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APPENDIX A,

Hilbert Spaces

The Axioms of Hilbert Space

The abstract Hilbept 'si i.r § a collection of objects called

y the following axioms (1)
o — '

| p. 35-36).

¢=\\§éﬁ\?- plex coefficients. This
AN\ N
~ ‘o\ 3

Fy \\\ Wthere is associated a

1. X is s
means that to evéd

third (f+g) ¢ K. )1 S ent, and every complex

‘ A\
number A there corresponds ‘Nﬁ,ai 4)\ € K. The following rules

»qy;' =

(f+g) + h = £ + (g+h) &

quidngyingans
RINNITRNAINAY

There exists a unique zero vector 0 such that for all f

O+f

1]
~h

.
2

0. f

]
O



2. There exists a strictly positive scalar product in XK. The
scalar product (f.g) is a function of pairs of elements f,g € X with

complex values and satisfying the following conditions :

(8. )" ;

~
"y
.
(1153
i
)

(fe@g) + (f,0D 3

for all complex A 3

equality in the lasﬂ‘g”’—"f I Ine o1 f = 0. We define

of €f,17. i.8.

11,

(A.1)

If follows from these spe fhat the scalar product and norm

satisfy the Sch-n 
o]
J

CF, )] = lfl 1gl (A.2)

1)) i) LKL M
AT UMINYAE

If+gl « Ifl + 1gl (A.3)

3. The space K is seperable. This means that there exists a
sequence f é X (n=1,2, ...) with the property that it is dense in ¥
in the following sense : For any f € X and any € > 0, there exists at

least one element f_ of the sequence such that
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If—fnl LB Y

4dis The space K is complete. A Cauchy sequence, i.e.., any .

sequence {f 3 with the properly

lim if -t =0

Comments on the a:

The axioms in , 2 » 7 each of which refers to a
=
dlfferent structure prop T H space. Group 1 expresses the

Yy
+

and the metric. Group 3
Y

fact. »Lhat % i e field of complex

numbers. Group V_—

'!
i
i

expresses separabi y, and group 4, complet ess, of the space.

. AU J!Lﬁl 1IN0 R
mecharﬂ%ﬂ]bﬂfﬂﬂ?tﬂﬂ WW ﬂﬂTa El the f ield of

reals over the skew field of quaternions (Jammer, 1374, p. 358;
Jauch, 1968, p. 131), in addition to the field of complex numbers,

these being the only finite-dimensional skew fields which according to
. a theorem by Frobenius contain the reals as a proper subfield. Quantum
mechanics in real Hilbert space has been developed by Stueckelberg and

he has found that the empirical evidence points towards the existence
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102

of a superselection rule, which has the effect that at least for
simple systems the proposition system-is essentially equivalent to the

system of subspaces in a complex Hilbert space. The relation between

quaternionic quantum mechanics and the usual complex quantum mechanics
has been studied by Emch., who has shown that at least  for
simple-particle systems relativistic considerations lead to an

equivalence between the twr
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APPENDIX B |
The Formalism of Finite Systems

The quantum theory of finite systems may be summarized as
follows (Jammer, 1974, p. 5; Sewell, 1986, p. 9). The primitive

(undefined) notions are S ~\\\ W//ble (or "physical quantity” in

the terminology of \ «-nn) e To every observable A

corresponds unique operator A acting in a

certain Hilbert s a\\\ e system correspord to
the normalized ve nat the expectation - value

of an observable, *.;\\:- by the vector ¥. is (¥,
AY).The dynamics iWer b ‘; 1 ";"‘vf-singer picture. by the

\

transformations ¥ e states, where H is the

Hamiltonian operator, e energy observable of the

system. Thus, the rvable A at time t, for

.

an evolution fRof 1 st & .A¥ ). The model is

therefore determlnlﬂ by the Hilbert space reiﬂbsentatlon of its states

and Observabﬁsulﬁﬁ% ET‘W %W)Ej’ﬂlﬁ ijl e
‘meﬂw ﬂﬁ""’r‘g Wﬂﬂ'fta Erumpt ion that

observahles and bounded self-adjoint operators stand in a one-to-one
correspondence and that all nonzero vectors of the Hilbert space are
state vectors had to be abandoned in view of the existence of
superselectioh'rules, discovered in 1952 by G. C. Wick, A. S. Wightman

and E. P. Wigner (1952).



APPENDIX C,

The Einstein-Podolsky-Rosen Paradox

C.1 Introducltion

This is the repsrkal

Einstein., Podolsky

%g m phenomenon discovered by

5 and called by Einstein

himself "spooky acts known today as "quantum

non-locality” or "Che dPRf panadax” B et al., 1935: Mattuck.

1982, a, b)Y (see algh

' ‘_l
The phenomefion® 1hbine ‘

$2.0, 4.4.2 and- 4.4.3).

Suppose that two particles, 1

,'.\‘

and 2. have interacted th-‘i&é m\ the past, but are now so far
i"' f'—:'_.l" "
from each other that further—interaefion between them is impossible,
LA AN
(== T o N i T
Then quantum medha ' 51 ment carried out on

particle 1 will ché: B nd matter how far away

particle 2 is. Tl'ﬂchange is instantaneous.™oreover, this "spooky"

Wﬂwwfmw N9
lﬁwﬂeﬁnm UN1INEYIAY

It's not so surprising that a measuring apparatus changes the
state of an atom with which it is physically interacting (althéugh it
must be empﬁésized that no one has succeeded in showing how these
physical interaction produce the random collapse of the state vector

-- this is the "quantum mechanical measurement problem"” (see also



2.5.4)). The surprise first comes when ye discover that a measuring
apparatus is able to change thel state of a distant atom (which may be
hundreds of kilometres away) with vhich it is nct physically
interacting. This is the EPR paradox (Einstein et al., 1935) which we

will present in the form invented by Bohm (1951, pp. 661-623).

3 ‘ osed by two identical spin -
até, A S = 0 eigenstate of the
total spin operatw (S + neglecting spin-orbit

coupling. the spin

Suppose we have

1/2 atoms, in the si

b1225) {Cal)
J‘-l_g \
.ﬁ
where ll§>, 123> w‘ the single-particle spin
operators e B : un1t, vector in any direction.

Observe that the ®pi ate of dac ; f fnito;
Y SEwmT X 4

The molecﬂe exles, and the sp@s move off to distant

Stern-Ger lacﬁ H 1{1?] f ﬁﬁ]ﬂ If a measurement by
A now ylelds,qsay en |¥> has col apse o) I1+>|2 ¥, g s
R TR TN B o o

2 (whi8h may be 1000 km away) despite the fact that there is no

physical inter'action between 1 and 2, or A and 2 !

C.3 The Two—?article Correlation Function

The quantity measured in EPR experiments using two spin - 1/2
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particles is the "correlation function', E(a,b), where a. b are the
orientations of the Stern-Gerlachs A, B. respectively (in the photon
case, a, b are the corresponding optical polarizer orientations).
E(a.b) 1is .Jjust the weighted average of the product of A’'s result for

g, and B's result for -

(C.2)

vhere P__ is the |2n>. Expanding 123>,
122> in (C.1) in ter 7 A e ing the result for |¥> into
(C.2) yields

-

i E,, Llos o (C.3

gy i
|
4

y

= 1 TS TS
ARTR AT TN TINY TR - =

Equ(@,a) = -1

which says that each time A measures spin up (o, = +), B measures

spin down (g,_ = -1), and vice versa, i.e., perfect correlation.



C.4 Attempt to Resolve the EPR Paradox . by Means of "Local Hidden

Variables"

The EPR paradox seems to cry oul for an explanation in tferms
of "hidden variables” <(see also 2.5). That is. suppose that in

addition to the state vector | there is a set of hidden parameters

A TR K s Ry sein A B9 &/he molecule. a different set
for each molecule. An : éue of A, together with [¥>,
' | —

is sufficient to de

surement. of . and g, e.
g, if- . a= b= Z; G \ to be + 1 would not

caise o, to becom s rather, the value of

A would be tLhe cause = - 1. In this way we

avoid "spooky-action-g

Now, we expect é'; = - , of measuring o, _ should depend
on A and the oriShts 1 a of apps A Wby it should not depend on
b, the setling o ‘ is the very plausible

assumpt on, and hidden varisble @xeories of this type are

iy ”°°BF1”LTE] T 'VTE? SN
ARIANR TR SN 1

B(b,A\) = resull of measuring o, eyt

"locality"

C.5 Bell's Inequalitl

Is it possible to construct a local hidden variable theory

which gives agreement with quantum mechanics 7 Look at the correldtion
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function E(a.b). This will be just the veigﬁted average of The product

Ala,\) B(b,\) (analogous to (C.2))
Eta.b) = [ dx o) Ala.\) B(b,\) (C.5)

where p(A) dA is the probabilit,

between A and A + dA.

Without a speet® dellsiving ACEM), B(b,A) explicitly, we
cannot compare E d , quant “ sult (C.3). However, Bell
(1964) proved th for any local hidden
variable model ‘; ), E must obey the

following inequalit

| - ECa,b) + ECa; “E€8..b) + E(a’,b")| « 2 (C.8)

Jpparatus A and b,b' are
|
gs of apparatus B. The e'J ential thing in Bell s

where a, a' are ‘{'n

two different setéﬂl

proof is tha?ﬂu E]degetﬂaﬂ ﬂﬁﬁ Ejiel ﬂl?ndent of a. Bell's ,

inequality regtricts E so severely that 1t is easy to show that, f

e 409) 1 PP B VAN T it 20

quantum Mmechanical correlation function A

Thus, the quantum correlation function violates Bell's
inequality. Bﬁt all local hidden variable correlation functions must
' satisfy Bell's inequality. Hence no local hidden variable model with

E(a.b) of the form (C.5) can give agreement with quantum mechanics.
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C.6 Comparision of Local Hidden Variable Theory with Experiment

Since long-distance correlations of the EFR type had never
been systematically-investigated prior to Bell's inequality., Clauser
and  Shimony (1978) proposed that the question be examined
experimentally. Three types of experiments have been performed.

Iy

1. Proton pai 8 sing (1 experiment). Low-energy

E——
‘drmr-z-ﬂﬂ!gii, and spin correlations

\Qigs?‘ were measured. The singlet

‘

the‘quantum predi viplalte k5, equality (Lamehi-Rachti

protons were sca

between the inci

in good agreement with

and Mittig, 1976).

2. Low-energ — emitted in atomic cascade

transitions (6 <D ‘ S The | igh of photon pairs were

= —

Ry )

WSOr Mercury) into the

i

exited state by 'L:ér absbrbtidh, then going'back to the ground state

in 2 stepsﬂﬁjeﬂn{?rﬁﬁwa%"mﬁ?ep which travelled

in opposite dﬂrectlons and had an opposite polarization. That is, the

R YR S TN YA B o e

correlafiion.

measured by -ﬁﬁ}'

Five oul of six cascade experiments agreed with quantum
mechanics (Fréedman and Clauser, 1972; Clauser, 1976; Fry. - -and
Thompson, 19765 Aspect, Grangier and Roder, 1981, 1982), one by Holt

and Pipkin (1974) agreed with local hidden variable theory,  but
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Clauser (1976) repeated the experiment and the results agreed with

quantum mechanics.

The experiment by Aspect. Grangier and Roger (1982) used

two-channel analyser for the first time.

3. . Hi from positron-electron

annihilation ments). Tt & of experiments measured

polarization

photons) from

positron-electron would go in opposite

directions having

In three ou ' e b»; ;"\:u s were in good agreement
with quantum mecha tay. @lran &3 wu, 1970, 1975; Wilson et

al., 1976; Bruno et a ..'-?F.,» ieé-one that disagreed was by Faraci

et al. (1974).

BN Einstein—Sepgﬂlble Hidde

~UEANHINENDY. . o
ﬂ WA RTOR 4N ”T‘JWH“T& ﬂem‘a“e’ g

not b n any laws of ics. So Aspect (1976) proposed the

Einstein-separability condition which states that the results obta;ned

from A should not depend on B provided the two pieces of apparatus are

divided by spébe—like interval according to special relativity.

Thus models that respect the locality condition will always
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obey the Einstein-separability condition as well.
Aspect. Dalibard and Roger (1982) carried out this kind of

experiment by setting the polarizer positions after the cascade

photons- had emerged from the source, and were in flight. The results

were in agreement with quantum mechanics.

C.8 Non-Local Hidden V :

Many peopL/ ! «;;3’«\ impression that the

disagreement betw and ins srable hidden variable

not true ! There i e or eal hidden variable theories

left. These have i%dﬁ 1 \'\ y that A = AlX.,a.b),
A S " ;

B = B(A,8,b) , i.e., casurement at B depends on the

setting of distant ice versa. The Bohm and Bub

(1966) theory is Oie-such-theory- ]

aac

)

Non-local hidden variablegstheories obviously cannot cure

non-local 1tyﬂxu H ghneﬂxnﬁ uamg But they provide
a model h o} se of the wavefu surement, thus
solvin’gq ﬁil\ ﬁﬁijlmryﬁb’lﬁﬂ jla Moreover,
they yield agreement with both quantum mechanics and experiment.

Thus. instead of a non-local effect from the measurement event
at A and B, non-locality now pops up as a non-local effect from the

setting-event A to apparatus B. That is, nature is fundamentally

non-local, and there is no way around it.
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Pohm and Hiley (139381) have propoééd a new Lype of local hidden

variable mcdel with non-lccal distribution function. That is. Bell's

locality condition (C.4) holds, but the hidden variable distribution
function. p. depends on a and b, as well as on A. Hence we find for

the correlation function

E(a.b)
Boh

instead of (C.S).M i,; follows, when (C.7) is

a,\) B(b.\) CC. 72

used, and it is p a.b).to get agreement with

quantum mechanics.

L

Bohm and Hi to be, as yet, purely

qualitative, so it is s2s3 it as present.

C.9 Conclusion %.

No matter hew ve try to ' r olve” the EPR paradox. it seems

W co@ug%mgma@wgm@m St

now seem to be in favour of quiantum mechanics. Bul what is wrong with
Loca] adﬁmﬂnmumanmm B tundanental
ideas of local hidden variable theories are locality and realism (as
some physicisls suspect) then we must choose between abandoning one or
the other, either of which is radical and would entirely change our

picture of the world.

112



APPENDIX D

Relations and Orders

Definition of a Relation

A binary relat igi®RN

product AxA, that i< of Brde] ~.-.‘.-, (a,.b> such that a and b

are in A (Roberts .

AUt INENIneng
AR IUNMINYIAE



a binary relation (A,R) is : provided that :

reflexive a Ra, all a € A

nonref lexive it is not reflexive

irreflexive . all a e A

symmetric ' : n é'-w?,‘ a, all a,b e A
nonsymmetric it is nctesymmetric

asymmetric a, all a,b € A
antisymmetric g > a =D, all a,b e A
transitive R ¢ 8 Rec, all a.b;ee A
nontransitive transitive

negatively transitiyve -Eggy- e .~ bRc=2~aRc, all s,

Lﬁgélently : XRys xR

strongly %Mé 37] ﬂﬂfﬂﬂﬂ ﬂja RborbRa
~AEaasnIyFIANEINE

transitive.

Table D.1 Properties of relations
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Note that :

every binary relation which is is also

irreflexive nonreflexive

asymmetric antisymmetric

asymmetric nonsymmetric
|- *\“"

antisymmetric

,_*‘\\“x-onsymmetrlc
transitive anp egatively transitive

strongly compdetsg \R>-mplete

strongly cdmp" iﬁ'eflexive

Table D.2 ZEmpied/] Lies of relations

i)

¥

ﬂuEI’J‘VIEWI’ﬁWEI’]ﬂ’i
qmmmmumwmaﬂ
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strict strict strict
quasi weak simple simple weak partial partial

properly order order order order order order order

reflexive

/
symmelric
transitive 7/ /
asymmelric 4 /
antisymmetric /

negatively transiti
strongly complete

complete

]

3 zn'.’.‘-

¥

(Only Ehe defining propertles are indicated)

F'T'LIEI’JVIHWWI BN
qma\mmumwmaﬂ



Note that : i ;

Quasi order is also called pre-order.

Simple order ‘linear or total order.

a binary relat

NS

' \ a\“ﬁxk asi order

simple order yy = \ ‘weak order

weak order
simple order ' partial order
quasi order andfs \_partial order

strict weak orde !?ﬁr ,; ] | strict partial order

strict simple ordep i/ </ strict weak order

.

Vi

.?I |
§ n’l

Tﬁ?le D.4 Impli order relations

FHJEI’WIEWI?'WEI’]FI‘?

QWW@\‘Iﬂ‘iﬂJNﬂTWIEHﬂEI
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APPENDIX E’
Lattice Theory

Lattice theory (Encyclopaedia Britannica, 1978, Macropaedia,

V.1, p. 5195 Jammer, 1974, Ap is the branch of mathematics that

“‘ilith Lhe relation of different

deals in precise mathema

parts of the same wh

one parT X may 1nc/

symbolically as x=

undamental conceplt is that
part y, a relation written
\Ltheory the concepts of

order and structure g né Wsed=from a n ‘hipatical standpoint, much

as group theory ang ad etry. Below is a short

summary of definiti - \\v\'proofs, see, for example.

Birkhoff, 1967 or Grat

Definition 1 tila ly ordered if in S a

-

reflexive, trans ﬁ : ; ?; y relation a = b <(read
: i i¥ | ¢
a is smaller t an. or equal to, b" or fa'lss contalned < in b," o

"b contalnﬁ uﬂﬂxﬁ Ejﬂﬂ?%&ﬁﬂb? of S a«a;asch

and b « im y a £ c¢s; and qr_ b and b a imply a = b a < b means a

< by Wﬂ RN FRHYISRRU W) > srosrty

containg a"). a< b (read "b covers a") means a < b and no c¢ exists

"

such that a < ¢ < b.

In the sequel S denotles a partially ordered set and T one of

its subsets.



Definition 2 If an element of T is contained in every element of T

it is a least element of T. If an element of T contains every element

of T it is a greatest element of T. The least element of S e &
exists, is defined by 0 ("zero"); the greatest element of S, If it

exisls, is denoted by 1 ("unity™>.

Theorem 1 A least ele ; exists, is unique. A greatest

element of T, if it e

Definition 3 If an : _gontain hevery element of T it is
a lower bound of T. : very element of T, it is
an upper bound of anent ( \u\ sel of all upper bounds

\-»,‘ or supremum of T, sup T,
or V T. The greatest .f"l"- E 3] all lower bounds of T, if

it exists, is the greates P{J a' tor infimum of T, inf T or A T.

o

Yy,
Theorem 2 sup

ﬂumwﬂmwmm

© Theorem 3 s fa,supib,c33 3 sup fa.by },

q WA i fratl WHIINYIAE

Definition 4 A lattice is a partially ordered set (with zero and

s {"J
inf

3. 1f 1Lwrexists, 15

unique.

unity) in which every pair of elements has a supremum and infimum.v A
lattice is g-complete if every nonempty denumerable subset of it has a
supremum and infimum. A lattice is complete if every nonempty subset

of it has a supremum and infimum. A lattice is finite if the number of

11g



its elements is finite. .

Theorem 4 A finite lattice is complete.

In the sequel a Ub C(read "The union for Join, or

disjunction) of a and b"1]

denotes V f{a,b}; anb C[read "the

intersection <(or meet, - 3‘ ' _of a and b"1 denotes A fa.b:;

Lattices 'ﬁ!--"'fj" ally reor ed (Hasse diagrams) as

follows : if a < i 3 it edl r Lhan b and a segment is drawn

o\

from a to b. A lat¥icg Ly ‘ 2\ FO stance, is represented

1 : 1 S
‘> = -“ ; i
¥ a

b ; 2 NL A J :
) .

|

Auangninens
ARINEAIRHRIATNY A

Definition 5 An element a of L is an atom if 0< a. L is atomic if

Ly

every nonzero element of L contains an atom.

Theorem 5 If a,b,c are elements of L then

{ae]
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1. a Ua

a ana

I
w

(idempotency)
2780 'b=b U a anb=bnaa (commutativity)

3. a U U

(aUb)Uc an«odbno (anb)ne (associativity?

4, aUanb) =a anaub) =a (absorptivity)

5. a«b, aUb=Db, and anb-=asa imply each other
6. a £ b implies and ancesbne.
Theorem 6 A set in whicH™ : ow U and N are defined

which satisfy the prece

respect to the partial ord

Definition 6 b is a com ocandaUb = 1. If

every element of L has atf ldast ér com e Nt L is complemented. If

every element of L has .v.- ;;;7 ote ement L is unigquely
complemented.
')

b ?;c) and a U <bn o
)

Theorem 7 In any L,ﬂ A

£(aUb)n aUe.

ﬂﬂEJ’JVIEJVI?WEJ']ﬂ‘E

Definition dlstr1but1ve &f (a N b) U (anec)s= <b U c)

<0 QRGN FUUAYINYIA Y i

oAt g comﬁhemented and distributive..

Theorem 8 1In a distributive lattice a Ub =38 U cand‘&irmb =80 c

imply b = ¢ (cancellation rule). A Boolean lattice is uniquely

complemented. .
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Theorem 9 In a Boolean latlice (a' denotes the complement of a) :

1,0'=1, 1" =0 4. (aUb)' =a'nb’, (anb) =a'Ub
2..48")" =.8 5. a £ b if and only if b'« a
3. a=>b if and only if a'= b’ 6. a<«<b, anb'=0, and a'Ub =1

ly each other.

j }}}//

1'01

Theorem 10 In any latti

for all a.b,c of L. 7

Definition 8 (b;e) is &

b nNe)«@iUb) n c

if for every a £ c

a-lk(b.n.c)

(aUb) ffc ’éﬁ s ;2 ¥ \; every two elements

of il are a modular pair. ‘\. es aUitb N ey = (a6 U

b) n ¢ for all a.b.c of

Theorem 11 Every d"‘f' datt :
y,— —_——— -

I
Definition 89 A homomjgphlsm is a mapplng B L‘ L, of a lattice L,

into a lattice Lﬁﬂ ﬂeﬂglﬁ m(w mmh(a n b> = hia’

n h¢b) for all a,Blof L,. An isomorphism is a one-to-one homomorphism.

o @SR S NVFEHHA T IV TR Y=

dual—isomorﬂhism is a one-to-one mapping d : L, = L, such that a « b

implies d(b) ¢« d(a) for all a,b of L ,. A dusl-automorphism is a dual-

isomorphism of a lattice with itself. An involutive dual-autlomorphism

of L is a dual-automcrphism d such that d(d(a)} = a for all a of L.

’

Theorem 12 An invelutive dual-automorphism of L satisfies d(a U b) =



da) n d(b) and d(a n b) = d(a) U d(b) for all a,b of L.

Theorem 13 For an involutive dual-automorphism of L the following

three statements imply each other : (1) a £« d(a) impliesa= 0,

(2) for all aof L andda) =0, (3) for all a of L a U d(a) = 1.

Theorem 14 . L'.is or if there exists =a

mapping a - a’ of L ontg _sueh-U at R a £ b implies b’

Theorem 15 a L b implie g D onal or disjoinly.
Y )
Definition 11 A lattiﬂ is weskly modular if i@is orthocomplemented

and a <« b impli = !D-(‘a'n b Ivis_ asi-modular if it is
SN 2o} 110714 i1 R
e R AITRIVT IV

Theorem 16  An orthocomplemented lattice is weakly modular if and

only if a« b impliesa =bn (a Ub").

Theorem 17 Each of the three lattice properties ,weekly modularity,

’

quasi-modularity, and orthomodularity, implies the other two.
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Theorem 18 An orthocomplemented modular lattice is orthomodular. In

the sequel, L, denotes an orthocomplemented lattice and Loy 51

orthomodular lattice.

Theorem 19 InL  (anb)U<anb' «a for all a.b of L,.

a~bif (anb U «(a

nBY =hi 4d's commensu- @ ifa U a'nb) = BU

(b'n a); a is commeas - >« -;;x::?‘ there exists in L

Definition 12 1In LO ais COmpeé

(o]

three mutually orthogon and a\;uch that a = & e

and b = b1 ue.
Theorem 20 In L, &+

Theorem 21 In L and a £ b implies a o b.

Theorem 22 An L

e s o B340 FMNTNEINT
e 26) {801 5 4 1R FHBAR B

compatibilif&, commensurability, and commeasurability, implies the

other two.

Definition 13 A subset of a lattice L is a sublattice.of Lot is

itself a lattice with respect Lo the lattice operations of L.



Theorem 25 The (setl-theoretical) intersection of a family of

sublattices of L is a sublattice of L.

)

Definition 14 If T is & subset of L the lattice generated by T is

the intersection of all sublattices of L which contain T.

Theorem 26 In L, & is commeasWwiatfle with b if and only if the

lattice generated by a.a'.b.wé&

Definition 25 In L is commeasurable

with all elemenis (357 ents is the centre

AULINENINYINg
RINNIUUNIINYINY
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APPENDIX F

Measurement of the First. Second and Third Kind

Wolfgang Pauli (1958) introduced the following definitions :

Mo, - A measureM AP : if - it
: ¢ SETIS - :
- ‘r.l

leaves the measured stalg

Recently. Nick iced a new kind of

measurement defined as follo

M3. A measurement ofsctHE d iz one that duplicates

{ W
the measured stale elaghiivie—

'!I 2 . i
Vi gy i

If the measure(#gate is a p on state, it is possible 1o

meamﬂufghgtwﬂm NEUIAS. o i

emission of llght in which the efitted pholen is “identégal” 1o the

wotnaing S ol L BN e VIE 1R E
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