Aa Aaa 2 a
ﬁ"JJ']"IfmJﬂ’J"U’ENﬂQﬂETJ'iJN%uﬂ

YNAINURA AUNAUILAA

a

a a A I 1 = = o a a =Y
’J‘ﬂfJ'IL!Wl!‘ﬁ‘L!L‘]Juff’)u‘ﬂ‘LN"UENfﬂiﬁﬂ‘]el'IGI'IJJ1’?’(:1ﬂﬁj:@‘liﬂiiLJiLJTN/]fJ'Iﬂ']’GWIiﬂ‘H;]‘]Jm"VW]

UMIANAMANT  MAINIAAFNEAS LAZINGIMIADUNUADS
AUZINGINEAT  PNAINTBUNIINGIAY

=} =

UmMsany1 2554

A a & J a [
AVANTVDIYPWIAINTUNIINY1AY

unAndauazuilndeyaatiuifinaadnenfinusAustinisdnm 2554 MlEnsluadsiloyaunqrine (CUIR)
Huiilsdeyareslidnidnaedne Tnuindeinunesiudiaanan st
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.



BQ-ELEMENTS OF SOME SEMIGROUPS

Miss Ngarmcherd Danpattanamongkon

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Mathematics
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2011
Copyright of Chulalongkorn University



Thesis Title BQ-ELEMENTS OF SOME SEMIGROUPS
By Miss Ngarmcherd Danpattanamongkon
Field of Study Mathematics

Thesis Advisor  Professor Yupaporn Kemprasit, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Doctoral Degree

....................................... Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

....................................... Chairman

(Associate Professor Patanee Udomkavanich, Ph.D.)

....................................... Thesis Advisor
(Professor Yupaporn Kemprasit, Ph.D.)

....................................... Examiner

(Associate Professor Amorn Wasanawichit, Ph.D.)

....................................... Examiner

(Assistant Professor Sajee Pianskool, Ph.D.)

....................................... External Examiner

(Associate Professor Somporn Sutinuntopas, Ph.D.)



v
QR uiaINaa © @angniarvesininglunyia. (BQ -ELEMENTS OF

SOME SEMIGROUPS) o.#1/Snunineniiwuindn : #. as. gminsal indszans,

44 v,

51senamdn x  vesnengl S N anFndal drluleRanazniedlofaves S
Aofufialae  x fududedrdu dufe FuxS'x=S'xNxS' mnFndandunsdiialy
sunilavesmngndsnaluiangy luanudtefisldanvazmnizvesamndniarlunengl
(Z,) s lddnazmwzvesandnial lunsnjlvesmsulasvessanaznenglueenis
wlauFuduviariiadie deldnirdwsivenaui¥ninavesienglae ldil (zZ*,+),

(Z*,") ,(Z,"), fangdsnuu R melansuan naziangdsnuu R seldmsgu

MAIY.___adesaasuas. AR VL E o RTL
a a 4 A A = = a a 4 [
_Ansmsnoniiaees. AYH0%D 0. AUSNHINOVTIWUTHEN oo
AN AMATIANT .o



## 5073807623 : MAJOR MATHEMATICS

KEYWORDS : BQ-ELEMENT / THE MULTIPLICATIVE SEMIGROUP Z, /
SEMIGROUP OF TRANSFORMATIONS OF A SET / SEMIGROUP OF LIN-
EAR TRANSFORMATIONS

NGARMCHERD DANPATTANAMONGKON : BQ-ELEMENTS OF
SOME SEMIGROUPS. ADVISOR : PROF. YUPAPORN KEMPRA-
SIT, Ph.D., 44 pp.

A BQ-element of a semigroup S is an element x such that the bi-ideal
and the quasi-ideal of S generated by x coincide, i.e., {z}UzS'z = StanaSt. BQ-
elements are a generalization of regular elements in semigroups. In this research,
the BQ-elements of the semigroup (Z,,+) are characterized. We also character-
ize the B(Q-elements of some semigroups of transformations of sets and linear
transformations. In addition, the BQ-elements of the following semigroups are
determined : (Z*,+),(Z%,-), (Z,-), the additive interval semigroups and the mul-

tiplicative interval semigroups on R.

Department : ....... Mathematics and Student’s Signature ............ccccceeeeee..n.
......................................... Advisor’s Signature...........................
Field of Study: ........Mathematics

Academic Year: ............2% L .



vi

ACKNOWLEDGEMENTS

I am greatly indebted to Professor Dr. Yupaporn Kemprasit, my thesis ad-
visor, for her helpful suggestions, valuable comments, and sincere encouragement
throughout my preparation of this dissertation. I am also very thankful to my
thesis committee : Associate Professor Dr. Patanee Udomkavanich, Associate
Professor Dr. Amorn Wasanawichit, Assistant Professor Dr. Sajee Pianskool and
Associate Professor Dr. Somporn Sutinuntopas. Moreover, I am very grateful to
all the lecturers for their previous valuable lectures during my study.

I acknowledge the 3-year support of the University Development Commission
(UDC) Scholarship for my Ph.D. program in mathematics at Chulalongkorn Uni-
versity.

I would like to express my deep gratitude to my beloved mother for her kind

encouragement throughout my study.



CONTENTS

page
ABSTRACT IN THAIL ..o iv
ABSTRACT IN ENGLISH . ... v
ACKNOWLEDGEMENTS ... . e vi
CON T EN TS L i i e e e e e ettt et vii
CHAPTER

I INTRODUCTION .. e e 1
IT  PRELIMINARIES ... . 4

I1T  ADDITIVE AND MULTIPLICATIVE SEMIGROUPS OF
INTEGERS .. 15

IV ADDITIVE AND MULTIPLICATIVE INTERVAL SEMIGROUPS

V  THE MULTIPLICATIVE SEMIGROUP Z,, ........................ 28
VI SEMIGROUPS OF TRANSFORMATIONS OF SETS AND



CHAPTER 1
INTRODUCTION

The notions of bi-ideal and quasi-ideal for semigroups were introduced by Good
and Hughes [5] in 1952 and Steinfeld [17] in 1956, respectively. Bi-ideals and quasi-
ideals are generalizations of one-sided ideals and every quasi-ideal is a bi-ideal.
The notation BQ was given by Kapp [8] to denote the class of all semigroups whose
sets of bi-ideals and quasi-ideals coincide, i.e., BQ) is the class of all semigroups
whose bi-ideals are quasi-ideals. Mielke [12] called the semigroups in the class BQ
the BQ-semigroups. In 1961, Lajos [11] showed that every regular semigroup is a
BQ-semigroup.

Regularity is a crucial notion in semigroup theory. The following standard
semigroups are regular : the full transformation semigroup, the partial transfor-
mation semigroup and the 1-1 partial transformation semigroup (the symmetric
inverse semigroup) on a nonempty set, the semigroup of all linear transformations
from a vector space over a filed into itself under composition and the full n x n
matrix multiplicative semigroup over a division ring. It is well-known that every
semigroup is embedded in the full transformation semigroup on a nonempty set.

We know that for an element z in Reg(S), the set of all regular elements of a
semigroup S, the bi-ideal and the quasi-ideal generated by x coincide. However,
the converse is not true in general. To generalize a regular element, a BQ-element
is defined. By a BQ-element of a semigroup S we mean an element x in S such
that the bi-ideal and the quasi-ideal of S generated by x coincide. The set of all
BQ-clements of a semigroup S is denoted by BQ(S). Then Reg(S) C BQ(S). It
is not necessarily true that S is a BQ-semigroup if every element of S is a BQ-
element. In fact, Calais [2] showed that S is a BQ-semigroup if and only if the
bi-ideal and the quasi-ideal of S generated by any two elements coincide.

This research is organized as follows :



Chapter II contains the basic definitions, notations and quoted results which
will be used in this research. Some examples are also provided.

In Chapter III, the following additive and multiplicative semigroups of integers
are studied : (Z*,+),(Z7,-),(Z,-) and some of their subsemigroups. The BQ-
elements of these semigroups are characterized.

In Chapter IV, the BQ-elements of all the additive and multiplicative interval
semigroups on R are determined. It indicates that the regular elements and the
BQ-elements of these semigroups are the same.

Ehrlich [4] proved that the multiplicative semigroup Z,, is regular if and only
if n is square-free. Recently, Alkam and Osba [1] characterized its regular ele-
ments in terms of Euler’s phi-function. In Chapter V, the regular elements of the
multiplicative semigroup 7Z,, are characterized differently and its BQ-elements are
determined. Our characterizations show that the regular elements and the BQ-

elements are almost the same. It is shown that BQ(Z,, ) = Reg(Z,, -) if 4 t n and

BQ(Z,, ) = Reg(Z,,-)U {(g)} if 4 | n. Including in this chapter, we provide

some sufficient conditions for the semigroup (kZ,,-) to have the property that
BQ(kZy,-) = kZy,.

Chapter VI deals with the following subsemigroups of 7'(X) and Lz(V') where
T(X) is the full transformations semigroup on a nonempty set X and Lg(V) is
the semigroup under composition of all linear transformations from a vector space

V over a field F' into itself :

M(X)={aeT(X)|ais 1-1},
UE(X)={a €T(X)|aisonto and |aa | = |[ba™!| for all a,b € X},
Mp(V)={a € Lp(V) | ais 1-1}
(={ae Lp(V)|kera ={0}}),
Ep(V)={a € Lp(V) | a is onto}
(={a€Lp(V)|Va=V}).

Notice that for « € Ep(V) and v € Vioa™! = w + kera where wa = v, so

lva™!| = | ker @|. We show in this chapter that the BQ-elements of each semigroup



must be regular. It is shown that BQ(M(X)) = G(X) = BQ(UE(X)) and
BQ(Mp(V)) = Gp(V) = BQ(Er(V)) where G(X) is the symmetric group on X
(the group under composition of all bijections on X) and Gg(V') the group under

composition of all isomorphisms from V' onto itself.



CHAPTER II
PRELIMINARIES

The cardinality of a set X is denoted by | X]|.
The value of a mapping « at z in the domain of « shall be written as xa. For
convenience, we use a bracket notation to represent a mapping. For instance,

a
stands for the mapping « with dom o = {a, b}, ran o = {¢, d},

c d

ac = ¢ and ba = d,

A
stands for the mapping # with dom § = X,

a T

a if x € A,
ran f = {a}U {2’ |z € X N\ A} and 2 =

o if re X~ A.

e

By the above notation, a mapping « can be written as a =

x
T E€rano

Here, ran a denotes the range (image) of a. The notation U stands for a disjoint
union.
Let S be a semigroup and let 1 be a symbol not representing any element of

S. Extend the binary operation on S to S U {1} by
11=1 and la=a=al for every a € S.
Then S U {1} is a semigroup with identity 1. Let
S if S has an identity,

St =
SU{1} if S has no identity.



An element x of a semigroup S is called a regular element if x = xyx for some
y € S and S is called a reqular semigroup if every element of S is regular. The set

of all regular elements of a semigroup S will be denoted by Reg(S), i.e.,
Reg(S) = {z € S| = zyx for some y € S}.

Note that a subsemigroup of a regular semigroup need not be regular. However, an
ideal of a regular semigroup is a regular semigroup. If I is an ideal of a semigroup
S and x € [ is such that x = zyx for some y € S, then x = z(yxy)x and yzy € 1,

so x is regular in /. Hence
I NReg(S) = Reg(1).

A subsemigroup @) of a semigroup S is called a quasi-ideal of S if SQNQS C Q
and by a bi-ideal of S we mean a subsemigroup B of S such that BSB C B.
Clearly, every one-sided ideal of S is a quasi-ideal of S and every quasi-ideal of S
is a bi-ideal of S. Notice that if S is commutative, then the quasi-ideals and the

ideals of S are identical.

Example 2.1. Let F be a field and M, (F") the multiplicative semigroup of n x n

matrices over I’ where n > 1. Let

z 0 0
00 --- 0
Q= . |lzeF
00 - 0
\ L _ J

zy 0 -+ 0

2o 0 -+ 0
M (F)Q={ 17 " e,z e Py,

z, 0 - 0



and

QM,(F)

\

|$1,..

T, €F

/

so M,(F)QNQM,(F) = Q. Thus @ is a quasi-ideal but not a one-sided ideal of

M, (F).

Example 2.2. Let n >4, SU,(F') the multiplicative semigroup of strictly upper

triangular n X n matrices over F' and

2

\

0
0
0

0

0| |z,y € F

Vs

Then B? = {0} where 0 is the zero n X n matrix over F'. Since

SU,(F)B

and

(

0
0

BSU,(F)B = {0} C B,

|z e F

\

— BSU,L(F)

it follows that B is a bi-ideal but not a quasi-ideal of SU, (F).

Example 2.1 and Example 2.2 show that quasi-ideals generalize one-sided ideals

and bi-ideals generalize quasi-ideals, respectively.

The class of all semigroups whose sets of bi-ideals and quasi-ideals coincide

is denoted by BQ (Kapp [8]) and a semigroup in BQ is called a BQ-semigroup

(Mielke [12]).



For a nonempty subset X of S, let (X), and (X ), denote respectively the quasi-
ideal and the bi-ideal of S generated by X, i.e., (X), is the intersection of all quasi-
ideals of S containing X and (X), is the intersection of all bi-ideals of S containing
X ([18] p.10 and p.12). If X = {21, z9, ..., ,,}, we may write (z1, 22, ..., x,), and
(21, %2, ..., xn)p for ({z1, 22, ..., 2,}), and ({x1, T2, ..., xn })s, respectively. Observe
that for every nonempty subset X of S, (X), C (X), since every quasi-ideal of S is
a bi-ideal of S. It is easily seen that S is a BQ)-semigroup if and only if (X ), = (X),

for every nonempty subset X of S. The following facts are well-known.

Theorem 2.3 ([3], p.84-85). For a nonempty subset X of a semigroup S,

(X)g=S'XNXS" (=XU(SXNXSI))
and
(X)p=XUXS'X (= XUX2UXSX).

Hence if S has an identity, then (X), = SX N XS and (X), = X UXSX.
An important BQ-semigroup was introduced by Lajos [11] as follows :
Theorem 2.4 ([11]). Every reqular semigroup is a BQ-semigroup.

Theorem 2.4 is a special case of the following fact given by Kapp [9].

Theorem 2.5 ([9]). If B is a bi-ideal of a semigroup S such that B C Reg(S),
then B is a quasi-ideal of S.

In fact, we can prove the next theorem which generalizes Theorem 2.5.

Theorem 2.6. Let X be a nonempty subset of a semigroup S. If X C Reg(S5),
then (X)p = (X),.

Proof. Assume that X C Reg(.9), i.e., for every x € X,z = zxyz for some y € S.
We know that (X), C (X),. To show that (X), C (X), let z € (X),. Since
(X),=S'X NXS' 2= sy =25 for some s1,s5 € S and y,z € X. Let w € S

be such that y = ywy. Then
T = $1y = s1ywy = (s1y)wy = (2s2)wy = z(sew)y € XSX C (X)p.

This shows that (X), C (X), and hence the result follows. O



Calais [2] characterized any B@-semigroup as follows :

Theorem 2.7 ([2]). A semigroup S is a BQ-semigroup if and only if (x,y), =
(x,y)q for all z,y € S.

It follows from Theorem 2.7 that if S is a BQ-semigroup, then (z), = (), for all
x € S. It can be seen from the proof of Theorem 2.7 given in [18] p.76 that the

following theorem holds.

Theorem 2.8. A commutative semigroup S is a BQ-semigroup if and only if

(x)p = (x)4 for all x € S.

The following example shows that the converse of Theorem 2.8 need not be true

if S is noncommutative.

Example 2.9. Let S = {0,1,2,3,4} and define the operation - on S by

= W NN = O
O @] Ol S s
— @ &2EEa S
N O SDHEMR O TS
= Ol O OO | W
B W = = O

Then (S, ) is a semigroup (Selfridge [16]). Notice that (S, -) is noncommutative.
First, we show that S is not a B@Q-semigroup. Let A = {0,2,3}. Since zy = 0 for

all z,y € A, A is a subsemigroup of S. From the given table, we have

SA={0,1,2}, AS=1{0,1,3}
and
ASA ={0}.
Then A is a bi-ideal of S but SANAS = {0,1,2} N1 {0,1,3} = {0,1} € A,s0 A
is not a quasi-ideal of S. Hence S is not a BQ-semigroup.
Next, we show that (z), = (x), for all x € S. Since 0 = 0® and 4 = 43, by
Theorem 2.6, (0), = (0), and (4), = (4),. Also, we have that



(g ={1}U(S1N1S)
= {1} U({0,1} n{0,1})
={0,1},

(1), = {1,1*} U181
= {1,0} U {0,1}1
= {1,0} u{0}
= {0,1},

(2),={2} U (52n2S5)
={2} U ({0,2} n{0,1})
=10, 2},

(2)p = {2,2°} U252
—{2,0} U{0,1}2
={2,0} U {0}
= {0,2},

(3), = {3} U (53N 39)
= {3 u({0,1} n{0,3})
={0,3},

(3)s = {3,3°} U 3S3
={3,01U{0,3}3
={3,0} u {0}
= {0, 3}.

It follows that for all z € S, (x), = (x),.

As mentioned previously, BQ-semigroups have been defined. It is reasonable
to define BQ-elements of semigroups accordingly as follows : by a BQ-element of
a semigroup S we mean an element  of S such that (z), = (x),. It follows from
Theorem 2.6 that every regular element of S is a BQ-element. For convenience,

let BQ(S) be the set of all BQ-elements of S. Then Reg(S) C BQ(S). This
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inclusion can be proper. This implies that in a semigroup, BQ-elements are a
generalization of regular elements.

Example 2.10. Let S be a zero semigroup with zero 0, i.e., xy = 0 for all
x,y € S and assume that |S| > 1. It is clearly seen that Reg(S) = {0} and for all
z €S, (), ={0,z} = (2)p. It follows that BQ(S) = S 2 Reg(S).

Example 2.11. From Example 2.9, we can directly check that Reg(S) = {0,4}.
It was shown that BQ(S) = S ={0,1,2,3,4}.

Remark 2.12. By Theorem 2.7, if S € BQ, then BQ(S) = S. However, Ex-
ample 2.9 shows that the converse is not generally true. By Theorem 2.8, these

statements are equivalent if S is commutative.

Let Z and R denote respectively the set of all integers and the set of all real
numbers and let ZT = {z € Z | > 0}. For a,b € Z and a # 0, let a | b means
that b is divisible by a.

Pearson [13] introduced without proof all the multiplicative interval semi-

groups on R. There are 15 types as follows :

(vi) (a,00) where a>1,
(vii) [a,00) where a >1
(viii) (0,b)  where 0 <b <1,
(ix) (0,6]  where 0 <b <1,

(x) [0,b)  where 0 <b<1,
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(xi) [0,b]  where 0 <b <1,

(xii) (a,b) where —1<a<0<a><b<1,
(xiii) (a,b] where —1<a<0<a®<b<1,
(xiv) [a,b)  where —1<a<0<a®<b<1,
(xv) [a,b] where —1<a<0<a®><b<1.

Ritkeao [15] gave a proof in detail for these facts in his master thesis by making
use of the supremum and the infimum of subsets of R. It can be shown similarly

that all the additive interval semigroups on R have 6 types as follows :
(i) R,

(i) {0},

(iii) [a,00)  where a >0,

(iv) (a,00)  where a >0,

(v) (—o0,b] where b <0,

(vi) (—o0,b) where b <O0.

For n € Z*,7Z, denotes the set of all integers modulo n. Then Z,, contains n

elements and
Zn:{G,T,...,n—l}:{E\JEEZ}

where T is the equivalence class of x modulo n. We have that for k € Z,

kZ, = (k,n)Z, = {0, (k,n), 2(k,n), ..., ((kiln) - 1) (k,n)}

where for a,b € Z not both 0, (a,b) denotes the g.c.d. of @ and b. We know that
(a,b) = as + bt for some s,t € Z and (a,b) = 1, i.e., a and b are relatively prime
if and only if ax + by = 1 for some z,y € Z. Notice that kZ, is a subsemigroup
of (Zy,-). Ehrlich [4] gave the following result.
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Theorem 2.13 ([4]). The semigroup (Z,,-) is reqular if and only if n is square-

free.

Recall that n is square-free if there is no integer a > 1 such that a? | n. Then n is
square-free if and only if either n = 1 or n is a product of distinct primes. Notice
that if n is square-free, then (z,n) = (2*,n) for all # € Z and k € Z*. By making

use of Theorem 2.4 and Theorem 2.13, the following theorem was given in [10].

Theorem 2.14 ([10]). The semigroup (Z,,-) is a BQ-semigroup if and only if

either n = 4 or n is square-free.

Let X be a nonempty set, 1x the identity mapping on X and T'(X) the full
transformation semigroup on X (the semigroup under composition of all mappings
a: X — X). It is well-known that 7'(X) is a regular semigroup ([6], p.4). Let
M(X), E(X) and G(X) be the subsemigroups of 7'(X') defined by

M(X)={aecT(X)|ais 1-1},

E(X)={a e T(X) | «ais onto},

G(X) = the symmetric group on X
(=

{a € T(X) | @ is 1-1 and onto}).

Then M(X) = G(X)[E(X) = G(X)] if and only if X is finite. It is evident that
G(X) C Reg(M(X)) and G(X ) C Reg(E(X)). Notice that by right cancellation
and left cancellation of M (X) and E(X), respectively, we have that Reg(M (X)) C
G(X) and Reg(E(X)) € G(X). Hence Reg(M(X)) = G(X) and Reg(E(X)) =
G(X).

Let V' be a vector space over a field F' and Lp(V') the semigroup under com-
position of all linear transformations a : V. — V. It is known that Lp(V) is
a regular semigroup ([7], p.63). Define the subsemigroups Mp(V), Er(V) and
Gr (V) respectively as follows :

Mp(V) ={a € Lp(V) | a is 1-1}
(={a € Lp(V)|ker a={0}}),
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Ep(V)={a € Lp(V) | a is onto}
(={aeLp(V)|Va=V}),
Gp(V)={a € Lp(V) | a is an isomorphism}.
Then Mp(V) = Gp(V)[Ep(V) = Gp(V)] if and only if V' is finite-dimensional.

We have similarly that Reg(Mp(V)) = Gp(V) = Reg(Er(V)).

If « € Lp(V) and v € rana, then we have

va~l'=w + ker

where wa = v. But |w + kera| = |kera| for all w € V', so we have that for all

v1, Vg € Tan «, |vja |vaat|. Hence

for allaw € Ep(V) and vy, v € V, |17t = Jusa™.

This is not true for £(X) where X is infinite. Let a € X. Then | X \ {a}| = |X].
Let ¢ : X \ {a} — X be a bijection and let o € F(X) be defined by

r a

ST zeX~{a}

It follows that |[za~!| =1 if # € X \ {a} and |aa~!| = 2. The following example
shows that |aa™!| # |ba™!| for all distinct a,b € Z*. Define a € E(ZT) by

la =1,

200 = 3o = 2,

da = da = ba = 3,

Ta =8a =9a = 10a =4, ...

n n—1
ie, laa=1and ({1,2, o Zz} ~ {1,2, iy z}) a = {n}foralln € Z*~{1}.
i=1 i=1

Then [na™t| =n for all n € Z*.

Next, we define the subset UE(X) of E(X) in order that UE(X) has the same
property as Fr(V) mentioned above. Let

UE(X)={a€ E(X)||aa"'| = |ba!| for all a,b € X}.
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To show that UE(X) is a subsemigroup of F(X), let a, 8 € UE(X) and a,b € X.
Then |af7t = |b57!| and |za™!| = |ya™?!| for all z,y € X. Let ¢ : b3~ — af™!

be a bijection. Then

la(aB) | = laf~ o™

= U ya_l

y€af~1

= U (zp)a|  (since af™' = (b3~ )y and ¢ is 1-1)
xebB—1

=| |J 2™ (by [14], p. 144)
zebp1

— |3 ]
= b(ad)™!)

This proves that UFE(X) is a subsemigroup of E(X), as desired. Note that
UE(X) contains G(X) as a subgroup. Then UFE(X) = G(X) if X is finite.
We also have that G(X) C Reg(UE(X)) C Reg(E(X)) = G(X). It follows that
Reg(UE(X)) = G(X).



CHAPTER I11
ADDITIVE AND MULTIPLICATIVE
SEMIGROUPS OF INTEGERS

In this chapter, we characterize the BQ)-elements of certain additive and mul-
tiplicative semigroups of integers.
Notice that the semigroups in this chapter are commutative. Therefore if S is

an additive semigroup of integers, then for any x € S
(x)g ={z}U(z+29) and (x)p ={z,22} U (22 4+ 5).

In particular, if 0 € S, then (z), = v+ S and (z), = {z} U 2z + 5). If Sis a

multiplicative semigroup of integers, then for any x € .S,
(x)g ={z}UaS and (z)y = {x,2°} U2*8S.
In particular, if 1 € S, then (x), = 25 and (z), = {z} U 22S.

It can be easily seen that Reg(Z",+) = @. The first theorem shows that
BQ(Z",+) # @ and 1 is the only BQ-element of (Z*,+).
Note that (Z*,+) is the infinite cyclic semigroup generated by 1.

Theorem 3.1. BQ(Z*,+) = {1}.

Proof. We have that
W ={ua+z) =2+
and
s ={1,2U(2+2")=2Z"

which imply that 1 € BQ(Z*,+).

To show the reverse inclusion, let x € BQ(Z',+). Then
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{z,z+1L,z+2,24+3,...} ={z}U{z+ 1,z +2,2+3,...}
— (B} Uz +2)
= (z)q
= (x)s
={z,2z} U 2z + Z")
={x,2z} U{2x + 1,20 4+ 2,20+ 3, ...}
={z,22,2x + 1,22 + 2,2x + 3,...}.
Sincer<zr+1l<zx+2<..andz<22r<2r+1<2x+2< .., it follows that

x + 1 = 22 which implies that x = 1.

Hence the theorem is proved. O

We can see easily that Reg(Z",-) = {1}. The next theorem shows that 1 is
also the only BQ-element of the semigroup (Z*,-). Notice that 1 is the identity
of (Z*,").

Theorem 3.2. BQ(Z*,) = {1}.
Proof. Since
(1), =1Z" =72 and (1), = {1}U1?Z" =Z",

we have that 1 is a BQ-element of (Z,-).
Next, let x € BQ(Z™,-). Then

{x,22,3x,..} = xZ*
= (z)q
= (z)s
= {2} U?Z*
= {,2* 227 322, ..},
But r < 2r < 3z < ... and ¢ < 2% < 222 < .., it follows that 2z = 2% or

3
20 = 222, If 22 = 22, then 32 = 222, so x = 3 8 contradiction. Thus 2z = 222

which implies that x = 1. Hence the result is obtained. O
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We can see that for n € Z, nZ* is a subsemigroup of both semigroups (Z*, +)
and (Z*,-). But (nZ*,+) is the infinite cyclic semigroup generated by n, so
(nZ*,+) = (Z*,+). By Theorem 3.1, we have

Theorem 3.3. BQ(nZ*,+) = {n}.

It is easily seen that Reg(nZ*,-) = @ if n > 1. We shall show that BQ(nZ™",-)

is also empty if n > 1.

Theorem 3.4. BQ(nZ",-) =& for alln > 1.

Proof. Let n € Z* ~ {1} and suppose on the contrary that BQ(nZ", ) # @. Let
x € BQ(nZ",-). Then

{z,zn,2zn,3zn, ...} = {r} UznZ*
= (z)q
= ()
= {1, 2*} Ua*nZ*

= {x, 2% 2*n,22°n, ...}

Since x < an < 2xn < 3zn < ... and @ < 2% < 2°n < 22%n < ..., we have that

3
3an = 22°n, so T = o a contradiction. Hence the result follows. O
For each n € Z*, let
Ape=Angn ot 15 B+ 20

Then A, is a subsemigroup of (Z*,+) and A; = Z*. It is evident that Reg(A,, +) =
g for alln € Z*. We show in the next theorem that if n > 1, then BQ(A,,, +) = &.

Theorem 3.5. BQ(A,,+) =@ for alln > 1.

Proof. Let n € Z* ~ {1}. To show that BQ(A,,+) = &, suppose on the contrary
that BQ(A,, +) # @. Let x € BQ(A,,+). Then
{z,o+nz+n+lz+n+2,. t={z}U(x+{n,n+1,n+2 .}
={z}U(z+ A,)
= (7)q
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= (@)

={z,22} U 2z + A,)

={z,22} U2z +{n,n+1,n+2,..})

={z,2z,2x +n,2x +n+1,2x +n+2,...}.
Sincex < x4+n < x4+n+1l<z4+n+2<..andzr <2z <22z+n <22zx+n+1< ..,

it follows that x+n-+1 = 2z +n. This implies that x = 1 which is a contradiction

because n > 1. Therefore the desired result follows. O
If 2,y € Z are such that x = zyx, then
z(l—yzx)=0
which implies that © = 0,1 or —1. It is clear that —1,0,1 € Reg(Z,-). Hence
Reg(Z,-) = {—1,0,1}. We show in the next theorem that BQ(Z,-) = Reg(Z, -).
Theorem 3.6. BQ(Z,-) = {—1,0,1}.

Proof. Since Reg(Z,-) € BQ(Z, ), we have that {—1,0,1} C BQ(Z,-). For the
reverse inclusion, let x € BQ(Z,-). Then
{0, 2,22, ...} = 2Z
= (2)q
= (@)
= {2z} U2*Z

= {0, 2, £2°, £22% ..}

Case 1: —z € {0,z}. Then z = 0.

Case 2 : —x ¢ {0,z}. Then —x = 2k for some k € Z ~ {0}. Thus —1 = zk
which implies that x = 1 or —1.

Therefore the theorem is proved. O

If n € Z, then nZ is a subsemigroup of (Z,-). Notice that nZ = Z if n = 1
or —1. Let n ¢ {—1,1} and x,y € Z be such that nx = (nz)(ny)(nx). Then
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nx(1 —n?ry) = 0 which implies that nz = 0 or nzy = 1. But n # 1 and n # —1,
so n*ry = 1 cannot occur. Hence nz = 0. Therefore Reg(nZ,-) = {0}. We show

in the next theorem that BQ(nZ,-) also contains only 0.
Theorem 3.7. Ifn ¢ {—1,1}, then BQ(nZ,-) = {0}.

Proof. Tt is evident if n = 0. Assume that n # 0. Then n ¢ {—1,0,1}, so nZ does
not contain 1 and —1. Since 0 € Reg(nZ, ) and Reg(nZ,-) C BQ(nZ,-), we have
that 0 € BQ(nZ,-). In fact, it is clear that (0), = {0} = (0),. Let x € BQ(nZ,-)
and suppose that x # 0. Then

{0, 2, +nz, £2nx, ...} = {x} U z(nZ)
= (z)q
= ()
= {r,2*} U2*(nZ)
= {0, x, 2%, £nz?®, £2n2?, ...},
so nz = 0,z,2% or knaz? for some k € Z ~ {0}. Since n # 0,n # 1 and
x # 0, it follows that nz # 0 and nx # z. If nx = 2%, then —nx = —2? ¢

{0, z, 22, £na?, £2n2?, ...}, a contradiction. If nz = knz? then 1 = kz, so

x = +1 ¢ nZ which is a contradiction. Hence the result follows. ]
Next, for n € Z*, let
Z(n) ={x € Z | |x| > n}.

Then
Z(n) ={£n,£(n+1),£(n+2),...}
which is a subsemigroup of (Z, -) not containing 0. Since

7(1) = Z ~ {0},

we clearly have that Reg(Z(1),:) = {—1,1}. If n > 1, then —1,1 ¢ Z(n) and
we clearly obtain that Reg(Z(n),-) = @. We show in the next theorem that the

BQ-elements of (Z(n),-) are also regular.
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Theorem 3.8.
{-1,1} ifn=1,

I} ifn > 1.

BQ(Z(H)7 ) =

Proof. First, we consider (Z(1),-). We have that 1 is the identity of (Z(1),).
Since Reg(Z(1),-) € BQ(Z(1),-), it follows that —1,1 € BQ(Z(1),-). Let = €
BQ(Z(1),-). Then

{2, 22, £3z, ...} = 2(Z(1))
= (2)q
= (2)s
= {z} U2*(Z(1))

= {z, +2% 4227 +32%, ..}

Since 0 ¢ Z(1), —x # x. Then —x = ka? for some k € Z . {0}, so —1 = kz and
hence x € {—1,1}. Therefore BQ(Z(1),-) = {—1,1}.

Next, assume that n > 1. Then (Z(n),-) has no identity. To show that
BQ(Z(n),-) = &, suppose not. Let z € BQ(Z(n),-). Then

{z,£an, £z(n + 1), £x(n + 2), ...} = {} Ux(Z(n))
= (2)q
= (o)
= {z,2"} U2*(Z(n))

= {x,2? £2°n, £2%(n + 1), £2*(n + 2), ...},

so zn = z? or 2%k for some k € Z(n). If zn = 22 then —an = —2? ¢
{z,2?, +£2’n, £2*(n + 1), £2%(n + 2),...}, a contradiction. If zn = 2%k, then
n
n=uxk,s01l<n<|kl= ’—‘ < 1 since |z| > n, which is a contradiction.
T

Hence the theorem is proved. O



CHAPTER IV
ADDITIVE AND MULTIPLICATIVE INTERVAL
SEMIGROUPS ON R

In this chapter, we characterize the BQ)-elements of all interval semigroups on
R under addition and multiplication. It is shown that the B(Q-elements of these
semigroups are regular.

All the 15 types of the multiplicative interval semigroups on R are recalled as

follows :

(vi) (a,00) where a>1,
(vii) [a,00) where a > 1,
(viii) (0,b)  where 0 <b <1,
(ix) (0,b]  where 0 <b<1,
(x) [0,b)  where 0 <b<1,
(xi) [0,b]  where 0 <b<1,
(xii) (a,b) where —1<a<0<a®*<b<1,

(xiii) (a,b] where —1<a<0<a®<b<1,
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(xiv) [a,b)  where —1<a<0<a®<b<1,
(xv) [a,b]  where —1<a<0<a®><b<1.

All the additive interval semigroups on R are also recalled as follows :

(iii) [a,00)  where a >0,
(iv) (a,00)  where a >0,
(v) (—o0,b] where b <0,

(vi) (—o0,b) where b <0.

First, we determine the BQ-elements of all the multiplicative interval semi-
groups on R. It is clearly seen that the multiplicative interval semigroups on R
of type (i) - (v) are regular semigroups. Then the following theorem is directly

obtained.

Theorem 4.1. If I is a multiplicative interval semigroup on R of type (i) — (v),
then BQ(I) = I.

It is not difficult to see that if I is a multiplicative interval semigroup on R of
type (vi) - (xv), then
Reg(l) =In{-1,0,1}.

The following theorem shows that the BQ-elements of these semigroups are reg-

ular.

Theorem 4.2. If I is a multiplicative interval semigroup on R of type (vi)— (zv),
then
BQ(I)=1In{-1,0,1}.
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Proof. Since Reg(I) C BQ(!I), we have that I N {—1,0,1} C BQ(I).

Case 1 : [ is of type (vi) or (vii). Then I = (a,00) or I = [a, c0) for some a > 1.
To show that BQ(I) = I N {1}, it suffices to show that for z € I with z > 1, we
have (z), \ (2), # @. Let x € I be such that x > 1. Then

(a:Ua:a,oo if I = (a,o0),
1 — oy e = | D000 (a,0)
\{x}U[a:a,oo) if I = [a,o0)

and
)

z, 2%} U (2%a, oo if I = (a,00),
(2)y = {227} U 2Pl — {27} U( ) (a,00)

k{x,xQ} U [z%a, 00) if I = [a,0).

Subcase 1.1 : ¢ = 1. Then

(x)q = [z, 00) and (z)y = {z} U [2?, 00).

r+x2 5, x+a?
< 27,50

Since z <

Subcase 1.2 : ¢ > 1. Then

T—r=
$<$a§$2<T<xa,

Case 2 : [ is of type (viii)-(xi). Then I = (0,b),(0,b],[0,b) or [0,b] for some
0 < b < 1. Therefore IN{—1,0,1} = I'N{0,1}. To show that BQ(I) = IN{0,1},
it suffices to show that for z € I with 0 < x < 1, we have (z), \ (), # &. Let

x € I be such that 0 < z < 1. Then

({.75} U (0, zb) if I =(0,b),
x 0, xb if I = (0,0b),
= (o Uag = | OO (0,
{z} U0, zb) it I =10,b),
| {z} U [0, zb] if I =[0,0],
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and )
{z,2?} U (0, 2°b) if I =(0,b),
x, 22} U (0, 2% if I =(0,b)],
(z)y = {z,2*} U2 = t Jul | |
{x, 2%} U0, 2?D) if I =10,0b),
\{x,xQ} U [0, z%0] it I =10,b].
Subcase 2.1 : b= 1. Then
(0, z] if I =(0,b) or (0,b],
(@)q =
[0, ] if I =10,b) or [0, 0]
and
{z} U (0,2%  if I =(0,b) or (0,],
(x)s =
{x} U0, 27] if 7 =10,b) or [0,0].
?+ >+
Since 2° < < x, we have that € () \ ().

Subcase 2.2 : b < 1. Then

2% + 22

5 <x2§xb<;1:,

0< z%h <

x2b + 22

2

SO € (z)g (@)

Case 3 : [ is of type (xii)-(xv). Then I = (a,b), (a,b] or [a,b] for some a,b € R
with -1 <a<0<a®><b<1orl=]ab) for some a,b € R with -1 < a <
0 < a® <b <1 Toshow that BQ(I) = I N {-1,0,1}, let * € I be such that
x ¢ {—1,0,1}. Then

(

{z,2?} U (22a, 2%b) if I = (a,b),

x, 22} U (22a, 2%b if I = (a,b],

(£)y = (.27} U 22T — {z, 2%} U( ] (a,b]
{x, 2%} U [2%a, 2°D] if I = la,],

\{x, z?} U [2%a, 2°b) if I =1a,b).
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and

)
{z} U (za, zb) if I = (a,b) and z > 0,
{z} U (xb, za) if I = (a,b) and z <0,
{z} U (za, x| if I = (a,b] and x > 0,
{z} U [zb, za) if I = (a,b] and = <0,

(£)g = {2} Ul =

{z} U [za, zb] if I = [a,b] and z > 0,
{z} U [xb, za] if I = [a,b] and x < 0,
{z} U [za, zb) if I = [a,b) and z > 0,
{z} U (xb, za if I =a,b) and z < 0.
\

Subcase 3.1 : b =1 and x > 0. Then 2? < x, so

x2+:17
< x = zb.

ra <0< z?h=2%<

x2+:p

Hence € (2)g \ ().

Subcase 3.2 : b=1,2 <0 and a = —1. Then z? < —x, so

2

xh=x <0< 2?b=2%<

< —T =2xa

22—

which implies that € (z)g ~ ().

Subcase 3.3 : b= 1,2 < 0 and @ > —1. Then 2%a < 0 < 2 < —z. Since

za < 1 and = < 0, we have that 22a > z. Thus

x + x%a

5 < 2?4 <0< 2?< za.

b=z <

:E—i—a:2a

It follows that € (2)g \ (7).

Subcase 3.4 : b < 1 and z > 0. Then 0 < 2%b < 22, so

22b + 12

ra<0<a’h< <x?<zb< .
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2b 2
Thus % € (z)g ~ ().

Subcase 3.5 : b < 1 and < 0. Then 0 < 2%b < 22, so

2b 2
x<xb<0<x2b<¥<x2§xa,
2b 2
and hence % € () \ (7).
The proof is thereby complete. O]

Next, we characterize the BQ-elements of all the additive interval semigroups
on R. Since the additive interval semigroups of type (i) and type (ii) are regular,
it follows that their BQ-elements are regular. Therefore the following theorem is

obtained.

Theorem 4.3. If I is an additive interval semigroup on R of type (i) or type (ii),
then BQ(I) = I.

It is clear that if [ is an additive interval semigroup on R of type (iii)-(vi),

then
Reg()="T10};
ie.,
0 if0el,
Reg(l) = o
) it 0 & I.

The next theorem shows that the B(Q)-elements of the semigroup of these types

are regular.

Theorem 4.4. If I is an additive interval semigroup on R of type (iii) — (vi),
then
BQ(I)=1n{0}.

Proof. Since Reg(I) C BQ(I), we have that I N {0} C BQ(I).

Case 1 : [ is of type (iii) or type (iv). Then I = [a,o0) or (a, c0) for some a > 0.
To show that BQ(I) = I N {0}, it suffices to show that for z € I with z > 0, we
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have (z), \ (x), # . Let x € I be such that = > 0.
Subcase 1.1 : ¢ =0. Then
(@) = {2} U+ ) = [r, o0)
and
() =A{x,20} U 2z + 1) = {z} U2z, 00).

3z

3
Since z > 0, x < ; < 2x. Thus 5

€ (z)g (2o
Subcase 1.2 : ¢ > 0. Then

Uz +a,00 if I =la,o0),
(@)e = foh o # Iy 448 E %) o)
{z}U(x +a,00) if I =(a,o0)

and

() = {2, 20} U (204 T) = {2,20} U 22 +a,00)  if I = [a, 00),
{z,2x} U (22 + a,0) if I = (a,00).

Since

x<x+a§2ax<2x+g<2x+a,

it follows that 2x + g € () \ (7).

Case 2 : [ is of type (v) or type (vi). Then I = (—o0,b] or (—o0,b) for some
b < 0. We can show similarly to Case 1 that BQ(I) = I n {0}. O



CHAPTER V
THE MULTIPLICATIVE SEMIGROUP Z,

The purpose of this chapter is to characterize the BQ-elements of the multi-
plicative semigroup Z, and give some sufficient conditions for the multiplicative
semigroup kZ, to have the property that every element is a BQ-element.

Recall that Z,, contains n elements,
Zp=1{0,1,....,n—1}={T |z € Z}

where T is the equivalence class of  modulo n. Also, for k € Z we have that

kZ, = (—k)Zy,,

kZ, = (k,n)Z, = {0, (k,n),2(k.n), . .., ( L 1) (k,n)}

= {(k,n)T |z € Z},

n
Wl
52| (k,n)

Notice that kZ, is an ideal of (Z,, -). We know that Reg(Z,, -) C BQ(Z,, -). First,
we characterize the regular elements of (Z,,-) differently from the one given in
[1] and then its BQ-elements are determined. As consequences, we have Theorem

2.13 and Theorem 2.14, respectively.

The regular elements of the semigroup (Z,, -) are characterized as follows :
n

Theorem 5.1. Forx € Z, T € Reg(Zy,,-) if and only if x and @)
T,n

are relatively

prime.

Proof. Assume that T € Reg(Z,, ). Then z zyzr for some y € Z. Then

xz

z(ry —1) =0, s0 n | z(zy — 1). Hence @) | @) xy — 1). But since @)
k
and —— are relatively prime, it follows that o xy—1. Then B xy—1
(z,n) (z,n) (z,n)
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for some k € Z. Now we have zy + ( ) (—k) = 1. This implies that x and

(z,n)

are relatively prime.
(z,n)

For the converse, assume that x and are relatively prime. Then xk +

(z,n)

(xnil) =1 for some k,l € Z. Thus z = 2%k + (inrlb) =22k + ((a:xn)> In and

X

@) € 7. This implies that T = 72k and thus T € Reg(Z,, -). O
r,n

Corollary 5.2. The semigroup (Zy,-) is a regular semigroup if and only if n is
square-free.

Proof. Assume that n is not square-free. Then there is a € Z such that a > 1

n

and a?| n, so a ® and ~ 2 Thus a, LI R By Theorem 5.1,
a (n,a) a (n, a)

a ¢ Reg(Z,,-). Hence (Z,,-) is not a regular semigroup.

Conversely, assume that n is square-free. Then either n = 1 or n is a product of

distinct primes. It clearly follows that for every x € Z, x and are relatively

(z,n)
prime. By Theorem 5.1, T € Reg(Z,, ) for all x € Z. Thus (Z,, ) is a regular

semigroup. ]

Next, we characterize the BQ-elements of (Z,,-). Since (Z,,-) is a commuta-

tive semigroup having 1 as its identity, we have that

BQ(Zy, ) = {T € Zn | v € Z and (T), = (T)s}
={T €L, | v €Zand 7L, = {z} UT’ZL, }.

Theorem 5.3. For x € Z, T € BQ(Z,, ) if and only if either

(i) = and are relatively prime or

(z,n)
(ii) n| 2 and ) =2.

Proof. Assume that T € BQ(Z,,-). Then 7Z, = {T} UT*Z,.

Case 1 : T € T?Z,,. Then T € Reg(Z,, ), so by Theorem 5.1, x satisfies (i).
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Case 2 : T ¢ T°Z,,. Since [7°Z,| = " and |TZ,| = ——, it follows that
(2%, n) (,n)
n n
1 = {ZYUT*Z,| = |ZZ,| = . But (=, 2 n), th
+(x2,n) {Z}UT°Z,| = |TZy,)| X ut (z,n)|(xz*,n), thus @) | @)
o n n ) )
This implies that ———| 1. Then ——— =1, so (2% n) = n. Therefore n | z

(x2,n) (x2,n)

n
d =14+ —
W aw T T @

Conversely, assume that x satisfies (i) or (ii). If = satisfies (i), then by Theorem
5.1, T € Reg(Z,,-). But Reg(Z,,-) C BQ(Z,,*), so T € BQ(Z,,-). Next, let x

satisfy (ii). Since n | 2%, we have that 7°Z, = {0}, so {z} UT*Z, = {0,7}. We
n

(z,n)
= TZ,. Hence T € BQ(Z,, ).

=1+ 1= 2. Hence x satisfies (ii).

also have that [7Z,| =

= 2. Thus 7Z, = {0,7}. Consequently, {T}UZT?Z,,

The theorem is thereby proved. O]

Corollary 5.4. The semigroup (Z,,-) is a BQ-semigroup if and only if either

n =4 orn is square-free.

Proof. Assume that n # 4 and n is not square-free. Then there is a € Z such

that a > 1 and a? | n. We claim that a does not satisfy (i) and (ii) of Theorem
n a’t .

= — =at, s0

(a,n) a

5.3. Since a? | n, there is ¢ € Z such that n = a*. Then
(a, (n_)) = a > 1. Hence a does not satisfy (i). To show that a does not satisfy
a,n
n
(a,n)
2

n a
n # 4, we have that a > 2. Hence IR = — = a > 2. Thus a does not satisfy
a,n a

(ii). By Theorem 5.3, @ ¢ BQ(Z,,-). Hence from Theorem 2.8, (Z,,-) is not a

(ii), i.e., n f a® or # 2, suppose that n | a®. It follows that n = a®. Since

BQ-semigroup.

For the converse, assume that n = 4 or n is square-free. If n is square-free, then
by Corollary 5.2 (Theorem 2.13), (Z,, ) is a regular semigroup, and hence (Z,, -)
is a BQ@-semigroup by Theorem 2.4. Next, assume that n = 4. If x € {0, 1, 3},
then z satisfies (i) of Theorem 5.3. If x = 2, then z satisfies (ii) of Theorem 5.3.
Hence 0,1,2,3 € BQ(Zy,-), and therefore (Zy, ) is a BQ-semigroup by Theorem
2.8.



31

Therefore the proof is complete. O

Example 5.5. From Theorem 5.1 and Theorem 5.3, we have

Reg(Zg,-) ={0,1,2,4,5,7,8} = BQ(Zy, -),

Reg(Z1s,) = {0,1,2,4,5,7,8,9,10,11,13,14, 16,17} = BQ(Z1s, *),
Reg(Zs, ) = {0,1,3,5,7}, BQ(Zs,-) = Reg(Zs, -) U {4},

Reg(Z1a,) = {0,1,3,4,5,7,8,9,11}, BQ(Z12,-) = Reg(Zy2,-) U {6}.

From Example 5.5, it is natural to ask whether it is true that BQ(Z,,-) =
Reg(Zy., ) if 41 n and BQ(Zn, -) = Reg(Zn, -) U {(g)} and (g) ¢ Reg(Z,, ) if
4 | n. This is generally true as the following theorem shows :

Theorem 5.6. The following statements hold.

(i) If 41 n, then BQ(Zy, ) = Reg(Zy,, ).

n

(i) If4 | n, then BQ(Zy,-) = Reg(Zp, ) U {@} and (;T) ¢ Reg(Zn, ).

= 2. Then

Proof. (i) Assume that there is z € Z such that n | z* and @)
z,n
n

<( ¢ >) x and 2| n. Since ( £ ) and ——— are relatively prime, it
x,n x,n

(x,n) (x,n)

follows that _n
(z,n)

we have that 4 | n. This proves that if 4 { n, then there is no = € Z satisfying (ii)

x, 80 2 | z. Hence 2 | (z,n). Since n = 2(z,n) and 2 | (z,n),

of Theorem 5.3. From Theorem 5.1 and Theorem 5.3, we have that if 4 1 n, then
BQ(Z,,-) = Reg(Z,,-).
(ii) Assume that 4 | n. Then

=2 and 2 ’g, so by Theorem 5.1, <E> ¢

( 2

Reg(Zy,-). Since <g>2 =n <%) which is divisible by n, by Theorem 5.3, @ €

N3

1)

BQ(Z,,-). It remains to show that BQ(Z,, ) ~ Reg(Zy,-) = {(g) } Let x € Z

be such that T € BQ(Z,,-) and T ¢ Reg(Z,,-). By Theorem 5.1 and Theorem

n n
—_— —— =2.Th 0
() (1) en 7

and n t x. Let k € Z be such that © = kn + r where 0 < r < n. Since n { z, we

5.3, x and are not relatively prime, n | 22 and
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have that 0 < r < n. We also have that (x,n) | . Thus g ’ r. Consequently,

r, it follows that

|3

<r<mn,sor= g—l—ifor some 7 € {O,l,...,g— 1}. Since g

i =0. Then r = g and therefore 7 =7 = (g) Hence (ii) is proved. O

We have that kZ, N Reg(Z,, ) = Reg(kZ,, ) since kZ, is an ideal of (Z,,-).

From this fact and Theorem 5.1, the following theorem is directly obtained.

n

Theorem 5.7. For T € kZ,, © € Reg(kZ,,-) if and only if v and )
T, n

are

relatively prime.

To give some necessary conditions for so that (kZ,, -) is a BQ-semigroup,

n
(k,n)
the following lemma is needed.

(k,n)

Proof. Recall that T is the equivalence class of  modulo n. In this proof, for xz € Z,

n
Gon)’ Define ¢ : kZ,, — Z(;!fn) by

Lemma 5.8. If k and are relatively prime, then (kZy, ) = (Z_n_,-).

k,n)’

let  denote the equivalence class of z modulo

(kZ)p = kx for all x € Z.

To show ¢ is well-defined, let @1, 29 € Z be such that k77 = kT3. Then n|(kx; —
n k

(k,n)| (k,n) and

(k,n) (k,n)

kxs), so (x1 — x2). Since are relatively prime,

—_—

n P, __
(x1 — x32), so T = T2 and hence kzy = k.

(k. n)
To show @ is 1-1, let 1, x5 € Z be such that E;l = /k}; Then

k(xi—x2).

n

(&)
() (k

n)
7n)<x1_x2)a

Since k and are relatively prime,

(x1—x3). Thusn |

(k,n)

so (k,n)x; = (k,n)zy. Therefore

k
(k,n)

Since ¢ is 1-1 and |kZ,| =

(k,n)xy = k3.

kTy =

(k,n)x; =

(k,n)

e

(k,n)

, it follows that ¢ is onto.

(kon)
It remains to show that ¢ is a homomorphism. Let xq, x5 € Z. Then



33

(k1) (kTa))p = (k(x1kxs))e

e~

= k’l’lk’ﬂfg

e~

= l{?l’l k?.’EQ

= (kT1)p(kTz)e.

This proves that (kZ,, ) = (Z_n_,-), as desired. O

(k,n)

g er s square-free, then BQ(kZy, ) = kZy,.

(k,n) (k,n)

Theorem 5.9. If

n
=4 or

n
(k. n) (k,n)
(by Theorem 2.8).

Hence if

is square-free, then (kZy,-) is a BQ-semigroup

Proof. First, assume that

(i)

n
is square-free. Then for each z € Z, (:L‘, > =

(k,n)

= {7} UT*(kZy,)

C {z,7*} Uz (kZy,)
= (@)

C (z),

(x)p. Hence BQ(kZy,) = kZ,,.
= 4. Then n = 4(k,n) and (k,

which implies that (z), =
n

(k;n)

Next, assume that



(k,n)

is a BQ-semigroup by Corollary 5.4.

Case 1 : (k,

(k,n)

(k.n) (k,n)

kZ, = (k,n)Z, = {0, (k,n),2(k,n),3(k,n)}

Case 2 : (k, ) = 2. We have that |kZ,| = =4 and

and

2(k,n)Z,, = {0,2(k,n)}.

Since (k: L) = (k,4) = 2, we have that 2 | k and 41 k, so k = 41 + 2 for

(k,n)
some | € Z. Then

2(k,n)kZ, = (2(k,n)k,n)Z,

n
= (k;n) (Qk, W) Z.,
= (k,n)(2k,4)Z,
=4(k,n)Zy,
=Ny
= {0}.
Let a,b € Z be such that (k,n) = ka + nb. Hence

k n
g b
o) Em)
k

(k,n)

a -+ 4b.

It implies that a is an odd integer. Let a = 2m + 1 where m € Z. Then

((k,n))* = (k,n)(k,n)
= (ka + nb)(k,n)

= ka(k,n) + nb(k,n)

= ka(k,n)

= (4l +2)a(k,n)

= 4la(k,n) + 2a(k,n)

= nla + 2a(k,n) (since n = 4(k,n))

34

) = 1. By Lemma 5.8, (kZ,,-) = (Z_»_,-) = (Zy4,-) which
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= 2a(k,n)

=202m + 1)(k, n)

=4dm(k,n) + 2(k,n)

=mn+ 2(k,n)

= 2(k,n).

Next, we show that (%), = (T), for all T € kZ,. Since 0 € Reg(kZ,), (0), =
(0),. Also, we have that

((k,n))g = {(k;n)} U (k;n)(KZy)

(
,2(k,n)} U2(k,n)(kZy) (since ((k,n))* = 2(k,n))

(k,n),2(k,n)} U {0} (since 2(k,n)kZ, = {0}),
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= {3(k,n)} U (k,n) (k,4) Z, (since (3,4) = 1)
= {3(k,n)} U2(k,n)Z, (since (k,4) = 2)
= {3(k,n)} U{0,2(k, n)},

(3(k,n))y = {3(k, n), (3(k,n))*} U (3(k,n))*(KZ)
= {3(k,n), 18(k,n)} U 18(k, n)(kZ,)
= {3(k,n),2(k,n)} U 2(k,n)(KZ,)
= {3(k,n),2(k,n)} U{0}.

It follows that for all @ € kZ,, (Z), = (T),. Therefore (kZ,, -) is a BQ-semigroup.

n n n
: — | =4. Si = Th =
Case 3 (k, (k,n)) Since ) (k n) k. Then k = )

l €Z,so k(k,n)=nl. Let a,b € Z be such that (k,n) = ka + nb. We have that

for some

((kv n))2 = (k, n)(kv TL)

ka + nb)(k,n)

(
A

ka(k,n) + nb(k,n)

This implies that (kZ,, -) is a zero semigroup since kZ, = (k,n)Z,. Thus (kZ,,-)
is a BQ-semigroup by Example 2.10.

Therefore the theorem is proved. O

The following example shows that the converse of Theorem 5.9 is not generally

true.

Example 5.10. It is evident that (8Zg4,-) is a zero semigroup. Then it is a

BQ-semigroup by Example 2.10. However, is neither 4 nor square-free.

64
(8,64)



CHAPTER VI
SEMIGROUPS OF TRANSFORMATIONS OF SETS
AND LINEAR TRANSFORMATIONS

In this chapter, we determine the BQ-elements of the semigroups M(X), UE(X),
Mp(V) and Er(V) where X is a nonempty set and V' is a vector space over a

field F'. We show that the set of regular elements and the set of BQ-elements of

each semigroup coincide.

The following semigroups under composition of transformations of sets and

linear transformations are recalled :

= the symmetric group on X
={a e T(X)|ais 1-1 and onto}),

)
)
)
)
)
(
Lp(V)={a:V — V| ais linear},
)
(
)
(
)

(V)
(V)
Ep(V)={a € Lp(V) | a is onto}
(V)
(V)

Reg(E(X)) = Reg(UE(X)) = G(X) and Reg(Mp(V)) = Reg(Ex(V)) = Gr(V).

We have mentioned in the preliminaries on page 12-14 that Reg(M (X)) =
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The following facts of linear algebra will be used.

(1) If B and B’ are bases of V and a € Ly(V) is such that o, : B — B is a
bijection, then aw € Gp(V).

(2) If € Lp(V), By, By are bases of ker @ and ran «, respectively and for each

u € By, let v/ € ua™!, then By U{u' | u € By} is a basis of V.

Theorem 6.1. BQ(M (X)) = G(X).

Proof. If X is finite, then M (X) = G(X) which is a group, so we are done. Assume
that X is an infinite set. We have that G(X) = Reg(M (X)) C BQ(M(X)).

For the reverse inclusion, let a € BQ(M(X)). Then M(X)a N aM(X) =
{a} UaM(X)a. Since X is infinite, there is a subset A = {z,, | n € Z} of X
where x,, # x,, if n # m. But since « is 1-1, it follows that x,a # x,,a if n #m

and (X \ A)a C X ~ Aa«. Define 3,v: X — X by

ba =
T+l Y/ nez
yeEXNA
and
Tpoe Y
’}/:

Tp+100 Y ne7z
yeXNAa

It can be seen that 3,7 € G(X). We also have that

Ln Y

Pa = ary.

Tp1x Yo | 7
yeXNA

It follows that fa € M(X)anaM(X) = {a}UaM (X)a. Since z,a # x, 1« for
all n € Z, we have that fa # «. Therefore fa € aM(X)a. Thus fa = ala for
some A € M(X). This implies that § = a\ since « is 1-1. Hence ran A = X since
ran 8 = X. Thus A € G(X) and so a = BA! € G(X).

Therefore the theorem is proved. O

Theorem 6.2. BQUE(X)) = G(X).
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Proof. 1f X is finite, then UE(X) = G(X), so we are done. Suppose that X is
infinite. We have that G(X) = Reg(UE(X)) C BQ(UE(X)).

To show that BQUE(X)) C G(X), let a € BQUE(X)). Let a and b be
distinct elements of X. Since a € UE(X), |[aa™!| = |ba™!|. Let ¢ : aa™ — ba™!
be a bijection. Notice that (X~ (aa™! Uba™1))a C X~ {a,b}. Define 3,7 € G(X)
by

@ y oz
ﬁ: —1 caa1
ool Yo ) e,
z€X~(aa™! Uba~1)
and
a b z
’7:
b a z
z€X~{a,b}
Then 3,7 € G(X) and
x z
fa = J = any.
b a za) zeaa™!
yeba~?!

zeX\(aa~t Ubat)
Hence fa = ay € UE(X)aNaUE(X) = {a} UaUE(X)a and ay # a. Then
ay = ada for some A € UE(X). Thus 7 = A« since « is onto. But since v is 1-1
it follows that A is 1-1, so A € G(X) and hence a = X'y € G(X).

Therefore the theorem is proved. O
Theorem 6.3. BQ(Mp(V)) = Gp(V).

Proof. 1f V' is finite-dimensional, then we are done. Assume that dimg(V) is
infinite. Let B be a basis of V and a € BQ(Mp(V')). Since B is infinite, B has
A = {u, | n € Z} as a subset where u,, # u,, if n # m. Then u,a # Uy«
for all distinct n,m € Z. We also have that Ba = Aa U (B ~ A)a. Since
a € Mp(V),a: V — ran« is an isomorphism. This implies that Ba is a basis of
ran . Let B’ be a basis of V' containing Ba. Define 8,7 € Lp(V) on B and B’

respectively as follows :

Unt1 VU ne’
vEBNA
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and

Uy VO W

u a Vv W [ nez
ntl vEBNA
weB'\Ba

Since (3|, is a bijection on B and 7|, is a bijection on B', it follows that 3,7 €
Gr(V). Also, we have

Uy, v
ﬁa = = a7,

Uppr va ) o

vE BNA

so fa # o and fa € Mp(V)anaMp(V) = {a} UaMp(V)a. Thus fa = ala for
some X\ € Mp(V). Since av is 1-1, = aA. Hence ran A = V since ran § = V, so
A € Gp(V). Tt follows that a = BA\~' € Gp(V). This proves that BQ(Mp(V)) C
Gr(V). But since Gg(V) = Reg(Mp(V)) € BQ(Mgp(V)), the result follows. [

Theorem 6.4. BQ(Er(V)) = Gr(V).

Proof. 1f V is finite-dimensional, then Ep(V) = Gp(V), so we are done. Assume
that dimg(V) is infinite. Let B be a basis of V and let a € BQ(Er(V)). Let
A= {u, | n € Z} C B where u, # u, if n # m. Since Va = V| for each
u € B, choose u' € ua~!. Then v'a = u for all w € B and v’ # v’ for all distinct
u,v € B. Let By be a basis of kerae. Then By U{u' | u € B} is a basis of V. Let
B,7 € Lp(V) be defined respectively on By U{u' | u € B} and B as follows :

5 u, v w
u! v w | nez
n+l vEBNA
we By
and
U, U

Unt1 U nez
vEBNA

Then ﬁ‘Blu{u
It follows that 3,7 € Gr(V). Also, we have that

/wes 1S @ bijection on By U{u' | u € B} and 7, is a bijection on B.
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u, vV w
fa = = a.
U v 0/ nez
ntl vEBNA
weE By

Then o # ay and ay € Ep(V)anN aFp(V) ={a} UaFEpr(V)a. Thus ay = ala
for some A € Ep(V). Since rana = V, v = Aa. We have that A is 1-1 since
7 is 1-1. Therefore A € Gp(V) which implies that « = A~y € Gp(V). This
proves that BQ(Er(V)) C Gp(V). But Gp(V) = Reg(Er(V)) C BQ(ER(V)), so
BQ(Er(V)) = Gp(V), as desired. O
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