0

Next, recall the two subgroups GAI(V') and Gg(V) where B is a basis of

V' as follows.

GAI(V) ={a € G(V) | a is almost identical},

that is,

GAI(V) = {aeG(V)|dim(V/F(«)) is finite}
where F(a) = {v eV | va = v},

and Gp(V) is the subgroup of G(V') generated by the subset

{(v1,v2, ..., vn) B | n € IN, v, 09, ..., v, are distinct in B}
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of G(V).

Theorem 3.2.2. GAI(V) € GSSF if and only if dimV < 1.

Proof. Assume that dimV > 2. Let B be a basis of V. Fix u,w € B
with v # w. Then F((u,w)p) = < B\{u,w} >, and so dim(V/F((u,w)p))
= dim(V/ < B\{u,w}>) = 2. Since u,u + w are linearly independent, there is
a basis B’ of V such that w,u 4+ w € B’. Thus

F((uyu + w)p) = <B\{u,u +w}>,

and so dim(V/F((u,u+w)pg)) = 2. Hence (u,w)p, (u,u+w)p € GAI(V), and

(u, w)B 2 (U, U+ ’LU)B/, (u7 w)QB =1y,
(U,U — w>231 i (U,’w)B 7é Ly and

(u,u+w)p # ly.

By Proposition 1.3; GAI(V) ¢ GSSF.
Conversely, if dimV" <'1, then GAI(V') = G(V') which belongs to GSSF
by Theorem 3.2.1. O

Finally, we show that for a fixed basis B of V', the group Gg(V') belongs
to the class GSSF' if and only if | B| < 2.

Theorem 3.2.3. For a fized basis B of V, Gg(V) € GSSF if and only if
|B| <2.



Proof. Assume that | B|> 2. Let u,v,w € B be distinct. Then

By Proposition 1.3, G'5(V

Conversely, a

AOUUINBUINT
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