Chapter III,

Quantum Logic

3.1 Introduction

Copenhagen interpretation is

One of the alten \\\\ "

the quantum logic apprga l le, Jammez‘ 1974, Chapter 8),.

Attempls to revisey -'u ¢k some time ago but it can
be said that quan ol ; e work of Birkhoff and

von Neumann in 19 e ogical structure of the

propositional ca \\ c-- is that of a Boolean
lattice, while the . \ propositional calculus of

quantum mechanics rthdcomp lemented modular

i ‘

lattice, to be specific). =& cheé include the many-valued

logic and the -axiom@tic approach. ve also been made to
construct a 3’_ ch i o} quantum and classical

mechanics. Thisﬁnapter ends with the una&rered question of the

relamonshlpﬁqjyﬁ'ww%ﬂﬁﬂ‘i
N 0 N AN

L. E. J. Brouwer and his student, Arend Heyting, suggested in
1908 a revision of classical lbgic, called "int.uit.ion.ism, " in order té
avoid some antinomies in the set theory such as the "Russell
paradox" (Encyclopaedia Britannica, 1978, Macropeaedia, V.16, p.571)

(In 1802, Bertrand Russell stated that if "x is a set and (x ¢ x)"



defines va set R of of all sets not members of themselves then R ¢ R’

and> 'R ¢ R, a contradiction). Different logical systems were also

proposed, e.g. by Russell and A. N. Whitehead; S. Lesniewski; W. V.

Quine.
The traditional Aristotelian or Chrysippean logic obeys the

law of bivalence which. re are only two truth values
"true" and "false". i ar wewicz (1920) proposed a third
w E——

truth wvalue 1/2,

', and from 1 (true). His

rules (see Table

i ar ed, “Bhe 0ld rules surv1ve.
2) the tr 9 ’\\\ 1/2 if that of p is 172,
3) the‘impl‘crl .-;;r;;-l implies q") is evaluated according
t§ the rule that if the . E anﬁecedent p is less than or

equal to the value the > ‘,,W I, Ak j;UF is 1 and otherwise
ve. e )

4) poq, »iﬂfined by pCq.C. q, corrﬂiponds L% or g% pAg;

defined by rﬁ«ﬁ)gﬁ ’Ei‘ﬂdﬁw mﬂ -?nd PEq. defined by

- pCq.A.qCp, coqresponds to 1s equ1valent to s i1 can be seen that
e A R IO M TN A B e

He also hinted at generaliiing his three-valued logic into an

infinitely-many-valued logic. If CP1 denotes the truth value of P,

lying in 0,11 and if

(Npl = 1 - [pl,

LR X
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D Np P a | pCq
1 0 1 1 1
158 § 1L 1 1/2

e

ﬂ'lJEl’JVIEWI'ﬁWEﬁ 3

qmiaensaispainaRy

Table 3.1 Truth tables of kukasiewicz's

system
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and CpCql = i ' ifEpd = Cal,

1 - Cpl + [q] if Cpl > Cql

then clearly his new system contained the two-valued logic and

his three-valued logic as speciai,cases. '
In 1931 Zy i &) suggested the use of
TE———
Lucasiewicz's thre% gic in quantum mechanics to avoid the
difficulty arising \ ity which., he said, is a

self-contradictor

3.3 Nondistributi

Garretl Birkhoff and : 'j n Neumann (1936) have considered
Lum o ics may be different
from that of %o _— c : flrst analysed the
propos1t10nal calmlus of classical dynamlc@ They then identified

each subse aﬂ 5wmﬂﬁd conver'sely Each

experimental qproposmlon us corresponds to a subset S_ of phase

= AR THAMT AN o

to in a¥ lies in S_. They have also defined conjunction, disjunction,

negation, implication and equivalence. The conjuction an b of the

two propositions a and b is true if P lies in the intersection of S,
and Sb; the diis.junction a Ub is true if P lies in the union of S_ and
S,» while the negation (or complementation) a' of a asserts that P

does not lie in S_. If whenever a is true b is also true, we say that
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a implies b" and denote this by a b'; then S_ is a subset of S, .
The implication & is reflexive, transitive and antisymmetric (see

Appendix D). "a is equivalent to b” or a = b if aS b and b € a.

A physical quality is defined as the set of all experimental

propositions equivalent to a given experimental proposition. So the

physical qualities attri physical system form a

partially ordered s *ibutive identity holds in

classical mechanie that the propositional

calculus of classics lattice (see Appendix

Els

In quantum \ cls of I' by subspaces of a
Hilbert space and t -4 ue £ a proposition a corresponds To
the eigenvalues of the “preject operator associated with the
subspace referreds o€y of Birkhoff and von

-

Y 5
ntum mechanics is a

',u

Neumann, the p eposit

orthoe lemented) lattice.

complemented (nowafﬂrs ve use Lhe term

Moreomr, Ej ?] gjnlve gejn:]ta Elds in classical
mechanasm ﬁﬁ ﬂq?m ﬁrﬁrﬂ":q wﬂﬁ a Erplace it by

"modular] identity" :

IfaS.c,thenaU(bnc)=(an)‘nc €31

Obviously every distributive lattice is modular but the

reverse is generally not true.

38



An example to show that the distributive identity is not valid
in vquantum mechanics : Let b deﬁote the proposition "s, = h/2,” a the
proposition "S_ = h/2," and hence a' the proposition "8.= - bha”
vhere S_ and S_ represent spin components for a spin - 1/2 particle.

Clearly, bn(aUa') = b, whereas (bna)> U<bna’ =0

Birkhoff and 1 Neums ude that whereas the logical
structure of the proposi “ﬁrQ cla531cal mechanics is that

of a BPBoolean la

e of tThe propositional
calculus of quant an Orthocomplemented modular

lattice.

The most york of Birkhoff and von

Neumann on quantum 1 . Popper in 1968 (Popper,
1968). He stated the folT rems (discovered after 1936) : Any
uniquely complr_f brovided it satisfies at

least Aone of the '_§'; : A )

i
a) ﬁ ﬂ‘zjﬁqwﬂfﬂtﬁ Wqﬂaﬁw is sufficient);

Qﬁ'ﬂﬁﬂﬂ“?‘mﬂﬂ’nﬂmﬁﬁl

9 d) L is measurable and the "admissible" measures of L are

isotone.

Since the lattice proposed by Birkhoff and von Neumann
satisfies each of the four conditions (a) to (d) it is, in fact,

Boolean.
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3.4 Many-Valued Logic

Some philosophers, e.g. Paul Hertz; Louis Rougier and others,
believe that logic is empirical. So newly discoverad experiments may

lead to the revision of the system of logic.

Paulette Fevr ier

M/rsposed to apply many-valued

ested that Heisenberg's
o —

ed as laws basic to the

logic to quantum

indeterminacy relatd d
1 She gave an example to

constfuction of lo ‘ -

show why her logic is ; | L \ denote the proposition "the
energy E has the valu 4SS " ‘ \ , ‘" nergy spectrumd; if E_
E 88 ‘\\\- as a value of E), then a

de facon contingente™)

provided a measurement of 1, and is "false" ("F" for "fausse

de maniére conbi provid 0ef” not yield E_;  the

o
=
—————
'

A B e o ) |
proposition a s/ false" ("A" for "fausse

nécessairement™) i'Bto doeé not belong to thﬂspectrum (i.e. E_ cannot

be a valueﬁfuﬁ %hﬂ E]an %’w ﬂplrﬁ .ﬁruth tables for the

conjunction @f "non-conjugate” propositions, i.e. propositions for

come @ FEFHTYS 8 9T A o e

conjunclion of "conjugate"” propositions.
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a) '"non-conjugate" p it ns /éa njugate"” propositions
——
\\kY S

2 i. N

Table

-

system

Note that { . " \ the truth table for pAQ

in kukasiewicz's thr able 3.1).

Hans Reighen three-valued logic. ‘He

e
>
= |

-
8 % . vy 3
introduced the =38! i ena in microphysics.

- rl'
Phenomena are a those occurrences wh :-'ii are connected with

macrocosmic fﬂl‘gjﬁ ﬁﬁ’ﬁp ,Tﬁsi chains and are

verifiable ﬁl ices. gg ehomena are occurrences which happen
» ¢ . /

_betweeﬁw.ﬁmmlylﬁ‘ﬂwmra\ 1 chains of a
icated sort in the for : at;

much more cohp. form of an interpolation within the

world of phenomena. Thus he dividés_ interpretations of quantum

mechanics into two classes :

1. exhaustive interpretations -- provide a description of

interphenomena as well as phenomena.



i3

2. restrictive interpretations -- restrict the assertion of

quantum mechanics to statements aboul phenomena.

"He claims that in gquantum mechanics each exhaustive
interpretation leads to causal anomalies. While causal anomalies can

be avoided in restrictive interpretations according to which

stalements about interphe ’ / rded as meaningless by using

a three-valued logic wikEue ¢ v éand indeterminate (I) which
ﬁ

characterizes state // \\\

N

\ alternative implication

- and standard ®equfly, ige (24 gpe fined by Table 3.4 (for

as meaningless in the
Bohr-Heisenberg interp ce kinds of negation (see

Table 3.3). The disj

nonconjugate propositiy

propositiopn F
(Y e
cyclical nﬂation ~ a T

diamétirical negatlon -a

AN ﬁNﬂ‘iﬂJll

comp lete negation &

AUYANYNTAT
e

Table 3.3 Reichenbach's three kinds of nedation
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a B T I (S G X 000 N i
b e oSk i vl i T ] L
aVhb I LA LR R R R
aAb T I B L @ E-FE E. F
a->b
AERD

Table 3. 'Ll :‘_-»{\;:‘~!ho.ch s system

- ,\\\‘*

\:r lated as follows. Let

| U denote the state gﬁ;é \\t X has the value u" and
let V denoté the statem e ph \\ anLity Y (complementary to
X)_has the value v," tative), then the rule of

complementarity reads
'.,ﬁf“’“ﬁ‘”‘””
. ';|1

U e o o Y

’JVIEWI‘?‘WEHT]?

which has the fBlue "true” (T) if and only if at least. one of the two
S“’“e“@%’“l G Wﬂ’ﬁﬂ MUY

Statements which lead to causal anomalies can be avoided

because in his three-valued logic they become "indeterminate."

Carl Friedrich Freiherr von Weizsacker (1955) proposed

"complementarity logic" as a modification of the logic of contingent
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propositiOns.- He defined elementary propositions as  those
propositions which describe pure cases. His idea is that every
elementary proposition can have, apart from 1 and 0, a complex number
as its truth value. If we associate the two-component vector (ﬁ,v)
with the question of whether a, or a, is true so that (1,0)

corresponds to the truth of a, and (0,1) to the truth of a,. then he

says that for every vector (u,v) <(normalized) there exists a

proposition which 1is 1tr ’y :oposﬂ.lon of the original

alternative has the V. Every proposition,
characterized by (u and from a,, is called
complementary to he two complementary

propositions is true o 4the! gther \is weither true nor false.

George Whitelaw as studied the axiomatic and

quantum logical  @pp : fieehagics. He bases his

M) dofined notiocns

axiomatization oft TUE
|

observables and sta S.

probability ﬁ ﬁwyﬁ“ and 1 of R. His
first six pﬂu ales 1imply 1lha everv p vsical system a
= RWITH ﬂ‘ﬂ‘?ﬂm"ﬁ TN ﬁﬂ”"“ B

allows udl to identify observables with S-valued measures on the Borel

He defines question@as an observable whose

_sets of the real line and states with probability measures on S and
which allows us to deduce some theorems of quantum mechanics without
: resorting to the notion of a Hilbert space. His seventh and eighth

postulates express the distinguishing feature of quantum mechanics,
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and éstablish the one-to-one correspondence of observables with
self-adioint operators in a separable Hilbert space and of pure states
with its one-dimensional subspaces. His ninth (and last) postulate

concerns quantum dynamics and leads to the Lime-dependent Schrodinger

equation.

Josef Jauch (196 the propositional system of

all quantum iments" is a complete,

~orthocomplemented, tice, which, moreover, is

irreducible and.s

Peter Mit 3 “.'}1 ‘has, noticed that if a quantum

N\

system is known wi H !xot rty A and if a property
B, incompatible wit i : _‘f =ni, t is found that the system
has property B. then the -? ] ? that it has A is now less than 1
(certainty) b; 7 et 1-'~”ed by the observer

R 11'\ ‘

oughh the acquisition of

additional 1nfor on, a conclu51on that co

"unrestrict EJWWEJ ﬂ,ﬂ Aj Mittelstaedt thus

suggests th&H we s oul use a logic in whlch this pr1n01ple is not
presupaﬂ 'Tﬁ]‘ﬂ ﬂ,ﬁ' Wﬂﬁﬂlﬁﬁmm (1955).

Lorenzefi says that the laws of logic are rules whose evidence follows
from an examination of the possibilities to prove the assertions. If
somebody asserts a - b (a. b are eieméhtary propositions, - is the
impli;ation) ‘he is committed to prove b if a can be, or has been
proved by the “opponent." The proof thus assumes the form of a

dialogue between the proponent and the opponent. If the proponent

adicts the principle of
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wins, then his assertion is an "effective-logical" statement. For

example, a - (b - a) is an "effective-logical statement :

PROPONENT OPPONENT

a
3. Whya? - '

7 | — Proof of a
5. b - a , | AR
7 ¥hy B.7

Proof of b
9. a —=
Siidins < 4]
— 7 wrly a Lo

: Pl NL, :
11, Hee 4, £ e

. T
- Since the propon-‘_ has won whatever the paJ

icular contents of the

proposition ﬂ ﬂig ﬁ Wﬂﬂaﬁ W mﬂiﬁical" statement or

logical statement. Clearly, e pr1no1ple of unrestr1cted availability
i "ﬂ‘ﬁ"ﬁﬂﬂﬂ‘immﬂﬂﬂmﬂﬂ

The following 10 statements L, to L, _, which can alweys be

successfully defended by a proponent, constitute the so-called

affirmative ie ical calculus (whereas - is part of the proposition,
> 'belongs to the metalanguage, i.e., X = Y denotes that if the

proposition X is derivable then also the proposition Y is derivable) :
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Tt a-b, b-c = a-c¢

L, aAb-a

L, aAb-b

L ce=-#8, 8=b = E=28Ab

Ly a-avh

L‘?

L, . a

L ¢

Lo a

Lorenzen ssertion V which can
never be queslion >  ‘£}; ] ;.} m A which if asserted,
makes one lose the di . j&,!_vi 2 hith is a - A.

The Cal;g.f * effective 1—32’5 of L, ~ L 2and the
following L,, - ﬁ\ﬂf A = |

- f u}.{ﬁ‘nwmmm
A a@n‘m{um?ﬂﬂ’]ﬁfim

qThe classical logic L sts of

il (which is not dialogically demonstrable). Its structure is that

of a Boolean lattice with Ta as the complement of a.

bl o 8 V - a V a (law of the excluded third)

(tertium non datur)



48

Mittelstaedt says that some of the laws of L_ lose their
validity in quantum mechanics because the principle of unrestricted
availability does not hold for incompatible propositions. A quantum
mechanical proposition a, in contrast Lo a proposition in classical
physics, has only restricted availability and may be "quoted” in

dialogical demonstrations only if between the proof of a and its

He calls this the Mee: e ol " and dialogically

demonstrable implicat which satisfy this rule,

he calls quantum—diadoo

The affira = 4 ‘7" ;y gic 1S¥8Ls of L, - L, and the
following Q

Q0 clv» (a - b)

The effe "y&;—“—"— Um logic consist <L1 = Low Qo By and

the following Q,,

ﬂuﬂ?ﬂﬂﬂiﬂﬂiﬂi W
QB ARS0INANIANEINY.... .

structure is that of an prthocomplemented modular lattice.
Mittelstaedt glves the double-slit experiment as an example.
Let a be the proposition "the partlcle arrives somewhere on the

screen” and b the proposition "the particle passes through the upper



slit." Then

-

a-(aAb VaA b tertium non datur relative to a

not valid in quantum logic.

V-bvVb "absolute" tertium non datur

~—
on of the "relative” with

\\\C\E::S‘ e faulty abandonment of

y 1‘1J\\S' Reichenbach.

Mittelstaedi
the "absolute"

the two-valued logic &

3.6 Generalizatio

A

The more recent” ors try to construct, within a

unified conceptual plifeory of physics which

—_— r
compr ises classi!ﬂ- be y

s .
] ’ !
il | . - f.:
L i¥

ST B S Ry o e

propositions thc can be summarlzed as follows (D 1s for definition).

ammnmumawmaﬂ

(physical system). A physical system is a part of the real

world, thought of as existing in spacetime and external to the

physicist.

D, (question). A question is any experiment leadiné to an

alternative of which the terms are "yes" and "no".

49
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‘definitions, one cs

D, <(opposite or inverse questioq). if a is a question, a~ is

the question obtained by exchanging the terms of the alternative.

D, <(product of questions). If fa,d, .5 is a family of

questions, m,a, 1is the question defined in the following manner
one measures an arbitrary one of the a, and attributes to = s&, the

!l//

answer thus obtained.

Rule R, (opposd

ion). By starting from the
(m,a)d)™ = L e

D

S

(Lrivig 5'a Urivial question I

which consists in 3 : h g ( .‘ n3 nothing) and stating

that the answer is "

D 2 e physical system has

been preparéd in gUc! s“f‘ an affirm that in the

event of an exberant corresponding to a quéstion a the result will

s t*‘?f‘ii‘ﬁ'ﬁ ‘ﬂ W%‘Wﬁ oy« e
fl]fﬂni]mestlon ¥isis

true whetpever he questlon B 1s t.rue. the question 8 is stronger than

the question ¥, which is symbolized by 8 < ¥, the relation D, is

transitive.

Dy, <(equivalent questions). If one has B8 < ¥ and ¥ <8, then

8 and ¥ are equivalent questions, which is denoted by 8 =

5(¢



D, <(proposition). The equivalence class containing the

question 8 is called proposition and is denoted by‘b. The set of all

the propositions defined for a system is symbolized by Z.

Bl (true proposition). The proposition b is true if and only

if the question 8 ef which b is the equivalence class is true (in the

sense of De) y

Theorem T, .

i.e., ‘there exi \famil xﬁ\.ropositions tb3, .7 8
proposition A, b,

X £ bi,
N. Hadjisavvas et al. (19 : el that the formulation of T, as vell

as its proof i ﬁb, Qs fid concepts that have

not been explic §’ Hﬁfgi, X% by Wl S0

propositions). e structure of tThe -ﬂnof of T, implies " the

assumption tﬁé ﬁﬁﬁ%ﬂrﬁﬁ’ﬂ ;Sr these concepts and

notations ( lnon,

ama\‘m‘mummmaﬂ

. (order relation between propositions). If one has v 8 ¢

b, vV ¥ e€c . B< ¥, then the proposition b is stronger than the

proposition ¢, which is symbolized by b < c.

D,, ("product" or "conjunction" of propositions). Given any

family of propositions b }1ea from Z, A b, denotes the equivalence

H‘Si:jhe\ is a complete lattice,
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class containing the question #  8,, where 8, ¢ b,.

D,, ('sum” of propositions). Given a family {b,} of

ied
propositions from Z, V, b, denotes the product Ax, of all the

propositions x € Z such that b, < x,, vi.

Do (absurd rivial proposition). (not

explicitly defined in . &m T, entails the existence
| —

of an absurd proposi : [ ivalence class of the

trivial question ,ion [ (same notation as

for the trivial

D

1S

(comp lémey N ;,5#: ignifow b). The proposition ¢ is

AT \\
3 en peoposition b if b ve = 1 and

a complementary propdsilion fer a

b‘A B2 0

e 1 i <3
D16 "wfi, < ‘ proposfmon BRI -
El

compatible compl-vant cr =Dh" of & glven plaposition | o 08 e i is a

4 o/ .
complementar T{gﬁY] ﬁcwmhﬂrje there exists a
Eﬂ; that 8 ¢ b a

question 8 s nd B ec.
ARIANNTUNRIINYIA Y
QAkibm C (existence df a com atible com lemént5. For each

proposition b there exists at least one compatible complement b’.

The wéll—known concepls of a lattice and of lattice generated

by a family of propositions (see Appendix E) are then used for the

following axiom :



Axiom P. If b < c are propositions from Z and if b’ is the
compatible complement for b, and ¢’ is the compatible complement for

c, then the sublattice generated by (b, b', ¢, ¢') is a distributive
lattice.

Axiom P entails :

[&® | quetiess o 5’ le complement b' for any b
el s
2)
bAD
C'
and (3
c
A5 fﬁs 6, p.9. If b=p and
b < p then p cov~§ b when B e > X J- or X = p. An element

- ff?g uﬁmﬁm M st
MDA

there exists an atomp : p< b. If pisanatomand if pAb = Dy

b = 0 then

then p v b covers b.

D

.s forthogonal propositions). b € Z is orthogonal to c ¢ Z

and is symbolized by b L ¢ if b< ¢’.

&)

w



D,, <(propositional system). A complete lattice satisfying

axioms C, P and A is a propositional system, i.e. a complete,

orthocomplemented weakly modular and atomic lattice.

(The classical propositional systems are propositional systems

which, moreover, are distributive)

N. Had.jisavvas.. £ & pointed out that Piron's

formalism is buil v interconnected.levels : the level of

questions and T

questions-proposi ow, on the level of

propositions, th which emerges is that

\\-- 1lar, and atomic lattice

of a complete. or

. and is known té b

They i e the stru odgced by two levels  and

e’

show that the Golin R abstract theory of

models, i.e., the)mhow that it does admit amodel But they criticize

: Axiom C in tﬂtﬁ ﬂ WEJ:)T lﬁement a' for any a
ionable. ey conclud at ron s syst.em contains

g YR TERRING T

mechanils.

CeES von Weizsécker and his school (Drieschner et al. 1988)
interpret quéhtum theory as a universal theory of prediction and
reconstruct "abstract” quantum theory (see also 2.9). "Abstract"”

means the general frame of quantum theory, withoul reference to a

,'so they call it a
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three-dimensional position space. to concepls like particle or field,
or Lo special laws of dynamics. “Reconstructiion” is the attempt to do
this by formulating simple and pléusible pocstulates on prediction in
order. to derive the basic concapts of quantum theory from them.
Thereby no law of "classical” physics is presupposed which would then

have 1o be "quantized.” They make the hypcihesis that only quantum

theory can be the basis f ! %&)f physics (Gornitz, 1988a).

Abstract.

nly four basic concepts

(Drieschner et al

es as defined by Hilbert

metric.

9%

3. Composition *i, SISRECC e the tensor product of their
state spaces.

45 52' ‘fz i

additive real group' of time translations.

CAusanseinen
U ARTAATUNRINY 1A Y

(A) Separable alternatives. There exist separable, finite,

e_presentation of the

'

empirically decidable alternatives.

(B) Indeterminism. With any pair of mutually exclusive

states x, y in an alternative, there exist states z with conditional
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symmelric probabilities different from 0or 1 to find z for given x or

Wiks

P (X, 22 # (Qor 1), p(y. 2) = (0 or 1)

(C) Kinemaltics. States of a given alternative develop. in
time in such a way that thelir reldtd: probabilities remain unchanged.

ates for every n-fold

Or space.

native is distinguished.

There exists a symmelry  group. The

probabilities bring i e contin so the symmetry group will be a
Lie Sroup.
x|
!I !i'
(iii) Dyndgmics > slales devels ‘under the action of a

M - -

parameter.

ammnmumawmaﬂ

iv) Preservation of states. If ‘agetate ‘ig ito be

recognizable, there must exist a dynamics that keeps this state

constant.

If a dynamics is to be observable, first it has to hold the

alternative separated. Second, if it has no eigenstates, no state



could be observed. So it follows :

(v) Vector space. The state space has to be a vector space

over the complex numbers, morsover an n-dimensional Hilbert space.

Of the skew fields under consideration. R, C and H. only' the

complex numbers are algeb osed, so in this case we can

always have diagonalizabie e »@nerators for the possible

(vi) Com R A ,wikare decided by deciding
their Cartesian he product alternative

is the tensor prod he two subalternatives.

idinid < 2

They hope that thead e quantum theory and, with it

t i WS O
! V Il__ e ———

@eans of the additional

Y]
T

) >
of binarz)alﬁﬁ:zjﬁ ﬁtw}fﬂ'ﬁgfﬁfsed into a product
ARIANIUANIININY

Every state space can be understood as a subspace of a

postulate of urs!

tensor product of two-dimensional spaces.

Then they set up the central dynamical postulate :

c¢) For any object there is at least one decomposition into

=



binary (sub)objects -- called urs (from German Ur-Alternativen =
original alternatives (Gornitz. 1986)) -- such that its dynamics is

invariant under the symmetry group of the urs.

This postulate -- all objects "arise from” or "consist of" urs

-- constitutes a radical abstract atomism.

& as a (sub)object,

| —

3 Qg;‘h;H:nsional complex  Hilbert
N

space. The probabdff Ly TratGr g mvl’wx\\—roup for its states is

So the

quantum-theoretical

built up from the SUDEroup, from SU (2) and the

complex conjugatios
3.7 Quantum Logic anf

The problem

logic concerns t }" p——

quantum ledgic and

Bic 7" and "is quantum

logic a logic ?". !gelow is listed some dlSL sions on this issue.

@ug;maﬂswswni
am@ﬂnmumqwmaa

According to Charles Peirce (Baldwin, 1925; Copi, 1979),

“Nearly & hundred definitions of it have been given." We reproduce

here a survey of the literature.

Morris R. Cohen and Ernest Nagel (1934) : "Logic is correct

reasoning. To be logical is to argue reasonably. By means of logic
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we can find out what follows if we accepQ a given statement as true.”
snle Mogictiin . concerned with the question of the adequacy of

different kinds of evidence."

Irving M. Copi (1972) : "Logic is the study of the methods and

principles used to distinguish good (correct) from bad (incorrect)

reasoning.” Logic is n ' ience of the laws of - thought.,"
because it is "not a bra y& and also "not all thinking
' &

is reasoning.”

lence of reasoning” will not

do because "logici the dark ways by which

the mind arrives S concerned only with the

correctness of tLhi

k. Jaakko J. HinLild

ﬁa¥- nnica. Macropaedia. 1978.

Vedd, wf.73) 3 s,

iths based completely on the

te

meanings of the, ‘ecording to the wider

interpretation, !gﬁ_"‘”’““““"”" ’ o 3'n1ngs belong to logic.

According to,Eﬂe narrower conception, l@@lcal truths obtain (or

hold) in v1rﬁe ofﬁﬁlgﬁoﬁ ﬁn%éﬁsﬂ,]ﬂ‘j
Karl : ﬂj ﬁwﬁﬁwﬂﬁsﬁfﬁm nature of

(A) The rules of logic are laws of thought.

(A1) They . are natural laws of thought -- they describe how

we actually do think; and we cannot think otherwise.

(A2) They are normative laws —- they tell us how we ought
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to think.

’

(B) The rules of logic ars the most general laws of
nature -- they are descriptive law holding for any obdect whatsoever.
(C) The rules of logic are laws of certain descriptive

languages -- of the use of words and especially of sentences."

Patrick Suppes (1357% ',y he narrow sense, lodic is the

theory of valid argugehits: ! of deductive inference. A
| —

foludes the theengpof definition. A still

broader sense incl > ré \«ibh \§\\:~ts."_

27,2 Is Qu :
¥

a
-

slightly broader secpse

Birkhoff /5 "Netitdn < 1986Y claimed to have laid the

1 i J,,.'!,.A-'J:"
foundations of a new logic.— Bul can mathematics which uses

standard logic ~be ’ i fi-chanics which uses

,frrfi'

U L o
mechanical pﬂo tions could not Eai as a logic because although

nonstandard logic

TR MM >

a proposition, since it is not a yes-no experiment.
Jauch (1968) has pointed out that quantum logic is the formalization
of empirical facts obtained by induction while ordinary logic is an
analysis of the meaning of propositional structures which is true
under all circumstances and even tautologically so. Likewise,

Mittelstaedt (1968b) stresses that the fact that for certain



- out that Putnam+*

propositions in quantum wmechanics., formal logic ceases to be

applicable does not affect the a priofi nature of logic.

By contrast, David Finkelstein (1963) argues that there is no
such thing as an a priori universally valid logic. Logic, like
geomelry, undergoes a process of evolution. Hilary Putnam (1969) also

# Jection of  Euclidean geometry

1“ anomalies, he says, so

uses the same analogy.
enabled Einstein t
microphysical ano soon as the distributive
law of classical ,’ Heelan (1970) has pointed

d. ~ q. then p)> which is

invalid in quant

: ek
Michael # sgfos ifiAiatel (4956) has claimed to derive
!; -I JJJ

quantum meohamcs fr‘om s (while Finkelstein and Putnam

derived the new > from qua: RifS). He says that in
quantum mechanl se Princi D ’ on that each predicate

corresponds one— ~one at each Lime point, mo a well-defined (fixed)

set,. of obj H‘é i&zj Ejfﬂl be replaced by the
Peirce Pri ales tha 1mp catlon 1s the most important
MO, 1 MNP 1 PN} i

He also says that the new logic, if restricted to certain

domains, reduces t,o the usual Boolean logic and there exists a domain

of inference where the usual logic remains valid.

David Bohm (1951 pp. 168-172) has pointed out that there

is an anology between the thought processes and quantum processss., for
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example, between the production of new ideas and the quantum jump etc.

The reason for these analogies may be. according to Bohr, that
although the mechanism of the brain is classical, certain key points
controlling this mechanism are so sensitive that they must be

described quantum-mechanically. So if the Bohm-Bohr hypothesis is

correct, the brain may be governed by quantum logic and computers may

wain (Adler and Wirth, 1983).
. ‘

0 _‘Agmputer function comes from

i Wt‘ial of the IC).

be qualitatively different
(The present impact of

the radicactive deca

Lotfi has intfoduced the ides

of «fuzey . logice § .~ He observes that the

human capability t imprecise concepts is not

properly understood methods. Essentially,
fuzziness is a tUlype of ------- P51 al stems from a grouping of
elements into classesi(called fus that do not have sharply

defined boundar g5 (Kandel; 19863 9 %) Whereas in abstract

set theory an ObJ@L eithe 5 not a mmber of a given set, in

fuzzy set. Ei gdw The theory of
fuzzy sels d@ﬁ ?ﬁa TL the Hjﬁi discourse X, where
the ‘S‘mﬂm?ﬂy’f Er is gradual
atherWab rupt. fuzzy subset" has no well §:1ned boundaries
vhere the universe of discourse (the universe X) covers a definite
range of objects. An example of fuzzy class of objects is "the set of
long streets in Bangkok."” Traditionally, the grade of membership 1

is assigned to those objects that fully and completely belong to A,

while O is assigned to objects that do not belong to A at all. The
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more an object x belcngs to A, the closer to 1 is its grade of

membership X, (x)

Fuzzy-set. theory 1is a generalization of abstract set
Lheory. Because of this generalization, fuzzy-set theory has a wider

scope of applicability than abstract, set theory in solving problems

that involve, to some deg e evaluation.

Y

Intuity 4zy ~set™iseg, class that admits the
possibility of adf ménbay thenote a space of

objects. Then a #EzyfSaf Slin - < ordered pairs

where X, X) is termed membership of x in A" and for

simplicity it is-ass in the interval 0,113.

—
- |

I7and O represen fively, full membership

o
X

with the grades

and nonmembership_min a fuzzy set, asdiscu@ed before. It 1is also

possible to i ﬁﬁjﬂ}l ti’ﬁﬁ,jj‘fjﬁibility thal = is
the value of L m tricteéd By A.

* S U AINIAY

qu:;] @ejara,‘i wyiililg{!is three kinds of inexactness :

generality. that a concept applies to a variety of situations:

ambiguity, that it describes more than one distinguishable subconcept;

and vagueness; that, precise boundaries are not defined. All three
types of inexactness are represented by a fuzzy set : Generality

occurs when the universe is not just one point, ambiguity occurs when
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there is more than one local maximum oﬁ a membership function; and

vagueness occurs when the function takes values other than just 0 and 1.

Now fuzzy set theory can be used to characterize a
non-standard logic called fuzzy logic. We may view fuzzy logic as a

special kind of many-valued logic. In fuzzy logic, the truth value of

a formula. instead of assumling ues (0 and 1), can assume any
value in the interval @, 11 : to indicate the degree of
two-valued logic is a
e, nol just a logic for
handling argumentsl ig vgﬂt; terms ir essentially; it is
itself imprecise. proposal is much more

radical '  for it fegee entre ched ideas about the

characteristic ob.jec

At present™ Tuzzy 's ; bas a wide range of

application (Wan ;r_“ TR AT n rpattern recognition,

decision analysmBnd appro s .-va,ﬂjl easoning. It has the

dgreatest applicabi 1 l for robléfs y ’]ﬁ ately addressed by
current uj “ charaterized by
‘ ““%1 Wfa ﬁﬁ*“a‘m"ﬁ‘ﬁ By iy =
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