### การแปลข้อมูลสำหรับโพ<u>เ</u>ทนชิโอเมตริก ไทเทรชัน ของกรดอ่อนผสม โดยวิธีการวิเคราะห์ความถดถอยแบบหลายตัวแปรเชิงเส้น



นางสาว สุภาวดี เชี่ยวชาญวัฒนา

## คูนยวทยทรพยากร กลงกรณ์มหาวิทยาลัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต

ภากวิชาเภสัชเคมี

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2536

ISBN 974-583-459-9

ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

117137805 019448

The Interpretation of Data for Potentiometric Titraticn of Weak acid Mixtures by Multiple Linear Regression Analysis



Miss Supawadee Chieawchanwatana

# ศูนย์วิทยทรัพยากร

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Pharmacy

Department of Pharmaceutical Chemistry

Graduate School ,

Chulalongkorn University

1993

ISBN 974-583-459-9

Thesis Title The interpretation of data for potentiometric titration of weak acid mixtures by multiple

linear regression analysis

Ву

Miss Supawadee Chieawchanwattana

Department

Pharmaceutical Chemistry

Thesis Advisor Instructor Mitr Pathipvanich, Ph. D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Master's Degree

Thesis Committee

Suttatip Chantaraskul. Chairman

(Associate Professor Suttatip Chantaraskul, M.Sc. in Pharm)

Mits Pathing a. Thesis Advisor

(Instructor Mitr Pathipvanich, Ph. D.)

Somkitt Rujerasat. Member

(Assistant Professor Somkiat Rujirawat, M.Sc. in Pharm)

... Muansii Mirattisairong... Member

(Assistant Professor Nuansri Nivattisaivong, M.Sc. in Chem)

Walapa Talong Member

(Miss Walapa Tatong, Ph. D.)

#### พิมพ์ต้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

สุภาวดี เชี่ยวชาญวัฒนา : การแปลข้อมูลสำหรับโพเทนซิโอเมตริก ไทเทรชัน ของกรด อ่อนผสม โดยวิธีการวิเคราะห์ความถดถอยแบบหลายตัวแปรเชิงเส้น (THE INTERPRETATION OF DATA FOR POTENTIOMETRIC TITRATION OF WEAK ACID MIXTURES BY MULTIPLE LINEAR REGRESSION ANALYSIS) อ.ที่ปรึกษา : อ.คร.มิตร ปที่ปวณิช, 180 หน้า. ISBN 974-583-459-9

การทาปริมาณของกรดอ่อนสองตัวที่ผสมกันนั้น สามารถทำได้โดยการใช้ เทคนิคของโพ เทนซิโอเมตริก ไท เทรชัน ร่วมกับการใช้สมการซึ่งพัฒนาและดัดแปลงมา เพื่อใช้ในการทาปริมาตรที่จุดสมมูลของกรด
อ่อนผสม สำหรับการแปลข้อมูลนั้นได้มีการนำวิธีการทางสถิติ คือ การวิ เคราะห์ความถดถอยแบบหลายตัวแปร เชิง เส้น และโปรแกรมคอมพิว เตอร์ (เอส พี เอส เอส/ พี ซี พลัส) มาใช้ จากการทดลองพบว่า
สามารถใช้วิธีนี้ในการทาปริมาตรที่จุดสมมูลของกรดอ่อนที่ผสมกันสองตัวได้อย่างถูกต้อง อย่างไรก็ตาม
ความผิดพลาดในการทาปริมาณจะ เกิดขึ้น เมื่อความแตกต่างของลบล็อกค่าคงที่ของการแตกตัวของกรดอ่อนทั้ง
สองตัวมีคาน้อยกว่าสองหรือมีความคลาด เคลื่อนในการวัดค่าความ เป็นกรด-ด่าง เมื่อสารละลายมีค่าความ
เป็นกรด-ด่างมากกว่าสิบขึ้นไป



พาลงกรณ์มหาจิทยาลัย

| ภาควิชา    | เกล้ชเคมี | ลายมือชื่อนิสิต 🦾 เฮโพพ์       |
|------------|-----------|--------------------------------|
| สาขาวิชา   | เบยุลเษฎ  |                                |
| ปีการศึกษา | 2536      | ลายมือชื่ออาจารย์ที่ปรือมาร่วน |

พอพิตันอบับบทกัดย์อวิทยานพนธ์กายในกรอบสีเขียวนี้เพียงแต่แก้กา

##C475143 :MAJOR PHARMACEUTICAL CHEMISTRY

KEY WORD: WEAK ACID MIXTURES / MULTIPLE LINEAR REGRESSION ANALYSIS /
POTENTIOMETRIC TITRATION

SUPAWADEE CHIEAWCHANWATTANA : THE INTERPRETATION OF DATA FOR
POTENTIOMETRIC TITRATION OF WEAK ACID MIXTURES BY MULTIPLE LINEAR
REGRESSION ANALYSIS. THESIS ADVISOR : INSTRUCTOR MITR PATHIPVANICH,
Ph.D. 180 pp. ISBN 974-583-459-9

Potentiometric titration technique can be used for determination of two weak acid mixtures including with the development and modification of equation in order to find the equivalent volume of weak acid mixtures. The statistical procedure, multiple linear regression analysis, and computer program, SPSS/PC $^{\dagger}$ , are used for the analysis of data. From the experiments, the equivalent volumes of two weak acid mixtures could be accurately determined by this method. However, error in equivalent points determination occured when  $\Delta$ pKa of the two weak acids was less than two or there was the alkaline error in pH measurement, when pH value of the solution was above ten.



| ภาควิชา    | เบษุณฑ์   | ลายมือชื่อนิสิต                      |
|------------|-----------|--------------------------------------|
| สาขาวิชา   | เภสัชเคมี | ลายมือชื่ออาจารย์ที่ปรึกษา 🗾 🗸 🗸 🗸 🗸 |
| ปีการศึกษา | 2536      | ลายมือชื่ออาจารย์ที่ปรึกษาร่วม       |

#### Acknowledgement

I wish to express my gratitude to my advisor,

Dr. Mitr Pathipvanich for his guidance, encouragement had
and understanding throughout this research.

I would like to thank Associate Professor Suttatip Chantaraskul and the staff of Pharmaceutical chemistry department, for their advice and helpful.

I also wish to thank the graduate school of Chulalongkorn university for granting partial financial support for this project.

Appreciation is extended to Associate Professor Yaowapa Wairaksat, Assistant Professor Usa Glagasigij and Assistant Professor Nuansri Nivattisaívong, Instructor of Pharmaceutical chemistry department, for their kind assistance.

A special appreciation is given to Mr. Seri Daodee for his kindness, willpower and cheerfulness during my graduate study.

Finally, my appreciation goes to my family and my friends who have graciously accepted my absence while working on this research.



#### CONTENTS

|                             | PAGE |
|-----------------------------|------|
| THAI ABSTRACT               | iv   |
| ENGLISH ABSTRACT            | v    |
| ACKNOWLEDGEMENTS            | vi   |
| LIST OF TABLES              |      |
| LIST OF FIGURES             |      |
| CHAPTER                     | AIV  |
| 1 INTRODUCTION              |      |
| 1. INTRODUCTION             | 1    |
| 2. PUSPOSE OF INVESTIGATION | 31   |
| 3. EXPERIMENTATION          | 32   |
| 4. RESULTS AND DISCUSSION   | 42   |
| 5. CONCLUSION               | 68   |
| BIBLIOGRAPHY                | 70   |
| APPENDICES                  |      |
| APPENDIX A                  | 76   |
| APPENDIX B                  |      |
|                             | 96   |
| VITA                        | 190  |

#### LIST OF TABLES

| lable No. | Pa                                          | ₹6  |
|-----------|---------------------------------------------|-----|
|           |                                             |     |
| 1         | The dissociation constants (Ka) and pKa of  |     |
|           | weak acidic compounds                       | 7 : |
| 2         | The mixtures of weak acids and their ApKa   | 76  |
| 3         | The comparison between the calculated       |     |
|           | equivalent volume obtained from solving     |     |
|           | the modified equation and the theoretical   |     |
|           | equivalent volume taken into the polynomial |     |
|           | equation in the step of data simulation at  |     |
|           | the difference of pKa and ApKa              | 77  |
| 4         | The equivalent volume of benzoic acid       |     |
|           | from the titration of single solution and   |     |
|           | the titration of benzoic acid - boric acid  |     |
|           | mixture                                     | 7.0 |
| 5         | The equivalent volume of boric acid from    | 16  |
| 0.987     |                                             |     |
|           | the titration of single solution and the    |     |
|           | titration of benzoic acid - boric acid      |     |
|           | mixture                                     | 78  |
| 6         | The equivalent volume of benzoic acid       |     |
|           | from the titration of single solution       |     |
|           | and the titration of benzoic acid -         |     |
|           |                                             |     |

p-nitrophenol mixture.....

| T | ab | 1 | 0 | N   | 0 |   |
|---|----|---|---|-----|---|---|
| - | ~~ | - | - | 7.4 | v | • |

Page

| 7  | The equivalent volume of p-nitrophenol     |
|----|--------------------------------------------|
|    | from the titration of single solution      |
|    | and the titration of benzoic acid-         |
|    | p-nitrophenol mixture79                    |
| 8  | The equivalent volume of p-nitrophenol     |
|    | from the titration of single solution      |
|    | and the titration of p-nitrophenol - boric |
|    | acid mixture80                             |
| 9  | The equivalent volume of boric acid from   |
|    | the titration of single solution and the   |
|    | titration of p-nitrophenol - boric acid    |
|    | mixture80                                  |
|    |                                            |
| 10 | The equivalent volume of benzoic acid from |
|    | the titration of single solution and the   |
|    | titration of benzoic acid - ephedrine      |
|    | hydrochloride mixture81                    |
| 11 | The equivalent volume of ephedrine         |
|    | hydrochloride from the titration of single |
|    | solution and the titration of benzoic acid |
|    | - ephedrine hydrochloride mixture81        |

| 12 | The equivalent volume of p-nitrophenol      |
|----|---------------------------------------------|
|    | from the titration of single solution       |
|    | and the titration of p-nitrophenol -        |
|    | ephedrine hydrochloride mixture82           |
| 13 | The equivalent volume of ephedrine          |
|    | hydrochloride from the titration of single  |
|    | solution and the titration of p-nitrophenol |
|    | - ephedrine hydrochloride mixture82         |
| 14 | The equivalent volume of boric acid from    |
|    | the titration of single solution and the    |
|    | titration of boric acid - ephedrine         |
|    | hydrochloride mixture83                     |
| 15 | The equivalent volume of ephedrine          |
|    | hydrochloride from the titration of single  |
|    | solution and the titration of boric acid -  |
|    | ephedrine hydrochloride mixture83           |
| 16 | The equivalent volume of potassium          |
|    | biphthalate from the titration of single    |
|    | solution and the titration of potassium     |
|    | biphthalate - boric acid mixture84          |
| 17 | The equivalent volume of boric acid from    |
|    | the titration of single solution and the    |
|    | titration of potassium biphthalate - boric  |
|    | acid mixture                                |

| 18   | The equivalent volume of benzoic acid from    |
|------|-----------------------------------------------|
|      | the titration of single solution and the      |
|      | titration of benzoic acid - pralidoxime       |
|      | chloride mixture85                            |
| 19 . | The equivalent volume of pralidoxime chloride |
|      | from the titration of single solution and     |
|      | the titration of benzoic acid - pralidoxime   |
|      | chloride mixture85                            |
| 20   | The equivalent volume of potassium            |
|      | biphthalate from the titration of single      |
|      |                                               |
|      | solution and the titration of potassium       |
|      | biphthalate - p-nitrophenol mixture86         |
| 21   | The equivalent volume of p-nitrophenol        |
|      | from the titration of single solution and     |
|      | the titration of potassium biphthalate -      |
|      | p-nitrophenol mixture                         |
| 22   | The equivalent volume of p-nitrophenol from   |
|      | the titration of single solution and the      |
|      | titration of p-nitrophenol - pralidoxime      |
|      | chloride mixture87                            |
| 23   | The equivalent volume of pralidoxime          |
|      | chloride from the titration of single         |
|      | solution and the titration of p-nitrophenol   |
|      | - pralidovime chlorido mista                  |
|      | profite childride mixture                     |

| 24 | The equivalent volume of pralidoxime          |
|----|-----------------------------------------------|
|    | chloride from the titration of single         |
|    | solution and the titration of pralidoxime     |
|    | chloride - boric acid mixture88               |
| 25 | The equivalent volume of boric acid from      |
|    | the titration of single solution and the      |
|    | titration of pralidoxime chloride - boric     |
|    | acid mixture88                                |
| 26 | The equivalent volume of benzoic acid from    |
|    | the titration of single solution and the      |
|    | titration of benzoic acid - potassium         |
|    | biphthalate mixture89                         |
| 27 | The equivalent volume of potassium            |
|    | biphthalate from the titration of single      |
|    | solution and the titration of benzoic acid    |
|    | - potassium biphthalate mixture89             |
| 28 | The equivalent volume of potassium            |
|    | biphthalate from the titration of single      |
|    | solution and the titration of potassium       |
|    | biphthalate - ephedrine hydrochloride         |
|    | mixture90                                     |
| 29 | The equivalent volume of ephedrine            |
|    | hydrochloride from the titration of single    |
|    | solution and the titration of potassium       |
|    | biphthalate-ephedrine hydrochloride mixture90 |

| 30 | The equivalent volume of pralidoxime          |
|----|-----------------------------------------------|
|    | chloride from the titration of single         |
|    | solution and the titration of pralidoxime     |
|    | chloride-ephedrine hydrochloride mixture91    |
| 31 | The equivalent volume of ephedrine            |
|    | hydrochloride from the titration of single    |
|    | solution and the titration of pralidoxime     |
|    | chloride - ephedrine hydrochloride mixture91  |
| 32 | The equivalent volume of potassium            |
|    | biphthalate from the titration of single      |
|    | solution and the titration of potassium       |
|    | biphthalate - pralidoxime chloride mixture92  |
| 33 | The equivalent volume of pralidoxime          |
|    | chloride from the titration of single         |
|    | solution and the titration of potassium       |
|    | biphthalate - pralidoxime chloride mixture92  |
| 34 | The results from the titration of weak acid   |
|    | mixtures93                                    |
| 35 | The slope of buffer region from the titration |
|    | curve of each weak acid solution and mixed    |
|    | weak acid solution (minimum slope)94          |

### LIST OF FIGURES

| Figure No. | Page                                        |
|------------|---------------------------------------------|
| 1          | Stepwise titration of mandelic acid +       |
|            | 2-aceto-1-napthol in acetonitrile with      |
|            | 0.1 N potassium methoxide                   |
| 2          | Typical Gran plot for the determination     |
|            | of the equivalent volume of the strong      |
|            | acid component of an unknown mixture15      |
| 3          | Gran plot for the determination of the      |
|            | equivalent volume of the weak acid          |
|            | component in the same mixture as Figure 216 |
| 4          | The pH titration curve of the same acid     |
|            | mixture as in Figures 2 and 3               |
| 5          | The plot of V vs (Vo + V)d for the          |
|            | determination of the equivalent volumes of  |
|            | an acid mixture19                           |
| 6          | Titration curve of oxalic acid-nitric acid  |
|            | mixture22                                   |
| 7          | Gran plot and Fmix curves for the           |
|            | titration of ovaliv acid nithis             |

mixture.....

| 8  | Three-dimensional plot of variables Y, X1 and |
|----|-----------------------------------------------|
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of weak acids, in theoretical, which  |
|    | pKa1 = 4, pKa2 = 9 and ΔpKa = 595             |
| 9  | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of weak acids, in theoretical, which  |
|    | pKa1 = 4, pKa2 = 8 and $\Delta$ pKa = 496     |
| 10 | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of weak acids, in theoretical, which  |
|    | $pKa1 = 5$ , $pKa2 = 9$ and $\Delta pKa = 4$  |
| 11 | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of weak acids, in theoretical, which  |
| P  | pKa1 = 4, pKa2 = 7 and ΔpKa = 398             |
| 12 | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of weak acids, in theoretical, which  |
|    | pKa1 = 5, pKa2 = 8 and $\Delta$ pKa = 399     |
| 13 | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of weak acids, in theoretical, which  |
|    | pKa1 = 6, pKa2 = 9 and $\Delta$ pKa = 3100    |

| 14 | Three-dimensional plot of variables Y, X1 and       |
|----|-----------------------------------------------------|
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | pKa1 = 4, pKa2 = 6.5 and $\Delta$ pKa = 2.5101      |
| 15 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | pKa1 = 5, pKa2 = 7.5 and $\Delta$ pKa = 2.5102      |
| 16 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in thecretical, which        |
|    | pKa1 = 6, pKa2 = 8.5 and $\Delta$ pKa = 2.5         |
| 17 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | $pKa1 = 7$ , $pKa2 = 9.5$ and $\Delta pKa = 2.5104$ |
| 18 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | $pKa1 = 4$ , $pKa2 = 6$ and $\Delta pKa = 2$        |
| 19 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | $pKa1 = 5$ , $pKa2 = 7$ and $\Delta pKa = 2$        |

| 20 | Three-dimensional plot of variables Y, X1 and    |
|----|--------------------------------------------------|
|    | X2 in the modified equation (Eq. 53) for the     |
|    | mixture of weak acids, in theoretical, which     |
|    | pKa1 = 6, pKa2 = 8 and $\Delta$ pKa = 2107       |
| 21 | Three-dimensional plot of variables Y, X1 and    |
|    | X2 in the modified equation (Eq.53) for the      |
|    | mixture of weak acids, in theoretical, which     |
|    | pKa1 = 7, pKa2 = 9 and $\Delta$ pKa = 2108       |
| 22 | Three-dimensional plot of variables Y, X1 and    |
|    | X2 in the modified equation (Eq. 53) for the     |
|    | mixture of weak acids, in theoretical, which     |
|    | pKa1 = 4, pKa2 = 5.5 and $\Delta$ pKa = 1.5109   |
| 23 | Three-dimensional plot of variables Y, X1 and    |
|    | X2 in the modified equation (Eq. 53) for the     |
|    | mixture of weak acids, in theoretical, which     |
|    | pKa1 = 5, pKa2 = 6.5 and \( \text{ApKa} = 1.5110 |
| 24 | Three-dimensional plot of variables Y, X1 and    |
|    | X2 in the modified equation (Eq. 53) for the     |
|    | mixture of weak acids, in theoretical, which     |
|    | pKa1 = 6, pKa2 = 7.5 and $\Delta$ pKa = 1.5111   |
| 25 | Three-dimensional plot of variables Y, X1 and    |
|    | X2 in the modified equation (Eq. 53) for the     |
|    | mixture of weak acids, in theoretical, which     |
|    | pKa1 = 7, pKa2 = 8.5 and $\Delta$ pKa = 1.5112   |

| 26 | Three-dimensional plot of variables Y, X1 and |
|----|-----------------------------------------------|
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of weak acids, in theoretical, which  |
|    | pKa1 = 8, pKa2 = 9.5 and ApKa = 1.5113        |
| 27 | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of weak acids, in theoretical, which  |
|    | pKa1 = 4, pKa2 = 5 and \( \text{spKa} = 1114  |
| 23 | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of weak acids, in theoretical, which  |
|    | pKa1 = 5, pKa2 = 6 and $\Delta$ pKa = 1       |
| 29 | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of weak acids, in theoretical, which  |
|    | pKa1 = 6, pKa2 = 7 and $\Delta$ pKa = 1       |
| 30 | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of weak acids, in theoretical, which  |
|    | $pKa1 = 7$ , $pKa2 = 8$ and $\Delta pKa = 1$  |
| 31 | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of weak acids, in theoretical, which  |
|    | pKa1 = 8, pKa2 = 9 and \( \text{apKa} = 1     |

| 34 | Inree-dimensional plot of variables Y, X1 and       |
|----|-----------------------------------------------------|
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | pKa1 = 4, pKa2 = 4.5 and $\triangle$ pKa = 0.5119   |
| 33 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | $pKa1 = 5$ , $pKa2 = 5.5$ and $\Delta pKa = 0.5120$ |
| 34 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | $pKa1 = 6$ , $pKa2 = 6.5$ and $\Delta pKa = 0.5121$ |
| 35 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | pKa1 = 7, pKa2 = 7.5 and ApKa = 0.5122              |
| 36 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | pKa1 = 8, pKa2 = 8.5 and $\Delta$ pKa = 0.5123      |
| 37 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | pKa1 = 9, pKa2 = 9.5 and $\Delta$ pKa = 0.5124      |

| 38 | Three-dimensional plot of variables Y, X1 and       |
|----|-----------------------------------------------------|
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | pKa1 = 4, pKa2 = 4.2 and ApKa = 0.2125              |
| 39 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | pKa1 = 5, pKa2 = 5.2 and $\Delta$ pKa = 0.2126      |
| 40 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | $pKa1 = 6$ , $pKa2 = 6.2$ and $\Delta pKa = 0.2127$ |
| 41 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | pKa1 = 7, pKa2 = 7.2 and $\Delta$ pKa = 0.2128      |
| 42 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | pKa1 = 8, pKa2 = 8.2 and ApKa = 0.2129              |
| 43 | Three-dimensional plot of variables Y, X1 and       |
|    | X2 in the modified equation (Eq. 53) for the        |
|    | mixture of weak acids, in theoretical, which        |
|    | $pKa1 = 9$ , $pKa2 = 9.2$ and $\Delta pKa = 0.2$    |

| 44 | Titration curve of benzoic acid in 0.1 M   |
|----|--------------------------------------------|
|    | potassium chloride solution with sodium    |
|    | hydroxide solution131                      |
| 45 | Titration curve of potassium biphthalate   |
|    | in 0.1 M potassium chloride solution with  |
|    | sodium hydroxide solution                  |
| 46 | Titration curve of p-nitrophenol in 0.1 M  |
|    | potassium chloride solution with sodium    |
|    | hydroxide solution                         |
| 47 | Titration curve of pralidoxime chloride    |
|    | in 0.1 M potassium chloride solution with  |
|    | sodium hydroxide solution                  |
| 48 | Titration curve of boric acid in 0.1 M     |
|    | potassium chloride solution with sodium    |
|    | hydroxide solution                         |
| 49 | Titration curve of ephedrine hydrochloride |
|    | in 0.1 M potassium chloride solution with  |
|    | sodium hydroxide solution136               |
| 50 | Gran's plot (G plot) for the titration     |
|    | of benzoic acid in 0.1 M potassium         |
|    | chloride solution with sodium hydroxide    |
|    | solution137                                |

| 51 | Gran's plot (V plot) for the titration      |
|----|---------------------------------------------|
|    | of benzoic acid in 0.1 M potassium chloride |
|    | solution with sodium hydroxide solution138  |
| 52 | Gran's plot (G plot) for the titration      |
|    | of potassium biphthalate in 0.1 M           |
|    | potassium chloride solution with sodium     |
|    | hydroxide solution139                       |
| 53 | Gran's plot (V plot) for the titration of   |
|    | potassium biphthalate in 0.1 M potassium    |
|    | chloride solution with sodium hydroxide     |
|    | solution140                                 |
| 54 | Gran's plot (G plot) for the titration      |
|    | of p-nitrophenol in0.1 M potassium chloride |
|    | solution with sodium hydroxide solution141  |
| 55 | Gran's plot (V plot) for the titration      |
|    | of p-nitrophenol in 0.1 M potassium         |
|    | chloride solution with sodium hydroxide     |
|    | solution142                                 |
| 56 | Gran'splot (G plot) for the titration of    |
|    | pralidoxime chloride in 0.1 M potassium     |
|    | chloride solution with sodium hydroxide     |
|    | solution143                                 |

| 57 | Gran's plot (V plot) for the titration     |
|----|--------------------------------------------|
|    | of pralidoxime chloride in 0.1 M potassium |
|    | chloride solution with sodium hydroxide    |
|    | solution144                                |
| 58 | Gran's plot (G plot) for the titration     |
|    | of boric acid in 9.1 M potassium chloride  |
|    | solution with sodium hydroxide solution145 |
| 59 | Gran's plot (V plot) for the titration of  |
|    | boric acid in 0.1 M potassium chloride     |
|    | solution with sodium hydroxide solution148 |
| 60 | Gran's plot (G plot) for the titration     |
|    | of ephedrine hydrochloride in 0.1 M        |
|    | potassium chloride solution with sodium    |
|    | hydroxide solution147                      |
| 61 | Gran's plot (V plot) for the titration     |
|    | of ephedrine hydrochloride in 0.1 M        |
|    | potassium chloride solution with sodium    |
|    | hydroxide solution148                      |
| 62 | Titration curve of the mixture of benzoic  |
|    | acid and boric acid in 0.1 M potassium     |
|    | chloride solution with sodium hydroxide    |
|    | solution                                   |

| 63 | Three-dimensional plot of variables Y, X1     |
|----|-----------------------------------------------|
|    | and X2 in the modified equation(Eq.53) for    |
|    | the mixture of benzoic acid and boric acid150 |
| 64 | Titration curve of the mixture of benzoic     |
|    | acid and p-nitrophenol in 0.1 M potassium     |
|    | chloride solution with sodium hydroxide       |
|    | solution151                                   |
| 65 | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of benzoic acid and p-nitrophenol152  |
| 66 | Titration curve of the mixture of             |
|    | p-nitrophenol and boric acid in 0.1 M         |
|    | potassium chloride solution with sodium       |
|    | hydroxide solution                            |
| 67 | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation (Eq. 53) for the  |
|    | mixture of p-nitrophenol and boric acid154    |
| 68 | Titration curve of the mixture of             |
|    | benzoic acid and ephedrine hydrochloride in   |
|    | 0.1 M potassium chloride solution with        |
|    | sodium hydroxide solution                     |

| 69 | Three-dimensional plot of variables Y, X1       |
|----|-------------------------------------------------|
|    | and X2 in the modified equation (Eq. 53) for    |
|    | the mixture of benzoic acid and ephedrine       |
|    | hydrochloride156                                |
| 70 | Titration curve of the mixture of               |
|    | p- nitrophenol and ephedrine hydrochloride      |
|    | in 0.1 M potassium chloride solution with       |
|    | sodium hydroxide solution157                    |
| 71 | Three-dimensional plot of variables Y, X1 and   |
|    | X2 in the modified equation for the mixture     |
|    | of p-nitrophenol and ephedrine hydrochloride158 |
| 72 | Titration curve of the mixture of boric acid    |
|    | and ephedrine hydrochloride in 0.1 M            |
|    | potassium chloride solution with sodium         |
|    | hydroxide solution159                           |
| 73 | Three-dimensional plot of variables Y, X1       |
|    | and X2 in the modified equation (Eq.53) for     |
|    | the mixture of boric acid and ephedrine         |
|    | hydrochloride160                                |
| 74 | Titration curve of the mixture of potassium     |
|    | biphthalate and boric acid in 0.1 M             |
|    | potassium chloride solution with sodium         |
|    | hydroxide solution161                           |

| 75 | Three-dimensional plot of variables Y, X1 and        |
|----|------------------------------------------------------|
|    | X2 in the modified equation (Eq. 53) for the         |
|    | mixture of potassium biphthalate and boric           |
|    | acid162                                              |
| 76 | Titration curve of the mixture of benzoic            |
|    | acid and pralidoxime chloride in 0.1 M               |
|    | potassium chloride solution with sodium              |
|    | hydroxide solution163                                |
| 77 | Three-dimensional plot of variables Y, X1 and        |
|    | X2 in the modified equation (Eq. 53) for the mixture |
|    | of benzoic acid and pralidoxime chloride164          |
| 78 | Titration curve of the mixture of potassium          |
|    | biphthalate and p-nitrophenol in 0.1 M               |
|    | potassium chloride solution with sodium              |
|    | hydroxide solution                                   |
| 79 | Three-dimensional plot of variables Y, X1 and        |
|    | X2 in the modified equation for the mixture          |
|    | of potassium biphthalate and p-nitrophenol166        |
| 80 | Titration curve of the mixture of                    |
|    | p-nitrophenol and pralidoxime chloride in            |
|    | 0.1 M potassium chloride solution with               |
|    | sodium hydroxide solution                            |
|    |                                                      |

Figure No. Page

| 81 | Three-dimensional plot of variables Y, X1 and |
|----|-----------------------------------------------|
|    | X2 in the modified equation for the mixture   |
|    | of p-nitrophenol and pralidoxime chloride168  |
| 82 | Titration curve of the mixture of             |
|    | pralidoxime chloride and boric acid in        |
|    | 0.1 M potassium chloride solution with        |
|    | sodium hydroxide solution169                  |
| 83 | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation for the mixture   |
|    | of pralidoxime chloride and boric acid170     |
| 84 | Titration curve of the mixture of             |
|    | benzoic acid and potassium biphthalate in     |
|    | 0.1 M potassium chloride solution with        |
|    | sodium hydroxide solution171                  |
| 85 | Three-dimensional plot of variables Y, X1 and |
|    | X2 in the modified equation for the mixture   |
|    | of benzoic acid and potassium biphthalate172  |
| 86 | Titration curve of the mixture of potassium   |
|    | biphthalate and ephedrine hydrochloride in    |
|    | 0.1 M potassium chloride solution with        |
|    | sodium hydroxide solution                     |

| 87 | Three-dimensional plot of variables Y, X1 and |
|----|-----------------------------------------------|
|    | X2 in the modified equation for the mixture   |
|    | of potassium biphthalate and ephedrine        |
|    | hydrochloride174                              |
| 88 | Titration curve of the mixture of             |
|    | pralidoxime chloride and ephedrine hydro-     |
|    | chloride in 0.1 M potassium chloride          |
|    | solution with sodium hydroxide solution175    |
| 89 | Three-dimensional plot of variables Y, X1     |
|    | and X2 in the modified equation for the       |
|    | mixture of pralidoxime chloride and ephedrine |
|    | hydrochloride176                              |
| 90 | Titration curve of the mixture of potassium   |
|    | biphthalate and pralidoxime chloride in       |
|    | 0.1 M potassium chloride solution with        |
|    | sodium hydroxide solution177                  |
| 91 | Three-dimensional plot of variables Y, X1 and |
|    | Y2 in the modified equation for the mixture   |
|    | of potassium biphthalate and pralidoxime      |
|    | chloride178                                   |