Chapter IV,

Quantum Probabilities

4.1 Introduction

The probabilitieg cal system, namely. classical

probabilities. obey owever, experiments have led

—
some physicists v alasguantume probabilities, that is,

probabilities of dlly different. Accardi

(1881)  uses distinguish between

Kolmogorovian, real Hilbert space

probability model of Accardi's definitions
but modifies his défi ot Jif{f itional probability. He proposes

that quantum probabilitles < F cur lack of knowledge about the

measurements Wa; ssical ' pi es(Come from our lack of

knowledge about {he j Ky (1986) studies the

pair dlstrlbutlolﬂ and finds at classieal probability is more
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The axiomatic quantitative probability was developed by Andrei
Nikolaevich Kolmogorov in 1929 (Kolmogorov, 1956) and has since been
widely accepted. The Kolmogorov setup for probability consiéts of a
probability space (Q, F, P) having as components a sample space, Q; a

o-field (also called a g-algebra) F of selected subsets of Q; and s



probability measure or assignment. P (Fine. 1973, pp.58-59). The
sample space Q has elements w called the elementary events. The

o-field of subsets of Q, F, has the following three properties :

1) F e Q

2) If Fe F, then F € F (closure under complementation)

3) If for countably\mefy fEg ¢ F. then U, F, ¢ F (closure

under countable uniong) "™

The probability from F o the interval

B0 13w o Bt oF following three axioms

(Helstrom. 1984, R'rnt‘ but mathematically

equivalent forms of

1. PCA)Y 2 O
2 BCR) =
3. If A, n A, ={gffor all =W
© ji oG v _n:
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oy SHEANENTWEINT
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Corollapy "Z2000 & POAY 2

Corollary 3. If A, N A, =@ for all i and j, i = Jj, 1 & i ¢ n, then
n A n
PCUAD = X PCAD
i=1 1=1 i

Corollary 4. P(A U B) = P(A) + P(B) - P(A N B
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Conditional Probability - g

The conditional prcbabilily of event A, given event M. is

defined as (see, for example., Helstrom. 1384, p.22)

PA I M =PAN M / PM . 4.1

nsstic or statistically

independent if \ 1984, p.27)

4.2)

that 1is, the probak :?ﬂﬁ vhether event B has

ri

on of co -irional probability (4.1),

)t e) [k ed gl
PANTHIMINYINY -

4.3 Interpretation of the Concept of Probabilit

occurred or not. gsy the de

We can interpret the probability concept in many ways

(Helstrom, 1984, pp.13-20).
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4.3.1 Classical Concept

For a chance experiment which has n finite cutcomes, we may

assign probability 1/n to each atomic event equally. i.e.; all events

are equally probable. We say that we are using the principle of

sufficient reason or the principle of indifference which states that

there are no reasons to faveur one/fadteome over the others.

For a compo i pability is then equal to the

number of outcome

Clearly, bablllty fails in the

case of chance e i _ sutcomes (i.e. outcomes

'l—,,,,,_“‘ = — -
~— X
T

We definef;llative requency of outcome k, q,(k) as

Elymwmw ]
were SN mmummmaﬂ

number of times the outcome

3’ ° o o )

turns up in our chance experiment with N trials.

Then,

£ nk) =N,
kal
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and z q,k) = 1.

We believe that as the number of trials N increases, the
relative frequency of outcome k approaches the probability of that

outcome.

qu (k) - Pik3

For composi a0 i ise define the relative

frequency q,(A) ©

qN(A)

where n,(A) is Lhe et A turns up in N trials.

So, in ~gome'’chance &xt wifich the oprinciple of
] =55y

sufficient reased i “‘.he empirical approach

T
ilve frequency of event as-the probability of that

o, pmv-aﬁg AMENSNEINS

: 1
and take the rel:i|

The probability concepts that we have described so far is

called objective probability. It is: universal and replicable.

Different pebple always agree on the probability of the same event.

In contrast, subjective probability (Roberts, 1979, 1979, pp.371-372)

represents "the degree of certainty” that an individual thinks some



event may or may not occur. For examplg, we may say that a nuclear
war will occur in ten years. But different people often have
different subjective probability of this event and even we can
sometbimes change our mind. Due to this personal aspect of the

subjective probability, it is not widely used in physics research.

chance experiment &l Sys 35 1 .54\:-ability of an event is
the property of : ’
system to behav vy e 4 5~' 0 ebserve during our chance
experiment. Propensi 1;‘§'.*n rapabilities are related to the
phase space of the sys . Wk “-_*u; ‘ ks the mot.ion or behaviour of
the system,. |

||\'Hi . .
defined that if phase
r"
églt representlng the state Jn the phase space) is in

ol “ﬂ"ﬂsﬂ? VIEW]?W eI
Q Wﬂ} ﬂ“&ﬁﬁﬁlﬂﬁlﬁeﬂ Mﬁtﬂe frequency of

event A, q,(A), defined as n (A)/N (vhere n (A) is the number of times

Let R,

point (i.e. the p

event, A occurs in N trials) approaches V, /V, the relative volume of
region R,. We can thus identify the probability of a chance

experiment of a physical system with the property of the system itself.
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Remarks

’

1. There are some schools which regard the conditional
probability as the basic concept (Ballentine, 1986). They always
write PCA | C) (the probability of A conditional on C) instead of P¢A),

say.

Events : the prob L _\ L) \\;:S?E; ur (under the corditions
specifie o of )

-ixik
rue (provided C is true)

Propositions :

Corresponding to f S the proposition "event A has

occurred.” But then e proposit "frgPot correspond to events.
7 Y )
, 3‘ | &
4.4 Quantum Probabilities

¢ o/ s

= QU0 ANAINEA by i

theory,® do mnot apply to quantum mechanics. We must use "quantum

p;obabilities" instead.

Let us nov see how some major schools look at this problem.



4.4.1 Accardi -

Luigi Accardi and his colleagues (Accardi and Fedullo, 1982;

Accardi, 1981) have distinguished between Kolmogorovian, complex
Hilbert space and real Hilbert space probability models, using

transition (i.e. conditional) probabilities.

Accardi defines.Lransition Erelas 1t1es P(A=3g, | B= bF) as

the probability tha A os e ditioned by the fact that
B is known to assu ‘, :‘,)7 < Jf \ B, C,... denote some
observable quanti¥Tiegfwilth iij;ﬁ icx)... respectively.
Assume a, 8, ¥... { + o, independent of
Bs By Cys e - B0G oreover, we assume the

symmetry condition

o DI S

4.5)
f

LT Kolmogorovian (clas al) model for the transition

probabilities is defined by a probability space (Q, 0, u) and a

measurable partition of @ - (B (Bp), (Cp),... for each A, B, C

such that

P(A=a, | B= bP) = WA N BP) / u(BP),... 4.8
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A complex (respectively, real) Hilbert space model for the
transition probabilities is defined by a complex (respectively. real)

Hilbert space K and an orthonormal basis such that

PGAA=a, | B=by = I<@,,¥>51% ,... (4.7

if {e,3 and {¥.3 are,the Dases corrnsponding to A and B and so

on.
Accardi‘ con " wables A, B, C with this
notation.
PCA | B}
Pel |- C)

_,;r A

[ bl
- -
o

P(C"ﬁﬁa

'_;|j
Fars 0. p,ﬂumwmw etk
VAN O]

(4.8)
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’

P, Q, R will admit if and only if

L ad

Kolmogorovian model Ip + q - 1] = r«<1-Ip-ql

complex Hilbert space model VDA~V T=pi(I=q71° Lrgtmm]

real Hilbert space model VI=/BAHTT-PICI=Q) or vF=lvpag—<T=p< -l

Accardi's cor itel/ between

prcbability models

Kolmogorovian,

He denotes and (R-Hi lbert), the family

of triples P, Q. ‘ Caf . -‘a‘ _form (4.8)
{; .
respectively. a Kolmogorbwian

vhich admit,

IDlex Hilbert space, and a real

Hilbert space

Wi (R—H11mrt.) S (C-Hilbert) -- strﬂt inclusmn

observables)ﬁju ﬂ ?ﬁ ﬁ% ﬁwm ﬁ‘?lon (for 2-valued
TR ﬁﬁﬂmﬁﬂ itsies

= dp~ql. ¢ r ¢ VBT 3+ VTIE SKI—qSJ

then P, Q, R will admit neither a Kolmogorov_ipn nor a real

Hilbert space model but admit a complex Hilbert space model.




4.4.2 Aerts

Dirk Aerts (1986) proposes that quantum probabilities come

from our lack of knowledge about the measurements while the lack of

knowledge about the state of the system  produces classical

probabilities.

; idifferenoes between hidden
PRENIIZ " Couny quantum theory in Table

variable theory (see 2.
&g &)

‘ ?g E i quantum theory
observables co {__ al . nonconmutative
(algebraic approach) 7_151” algebra

MY

y

properties non-Boolean lattice

(lattice theoretE
AU INENTNETT
TN PR TN e e

approach)

Table 4.2

Differences between hidden variable theory and quanfum theory,

according to Aerts.
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Aerls adopts Accardi's definitions of the Kolmogorovian model.
and of the complex and real Hilbert space models (sse 4.4.1) but he

modifies conditional probability. Conditional probability P(e = e. |

=y

= fd), Aerts says, is the probability of finding the outcome e, when

we perform the measurement e, when the state of the system is such

ent f we would find the outcome €,

that if we performed the measuy

For measurements of the Appendlx F) Aerts' definition

and the conventional™we i are equivalent. but in
general they diffex7 ;

So equati |

P(e u(F )
(vhere E, is the set‘oggétz ,Q} ich the measurement e gives

outcome e,, etc.) )

2
and P 2 i I e =R ei, o

ﬂ‘IJEJ’J‘VIEmﬁWEJ’Iﬂ‘i

(where {@ oy idlan orthonormal‘bas1s corresponding to e ete.).

ammnmumwmaﬂ

e then gives these two examples.
- o
Example A : a macroscopic system that admits a quantum
 probability model.

Consider a particle with positive charge q on a sphere radius



T, abia poinl &r, 8. 0). dat q, and g, be two negative charges and
q, + 9, = Q. The measurement e : choose q, randomly between 0 and Q
(this introduces the lack of knowledge about the measurement.) then put

q, at (r, a, 8 and q, at (r, 7 - a, 7 + 8) on the sphere (see Fig.

4.1 and 4.2)

Figi4.1 A positive €harse ; \! the sphere at (r, ©, @)

and two negative charged g -ﬁ%.aq; fiosen as explained in the text
r ¢ _
‘and located on the sphere Ty Gy B8):80 vy # ~ &, @ +  B)

(Fig 4.1-4.5 are aft

Bige 4.2 We consider the three charges of Fig. 4.1 as they are

located in one plane.

We say that the measurement has an outcome @y ir-IE.1 5 17,1



and outcome e, if 1F,1 > IF I. Where E, is the Coulomb force of a,
~on g and F, is the Coulomb force of d, on q. He finds that P 3F

IFal) = cos®¥/2 (¥ is the angle between (r, @, &) and (r, a. 8) which
is the éame as the probability resulting from the measurement of the

spin in the (a, 8) direction of & (8, @) direction spin -1/2

particle.
Suppose the charg ery direction (8. &) with equal
probability. Consider me UL . such that e = - T o

- P and g = e is introduces the lack of

knowledge about t

Fig 4.3 The thﬁle measurements e. & that are considered to

ji:;b?:ty @ﬁﬁ %FETV {Wﬂﬁw a Kolmégorovian
PRI/ IMININY

Then he shows that this example cannot be replaced by a

: Kblmogorovian probability model.

Examplé B Y a macroscopic system that admits neither a

Kolmogorovian nor a quantum probability model.
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Consider almost the same setqp as example A, but now the
charge ¢ can move on the sphere. Let F' 6 be the projection of B e
the tangent plane at (r, 6, @) and F', the projection of F, on the
same plaﬁe (see Fig. 4.4). If IF' 1 > IF',1 , q will move towards qa,

call it outcome 8.x IF JE" 1 £ IF',1 , q will move towards q, and it

is outcome e,.

Fig. 4.4 The same ic=w?f-‘~_ i§ Fig. 4.1 but now the charge
Finaei 9 :
g is only allowed to move ‘Ga—the s

Consider 4ihe measure Suh that e = e_ _, f=

- o
e and g = e_.d‘ (see Fig. 4.5).

2m/3,0 /3,0

Fig 4.5 The three measurements e, { and g that are considered to

show that the system of Fig. 4.4 does not allov a Kolmogoroﬁian or .a

quantum probability model.

79



He finds that this system cannot be described by a
Kolomogorovian or a quantum probability model. Aerts then concludes

that a lack of knowledge about the measurements not only can give rise
Lo a quantum probability model <(as in example A) but also a

non-Kolmogorovian, non-quantum probability model.

4.4.3 Pitowsky §Vy/

Itamar Pit . Skt h ghie pair distribution in

quantum mechanics it §b¥?* >

HHH: sical one.

He calls \\ epal” pair distributions of

order n, C_ the selfc . phenomenal peig distributions of order n
that have a classic Sef idn. Q the set of all phenomental
fff s 'l,.,

pair distributions that have—& guar echanical representation.

S bIA

P
phenomenal pair d1str10”

A matri ‘ﬁfﬁmﬂ__m_“' n real symmetric

matrices) is calle~i| ion of order n if, for

e vt 1FTUEI"JVIEWI§WEI’]ﬂ‘§
’QW‘Tﬁﬁﬂ“imﬂm‘ﬁ NETR Y

Let s,, 8,,..., S_ be "events” or "stales" of some system and
put P, = prob (s,) and V- prob (s, & 5.7 then surely p = .7 &

S

n

A phenomenal pair distribution p ¢ L, has & classical
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representation if there exists a probability space (X, =, w) and

evenls A,,.... A € X such that p,, =uaA nAp, i, j=1, 2,

s e

n.

A phenomenal pair distribution p € L_ has a quantum mechanical

representation if there exists a separable complex Hilbert space H, a

density operator (stati /, r) W -on H and <(continuous)

projections E ,..., Exm ne eé pairwise commutative) such
. | —

that

pu = s N
where E, 6 A E, dencte - PEO ' C »\‘ 2 closed subspace 5. OO
& E » (H.
He then Hin ; i6le interior of L_ and
that all pheno ‘f,? istrib E“’o antum representation

(except those tl'ﬂ lie on the faces of Ln)ﬁ Various interference

phenonena ﬁwiizigmi’wﬁﬁ ﬁ,?lassical. He calls

Q_/C., thatqjis, e matrices that have a quantum

s LR O e R (0 e

interfe¥ence region."

Examples of pair distribution that lies in the interference

region :

1. EPR experiment : measurement of spin on a pair of
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electrons in the singlet state while the particles are sufficiently

separated (see Appendix C).

He states "Bell's Theorem". ¢ There 1is a choice of

directions x, y, z such that p ¢ C, - P eCy only if

172 sin® G/ 2)g80 el sk 2 1/2 sin®Gz/2)

which is violated f

2. Scattefings cles (appropriate

normalization as 4!' al’ gomp ket proton-proton scattering

in which only Coulofib 33 ;;:;, ve role (spin independent
Pt
interaction) aﬁﬁfga
f 7 "Jf_J ’
LA
s : &he proton

;s

=d {gto the upper half of
the scattering p Efwﬁ'w"’m : Y}

.Fi .!I'

=L |

)k W‘E]‘?]‘ﬁng pr 1 o e

piane

Qma\‘mimumwmaa

Let 0 < 8 < #/2 and let A6 be a small angle.

S, ¢ a proton is detected at (8 - (1/2)A8, 8 + (1/2)A8),

He shows that
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Pag = C 1£(8) - £z - )10

P,s = C 1£C8)1% a0

Pos = C If(m - 817 a0

Pas even though p,, +p,, = 1, Pou = U 85

that p ¢ C,.

2. restrictive than quantum

probability, and .

- .ases, every pair (and in fact

every multiple) phien

V;'

fuantum representation.

AULINENINGINT
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