CHAPTER VI

SUMMARY

As previously mentioned, this thesis stagted by surveying the classical theory of
Brownian motion which has béen w Jkndil] dong time because knowledge of
the theory in the classicg Eis v ¢ J rtant for studying quantum

apalvze in detail both the

\\“

mathematical and physi ; \ P te&,rals and to apply this

powerful tool to the angh e \ KgoWs that the characteristic of
h s \ .

the Brownian movemen#fis enonifiat a pariclemoves in some surrounding

and exhibits a random tyg © have televaluate the reduced density
matrix of the Brownian partigle. s =) ftion @bout this particle is contained in
this quantity. In general case 7 1o system coupled to other general
system or surroundi & : i aJs impose upon us to
write the reduced de u’, RifhE more convenient form
as discussed in Eq.(4] i , ar - w e role as the propagator

relating density matrices ét different time or the transition probability for the density
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surruund ng. The Feynman method is more advantageous and convenient than other

methods to solve problems like this one.
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The quantum mechanical model under our consideration consists of the
Brownian particle coupling to the bath of harmonic oscillators (or a bosonic heat bath)

with linear coupling

where ¢; is the linear coupliff stant fopthe B N particle and the & oscillator

The Lagrangian and the aciien™ 0L e f plete.sysre presented in Eq.(5.4) and

i ney; :rj] (6.1)

and
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A= _“d =1 3 _“5"’ ' r : Er — S Mg X JJ’ . (6.2)

i€l has feedback on itself
This effect comes from thé perturbation MOVin partiélé to the heat bath.
3 i problem of these

WAL oV %’"ﬁfiuﬁ ﬁﬁﬂ%ﬂ N e

IS given in he form of

The moving of the Brgi/i

Fqln,q10)] = mp{-%]l df]ld'r [al0) =g ()][alr - $)gls) —a " (1~ x}q'{s]]}. (6.3)

where
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(6.4)

This functional keep all interactions between the Brownian particle and the heat bath.
and the interactions well.

Studying this functional in detail leads

The reduced density mats for the particular case. not in

general. The more gengiaimes ‘ : 28). In this work, we are

‘-~.

ction will be switched on at

interested in the case thajg# bsystems (a particle and a

heat bath) do not interac _

the later time ¢ (. For thy \Wave function y of the whole

system can be split into Twoari’

where. at time 7 ), @(g,) descrity icle and y(x,) for the heat bath.

From this reason. the initial.g
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Again at §he beginning of time 7 e density matrix

can be written i

Brownian particle alone and p_.,(.r,,,x;,} for the heat bath.

We do not use the density matrix pf q“,q;;rﬂ,x;) shown in Eq(5.9), for the
complete system because we are not interested to measure any quantities of the heat
bath at final states. Furthermore, because no one can know all information of the

complete system in details, particularly the heat bath which compose of the large
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number of oscillators, we sum over all final states of the heat bath and reduce the
complete final density matrix into the reduced density matrix. The density matrix

pl4..q,.u) for the model is obtained in the form

i 90:45) Pal 0. q20) (6.5)

la..q;.n) = ) dg,da; ’
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with the propagator ./ written'in

J["?ﬂ .Q'; ;‘J’”"ff:’l = II !

xl+q'l:5'.i] f

-5 [q{ sl =g'1s)] . (6.6)

To make our resul ' edfite tolh® lag imitw € have compared the real part
of Eq.(6.4) to the well-knowffcoleiztsn af

(FINF(8)) = 2n kTS %0
V. X

To do so. it is necessafyfto consie C Ut of osgillator with density o, (@) ,

and to impose the condltmg
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pilwle’(w) = g 2
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on our resu]t. Finally, the propagator can be written in the form
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Na-a,:90.495) - [ Dgtn gt exp%{ Alq]- 4. [a]

= MyI dilg(Ng(0) - g (0§ (1) + g(Ng'0) - g (o] |
]

1 2M he
xexp-i— 4 Tdm mmh‘ i} ' [q{f] == ?'{”] cosewlf — s) [q{s*] —q'{.s']l
i . 1 1E
(6.7)
One can see that it is expiasse 1#7- f the reld¥®angonstant 7 = % or on the
other words in terms © //-X 1: 3 snomenological viscosity
coefficient). '

As we have said 86y, i;

propagator K for a wav

the same role as the
e of the reduced density

matrix. Using Eq.(6.5) and iwell-known Fokker-Planck

equation as

(6.8)

7 me pmpagatar J

ﬂuEI’JVIEWI‘i‘WH’T‘i
QWW&QﬂiEHNﬁTJV&']&TEI

by considering the sho
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