CHAPTER 11

INVESTIGATION OF THE THEORY OF BROWNIAN MOTION

An important SitistiéatameChatiics is called “Brownian Motion
" which was investigated he-batanis i3 in 1829 He observed a
suspension of plant pollerd Cd7 water uiide 1""'-“ oscope. The tiny particles
executed an irregular flt \the O™ of Brownian motion was
first described by Einst r developed by Langevin
and others. The aim of vects of the theory of the

Brownian motion, particulafly ghafclasseal

General Assumptions and Sum

It is well ﬁf B phenomenon in which a
particle, which we call ‘i Brov m hro ,; a stationary fluid. The
Brownian particle is assuwad to be large in comparison with the particles of the fluid

and its mr_atiun ﬂ%ﬂ;ﬁ lﬁlﬂl%-:w Q::I: T4 the particles of the

fluid. The frequggncy of the collisions is very high ( lisions per second).

In the ‘ FTlatanﬁe ﬁfis] ﬁﬁi\m thjlmlaﬂm of
the mear ¢ valae ofit edﬁll | e Br mﬁc [ e this could
be immediately observed. As is well known, this problem was first solved by Einstein

[THIOH15] § the case of a free Brownian particle, and he obtained the famous formula

(x*)=2D1= %r (2.1)



wheres; is the friction coefficient, 7" the absolute temperature and / the time. The
influence of the surrounding medium or the particles of the fluid is characterized by the
friction coefficient i as well as by the temperature 7. For this Einstein used the
formula of Stokes, because the Brownian particle is almost always immersed in the
fluid as the liquid or gas at ordinary pressure. Furthermore in that case, the mean free

for bodies of simple fouu ill depend on the viscosity

coefficient of the mediu . the pressure. But. in the
other cases, as when t as in which the mean free
path of the molecules arg#irez Buowning particle, the friction

will change in characté is ifighion cbic | 1y bésproportional to the pressure.

The basis of Eq (24 been derived in various other

ways, has been almost alwg¥s the=e o ion of the so-called Langevin

f-&m

equation _ .‘f?"" .
o -A—mm;;:;_‘;‘ 2
L7 i (2:2)
) {
where v= is the ve]nmty of the Bmwman particle. Characteristic of this

— mﬂfﬁm%mnwmﬁw e e

split into two pails
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determunng the behavior of the Brownian particle over a long period of time.

(2) a fluctuating part F1(¢), which is independent of velocity v and varies over

a time scale that is much smaller than the time scale over which variation in the



velocity is noticeable, and its ensemble average value vanishes. We can write these

assumptions more explicitly as

(FnN)=0
{F[r'.'!-'l:f'] =2nkts(r-1)

(2.3)

One can say that Eq.(2.2) is ag
motion can be described by -:3?'-'-" ate gon-ciesapping time scales. More generally

Eq(2.2)is
(24

tal Fafce 7 like the gravitational

One important noti® ibution of any quantities like

the displacement, velocity orffordd=sir hdve a quantity which is specified
by g This quantity cannot be:sp ely as a function of time, but one

Just knows about its, ‘—_.:;;zm;_m;.umu-; tie of this quantitv will

v; ] :':, Of the quantity g at r =0

occur, that is the fun

the probability W{g. g, ™ dg is a chance of this quantlty if I has some value which lies

) “’J"{I BTN TR o e

all mean values age determ nnstancm

q Wq §’Nﬂ 5@&“&;13)1] Hr] a E' (2.5)

In the case of the free Brownian particle (with no external force), the function

Wlg. ga;f) was already determined by Einstein as

1Y | (e-x,)]
W[.\: x,.t) = (J ”J ﬂ[{—Tj (2.6)



of which the first part of Eq.(2.1) is an immediate consequence. He derived this by
finding for the function W(x, x,,;r} a partial differential equation, which is the diffusion

equation

(2.7)

and of which ll'l.'r,_\‘”:r'] ! the=so-callce éﬂlmmn It is clear from the

eiaint x,. In other words, 11" is

o) =8(x-x,). There are

L Y
s, ‘\\\‘
:

the solution of Eq.(2.7]

boundarv conditions le at the wall. In the case

of a completely free ={) for x===. Einstein
then derived the relatior [} and the friction constant
n very simply. using the g#cs P , ‘--_1 e The connection between the
probability distribution and ghe ﬁr 48 ial equation in the parabolic form like
Eq.(2.7) has been general:zed ' owski, Fokker, Planck, Ornstein and
others. The equatiogs g Blanck gquation. Especially for a
particle under infl ;W:'—‘“T' ichowski showed that the
generalization of Eq ( i Was

i¥

ﬂuﬂqﬁaﬂiﬂﬂﬁm

mﬂm RTIPTURY MR NN )

by Einstein, which says all of these results hold only when 1 is large when compared
with m/n where mjn is a characteristic time constant of the system. The
generalization of Eq.(2.1) for all times was given by Ornstein and Furth, independently

of each other. The result is



(1"1): Emf?'[it [+ M) ) (2.9)

For values of 1 large compared to m/n this becomes to Einstein formula (2.1). For
very short time on the other hand, we get

(2.10)
as one would expect. be®HUSE 15 wist be uniform.
The Useful Methods of th
To study the Browgiin #ng i el 4 ¢ he & to deal with the theory of the
) | wriely
so-called Gaussian random : @%pproaches to the theory of the
Gaussian process as follows:
i) Fourier sgries method he attention ¢ g dhethod is focused on the

f’d'
i
|

1s variablelin term of a Fourier series

actual random varidhn ity, force or the other
variables of the systens I One usually develops
in time. Any coefficien®s @f the Fourier sgges can vary in a random fashion.

st S EPHIHIVF I AR Fiom e o

relation betwee’ll the spectrum of tl‘c random pmcess and the sn-callad correlation

QTN HATTNYA Y

u} Fokker-Planck method or diffusion method. Macroscopically, for an
ensemble of particles or systems, the variations which occur are like a diffusion
process. The distribution function of the random variables of the system will,

therefore, satisfy a partial differential equation of the diffusion type.



10

The following sub-section describes some notions which are important to
understand the theory of Brownian motion.

(1) The general random process

that only certain probabilifychs ' pns dre dicst hwabservable. Actually. the random

process ¢l/) is completg T bld F ik following prebability distribution:
\ g, (2.11)
\

which is the joint probajsifitygo1 giv f +dy,) at time ¢,. in the
range (¢..q. —dq) at tig \ ) at time ¢,. and so on. For

the special case we have

w gt ) g (q.q+dg) at time 1
I f :

-

o/ g4, +dq_.] at timef/ .

walgats.qty)

1 . i

and in the range (t,n J dq ) at time 1,. The _|mnt prebability w, must fulfill the

MUW‘FWEI’WIEWWWEI']ﬂ‘i

{a) w,

ARSI AN,

Gil; .Gl qnl,. This is clear since w, is a joint probability.

(c) wk(qkrk,....q,f,] = Jdq,,dq,,_,...dqmw,,[q,,t,,...,.q,a‘;) for k <n.

This is an example in which we are interested only in the joint probability at time

{,,....t, and then we sum (integrate) over all ¢y, . Gi\s. - Y Another interesting
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probability is that of finding the particle at time 7, at the position ¢, and at time /, at
position q,. irrespective of the positions the particle may acquired at intermediate
times. The probability for this case can be found by integrating w, over all

intermediate positions:

“’:(‘."n’m‘fﬁ';)=Jd‘In-r‘f* S 3 «‘fn—:"'n-h-”-‘lf.‘f:t‘h’f) (2.12)

To determine the JUASHGESE ex§ nn@ clear that one needs a great

number of records (™00 of experiments similarly
prepared which is a s8%Callg o find then, for instance,
u';{cﬂ}, one determin tv . Mhe definite experiment ¢
occurs in a given integ [ : sation (and especially for the
Brownian motion probléhn) ‘ - simplification because the
processes are stationary gt “TFlys me ; nderlying mechanism which
causes the fluctuations does me. A shift of the 7 —axis will

then not influence the function w3 ‘e can have

w | ¢)dyq g and g-+dy

walgs.q,5)

dq, which are at time mipnrai f apart from each other (1 is therefore = 1, —1)).

o SN NIIEIND T e e

¢l1) taken over a sufficiently Ionj fime. One camthen cut the regard in pieces of

et ] BN Foarbbarbd A Ridf bk i roces

one maj«.ur consider the different pieces as the different records of an ensemble of

joint 1‘--- yl! ‘a ,J nqin the ranges o, and

i

observations. In computing average values one has, in general, distinguished between
an ensemble average and time average. However, for a stationary process these two
ways of averaging will always give the same result, and one can, therefore, use either

of them.
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The probability w, leads immediately to a method of classifying the random

process:

_We shall call a random process a purely random process when the successive

LA L PR L ekt v (s f:(‘f:‘:}“';("i’f";} (2.13)
It can be seen that all the intGm he provess is then completely contained in
the first distribution functigf™, 1 Aisid NS Casy to give examples, but

considered as a kind of

correlate when the time

for continuous /. th
limiting case; in any a

interval 7, — ¢, is small

-For a more compli case all thEinformation about the process will be

- :

contained in w,. Such proCessesgiccalied off processes. For the more precise
, ATy

o fir e ihy &

L

definition it is useful ] onditional probabilities. Let us

now consider an exeraehitaraiiation Sl LIE 12 apdom o 9eéss) in which the particle
l

was found at times 1, =8 °¢,.....(,;. We then ask

(L
1
|

&

what is the probabllt c:-t" ﬁnding it at time {, at pos :

e "W"LTE’] o) El ¥ ‘3 BN

¥ ".'tn [ qn J"u-ﬁ ‘f: J'] ':214}

QW?ﬁ\ﬂﬂ‘iﬂJﬁJW]’mmﬁﬂ

and the"tonditional probability is given by

on ¢,? We denote this

Hln{qnfn *qrr—l"'ﬂ-f "“‘qf!l.‘]
“"n-f{‘fn—;fn-fw--t‘fﬂf}

W[Qu’n qn-f"n—!""'qf"f)z (2!5}
So far our consideration applies to any process. However, if we consider the

special case in which the probability for the final position ¢, depends only on the
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position at the time /,_, and not on any earlier times, in the other words, the particle
has lost its memory of the past, then the conditional probability depends only on the
arguments at time /, and 7,_,, so that we may write

w(qn;n | q;n—,r-".._;.._..

) = "’[qnfn I ‘h-—.'"n-—!) (2 lﬁ)

If the conditional probabili g’ the corresponding process is

called a MarkofT process. "“‘“L v ) is often referred to as the

transition probability. WE Can esDeess joint prababifity in term of the transition

probability. In a first step v SeMilADH 15) o (-1 ql..r,]

."'-::Iff.lg"ru"‘.,rlnf"l ‘.‘u--i q,i‘;}} {2!?}

w,_, can be written in term 8 n terms of w,_; and so on

so that Eq.(4 17) becomes

“1-'Tl{fr:'rn 'qn-!"rr- """ £ = 5 bl . AL "‘JP—f qa—.‘rn—.‘)'"
i

= 1 B S S s o e 2+ e o v o ™| (2.18)

573 - ‘

I 'I.l

Thus the joint pmbabﬂ
the transition p liti %‘ ween two times 1,
and 1, where rﬁﬂu B 3% EHL ﬂ ﬁlﬁﬂh the probability of
finding the pamcle. at the position ¢, af the final timgsg, where at the ligginning time ¢,

" mﬂ 3&1‘&»‘1 BRILTE TRl T Fox TR

end pmnt

of‘ a Markoff process can be obtamed as a mere product of

“'3{*?..‘;71‘-'?:*:) = J-d?nh:d‘fn-:--'d‘h“'(‘fnfn | ‘fnr-rfn—.f}“’[ﬁ'u-;’n—;]?n—:’m.*)---
it )wila,) . (2.19)

% “’(‘h‘ 2
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Now we wish to consider three arbitrary times subject to the condition 7_ >/, >1,.

We specialize Eq.(4.12) to this case as

w_,(qcf,_.,qgru)=_|. dq,,w‘,.(q,!c,q,,r,, .qu!ﬂ) : (2.20)

Wlththehelpoqu{ZI'?)and N f/’ (2.20) in the form
W {{f‘_ e — L 1{<:h.m,- ‘) (2:21)

which is the so-called oluchowski equation. It is

the basic equation for tis

(2) Relation betwe : ‘ relation function

Suppose one consic t@tionary random process ¢i7)

whose average value is zero. | me interval 5. one can develop

the resulting function in a Fouriecim

RIS ‘FT ’LFET? WHTSH "Ef"iﬁ P
amaamdﬁﬂﬂﬁ%maﬂ

Using the fact that Lu{ m:l| is an even function of p and going to the limit /" — =, one

can write this equation in the form

(¢°) = Li::;:%]df ¢ ) = ]-dm lw) (2.24)



() = lim %‘p(m)lz, (2.25)

where /(@) is the spectral density. Consider next the average value

drq{I)q(f +5) . (2.26)

By introducing the Fouriémespansion(1 22) ansusmesthe Fourier integral theorem,

one shows easily
(2.27)

from which follows by ig

The average ( qlﬂ fj‘[ v T e

3) Some rema K nn the theory of discrete random series

e FUEI NG AP T —

be to determine w[ulm s7) when gne knows w rlm r). Here w idm.st) is the

o] mmnwumwma Bh.

time / can also only have discrete values st, s /,2,3..... From now on we will drop
ther and write also W{n,m) for w(nlm,7) in order to emphasize that it is the basic
probability which must be given from the mechanism or the physical cause of the
random process. To find w(#im.s) then one can try to make successive use of the

Smoluchowski equation
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w(nlm, s) = );u-[;df,.s— NW(1.m) (2.29)

However, for large values of s this is usually not practicable, and one has to look for

other methods. It is instructive to write (2.29) in a different way by using the

conditions as

(2.30)

ar

(2.31)

Using this and dropping He can write Eq (2 29) in the

form

(i, s) = wln.s— 1) = D ettt — > W(ln)wln.s—1) (2.32)
F BN

L
o

One can interpret thisby WLA {12, 5) with the time is
owing to the gains of :E because Of the fra on from all possible / to » minus the

losses of ' because of the ggansition from ngte all possible /. 1t is clear, therefore,

e B H RS oo

gases. One musikolve such an equatl.gn for a gw&n initial condition distn'hutmﬂ in our

~ RRTRN TR ’J NYa Y

wing)=4,, (2.33)

In many cases, the process has the property that the dependent variable / can change in
one step by at most +/. This means that W(n./) = 0 except when n=1/, I+ /, and Eq

(4.29) or (4.30) then becomes a simple differential equation.
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For example, we shall consider the discrete random walk problem in one
dimension. This is the simplest possible case and very useful to study the Brownian
motion problem. We assume that a particle can move on a straight line in steps of A
and at each time moment s there is an equal chance that the particle moves a step A

to the right or to the left. If at s =0 the particle is at the position mA, what is the

probability w{ﬂlm,-ﬁ'} that at time §, the s e positions #A ? It is clear that the

basic transition probability

Introducing this in Eq.(4

discrete differential eq

)~ 15— 1) (2.35)
r:':J ’.
which has to be solved with the A f f»‘?‘; 3). The solution is very easy to

obtain; with v = ,!u— O
-'!fj.
"F.m s J

((u+s) 2)1 [lu-— 5) 2)1™

o BEELD. mmsmmni
m,,m,,s,mmmmmmﬂ’wﬂ:ﬁ:::::

property of the process. However since we shall see that the spectrum essential

(2.36)

determines everything, it is more natural to start (following Rice) with the Fourier

development of the Gaussian random function ¢(s) .

Consider again the stationary random function ¢(r) over a long time 7', and

suppose that (/) is repeated periodically with the period 7. One can then develop
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gl1) in a Fourier series

(= =]
@0 =3 (a, cos2rw,t +b,sin 2z ;1) (2.37)

J=1

ranges da . db, the expre

" N ’) /207 (2.38)

With these Hﬂnﬂfrg m Wﬁ\w El]mTlﬂﬁlbutmn functions for

the Gaussian r

Ak S04 HAARREAR

It is best to start with the discrete random series, say supposing that the basic
transition probability w(slm.7) or W(n,m) have the property that in the timezn can
only change by zero or by +/. This was, for instance, the case in the example of
random walk problem. Consider now for this case the limit in which 7 and the time
sT becomes continuous. The Smoluchowski formula will then become a partial

differential equation of the first order in the time coordinate and of the second order in



19

the space coordinate. For instance, for the example of random walk problem. the

Smoluchowski equation becomes

win,s)=wlns—1) = é[u'[ﬂ-i- Ls=1)=2wlns—1)+wln-1s-1)]. (240)

In the time that s7 = ¢ and #A = x beSoRiicontinuous variables, and this clearly in the

form
(241)
L ﬁ"' / 4 | e \ - . -
when )= lim - Ong fore the el Lheat conduction or diffusion
=l OT oy . 1
equation. This expressigff dgftaiBes ufriSliayiolg OF th& free Brownian particle. In

the same way one shows il

forces like the gravitational £

(2.42)

o b N
where f = lim—— and#R is an integer.

ra0 TR

‘a v
In this %iueﬂngnn Hdm ﬁ nﬂi’t;]{fsllﬁtion wlq,q,.1) then
bemmﬁ tﬁmblem of ﬁn? th& fundamentalSelution of the 1al differential
i -

A4 T Ehb b ndiad oW Eehi @t hesenrnca

By this mean the solution for which ¢ =0 becomes the Dirac delta function

equati

5l¢—g,). This corresponds to the condition (2.33) in the discrete case and expresses
again the fact that for 1 =0 one is certain that ¢ =g, For Eq.(2.41) this solution is

given by
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wlalao 1) = e ””;_ F[-{q' ~qy) /w:] (2.43)

It is easy to show that this is the limit into which the solution (2.36) of the discrete

case goes over. For Eq.(2.42) the fundamental solution is given by

@) /41::] . (2.44)

where {q) = ¢, expl - f
One should poig ffusion equation only when

wlnm, ) is such that in \Zero or =/, or, less precisely.

general case. the Smoluchg sk (OHS®ill begome in the limit an integro-

when in small times the spgfe e with small amounts In the

differential equation which is of The §"the Boltzman equation in the kinetic

theory of gasses.

In the contirtrgs fichowski equation in the

form .

A Ut I ﬂ'ﬂﬁﬁ&l’mﬁn 29
RIS <

a,(z.Af) = Iz{v{y— :]”u{ﬂ:,ﬂ.f] (2.46)

and we shall assume that for Ar — ¢ only the first and the second moments become

proportional to Af so that the limits
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o

Alz) = EE;E"'{*‘N}' (2.47)

B(z) = lim —I-a (z, A1) (2.48)
- ‘H_}um A k] s

exist. This assumption expresses | or these processes in small times the
space coordinate can only = smallAfoffis In the actual problems of the
Brownian motion this assympie .., o . eaverage values A(z) and H(:)
can be calculated fror analogy from the circuit
equations with thermal od of Rice, these equations

are. therefore. the real L#S1s 4 anmotion.

To derve ' consider the integral

c“[J'|”] L A \ - :
I R{~. . wher P S aa S it flgction, which goes to zero

sufficiently fast for y — =% réfitial quotient by the limit of the

difference quotient and using the-Smy ation in the form of (2.45) one can

write 3

& 'ﬁ‘[ylx, f] 1 .
o222 B 7

ﬂ i gﬁ”ﬂﬂﬁﬂ MM ‘E-fdzm wlzt.r)].
:a;:a‘l’ﬁs in (2=). Ilm g mﬁmmjﬁ H: f:: _:t:

(= -_}']' and one gets

dyv R\ y)[w xf+du) H,.I'}]

an A
I dyRl y) —ﬂgf—] = _[u":: wizlx, r{ Ri(z) Alz) + %R"{:} Bl :}} ]

Integrating partially and writing y for = one obtains
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——|=0.
I@R{J—{ 5 3 o ]

Since this must hold for any function R(y). the expression in the square brackets must

be zero, which gives the general Fokker-Planck equation

(2.49)

The Brownian Motit

. # LY "g s 2 =
In this section % Mg motion in the case of tree

Brownian particle in d€tail§ of mass M with velocity v

satisfies the equation of #iot

(2.50)
T~ :

where n is the y i ‘ ation force, of which the

average value is zero i nd which has a very sharp corre] on function and therefore, a

practically whlr spectzﬁﬂ- The ectral @ehsity of /(1) is #m kT where k is the

Boltzman cops laj?gam‘l ’.ljﬂ lﬁiium The analogous

electrical pruh?!m is of course the [g- R circuit, a the circuit equgtip ipn is

ammnmumwmaﬂ

!~—-+R.: 1) (2.51)

where [(1) is a purely random fluctuation e.m.f. (the thermal noise source), which has
the spectral density #RkT. We will combine these cases by writing (2.50) and (2.51)

in the form
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%Hﬁf{ti (2.52)

and by taking +#0) as the spectral density of the purely random f(s). This means that

we assume

(2.23)

This means, however, hesides® must assume that f(7) is

Gaussian. This can b her one can postulate the
Gaussian distribution of sume the two properties

(2.54)
MW ) 00) @)

where the sum has to_be take -0 avs in which one can divide the

2j time points f, . ®geato 7 paws His easvto SRow TR Edivalence of these two

| “'J

definitions. N

o ¥

Since f(1) is GausSigm,random procesgwith a spectrum

AUEINENINGINS
ammmmu’w%v Y18 Y

this currespﬂncis to a correlation function plr) = exp(-y) and the second probability

(2.56)

distribution is, therefore, the two dimensional Gaussian distribution

Lyvopect) = 2 257
walysoypit) = w)“ g Fif)(f (.P;+_v Py Y )J (2.57)



since
(y)= Tdm G (o) = ? (2.58)
i

fop that w.(y,,v,;1) gives the complete

"L,

Here y{(/) will be a Markoft' proces

\|

description of the process.

Next, we can obtain_thsekotker-RlancErequation for this problem by using the
general Fokker-Planch eguafty Bls. section which the average

values A[v) and Bly) cag ' and one finds

(2.59)
The proof'is simple. intejgr ; e interval Ar one gets
(2.60)
Therefore
hm . (2.61)
AUt 4t b Highns
mnce(‘ﬁ 0. Funher 'Y,
W ﬁ\‘iﬂ‘iﬂJlIW]') ngae
ﬁ} } —y YA+ Id\ Idn ﬂ'-]fln}) (2.62)

and from the second equation of (2.53) leads to the value of the double integral is
2DAt, so that



Bly) = lim _(%‘) =2D. (2.63)

A=}

In the same way it follows from (2.54) and (2.55) that all the higher moments of Ay go
to zero in the limit As — 0. With the values given by (2.59) the Fokker-Planck

equation becomes

(2.64)

The fundamental soluti® b For 1 —> x one gets

in accordance with (2.58),

= _a-

one gets again Eq.( 5“’*""'"‘"}# as now. of course, been
i 1

assumed from the beg," ing

A
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