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CHAPTER 1

Formulation of Flows with Gravity

1.1 Introduction

Efforts to analyze the hydrodynamical characteristic of free-surface flow with
surface disturbance have been divided primarily between theoretical and experi-
mental considerations. There are various types of surface-disturbance occurred in
nature whereas some are often due to man-made structures. Most of the theoret-
ical studies lie mainly in the two-dimensional framework and are based on global
analysis. Results from the laboratory experiments provide, on the other hand,
small scale analysis for both two- and three-dimensional problems.

We devote this research to the investigation of steady two-dimensional po-
tential flow of an inviscid and incompressible fluid due to pressure distribution.
This two-dimensional model allows us to utilize various mathematical tools for
solving the problem. For example, the asymptotic analysis particularly perturba-
tion technique has been successfully employed to solve linear and nonlinear water
wave problems. This simplification will provide not only qualitative behaviors but
also some insights to the real flow situations. Though the assumption of steadi-
ness may seem unreal but we can always choose the appropriate moving frame of
reference in such a way that the flow becomes steady.

Here, we seek the weakly nonlinear solutions of free-surface flow past an applied
pressure distribution on the free-surface. The fluid domain is of finite depth

with no vertical boundaries in the far fields. Such flows can be produced by



blowing air on the surface of water flowing in the channel with parallel side walls.
Far upstream, the flow is assumed to approach a uniform stream with constant
velocity U and uniform depth H. The flow is characterized by a nondimensional
parameter, the Froude number,

P Y

Nk

In general, this flow configuration can be served as a model of moving vehicles
such as hovercraft in a long canal. It may also be viewed as an inverse method
of solution to the classical ship-wave problem. When the pressure distribution is
applied, the free surface will deform in the neighborhood (probably with down-
stream influence) of the applied pressure distribution. This resembles the problem
of flow past a rigid obstacle.

The problem of free surface pressure distributions has been studied quite ex-
tensively in the case of infinite depth for over 150 years. The classical linearized
version of the two dimensional problem was solved long ago and was discussed in
detail by Lamb (1932). It was shown that for some pressure distributions the mo-
tion is drag-free. That is, the free surface is symmetric with respect to the applied
pressure distribution without a train of sinusoidal waves in the far field. Schwartz
(1981) reformulated the problem into a boundary integral equation technique
based on Cauchy’s integral formula and solved numerically. Fluid was assumed to
be of infinite depth. He showed that nonlinear theory gave drag-free solution at
certain values of the span length of pressure distribution (L = % = 4r, 8, ...),
i.e. when the ship length was an integer multiple of a free wave length while
linearized theory did not. He also found nonlinear wave train in the form of
narrow crests and broad troughs which were essentially periodic and propagated

downstream.

In the case of finite depth, Von-Kerczek and Salvesen (1977) placed a network



of mesh points over the entire flow domain and performed finite difference calcu-
lations (successive overrelaxation) to obtain nonlinear solutions. Their numerical
calculations were restricted to certain values of the ratio of pressure-distribution-
length to the depth of the flow domain. The nonlinear wave train propagates
downstream while the flow satisfies radiation condition on the upstream free sur-
face. Drag-free (symmetric) solutions were found at the critical Froude number F
(0 < F] < 1). It should be noted here that they defined the Froude number based
on the span length of pressure distribution which is different from ours. Solutions
at two critical values of Froude number, 0 < F, < F/, < 1, were presented for
various values of magnitude of pressure distribution. When F' > F,, the wave
resistance increased to their maximum value and then decreased as F© — 1. When
F), < F < F/;, the wave resistance increased to their peak and decreased as F' ap-
proach F!,. In addition, they found a hump on the free surface as F' — F; while
two humps were detected as F' — F,. They also found that, the effect of the non-
linearities can clearly be seen on the phase shift in the solutions. Asavanant, et,
al.(2001) reconsidered the problem by only putting mesh points on the free surface
and using the boundary integral technique to find fully nonlinear solutions. The
condition of incompressibility and irrotationality of the fluid motion implied the
existence of the potential function and stream function. The fluid domain in the
physical plane was transformed onto the complex plane. Bernoulli equation was
applied on the free surface while they assumed no flow across the bottom bound-
ary. They satisfied the bottom condition by using Schwartz reflection principle.
Their results showed that, for both supercritical and subcritical flows, solutions
were characterized by three parameters : (i) Froude number (ii) magnitude of the
applied pressure distribution and (iii) span length of the applied pressure distribu-

tion. For supercritical flows (£ > 1), they found up to two solution corresponding



to the same value of F' for positive pressures (one was a perturbation of uniform
stream and the other solution was perturbation of the solitary wave solution).
They also found a unique solution for negative pressures. For subcritical flows
they found a train of nonlinear waves behind the applied pressure distribution.
The wave resistance decreased as F' decreased. The wave resistance ultimately
became zero when the critical value F,; of I’ was reached. For ' < F,;, the wave
resistance increased to another local maximum value and then decreased mono-
tonically to zero again at F' = F.,5. In addition, the free surface, upon which the
pressure distribution was applied, deformed into two humps. This cycle of behav-
ior repeatedly occurred as F' reached another critical value. They conjecture that
there were finitely many critical Froude numbers 0 < ... < F,o < F,; < 1 such
that drag-free solution exist. Moreover, there were n humps on the free surface
for solution with F,, < I' < F,,_1.

Inverse problem to flows due to applied pressure distribution is the problem of
flows over a semi-circular obstruction considered by Forbes and Schwartz (1982).
They constructed an integral equation involving flows variables at the free surface
so that the bottom boundary condition is automatically satisfied. The exact
nonlinear equations were solved numerically by a process of Newtonian iterations.
In the subcritical case, they showed that there exist flows with essentially no waves
on the upstream side and the train of nonlinear Stokes waves on the downstream
side. When the circle radius increased or F' T 1, the wave amplitude increased.
In the supercritical case, they found symmetric solutions with respect to the axis
of symmetry of the semicircle. For a large value of F', the nonlinear free surface
profile is ultimately limited by the formation of a sharp crest with sides enclosing
an angle 120°.

Asavanant and Vanden-Broeck (1994) studied the steady two-dimensional flow



past a parabolic obstacle lying on the free surface in water of finite depth. The
object was described by y = %e(:v — 20)? +yo. Here (g, yo) represented the vertex
of the object and ¢ was the object geometry (object was concave if € > 0, convex
if ¢ < 0 and flat if e = 0). The problem was solved numerically by using boundary
integral equation technique based on the Cauchy’s integral formula. An integral
equation was solved together with the dynamic free-surface condition. The bot-
tom boundary condition was satisfied by employing the reflection principle. For
supercritical flow past the concave object (' > 1, € > 0), they found two different
types of solutions. The first one is the vertex of the obstacle was below the level of
the free surface at infinity. These solution modelled a ship moving at a constant
velocity in the channel. These solutions exist for all value of F' (1 < F? < 00).
The second one was the vertex of the obstacle was above the level of the free
surface at infinity. This solution modelled a surfboard riding on the wave. For
supercritical flows past a convex object (F > 1, € < 0), they found one type of
solution. Their numerical results showed that there were nonuniqueness of solu-
tions corresponding to the same value of . They concluded that one solution was
a perturbation of uniform stream while the other solution was a perturbation of
solitary wave solution. Their suberitical solutions showed that a train of (linear)
sine waves was generated for large value of F. These waves developed narrow
crests and broad troughs as F' decreased. Finally, they conjectured that these
waves would approach their limiting configurations characterized by a 120° angle
corner at the crest.

From above, we can realize that problems in free-surface hydrodynamics under
the influence of gravity are too usually difficult to solve exactly. Appropriate
techniques of mathematical approximations are generally sought. Here, we use

asymptotic approximations in the primitive variables to derive the forced KdV



equation. Existence theorem for different types of solution to this equation will
be given and proved. Finally, numerical solutions are provided as the confirmation

to these findings.

1.2 Formulation

We consider the steady two-dimensional, irrotational flow of an inviscid incom-
pressible fluid in the domain bounded below by a rigid bottom and above by a
free surface as shown in Figure 1.1. We choose Cartesian coordinates with the X-
axis along the free surface at ¥ = —oo and the Y-axis directed vertically upwards
through the symmetry line of the applied pressure distribution. Gravity is acting
in the negative Y-direction. The velocity components in the X- and Y-direction
are denoted by v and v respectively. As x — —o0, the flow is assumed to approach
a uniform stream with constant velocity U* and constant depth H. The governing

equations and boundary conditions are given by the following Euler equations :

Uy + Ve =0

U lps + VU = Lol
p
% % ¥ % _p**
UV + V. = py —9
at the bottom y* = —H; v* =0
at the surface y* =n* une —vT =0

*

p* = b* (™) with compact support

where «* and v* are horizontal and vertical velocities, p* is pressure, g is the
gravitational acceleration, p is the density of the fluid and all the subscripts denote
derivative with respect to corresponding variable. We define the following non-

dimensional variables:



Figure 1.1: Sketch
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_ 8_17]* b p* (a: y) _ (g%x* y_*)
77 H ) ng ) Y H ,H Y
(. 0) ( u* 5511*) () b*(z*)e 2
U,U — s s r) = —————

VoH gH pgH

€= (%)2 < 1 where H and L are horizontal and vertical length scales.
In terms of these non-dimensional quantities, the above equations become
Uy + vy =0
Uly + VUy = —Pg

€(uvy, + vuy) = —py — 1

at y =—1; AT
at y=¢n ; eun, — v =20
p = &b(z)

where b(x) has a compact support.

In the following, we use a unified asymptotic method to derive the equations

for n(x).
(u,v) = (ug, vo) + (u1,v1) + (ug, v3) + O(&?) (1.1)

p=po+ep +e’py +O(?) (1.2)

and then expand pg, p1, P2, ... about y =0 with 7.
2 2

n n
p= (po + Epoyn + 82p0yy§ + ) + €(p1 + epryn -+ erlny + )

2
+&° (pz + epoyn + 621)23,3% - ) + O(£%) (1.3)

U*
vgH

Substituting (1.1),(1.2) and(1.3) in the above equations to get the zeroth, first

=F.

At z = —o0, we consider U = 1 + e\ + O(e?), where U =

and second approximations as follows.



zeroth approximation

Ugg + Voy = 0
UoUpz + VolUoy = —Poz
—poy —1 =0
aty=—-1; vp=0
aty=0 ; vg=0and py = 0.
These imply that ug(x,y) =1 , wvo(z,y) =0 and po(x,y) = —v.

First approximation

Uy + U1y = 0
UpUiz + U1z + Volly + Viug, = —Plx
UpUpg + VoVoy = —P1y
aty=—-1; v =0
aty=mn ; poyn+p =0.
These imply that ui(x,y) = —n+ A , wn(z,y) =n.(y+ 1) and pi(z,y) = 7.

Second approximation

Upp + Voy = 0
UgUpz + U1UI, + UgUay + VolUay 1 V1Uly + V2loy = —P2z
UgU1z + U1Voy T+ VoU1y + V1Voy = —P2y

aty=—-13 v, =0
7]2
aby =00 Poyy 5 7 Piyl +P2 = b(x).

These imply that

2

Y

UZ:c(:Ea y) = nxwx<§ + y) - bx(x) — M + AT
3 2

U2(xa y) = _nwxm<y_ + v

Lo B 2) o (o) e~ )y + 1)

2 3
2
pa(z,y) = —nm(% + y) + b(z).
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For the kinematic boundary condition at y = en , cun, —v = 0. We expand u, v

about y = 0 with 7 as follows.
n? n?
8[(%0 + ugyn + 52u0yy§ + ) + 5<u1 + euyn + 52u1yy§ + ) + } Na
n? n*
— [(vo + evgyn + 52voyy§ + ) + s(vl + evyyn + 52v1yy§ + )
! !
+&? (vg + vgyn + 62U2yy% + > - ] =0.

Zeroth approximation

at y =0, vy =0.

First approximation

at y =1, U — Voyn — v = 0.
That is 1, —v; = 0.

Second approximation

2
at y =0, (uoyn+ ug)n, — <U0yy% + Uiy + 02) =0.

That is

1

which is called a forced stationary Korteweg-de Vries equation.
We consider now that the distribution of pressure be described by function

with compact support defined by

0 for |z| >1
b(x) =

( ! ) for |o| < 1
€ex or |x
P\T1
where € is a constant.

In this research, we will state and prove theorems to guarantee the existence of
solutions of (1.4). We consider two separate cases according to the characteristic
of the solution. The first case is when A > 0 (supercritical flow) and the other

is A < 0 (subcritical flow). Numerical solutions for both cases are obtained by

the shooting method and the Runge-Kutta method, respectively. In the case of
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supercritical flow, our numerical results show that the flow is always symmetric
(drag free) with respect to the axis of symmetry of the pressure distribution.
There are two different families of solutions when € > 0. One family is a perturbed
solution of uniform stream whereas the other is a perturbed solution of solitary
wave. When e < 0, there exists only one family of solutions for all values of A\ up
to zero. We expect that these solution can be extended to the subcritical regime
by allowing waves downstream. The case of subcritical flow, a train of nonlinear
waves is generated behind the applied pressure distribution while the flow satisfies
the radiation condition on the upstream. As A decreases, there are critical values
of A at which the flows become drag free. Our finding is in contrast with the
problem of flows past a surface-piercing object. Asavanant and Vanden-Broeck
(1994) showed that subcritical flows past a parabolic-shaped object never possess
drag-free solutions. On the contrary, these solutions always approach Stokes’

limiting configuration.



CHAPTER 11

Supercritical Flow

2.1 Existence Theorem of Symmetric Solutions

d i
We look for a solution n(z) of (1.4) such that | l|im (d—)]n(x) =0,j=0,1,2,
I|—00 T
where A > 0.

Integrating (1.4) from —o0 to x, we find

9
OAY — Ny = 5772 + 3b(x). (2.1)

It can easily be shown that the above equation is equivalent to an integral

equation
n(a) =0 K, Q) (Fr(E) + 35(6) ) de.
67\/6—)“937&
Here K (z,§) = ———=—— is the Green’s function which is a solution of
20/6)

6)\K(l‘,§) - K:rx(xvg) = 6(:5 - 5)7 —00< xag < 0.

We now define
roy= | Ko (G + 300)) e

[Jull = |ullss = sup [u(z)]
zeR
H = {u|u € C(R); |[eV®ly| < ool
Clearly, H is a metric space and is complete. We give another definition

By ={ulue H,|lul| <M, 0< M < co}.
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9 3|b
Lemma 2.1 ||T'(n )||<Mfor77€BMf M+ —— o]

< 6A.
2 M

Proof ||T(n)]| = sup / K( :1:5 n*(€) + 3b(¢ >d§‘
ace]R
1
% 4+ 3b|| su / e‘mlx_ﬂd
< <5M2 +3]8])
- 6
<M

as required.
U
Next we want to prove that T'(n) decays rapidly so that we may consider the

behavior of exp(V6A|z|)|[T(n)(x)| when |z| is large.

Lemma 2.2 supexp(vV6A|z])|T(n)(x)| < oo for n € By,.

z€R
Proof It suffices to prove the case when = > 0.

eVNlel () |—‘/ eXp\/_x—\/_]x—f|)< *(€) + 3b(¢) ) de | /2v/6
\/ (VB (S7P(E) 4 30(e) ) de
[ expNﬁ(zx ~O)(577€) + 3(0) ) de| /263
< G e/ — 2/BNE e esp VBN
+exp<r £)3b(8) pde
[ {5 epVoRr — &) — 2N () exp( VA
4 3b(€) exp(VBN2E & )}dg‘/wﬁ
sup(n(z) exp(y63la))?| [ ;exp<—@s\>ds
+/:Oexp(\/6_(2x—3§))d§”
+| [ exntvergmeas
+ / "3b(€) exp(VBA(20 — g))dg] / 2v/6X

<

461
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< (1= 22D y0) e VXl
+ / (b(x))Nexp(Mng 276
< 0,

where N = max 13b(£)]. Since n € H,
€

sup exp(V6z)|T(n)(z)| < oo.

x>0

Similarly, one can easily show that

sup exp(—V6A2)|T (1) (x)] < co.

=0

This completes the proof.
Now we shall states the existence theorem for symmetric solutions of (2.1).

S
Theorem 2.1 6\ — 1y = 5772 + 3b(x), — oo < x < oo has a solution

which decays exponentially at |z| = oo if 6 is sufficiently large.

Proof. ||T(n) — T(n) |<sup‘ / K (2, 8)(17 (&) —n3(€))d¢

< 'sup 5/ K(z,8)|m + na||m — na|d§

zeR

Hence we can see from lemma 2.1 and 2.2 that 71" is a contraction mapping if
3[bll
M’

solution in-Bj;. Now

6\ > max { 2M A=y = 9M} and the integral equation .= T'(n) has the unique

= [ Kaale ) (55 +30) e

= / OO6AK<x,£>(§n2<§> +30(6)) e — SrP(x) — 3b(x)

= 6N() — () — 3b(a)
where 6AK (x,§) — Kup(x,€) = §(x — &). Hence n € C*(R) and it follows from
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right hand side of the above equation that n € C3(R).

2.2 Numerical Procedure

To obtain weakly nonlinear solutions of (2.1) in the previous section, it is nec-
essary to resort to a numerical method. We solve this boundary value problem by
the method of shooting. Here is the general idea of this method.

Suppose that we have a similar problem, which we are unable to determine

the general solution as in (2.1), for example

o' (t) = f (£ 2(t),2'() ; x(a) =a,z(b)=7p (2.2)

the approach is to view (2.2) as an initial value problem. A step-by-step numerical
solution of problem (2.2) then by the method of Runge-Kutta 4% order (RK4)
requires two initial conditions. But in problem (2.2), only one condition is pre-
sented at ¢ = a. One way to proceed in solving equation (2.2) is as follows: guess
2'(a) and carry out the calculations with the hope that the computed solution
agrees with z(b) = (. If it is missed (which is quite likely), we can go back and
change our guess for z/(a). Repeating this procedure until we hit the target (.
This briefly describes the shooting procedure.

In this research, we solve the ‘equation (2.1) by discretizing the free surface
in the physical plane; x € [=1,1]. The value of n(z) are computed at each mesh
points. As a summary, a function n(z) is computed as follows :

(i) set the initial condition n(—1),

(ii) guess the first initial slope, n'(—1),

(iii) use system of RK4 to get the first value of n(1) and find the error at the
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boundary condition,

(iv) guess the second initial slope at & = —1 (related with the first initial
guess),

(v) use system of RK4 again to obtain the value of 7(1), then check the error
at the boundary and go back to step (ii), adjust our guess until the solution
converges.

To compute the numerical solution of this problem, we divide it into two
cases. The first is for the positive pressure (e > 0), there are two different types
of solution. So, we have to set two different boundary conditions which will be
mentioned later. The second is for the negative pressure (¢ < 0). The numerical

results for every cases will be shown and discussed in the next section.

2.3 Numerical Results and Discussions

We use the numerical scheme described in the previous section to compute
symmetric solutions in supercritical flow regime for various values of A > 0 and e.
It is found that supercritical solutions are characterized by exponentially decaying
behavior at infinity. This means that solutions in this flow regime can never
possess downstream waveforms.

It can be seen from equation (1.4) that if b(x) = 0 (i.e. pressure on the free
surface equals to. atmospheric pressure), then uniform flow is always a solution
for all values of A > 0. Besides uniform flow solution, one can also find another
solution mnamely solitary wave solution. The exact expression of solitary wave

solution can be derived from the weakly nonlinear analysis as
2 3A . .
n(x) = 2Asech ( ?x>, — 00 < o < 00, (as shown in Figure 2.1 for A = 1).

It bifurcates from the uniform flow at the critical Froude number F2 =1 (A = 0).
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It is anticipated that solutions of free-surface flow due to pressure distribution
(e # 0) is the perturbation of a uniform stream solution since uniform flow is no
longer a solution for any values of A when ¢ # 0. Also we expect to obtain a
perturbed bifurcation of solitary wave solution. To discuss the numerical calcu-
lations of such supercritical flow solutions, we consider 2 cases : € > 0 (positive
pressure) and € < 0 (negative pressure). The solutions are characterized by a
dimensionless distance W measured from the undisturbed level of the free surface
to the maximum (or minimum) elevation on the free surface profile upon which
the pressure distribution is applied.

(i) Positive pressure

When e > 0, there are two types of solution that characterized by W > 0.
One can be viewed as perturbation of uniform stream (Type I, see Figure 2.2).
The other is the perturbation of solitary wave solution (Type II, see Figure 2.3).
To obtain the profiles of Type I, we use the boundary condition with phase shift

To, that is

n(—1) = 2>\8ech2(\/§(—1 — 9[;0)> 0 2)\sech2<\/§(1 + a:o)>.

Let n'(—17) be the slope of 1 that we determine at the boundary x = —1 and
n'(—17) be the numerical slope of 7 that we calculate from the shooting method.

We vary xo and use. the shooting method until the convergence is achieved and
7' (—17)—n'(=1%)[ <107

While; we use the boundary condition without a phase shift, i.e.

n(—1) = 2/\sech2( - %) , n(l) = 2/\sech2< %),

to calculate the free surface profiles of Type II solution. Figure 2.4 shows a

comparison of flow profiles at the same value of \. The numerical values of A
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versus W for various values of € are presented in Figure 2.5. As we can see, there
are two branches of solution for each € and A. The lower branch (closer to the A-
axis) is the Type I solution while the upper branch (farther away from the \-axis)
is the Type II solution.

Consider Type I solution. Figure 2.6 shows that, for A fixed, the magnitude of
pressure induces higher amplitude W as € increases. On the other hand, Figure 2.7
shows that W decreases as € increases for the Type II solution. The differences
between the shape of free-surface profiles between Type I and II solutions are
depicted in Figure 2.8 and 2.9, respectively. As we can see, for the Type I solution,
W decreases for increasing value of A when we fix e. Unlike Type I solution, we
can notice that, W increases for increasing value of A when we fix € in the case of
Type II solution. The relationships between A and W for the Type I and Type II
solutions are presented in Figure 2.10 and 2.11, respectively.

(ii) Negative pressure

When e < 0, there exists a unique solution corresponding to each value of A
when 0 < X\ < oo. This solution can be viewed as perturbation of a uniform flow
(i.e. they approach the uniform stream as e — 0 for a fixed value of A). Typical
free-surface profiles for ¢ < 0 are shown in Figure 2.12 and 2.13. Here, the free
surface profiles are calculated by using the boundary condition with a phase shift
9. We first set, aninitial slope in the opposite sign of the case of positive pressure,

that is

n(—=1)= —2)\sech2<\/§(—1 - a:o)) ,on(l)y= —2)\sech2<\/§(1 + x0)>,

then varying xy until the loop of shooting converges and the slope 1'(—17) and
n'(—1") satisfy the above criteria. Numerical values of A versus W for various
value of € are presented in Figure 2.14. We expect that these branches of solutions

can be extended to the subcritical regime (A < 0) by allowing waves downstream.



Solutions with waves will be considered in the next chapter.

AONUUINYUINNS )
ANRINTUNAINENRE

19



20

22
2.0 B
1.8 N
1.6 B
1.4 B
1.2 B
1.0 N
0.8 B
0.6 B
04l

02 |

0.0

| TR WSS : A B 1,
off-1 5==16——0: 05 10 15 20 25 30
s

1 and e = 0.

i
|

AONUUINYUINNS )
RN ITNINENAY



0.008 —
0.007 —
0.006 -
0.005 —
0.004 —
0.003 -
0.002 —

0.001 -

0.000

L AL as | | | |
3.0 25 -2 35100 2 1.0 15 20 25 30

Figure 2.2: Typi or A =2 and € = 0.1.

_

I

AONUUINYUINNS )
RN ITNINENAY

21



'é A=1.5and e =0.5.
J

| E’i
AONUUINYUINNS )
RN ITNINENAY

22



23

-3.0 -25 -20 -15 -10 0 00 05 10 15 20 25 3.0

ol S\

0.8 -

o7l
0.6 -
0.5 -
0l
0.3 -
02l

0.1

0.0 =

Figure 2.4: Tyl -rd ype II for A = 0.5 and

e=0.1. Y |

T ]

AONUUINYUINNS )
RN ITNINENAY



1.0
=
0.5
0.0 a P 0 2 2
0 ¥ 2

Figure 2.5: Relationship between W and A for various values of € > 0.

24



25

0.016 -
0.014 |-
0.012
0.010
0.008
0.006
0.004

0.002

0.000 L—— -
30 25 20 -15 -10 05 00 05 10 15 20 25 30

0.07

0.06 -

0.05

0.04 -

0.03 -

0.02 -

0.01 -

0.00 L-L— +
-30 -25 -20 -15 -10 05 00 05 10 15 20 25 3.0

(b)

035

0.30

0.25 -

0.15

0.10

0.05 -

0.00 L P B
-30 -25 -20 -15

Figure 2.6: Typical free-surface profiles of Type I (a) for A = 1, ¢ = 0.1, (b) for

A=1,€e=0.5and (c) for A\ =1, e =2.



26

2.0 —
18 —
16 [
14 —
12 [
1.0 —
0.8 —
0.6 —
0al

0.2

0.0 L
30 -256 20 15 -10 05 00 05 10 15 20 25 30

(a)

18 |-
16

14

0.8 -
0.6 -

0.4

830 25 20 -15 10 05 00 05 10 15 20 25 30

1.57

16 |

12
10
0.8

0.6 -

02 |

0.0 L
30 25 20 -15 10 05 00 05 10 15 20 25 30

()

Figure 2.7: Typical free-surface profiles of Type II (a) for A =1, ¢ = 0.1, (b) for

A=1,e=1,and (c) for A\ =1, e =2.



27

0.008 -
0.007 -
0.006 -
0.005 -
0.004
0.003 -
0.002 -

0.001

0.000 LL——1L
30 -25 20 -15 -10 05 00 05 10 15 20 25 30

(a)

0.006 —

0.005

0.004 -

0.003

0.002

0.001

0.000 | I

0.004

0.003

0.002

0.001

0.000 | I

Figure 2.8: Typical free-surface profiles of Type I (a) for A = 2, ¢ = 0.1, (b) for

A=3,e=0.1,and (c) for A\ =4, e =0.1.



28

25 30

25 3.0

25 30

Figure 2.9: Typical free-surface profiles of Type II (a) for A = 2, ¢ = 2, (b) for

A=3,e=2 and (c) for A =4, e = 2.



Figure 2.10:

of e > 0.

10

Figure 2.11:

of e > 0.

29

.34
.32
.30
.28
.26
.24
.22
.20
.18
.16
.14
.12
.10
.08
.06
.04
.02
.00 :

i /

O ©O © O O ©O O O ©O O O © O O © O O o

o
-
N
w
IS
wu

Relationship between W and A of Type I solutions for various values

Relationship between W and A of Type II solutions for various values



0.000 |-

-0.002 -

-0.004 -

-0.006 -

-0.008 -

-0.010 [~

-0.012 -

0014 L 0w e 1)
-30 -25 -20 -15 -10 -05 00 05 10 15 20 25 3.0

()

0.000
-0.005 -
-0.010 -
-0.015 |-
-0.020 -
-0.025 -
-0.030 -

-0.035 -

-30 -25 -20 -15 -10 -05 00 05 10 15 20 25 30

(b)

0.00 |-

30 -25 20 -15 -10 05 00 05 10 15 20 25 30

Figure 2.12: Typical free-surface profiles (a) for A = 1.25, €

A =125 €= -0.3, and (c) for A = 1.25, ¢ = —0.5.

30



31

0.000
-0.002
-0.004
-0.006
-0.008
-0.010
-0.012

-0.014

-0.016 (IR ETE 5 % (R T WIEE N AT A S T RS T S

0.000

-0.002

-0.004

-0.006

-0.008

-0.010

-30 -25 -20 -15 -10 -05 00 05 10 15 20 25 30

0.000
-0.001 -

-0.002

-0.003 —
-0.004 —
-0.005 —
-0.006 —
-0.007 —

-0.008 -

Figure 2.13: Typical free-surface profiles (a) for A =1, e = —0.1, (b) for A = 1.5,

e =—0.1, and (c) for A =2, e = —0.1.



oe=—0.1

! |
Figure 2.14: Relationship between W and A for various values of € < 0.

AONUUINYUINNS )
RN ITNINENAY

32



CHAPTER I11

Subcritical Flow

3.1 Existence Theorem of Unsymmetric Solutions

Consider

9
Y 5772 — A ==3b(x). (3.1)

For subcritical A < 0, say \g = —\ where \g > 0,
(3.1) becomes

9

We look for a wave solution to equation (3.2), for A < 0, which dies out at the
far upstream and oscillates without changing its amplitude at the far downstream.
That is to say, n must satisfy the followings:

di
(i) dn' =0,i=0,1,2 for v < z_ = inf(supp b).

xl
2m
i x + ): x) for x >z, = sup(supp b).
() (e + o= )= nta) + = sup(supp b

Without loss of generality we assume that supp(b) "R~ = ¢.

It can easily be shown that (3.2)is equivalent to an integral equation

0 <0

1
V6o

n(z) =

/ “sin /6h(z — €) o) +30e)]de 12> 0
0

We now define n = S(n),
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B = {u|u € C(R), u(x)=0 for x <0 and u<x+ \/267TT0> = u(x)

27

and /Hﬁuz(f){sin,cos}(\/(i)\of)df =0 for x> :L‘+}

[ull = sup |u(z)].

z€eR

Clearly, B is a metric space and is complete. We give another definition
By ={ulue€ B |jul]l <N, 0< N <o}

which is a closed subset of B.

oA
sin /6o (z — €) gn2(§)+3b }d&’

2 b
Lemma 3.1 ||S(n)|| < N forn e BN if 9N< - ) + 3” H Ty < /6.
0

Proof ||S(n)|| = sup]
x€eR

1
sup

\/m:reR
++—7—=
+/z L 6)\0(:r—§)<2 () e
+/:+J2ﬂ_sin 6)\0(:U—§)(9172(§)>d§‘
6)\ sulg }/ sin v/6Ag(x — &) [— &)+ 3b(¢ }dé“‘
(]xE
I 6>\0(x—§)(§n )dg‘

x|
/ sin /B~ ©) [37(6) + 30(6) | de

+

T4

:c++r in /B (2 —E) (gnz(@)dg‘} for some n € N

Tt
sup/ [sin /6 (x — &)|d¢

{H2" 30 sup |

x++T7rO
2 sup/ L |'sin \/6)\0($—§)|d§}
T4

+

< —
= V06X

+ Hﬁ”

z€eR

IN

\/L_{ [9N2 + 3||b||}95+ + zz\ﬂ;‘(%}

| /\
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21
v/ 6o

Lemma 3.2 If z > z,, then S(n) (a? + > = S(n)(x).

Proof Let z > z,.

S(n) (x+ \/267T_/\0> = _\/61_/\0/0H\/26WTO sin y/6g <x+ \/267T_/\0 —£> [2772(5) +3b(£)}d£
- \/61T0/0x+\/570 sin /6o (z — &) [27}2(5) + 3b(£)] d¢
1 z

:—mz{ﬁfo sin /6 (x — &) [gn%f)—i—%(ﬁ)}dg
+/: Y™ sin 6>\0(x—§)<g?72(£)>d§}

ROGEE ; sinr /6o — €)
(%nQ(S))d(é o = %)
S,

27

-+
Lemma 3.3 If x >z, then / \/WSQ(T])(C) sin(1/6Xo¢)d¢ = 0 and

(m)(¢) cos(+/6AeC)d¢ = 0.
Proof Letn € B, x > x, and z; be any real number. Put v/6)\g = A. Then
x+2T"
[ 2w sina@ - o
1 [o+E ¢ 9
=xe)  sinAd —C)[/O SinA(C—t)(§772(t) +3b(t))dt]2dg
o+ ¢

= %/ sin A(z) — C)/O sin A(¢ — t)(gUQ(t) + 36(t)>dt

¢

R
0

o432 ¢ ¢
- % y / / sin A(zy= ¢)sin A(C =) sinA(C =1s)
x 0 0

[S72(6) +36(0)] [5r2(5) + 30(s) s
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1 I+2Wﬂ- ¢ ¢
:Wx /0/O[SinA(ajl—C—s—t)+sinA(m1—C+s—t)
—sinA(x; —3(+s+1t) —sinA(zy +( — s —t)]
9 9
[5772(15) + 3b(t)} [5772(3) + 3b(s) |dtdsd(
(since 4sinasin Bsiny = sin(f+ v — a) + sin(y + a — §) +sin(a + 5 —7)
—sin(a + 8 +7)).
By changing order of integration, we obtain that

x+A
/ n)(C)SIHA(ll—C)dC 4/1X2(Il+]2+[3+[4+15)

S(
x x x+T
where [} = / /
0 e

P(a4,(, s, t)dCdtds,

P(x1,(,s,t) = [sinA(xy = —s—1t)+sinA(x; — (+s—1t)
—sinA(zy —3C+s+t)—sinA(x; +(—s—1)]
[gn%) +30(0)] [grf(s) +3b(s)].
Note that,
(i) by changing of variable, it can easily be shown that I; = 0, and
(ii) by symmetry of s and ¢, it can easily be shown that I = I3 and I, = I5.

Thus, by integrating I, and Iy with respect to ¢, we have

$+2T7r
/ S2(n)(€) sin Ay — Q)dG = 213(1“%17) where

I = /wn / (21,2, 5,) + R(z, s, t))( (t)+36(t)> (gn2(s)+3b(s)>dsdt,
— /IJFA / (z1,7,8,t) + R(xy, 5,1))n*(t)n*(s)dtds

(since x > x4, b(x) = 0),
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Q(x,z1,8,t) =cosA(xy —x—s—t)+cosA(zy —z+s—1)
- %cosA(wl —3x+s+t)+cosA(xy+x—s—t), and
R(xy,s,t) = —% cosA(zy —2s+t) — 2cos Az — t).
Since n € B, if we change variable and integrate Is with respect to ¢ first we
obtain that Ig = 0.

By the symmetry of the region of integration, we have

1 $+2T7T £+2T”
5/ / Q(z1,z, 5, t)n*(s)n°(t)dtds

/HA/ Qla1, z, 5, On2(s)n2(t)dtds.

Then I7 can be written as [y = 51'8 + Iy where

$+T 57?+T
Iy = / / Q(z1, z, 5,1)n°(s)n*(t)dtds, and

J:+2—" 965
19:/ ! / R(xy,8,t)n?(s)n*(t)dtds.

Here, since n € B, if we change variable we obtain that I3 vanishes.
By the definition of space B, each n € B is of a Fourier approximation for which

n? can be represented by

n*(z) = Z(E” sin 2nAz + F, cos 2nAx) 5 x > x4
n=1
equality here is in the sense of almost everywhere. Hence

/S{Cos, sin} (At)n*(t)dt

/ {cos, sin}(At) Z (E, sin 2nAt + F,, cos 2nAt)dt
n=1

= Fo(x) + Z Gsin(2n — 1)As + H, cos(2n — 1)As).

Thus Iy is, then, of the form

) IHE \ s )
Iy =—= n-(s) cos A(xy —2s) [* n*(t) cos Atdtds

+ / smA(xl—Qs)/ n*(t) sin Atdtds

N OJI

772( ) cos A$1/ n*(t) cos Atdtds

/ ) sin Axl/ n?(t) sin Atdtds

l\D
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=0
since the integrands in all the above integrals with respect to s in a period are
either products of even and odd harmonics or product of constants and harmonics.

The lemma is proved by letting z; = 0 and x; = %, respectively.

9
Theorem 3.1 6\gn + 7y = —57]2 — 3b(x) has a solution if 1/6)\, is sufficiently

large.

Proof ||S(n1) — S(n2)|| = sup ‘

z€R

s, VB~ 0R(E) — (e

&Mggﬁ/ sin /Bl — (2 (€) — r3(€))ee]

[ i Vst - i - ke

2mn
T 4 2Tn
+1 Jexg

_|_

+ sin /6o — )(r2(6) - n3(€))de |}

27
T Jon
for some n € N

9N
< = \/ —
= 2\/@;”771 772”[51110/0 |Sln 6>‘0 ZL’ |d€
+sup/ ’sm V6o (T — \df]

z€R
2T

< 5=+ el = el

Hence we can see from Lemma 3.1, 3.2 and 3.3 that S is a contraction mapping

. 9
lf RV 6)\0 Z [§N($+ + m) |]‘V”

the unique solution in By.

] and the integral equation n = S(n) has
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3.2 Numerical Procedure
We use only the system of RK4 to calculate the solution in this case. Consider
9 5
6N — Ny = 37 + 3b(x)

with the initial conditions n(—1) =0 and 7/(—1) = 0.

We solve the above initial value problem by discretizing the physical domain
into a finite number of mesh points. To calculate the function n(x) at each mesh
point, we first let w(z) = n,. Then w,(z) = 1. = z(x,n), where z(z,n) =

—gn2 + 6An — 3b(x). We use the formulas to calculate w(z) as follow:
1
w(@=+ h) =w(x)+ E(Gl + 2G5 + 2G5 + Gy),

where Gy = hz(z,n),

Gy — hz(m—l— gﬂH %G1>,
Gs = hz<x+ g,n+ %Gg) and

Gy

hZ(l’ + h>77 = G3)
Next, since w(z) = 1., to obtain the numerical solution of n(z) we use the above
formulas again by replacing all w’s by 1 and 2’s by w. Numerical results will be

shown and discussed in the next section.

3.3 Numerical Results and Discussions

Inthis section; numerical solutions in the suberitical flow regime are presented.
We found that, when A < 0, the flow is characterized by a train of nonlinear
periodic waves behind the pressure distribution while the upstream free surface
satisfies the radiation condition (see Figure 3.1 and 3.2). Figure 3.3 and 3.4 show
the behavior of the free-surface for various values of A when ¢ = 0.5,1 and 2.

As we shall see later, there are critical values of A\ at which the wave amplitude
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diminishes. This is so-call drag-free solution. That is the flow possesses no wave
resistance which may be of interest in practice.

When e = 0, uniform flow is always the solution in this case. Let us now define
the wave amplitude A as the difference between the levels of the successive crest
and trough. It can be seen that, for the same value of A\, the wave amplitude
increases as € gets bigger (i.e., larger magnitude of pressure distribution, see Fig-
ure 3.5). We observe from the relationships between wave amplitude A and the
critical values A\, of \ (Figure 3.5 ) such that the wave amplitude vanishes. Some

of these critical values for € = 0.1 are shown in Table 3.1.

{ i

1 - 4.161

2 - 13.161

3 - 26.411

4 - 43.8
Table 3.1

In addition, similar behavior can be found for the steepness S of the waves, defined
as the ratio of the height between a crest and a trough and the wave length. This
is shown in Figure 3.6.

When A >\, the wave amplitude A increases with A whereas the steepness
S increases to its maximum value and then decreases as A\ — \,». For each
€, when A lies between the two consecutive critical values A, < A < A,;_1 for
1 = 2,3, ..., the amplitude and steepness increase to their peaks and decrease as
A decreases between the values \,;_; and A,;. Similarly, the results for € < 0 are
presented in Figure 3.7-3.8. We found that the behavior of these numerical values

is qualitatively similar for € > 0 except the reverse signs of the wave amplitude
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A. Thus, it is sufficient to present results for the case € > 0.

Typical profiles of the drag-free solution as A approaches A1, w2, Ai3, and Ay
are shown in Figure 3.9. Besides the decreasing amplitude of the deformed free
surface, we observe that two humps occurs as A — \,o while only one hump is
detected when A — A,;. Since the lower bound of A should be —%, we conjecture
that there are finitely many critical \,; such that drag-free solutions exist. This
is of interest to architectural design of the moving vehicle on the free surface. In
addition, the numerical results show that as A — \,,, there are n humps on the
free surface of the drag-free solutions. It is found that this similar behavior of

subcritical solutions exists in the case € < 0.
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CHAPTER IV

Conclusions

In this work, we assume that all non-dimensional variables and parameter pos-

sess the asymptotic expansion of the form

o= o+ e+ + ...

Taylor approximation with respect to variable y is used in the kinematic boundary
condition. Keeping terms up to £, we obtain the force stationary Korteweg-de
Vries equation.

1

0 for |z| >1
where b(z) = and € is a constant.

1
eexp< 5 ) for |z| <1
m p—

1

Finally, existence theorems of the solution are proved by using the fixed point
theorem for a contraction mapping. To confirm these results, we calculate the so-
lutions using the aforementioned numerical procedures. To summarize the results,

we split the solution into two cases depending on their behaviors.

(i) Supercritical flow (A >0).

There are two different types of symmetric solutions. Solutions of the first type
are characterized by W < 0. In addition, amplitude W increases as € increases.
Solutions of the second type are characterized by W > 0. Our numerical results

show that there are nonuniqueness of solutions corresponding to same value of \.
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We conjecture that one solution is the perturbation of uniform stream while the

other solution is a perturbation of solitary wave solution.

(ii) Subcritical flow (A < 0).

Solutions in this case possess a train of nonlinear waves behind the pressure
distribution. The amplitude A of the wave decreases as A decreases. The wave
amplitude ultimately become zero when the critical value \,; of X is reached. For
A < A4, the wave amplitude increases to other local maximum value and then
decreases monotonically to zero again at A = \,». In addition, the free surface,
upon which the pressure distribution was applied, is deformed into two humps.
This cycle of behavior oceurres repeatedly as A\ reaches another critical value with
n humps on the free surface as A — A,,. Similar behavior can be found for the
steepness S of the waves.

Finally, it should be noted here that our results are obtained by using small
amplitude theory. One can further investigate in the higher order of e, which,
of course, will involve more calculations. However, our small amplitude results
seems to have qualitatively similar behavior as those of finite amplitude (Von
Kerczek and salvesen (1977), Schwartz (1981), Asavanant and Vanden-Broeck
(1994), and Asavanat, et, al. (2001)). For further study, one can include the
surface tension effect-into the problem. This may probably require the fifth order

KdV to incorporate with the extra parameter in the problem.
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