Chapter III

Results

The Soray-drying Conditions

Before proceeding with the preparation of co-spray dried powder, preliminary investigetion of seray-drying process was earried out to determine optimum gonditions. During the feasibility trial, the batch sizes of 100 g. Wene, used.

Table 14 summsrized the conditions which were interchanged to determine the optimum condition for the spray-drying of theophyllinepolymer and theophylline-polyme-channeling sgent. The main factors which could be changed were: oin pressure, liquid feed rate and inlet air temperature.

ศูนย์วิทยทรัพยากร

Table 14. Sumary ot the sops-drying opnditions used in
prepsration of co-spray dried powder.

Condition	Formulstion			
	I-IV	V-VIII	IX-XII	XIII-XIX
Inlet Air Temperature (${ }^{\circ} \mathrm{C}$)	140			130
Feed Rate(ml/minute)	23.3	22.6	23.8	23.8
Compression Air (bar)	4	4	4	4
Dilution Medium	water	water	$2 \% \mathrm{NH}_{3}$	$2 \% \mathrm{NH3}$

In Formulation I-IV, the maximum liquid feed rate pras used and air pressure of 4 bar was chosen. Air inlet temperature, $140^{\circ} \mathrm{C}$, Was used to svoid melting of ethyleellulose.

In Formulation IV-VIII, air pressure was maintained at 4 bar but the feed rate was decreased to avoid the condition that led to agelomerated powder that sticked to the chamber wall. It was found that the concentration of HPMC in fommlation must be decreased in order to reduce the viseosity of the mixture. In the experiment with the formalation contsining HPMC, large amount of powder products adhered to the wall of drying chamber, and could not be recovered from the chamber.

In Formulation IX-XIL《and FGrmulation XIII-XIX, the same conditions as Formalation I-IV were used, except that the inlet air temperature was lowered becsmse 2% amonia solution had a lower boiling point.

The Percent Yield of Co-Sorsy Dried Powder

The percent cecovery were shown in Table 15. It was seen that Formulation V-VII, using HPMC, had low percent recovery, because 3. lot of powder adhered to the chamber wat h The other formalations had good percent yield, above 70%.

Table 15. The percent recovery from spray drying procedure.

Formulation	Percent Recovery		
	Collector	Chamber	Total
I	27.56	51.66	79.22
II	23.01	55.84	78.85
III	30.65	48.92	79.57
IV	40.18	44.06	84.24
V	16.22	22.80	39.02
VI	4.88	10.70	15.58
VII	8.85	11.22	20.07
VIII	10.47	9.62	20.09
IX	5.42	28.56	83.98
X		25.70	84.03
XI	5.84	28.62	74.56
XII		25.59	68.97
XIII	70.75	18.15	88.90
XIV	62.40	24.60	87.00
XV	55.58	22.28	77.86
XVI	57.70	18.40	76.10
XVII	70.45	18.55	89.00
XVIII	$68 \cdot 50$.	18.60	85.30
XIX	65.80	18.20	84.00

1. Morphology of Porders.

The shape and surface topography of co-spray dried particles were found to be affected by the formulation and method of the drug mixture preparation. When the distilled water was used as a dilution solution(Formulation I-VIII), high quantity of
agglomerated crystals of theophylline were observed in the co-spray dried particles. In the contracy, most of the co-spray dried powder of the mixture prepared by using 2% mmonia solution(Formulation IXXIX) was in the form of microspheres with smooth surface.

The microscopic appearance of theophylline powder in different magnification were presented in Figure 5. Theophylline powder composed of thick rod shapes in various length. The surface of powder was rough

The photomiorographs of Formslation I-IV were shown in Figures 6-9. The shape of particles could be seen in two forms as microsphere and rod shape. Thencatspray dried powder of Eormalation I-IV exhibited miorosphere and dince needle shape particles coated on the surface of the agglomerater particles. The shape of agglomerated particles were nearly spheriegl with fairly uniform sizes.

The pirotomicrographs of pormulation
V-VIII in different magnification were shown in Eigures 10-13. The agglomerated particles were consisted of bigger irregular shape particles and smaller microspheres. The pyepalf shape of åglomerated particles were fairly ball shape. The surface of microspheres were not smooth but was eqbedded by smaili6 mods. 99 The ageg merated particles were relatively larger than of other polymer formulations.

The microscopic images of Formulation IX-XII in different magnification were shown in Figures 14-17. The particle shape was mioroball with different sizes. The surfaces of some mioroballs were rough but some of them were smooth.

Figure 5. Photomicrographs of Original Theophylline Powders
(Key: A $\times 150$

Figure 6. Photomicrographs of Co-Spray Dried Formulation I
(Key: $\mathrm{A} \times 750$, $\mathrm{B} \times 2,000$)

Figure 7. Photomicrographs of Co-Spray Dried Formulation II
(Key: A $\times 750, B \times 2,000$)

Figure 8. Photomicrographs of Co-Spray Dried Eormulation III

$$
(\text { Key: } A \times 750, B \times 2,000)
$$

Figure 9. Photomicrographs of Co-Sgray Dried Formulation IV
(Key: A $\times 750$

Figure 10. Photomicrographs of Co-Spray Dried Formulation V

Figure 11. Photomicrographs of CofSpray Dried Fommation VI
(Key: $A \times 750, B \times 2,100$)

Figure 12. Photomicrographs of Co-Spray Dried Formulation VII

$$
(\text { Key: } A \times 750, B \times 2,000)
$$

Figure 13. Photomicrographs of Co-Spray Dried Formalation VIII
(Key: $A \times 750$, B $x<25000$)

Ejegure 14. Photomicrographs of Co-Spray Dried Formulation IX

$$
\text { (Key: } A \times 750, B \times 2,000)
$$

Eigure 15. Photomicrographs of Co-Spray Dried Eormulation X
(Key: $A \times 750, B \times 2,000$)

Figure 16. Photomicrographs of Co-Spray Dried Formulation XI

$$
\text { (Key: } A \times 750, B \times 2,000)
$$

Figure 17. Photomicroerophs of CofSpray Dried Formulation XII
(Key: A $\times 750, B \times 2,000$)

Fiedre 18. Photomicrographs of Co-Seray Dried Formulation XIII

$$
\text { (Key: } A \times 750, B \times 2,000 \text {) }
$$

The photomicrographs of Formulation XIII - XIX were shown in Figures 18-24. The shape of particles were microsphere in different sizes. The surface of microspheres were covered with microcrystal that made rough surface. However, some of them had rather smooth surface.

2. Drug Content.

The percent drug content of co-spray dried powder prepared from various formolation were shown in Table 16. The Formulations I-VIII in which water was used as a medium had different drug content between the products collected from the chamber and collector. However, for Eprualations I-IV, the drug contents from collector were higher than those collected from chamber, but opposite results were obtained for Formuations Y-VIII. The drug content of powder prepared according to Formuluations IX-XII and XIII-XIX were relatively indifferent.

3. Moistmre Content.

The moisture content of co-spray dried powder were also reported in Tapde ls.d The moisture content was in the range of $0.42-$ 4.00. The formulations that contained channeling agent had higher moisture content than of the other formulations. 6 g

Figure 19. Photomicrographs of Cat Spray Dried Formulation XIV
(Key: $A \times 750$

Figure 20. Photomicrographs of Co-Spray Dried Formulation XV

$$
\text { (Key: A } \times 750, B \times 2,000 \text {) }
$$

Figure 21. Photomicrographs of Co-Spray Dried Formulation XVI

Figure 22. Photomicrographs of Co-Spray Dried Formulation XVII

$$
\text { (Key: } A \times 750, B \times 2,000 \text {) }
$$

Figure 23. Photomicrographs of Co-Stray Dried Formalation XVIII

Figure 24. Photomicrographs of Co-Spray Dried Formulation XIX (Key: $A \times 750, B \times 2,000$)

Table 16. The percentage of drug content and the percentage of moisture content.

Formalation	\% Drug Content (\pm SD $)^{* *}$		```% Moisture Content in Collector(\pmSD)*```
	Collector	Chamber	
I	36.03(0.59)	88.46 (0.19)	$0.42(0.07)$
II	$91.23(0.61)$	$76.70(0.12)$	$0.96(0.04)$
III	$88.36(0.43)$	$71.14(0.38)$	$1.02(0.05)$
IV	$83.27(0.94)$	56.31 (0.09)	$1.00(0.06)$
V	$86.40(0.44)$	$98.10(0.87)$	$1.06(0.03)$
VI	$84.80(0.63)$	$90.44(0.78)$	$1.05(0.00)$
VII	$70.99(1.16)$	$82.51(0.72)$	$2.00(0.06)$
VIII		$75.28(0.31)$	$2.04(0.05)$
IX	0,0.46)	$90.85(0.41)$	$1.02(0.03)$
X	$87.13(0.58)$	$87.35(0.47)$	$1.02(0.01)$
XI	$81.86(0.41)$	$81.57(0.59)$	$1.00(0.02)$
XII	1100 (47)	$77.58(0.44)$	$1.02(0.06)$
	87.55 (2.11)	$87.98(0.32)$	$1.92(0.05)$
XIV	$82.62(0.27)$	$82.24(0.38)$	$2.00(0.02)$
XV	$86.80(0.78)$	$86.52(0.69)$	$2.04(0.01)$
XVI	$75,90(0,18)$	$76.78(0.24)$	$4.00(0.02)$
XVII	$75.88(0.50)$	$76.32(0.52)$	$3.02(0.02)$
XVIII	68.80(0), 47)	69.27(0.22)	$2.60(0.02)$
XIX	$69.73(0.27)$	$69.89(0.32)$	$2.97(0.01)$

* Standard deviation from two determinations
** Standard deviation from three determinations

 in Table 917. The particle size distribution was depieted in Figures 89 93(Appendix D). It was apparent that particle size of theophylline-HPMC powders(Formulations V-VIII) were relatively larger those than of the other formulations. Higher percents of fine powder were sttained for the formulations with HPMCP(Formaltions IX-XII) and ethylcellulose-channeling agents(Formulations XIII-XIX).

Table 17. Particle size distribution of co-spray dried powder.

\% Weight Retained of Preparation	Sieve Size ($\mu \mathrm{m}$)					
	212	150	80	75	45	Pan
I	3.45	1.44	58.34	6.39	11.12	8.75
II	10.43	3.50	6.44	16.72	50.21	12.70
III	14.98	4.26	8.30	14.88	38.84	13.82
IV	12.53		6.67	6.98	28.39	41.81
	0.28		10.48	8.41	39.35	39.10
VI	0.30	2.8	24.18	16.43	40.03	16.20
VII	0.27	6.81	68.32	6.66	11.10	6.31
VIII	81	13.68	86.11	5.63	10.92	3.04
IX	9	1.77	4.39	5.70	13.33	56.85
X	1.50	1.44	5.49	20.54	9.95	60.97
XII	3.25	3.22	3.70 7.27	17.50 17.15	$\begin{aligned} & 19.96 \\ & 26.91 \end{aligned}$	$\begin{aligned} & 44.23 \\ & 42.23 \end{aligned}$
XIII			?	12.50	34.08	36.63
XV	3.47	1.41	3.30	4.39	12.21	75.51
XVI	3.40	5.38	4.00	4.04	2.5 .80	57.36
XVIT	2+47	1.39	2.68	2.64	6.26	84.56
XVIII	3.55	4.41	8.15	8.23	8.10	67.55
XIX	5.72	8.13	6.07	4.64	7.73	66.56

ศูนย์วิทยทรัพยากร

จุหหนาลงการณ์มหาวิทยาลัย
25. The peak of theophylline at 2.90μ resulted from $\mathcal{N}-H$ stretching. The IR sbsorption bands at 5.86 and 5.98μ were resulted from $C=0$ stretching. The peaks at 6.20 and 5.40μ were resulted from $C=C$ and $\mathrm{C}=\mathrm{N}$ stretching, respectively. The $\mathrm{C}-\mathrm{H}$ bending was observed at 6.92 H. The peaks at 7.7 and 8.0μ resulted from $C-N$ and $C-0$ vibration, respectively.

Figure 25. Infrared Spectrum of Theophylline ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

The co-spray dried powder of theophyline and ethylcellulose showed the spectra of theophylline and ethylcellulose 3.5 shown in Figure 26. The spectrum of ethylcellulose had a peak of carbonyl group that did not exist in the structure of ethylcellulose, however, the elasticizer of this latex dispersion was oleic acid that had a. carbonyl group. The/interaction between drus and ethylcellulose was scarce and the beak of spectra did not shifted. From this result, it could be concluded that these fommation were only simple mixing. The Th-spectra of co-spray dried ponder of theophylline-HPMC were displayed in Figure 27. When comparison between theophylline and theophylline-HPMC, the peak at about $2.9 \mathrm{\mu}$ or $3550 \mathrm{~cm}^{-1 \text { was }}$ shipted sighty to high frequency and the peak intensity was stronger. Thiskitss offected by OH group of HPMC and indicated that it might have the diminutive interaction between drug and polymer. Wher concentration of HPMC was increased, this peak shifted slightly Eg low frequency and the peak intensity was weaker. This result mightbe due to the intramolecular H -bond of HPMC was broken down. The IR-spectra of co-spmay dried powder of theophylline-HPMCR and St go-sposy dryed thepphylline-ethylcellulosePVP K3D were dericted in Figure 28 and 29, respectively. This revealed that no interaction or slight intenaction oneunced, it could be suggested that the co-spray dried theophyline-HPMCP and co-spray dried theophylline-ethylcellulose-PVP K30 were simple mixtures. The IR-spectra of co-spray dried powder of theophylline-ethylcelluloselactose were depicted in Figure 31. The peak of free OH at 2.8μ or $3571 \mathrm{~cm}^{-1}$ in lactose spectrum as shown in Figure 30 (Pouchert, 1975) disappesred. This result might be due to the H -bond between the three components.

Figure 27. IR Spectra of Theophylline-HPMC Systems
Rey : A - HPMC
B - Theophylline
C - Theophylline- $5 \% \mathrm{HPMC}$
D - Theophylline- 10% HPMC
E - Theophylline-15\% HPMC
F - Theophylline-20\%HPMC

Figure 28. IR Spectra of Theophylline-HPMCP Systems Key : A - HPHCP

B - Theophylline
C - Theophylline-5\%HPMCP
D - Theophylline-10\%HPMCP
E - Theophylline-15\%HPMCP
E - Theophylline-20\%HPMCP

Figure 29. IR Spectra of Theophylline-Ethylcellulose-PVP K30 Systems Key : A - Theophylline

B - Theophylline-1\%Ethylcellulose-10\%PVP K30
C - Theophylline-1\%Ethylcellulose-20\%PVP K30
D - Theophylline-5\%Ethylcellulose-10\%PVP K30
E - Theophylline-5\%Ethylcellulose-5\%PVP K30

Figure 31. IR Spectra of Theophylline-Ethylcellulose-Lactose Systems
Key : A - Theophylline
B - Theophylline-3\%Ethylcellulose-25\%Lactose
C - Theophylline-5\%Ethylcellulose-25\%Lactose
D - Theophylline-5\%Ethylcellulose-15\%Lactose
6. Thermagram.

Thermograms of theoprylline alone, co-spray dried of theophylline and various polymers and channeling sgent were shown in Figure 32. The thermogram of pure theophylline gave the characteristic melting endotherm at $268{ }^{\circ} \mathrm{C}$ and at $335{ }^{\circ} \mathrm{C}$. While in theophylline -5\%ethylcellulose(Eormalation I) and theophylline-20\% ethylcellulose(Formulation IV) had 3n exothermic peak at $198^{\circ} \mathrm{C}$ and exhibited the characteristic melting endotherm of theophylline. Theophylline-HPMC(Formiation/V and VIIL) and theophylline-HPMCP (Formulation IX and XII) had endothermic peaks rather same as pure theophylline. No change was oosserved in chermal analytical profiles indicating absence of any interaction between theophylline and HPMCP. Theophylline-3\%ethyloellulose-25\%lactose(Formalation XIX) had not exothermic peak of ethylcoliulose at $198^{\circ} \mathrm{C}$, but it had endothermic peaks at $59^{\circ} \mathrm{C}$ and 203 and exhibjted the characteristic melting endothermic of thegenylline with slightly shieted to $257^{\circ} \mathrm{C}$. This might be due to the interaction between the three components.

The X-ray diffraction patterns of theophylline and
 Pigure 33. The diffraction of the original drue showed sharp peaks. No difference was observed between theophylline alone and co-spray dried theophylline-ethylcellulose. The X-ray diffraction petterns of theophylline and theophylline-HPMC (Formalation V and VIII) were shown in Figure 34. In the co-saray dried theophylline-5\%HPMC, some of theophylline was in the form of amorphous. But in the case of co-

จหาลงกรณม่หาวิทยาลัย

Figure 32. DTA Thermograms of Theophylline, Theophylline-Polymer and Theophylline-Polymer-Channeling Agent
Key : A - Theophylline
B - Theophylline-5\%Ethylcellulose
C - Theophylline-20\%Ethylcellulose
D - Theophylline-5\%HPMC
E - Theophylline-20\%HPMC
F - Theophylline-5\%HPMCP
G - Theophylline-20\%HPMCP
H - Theophylline-3\%Ethylcellulose-25\%Lactose

Figure 34. X-ray Diffraction Spectra of Theophylline and
Theophylline-HPMC System
Key : A - Theophylline
B - Theophylline-5\%HPMC
C - Theophylline- 20% HPMC
seray dried theophylline- 20% HEMC, theophylline was in the form of crystal. The X-ray diffraction patterns of theophylline and theophylline-HEMCP (Formulation IX and XII) were shown in Fizure 35. The X-ray diffraction spectra of theophylline alone and theophyllineHEMCP showed identioally. The X-ray diffraction patterns of theophylline and theophylline-ethylcellulose-lsctose(Formulation XIX) were shown in Figure 36 . This spectra of co-spray dried of theophylline-ethylcellulose-1actose showed the peak that identical to theophylline erystal.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 35. X-ray Diffraction Spectra of Theophylline and
Theophylline-HPMCP Systems
$\begin{aligned} \text { Key : } & \text { A - Theophylline } \\ & \text { B - Theophylline-5\%HPMCP } \\ & \text { C - Theophylline- } 20 \% H P M C P\end{aligned}$

Figure 36 . X-ray Diffraction Spectra of Theophylline ahd 9 9 Theophyine-ethycellulose-Lagtbse system of

B - Theophylline-3\%Ethylcellulose- 25% Lactose

The Evalustion of the Matrix.

1. Thickness of Matrices

Although the thickness of matrix tablet was not official in quality control of tablet, but the uniformity of tablet thickness could predict the uniformity of comeressional force. The mean and standard deviation of tablet thioknss were presented in Table 18. The standard deviation obtained were not exceed ± 0.02 for all tested matrices.
2. Matrix Tablet Hanoness

The mean and standard deviation of tablet hardness were displayed in Table 18. Figuren $37 / 4$ depicted the relationship between polymer concentration and tablethaydness. Generally, it was found that the increase in polymer concentration caused increase in hardness values except of HPMCF matrices, a little increase of hardness was obseryed. The inerease in lactose caused decrease in hardness values as in Formulation XVII and XVIII.

Most of the preparations had disintegration, time that was
 disintegration time that was shorter than two hours. Among three commercial products, only Theodur(R) had disintegration time that was longer than two hours. All detail data were presented in the Table 18.

Table 18. Physical properties of the commercial products and the matrices prepared from various polymers and concentrations.

HARDNESS

Figure 37 The Hardness Profiles of Three Polymers Matrices.

$$
\begin{gathered}
\text { ศูนย์วิทยทรัพยากร } \\
\text { จุฬาลงกรณ์มหาวิทยาลัย }
\end{gathered}
$$

4. Discoliation Study

4.1 Dissolution Profiles and Relesse Rate Profiles

From the experimental data, the dissolution or the release profiles ould be plotted between amount percent of drug release afainst time. Then, tha change of release rate frofile mas onotructed from the dissolution profile to elucidate the release rate at various time intervel during the course of drug dissolution from the matrices. The dissofution and release rate profiles of esch formalstion were described in Table 33-54 (Appendix E).

The pelesse fate was calculated by dividing the different of percent drig release at various time interval with the time utilized to relesse that pestain amount of the drue(see data in Table 41-54. Appendix E)Nane Eate, then, was plotted with the sverage time intervel. It was shown that the rate of release derreased with the fime.
4.1.1 The Blank Theophylline Matrix

T 9.4 dThepphyline itself couldobe compressed and the influence of dissolution medium on theophyllade release and release rats atovanibus cimevintervals from this boank matrix were depicted in Figure 38-39. The release rate of theophylline in 0.1 N. HCl was foster than in phosphate buffer pH 6.8 ss illustrated in Figure 38. This result indicated that theophylline may be more soluble in 0.1 N. HCl than in phosphate buffer pH 6.8. In 0.1 N. HCl and in phosphate buffer pH 6.8, the entire matrix dissolved in approximately five and six hours, respectively. The release rate

Figure 38. The Release Profilgs of Theophylline Matrices without Additives

Figure 39. The Release Rate Profiles of Theophylline Matrices without Additives
profile was shown in Figure 39, this release rate was faster than other theophylline-polymer matrices.

4.1.2 The Formulations I-IV Matrices

The dissolution profiles of theophylline from theophylline-ethylcellulose matnices with various ethylcellulose ratios in $0.1 \mathrm{~N} . \mathrm{HCl}$ and phosphate bulfer pH 6.8 were shown in Figure 40(Table 34, Appendix E), Each pont represents the average value obtained from three detexminations at the given sampling time. The convex curves were tumed th the X axis. The release rate was decreased with time as, shown in Figare 41 and this might be due to an increase in diffusionsl path length for the drug.

Incressing the weight fraction of ethylcellulose resulted ${ }^{2 n}$ a corresponding decrease of the dissolution rate. The congegtration of ethylcellulose in the formulation was the determining factor in contsolling release rate of drug.

6 The release of drug from this matrices containing pesrious levels Cof lethyletlulosel owere affected by dissolution medium as shown in Figures $40(A)$ and $40(B)$. The amount of theophytine 6released in $0.4 \mathrm{H} / \mathrm{HCl}$ was hisher than in phosphate buffer pH 6.8. This result may be affected by an increase in theophylline solubility as previous mentioned in section 4.1.1.

4.1.3 The Formulations V-VIII Matrices

protective gelatinous layer. Both diffusion and erosion could be
(A)

Figure 40. The Release Profiles of Theophylline-Ethylcellulose Matrices in
A) $0.1 \mathrm{~N} . \mathrm{HCl}$
B) Buffer pH 6.8

Figure 41. The Release Rate Profiles of Theophylline-Ethylcellulose Matrices in
A) $0.1 \mathrm{~N} . \mathrm{HCl}$
B) Buffer pH 8.8
important in controlling the release of drug from a. hydrophilic matrices. But this gel-matrix had good durability, soluble drug may diffuse out of the gel before erosion occurred.

The release of theophylline from matrices containing all levels of HPMC were affected by dissolution medium ass displayed in Figure 42. The dissolution medium affected the release rate but did not affect the pattem of drug release. The release rate of these formulations decrease with the time increase as shown in Fiemre 43 and this may be que to an increase in diffusional path length for drug which in turn may be due to slower erosion rate of the rubbery layer (gel at the tablet periphery) and faster advancement of swelling front into the glassy polymer. The release rate in 0.1 N.HCl was faster than the relegase pate in buffer pH 6.8.

The hisher HPMC ratios affected the slower release rate of drag. As the concentration of HPMC was increased in the matrix tablet the resulting was gelatinous/diffusion more than erosion. Therefore increase in HPMC concentration would generally

4.1.4 The Fommulations IX-XII Matrices
 but did not disintegrate into particle during dissolution studied in 0.1 N.HCl: However it was completely dissolved within 5 hours in buffer pH 6.8. Thus, these formulations would be evaluated in two parts.

Figure 42. The Release Profiles of Theophylline-HPMC Matrices in
A) $0.1 \mathrm{~N} . \mathrm{HCl}$
B) Buffer pH 8.8

Figure 43. The Release Rate Profiles of Theophylline-HPMC Matrices in A) $0.1 \mathrm{~N} . \mathrm{HCl}$
B) Buffer pH 6.8

In 0.1 N.HCl, the dissolution profiles of theophylline from theophylline-HPMCP matrices with various HPMCP ratios were show in Figure 44(A)(data in Table 36, Appendix E). The highest amount of theophylline in 12 hours obtained from formulation X that had $10 \% \mathrm{w} / \mathrm{w}$ of HPHCP . The release rate of this formulation also faster than others as shown in Figure 45(A)(data in Table 46, Appendix E). This result may be affected from this concentration was an optimum for disintegration property.

In buffer PH 6.8 , the dissolution profiles of formulations IX-XII were shown in Figure 44 (B) (data in Table 36, Appendix E). These metripes were completely dissolved within five hours. The release rate profits were depicted in Figure 45(B)(data in Table 47, Appendix E)

As these results, it was indicated that the concentration of the polymer obviously affected the percentage of drug released. The different polymers produced the different drug released-time profiles. The pH of medium had an effect on the 6 e e release rateparofile 9 ming 149 , that theophylline-ethylcellulose system was chosen for further study.

จุหาจงภรโม่มหนวิิมฆวลัย

These Formulations contained theophylline-ethylcellulose-PVP K3O but the amount of polymer and channeling agent in each formulations was adjusted differently in order to modify the release rate (se ep Table 13). The release of theophylline from Formation XIII and XIV were affected by dissolution medium as depicted in Figure 46. The release rate of these formulations

Figure 44. The Release Profiles of Theophylline-HPMCP Matrices in A) $0.1 \mathrm{~N} . \mathrm{HCl}$
B) Buffer pH 6.8

Figure 45. The Release Rate Profiles of Theophylline-HPMCP Matrices in
A) $0.1 \mathrm{~N} . \mathrm{HCl}$
B) Buffer pH 6.8

Figure 46. The Release Profiles of Formulations XIII and XIV Matrices

Figure 47. The Release Rate Profiles of Formulation XIII and XIV Matrices
decreased with the time incressed as displayed in Figure 47. For the first three hours, the release rate in 0.1 NHCl was faster than the rate in buffer pH 6.8. Inoreasing PVP K30 from 5% to 10% did not affect the dissolution profile and the dissolution rate.

The release of theophylline from Formulation XV and XVI were affected by dissplution wedium as shown in Figure 48. The release rate of these formations decreased with the time inoreased as depicted in Figure 49. The release rate in buffer pH 6.8 was faster than the relemse rate in 0.1 H. HCl. This result may be affected by high erosion gf matrix in buffer pH 6.8 and completely dispersed within 9 hours. Increasing PVR R30 from 10 to 20% did not affect the dissolution profilerand dissolution rate.
4.1.5 The Formations XVII-XIX Matrices

Thesef formulations contained theophylline-
ethylcellulose-lagtose but the amount of polymer and chameling agent in each formulations was adjusted differently in order to modify the release rate(see Table 13). The release of theophylline from
 displayed in Tigure 50. The release rate of these formulations
 release fate in 0.1 W.HCl was slightly faster than the release rate in buffer pH 6.8. An increase in lactose from 15 to 25% resulted in derrease of an initial release rate as shown in Figure 51.

The release of theophylline from Formulation XIX was affected by pH of dissolution medium as depicted in Figure 52. The release rate of this formulation decreased with the time

Figure 48. The Release Profiles of Formulation XV and XVI Matrices

Figure 49. The Release Rate Profiles of Formulation XV and XVI Matrices

Figure 50. The Release Profiles of Formulation XVII and XVIII Matrices

Figure 51. The Release Rate Profiles of Formulation XVII and XVIII Matrices

Figure 52. The Release Rrofizes of Fonmalation XIX Matrices

Figure 53. The Release Rate Profiles of Formulation XIX Matrices
incressed 35 shown in Figure 53 . But the dearesse of relesse rate was fluctuated. The release mate in 0.1 N.HCl was higher than the relesse rate in buffer pH 5.8 .

4.1.7 Quibron(R)

The release profile was shown in Figure 54 . QuibroncR dissolved completely within 5 hours in buffer pH 6.8 and in 0.1 N.HCl. The relessed rate of Quibron(R) was fastest in omparison with all other formulations and products tested. The release rate in phosphate buffer pH 6.3 was faster than in 0.1 N . HCl as depicted in Figure 55
4.1.3 Theodunk

The differense of release profiles of
Theodur $\langle R$) in acid and ainall mediun were detected. The release of theophylline from theodur(R) was affected by gissolution medium as illustrated in Figure 56. The observed waye-like appearance was in agreement with previously reportech data(Jonkman, et al., 1981; Moginity, Cpmetoh fand Guff, 19833. NThe pelease rate profile of Thecdur(R) in phosphate buffer pH 6.3 was faster than that in B. 1 N . HCI afeer 95 houg if disso futionas shown in Figure है.
4.1.9 Nuelin(R)

Nuelin<R) was completely dispersed within 9 hours in buffer pH 6.8, but it remained in the matrix form within 12 hours in D.1 N.HCl. The dissolution profiles of theophylline from Nuelin(R) were depicted in Figure 58.

Figure 54. The Release Profiles of Quibron T/SR

Figure 55. The Relesse Rate Profiles of Quibron T/SR

Figure 56. The Release Profiles of Theodur (R)

Figure 57. The Release Rate Profiles of Theodur \langle R)

Figure 58. The Release Profiles of Nuelin(R)

Figure 59. The Release Rate Profiles of Nuelin(R)

The release of drug from this produet wos affected by fH of the dissolution medium. The release rate of drue in buffer pH 6.8 was mach higher than that rate in D. $1 \mathrm{~N} . \mathrm{HCl}$ as depioted in Figure 59. This result may be affected by polymer solubility in these two pH media.

Erom the pelease study as previously described, the Formulation XIX was seemed superior to the other Eormulations. Consequently, this formulation was selected to determine the release behavior by pH change method and oompared to With the commercial products, Wheodur< 2 , and Nuelin<R). Quibron<R) was excluded from this studross it failed to release the drug for 12 hours in both acid and alkalimedim. The release and release rate profiles attained were presented in Figure 60 and 61 , respectively. The amount of dplg that released in 12 hours were $32.80,81.46$, and 77.94% for Theddur〈R〉, Formalation XIX Matrices, and Wuelin<R>, respeotively. The release rate of Theodures was lower st first 2 hours in comparing wion Formylation XIX and Nuelin(R) and higher rate was observed ofter that Eidure 61). \|NC|||d

In order to determine the effect of type of polymer and formatation difference on the model of drug release. Therefore, analysis of all dissolution data were carried out to elucidate what model(zero order, first order, and Hisuchi model) could be fitted by the dats. The plots between percentage of drug against time (zero order), log percent of drug remained versus time(first order), and

Figure 60. The Release Profiles of Formulation XIX Matrices, Nuelin(R) and Theodurs(R) in pH Change Method

Figure 61. The Release Rate Profiles of Formulation XIX Matrices, Nuelin(R) and Theodur(R) in pH Change Method
percentage of drug versus square root of time(Higuchi model) were, therefore, constructed and determined the one which was the mosit linear ass the accepted model of drug release.

4.2.1 The Blank Theophylline Matrix

The Higuchi glot and first-order plot of the blank formulation were illustrated in Figure 62-63, respectively. The correlation coefficient as obtained as tabulated in Table 19. Since both the Higuchi plot/and the first order plot were rather linear, it was necessary tol distinguish between the models. The treatment was based upon use of the differential forms of the firstorder and Higuohi equations(dftain Table 55-62, Appendix E). The correlation coefficient of ratfs of release versus Q were higher than those of rates versus 1 R,as exhibited in Table 20-21 and the statestical significance gifference was found as presented in Table 66(Appendix F), these indieated that the frend of theophylline release from the matrices without additives, first order model would probably be operative.

the values of correlation coefficient of the relationship shown in

 Table 19 indicated that the first-order model and the Higuchi model were interested. The further treatment was based upon use of the differentisl forms of the first-order and Higuchi equations. The correlation coefficient of rates of release versus $1 / Q$ were higher than those of rates versus Q as exhibited in Table 20-21. This was true for s.ll the matrices having different drug-polymer ratios andTable 19. Correlation coefficient of the relationships between percent drug relessed versus time (A), percent drug released versus square root time (B), and log percent drug remained versus time (C).

Formalation	Dissolution Medium					
	$0.1 \mathrm{N}$.			Phosphate buffer pH 6.8		
	A	B		A	B	C
Blank	0.9403	0.9828	320	0.9280	0.9702	0.9529
I	0.9179	0.9974	1. 9853	0.9247	0.9985	0.9748
II	0.9215	0.9981	0.9736	0.9425	0.9980	0.9794
III	0.9340	0.9950	10.9715	0.9286	0.9993	0.9648
IV	0.9217	3. 9983	0.9582	0.9265	0.9992	0.9599
V	0.9684	2	. 9987	0.9511	0.9966	0.9730
VI	0.9602	9910	0.9900	0.9504	0.9968	0.9696
VII	0.9659	. 9912	0.9853	0.9413	0.9985	0.9658
VIII	0.9595	. 9943	0.9802	0.9452	0.9983	0.9676
IX	0.9230		0.9939	0.9548	0.9818	0.9737
X	0.9001	0.9869	0.9950	0.9266	0.9786	0.9629
XI	0.9047	0.9903	0.9875	0.8548	0.9777	0.9740
XII	0.8103	0.9926	0. 9851	0.9354	0.9957	0.9445
XIII	0.9130	0.9950	0.9783	0.9301	. 0.9956	0.9761
XIV	0.9075	0.9947	0.9774	0.9290	- 0.9967	0.9772
XV	0.8727	0.9808	0.9855	0.8337	0.9565	0.9986
XVI	0.8351	0.9703	0.9642	0.8394	0.9552	0.9851
XVII	0.9446	0.9920	0.9987	0.9476	0.9906	0.9962
XVIII	0.9632	0.9869	0.9983	0.9518	0.9903	0.9989
XIX	0.9332	0.9880	$\begin{gathered} 0.9987 \\ \hline \end{gathered}$	0.9474	0.9878	0.9861
Nuelin(R) 0.8923 Quibron <R>0.8450 0.9505 0.8368 Theodur $\langle R>0.9807$ 0.9704 0.9871					0.9681	0.9842
					00.9604	0.9611
					0.8103	0.9451

Table 20. Comparison of linearity between plots of rate of release sgainst reciprocal amount ($1 / Q$) and amount (Q) of theophylline released from the matrices in $0.1 \mathrm{~N} . \mathrm{HCl}$.

Formalation	Correlation rate	
	versus Q	verficient of
Blank	0.8908	versus $1 / Q$
I	0.7012	0.8497
II	0.6613	0.9895
III	0.5806	0.9863
IV	0.6159	0.9490
V	0.6588	0.9687
VI	0.6181	0.8560
YII	0.5134	0.9196
VIII	0.4731	0.9220
IX	0.8715	0.8798
X	0.8372	0.8614
XI	0.8797	0.7803
XII	0.8014	0.8407

Table 21. Comparison of linearity between plots of rate of relesse against reciprocal amount ($1 / Q$) and amount (Q) of theophylline released from the matrices in phosphate buffer pH 6.8

Figure 62. The Higuchi plot of Theophylline Matrices without Additives

Log \% Drug Remained

Figure 63. The First-order Plot of Theophylline Matrices without
Additives

Figure 64. The Higuchi Plot of Theophylline-Ethylcellulose Matrices in
A) $0.1 \mathrm{~N} . \mathrm{HCl}$
B) Buffer pH 6.8

Figure 65. The First-order Plot of Theophylline- Ethylcellulose Matrices in
A) $0.1 \mathrm{~N} . \mathrm{HCl}$
B) Buffer pH 6.8
indicated that the trend of theophylline release from ethylcellulose matrices, Higuchi model nould probably be operative.

4.2.3 The Formulations V-VIII Matrices

All these formlations gave similar release model in both dissolution fluids. Table 19 and Figures 66-67 gave the comparison between the linearizations of release rate data by the two models. Both the Higuchi plot and first-order flot were Inearity with the correlation/ coefficient values greater than 0.96 . However, the Higuchi equation gave consistently higher values for the correlation coefficient than that did the first-order equation.

Nevertheless, since both models, were acceptably linear, a more discriminating test, Equation 17,18 as well, was utilized to distinguish between the twomodels. The relative validity of the test was obtained by using the differential forms of the rate equations. The mesult as shown in Table $20-21$ indicated that the release data would cossibly follow Higuchi model.
 and first-grder alot were shomg in Fisures 68(A) and $69(A)$, respectitely. From the Figures $68(A)-69(A)$ and the values of correlation coefficient of the relationship shown in Table 19 pointed out that the first-order model and the Higuchi model were interested. In further treatment, the correlation coefficient of rates of release ggainst Q were higher than those of rates against $1 / Q$. This was true for Formulations IX-XI but Formulation XII was opposite as shown in Table 20. The statestical significance difference of Formulations

Figure 66. The Higuchi Plot of Theophylline-HPMC Matrices in
A) $0.1 \mathrm{~N} . \mathrm{HCl}$
B) Buffer pH 6.8

Figure 67. The First-order Plot of Theophylline-HPMC Matrices in A) $0.1 \mathrm{~N} . \mathrm{HCl}$
B) Buffer pH 6.8

Figure 68. The Higuchi Plot of Theophylline-HPMCP Matrices in
A) $0.1 \mathrm{~N} . \mathrm{HCl}$
B) Buffer pH 6.8

Figure 69. The First-order Plot of Theophylline-HPMCP Matrices in
A) $0.1 \mathrm{~N} . \mathrm{HCl}$
B) Buffer pH 6.8

X-XII were observed, but the t-vlue of Formulation IX showed no statistical significance difference(Table 66, Appendix F). Therefore, the release profiles of Eormulations X-XI would probably follow first-order model, while Formulation XII would possibly exhibit Higuchi model and the model of Formulation IX was not cleared.

The Higuchi plot and first-order plot of these formulations in buffer pH 6.8 were shown in Figure 68(B) and $69(B)$, respectively. From the Figure $68(B)-69(B)$ and the values of correlation coefficient of the pelationship shown in Table 19 pointed out that the first-arder model gnd the Higuchi model were interested. In further treatment, the cornelation coefficients of rates of release against Q were highery than those of rates against $1 / Q$. This was true for Formulations $1 \times$ XI but Formulation XII was opposite as presented in Table 21. Theit-values of Formulation XII showed no statistical significance difference. The Formalations IX-XI would possibly follow first-order model, but the model of Formalation XII was not cleared.

ค $9.2 \mid \cap 9$ The Formulations XII 4.2 .5 MVI Matrices

 ค9\%ค ค. 9 Table 199 and Fisures $70-71$ gave the comparison between the linearimations of the first-order model and Higuchi model among the Eommlations XIII-XIV. The correlation coefficient values of Higuchi plot were higher than that obtained from first-order plot. The further treatment was based upon use of the differential form of first-order and Higuchi equation as tabulated in Table $22-23$ indicated that these release profiles wouldTable 22. Comparison of linearity between plots of rate of release against reciprocal amount ($1 / Q$) and amount (Q) of theophylline release from the Formulations XIII-XIX and commercisl products in $0.1 \mathrm{~N} . \mathrm{HCl}$.

Table 23. Comprison of linearity between plots of rate of release against reciprocal amount ($1 / Q$) and amount (Q) of theophylline release from the Formulations XIII-XIX and commercial products in buffer pH-6.8

Figure 70. The Higuchi Plot of Formulation XIII and XIV Matrices

Figure 71. The First-order Plot of Formulation XIII and XIV Matrices
possibly follow Higuchi model, except Formalation XIV in $0.1 \mathrm{~N} . \mathrm{HCl}$ that would possibly follow first-order model.

Table 19 and Figures 72-73 gave the comparison between the linearizations of the first-order model and Higuchi model for Formulations XV-XYI, Both the Higuchi plot and the first-order plot were linear. When the further treatment wes examined, the correlation coefficient of rates of release against Q were higher than those of natesf against $1 / Q$ as presented in Table 2223. As a result, the first-order model would probably be operative.
4.2.6 The Eormulations XVII-XIX Matrices

Tablef18 and Figure 74-75 gave the comparison between linearizations of the first-onder model and Higuchi model for Formulations XVII-XVIII. Both models plots were linear, so it was necessary to distinguish between the models. In further treatment, the correlation coefficient of rates of relesse versus $1 / Q$ were higher than those of rates versus Q as presented in Table 22-23 and indicated that the Highachiomode mould possibly be better followed.

The comparison between the linearizations of the first-gider Bodel and Higuchandel for Formlat ion XIX presented in Figure 76-77 and Table 19 and indicated that these two models were interested. In further treatment, the correlation coefficient of rates of release versus $1 / Q$ were higher than those of rates versus Q as tabulated in Table 22-23 and the statistical significace difference was found as presented in Table 66(Appendix F), these indicated that the Higuchi model would probably be operative.

Figure 72. The Higuchi Plot of Formulation XV and XVI Matrices

Figure 73. The First-order Plot of Formulation XV and XVI Matrices

Figure 74. The Higuchi Plot of Fomulation XVII and XVIII Matrices

Figure 75. The First-order Plot of Formulation XVII and XVIII Matrices

Figure 76. The Higuchi plot of Formulation XIX Matrices

Log \% Drug Remained

Figure 77. The First-order Plot of Formulation XIX Matrices

4.2.7 Quibron<R>

The Higuchi plot and first-order plot for Quibron \langle () were shown in Figure 78 and 79, respectively. The highest correlation coefficient as presented in Table 19 obtained from the Higuchi plot, however, both the first-order model and Higuchi model were interested. In further treatment, the correlation coefficient of rate of release versus Q was higher than that of rate versus $1 / \mathrm{Q}$ as shown in Table 22-23 3nd tha statistical significace difference of Quibron(R) in buffer pH 6.3 was found as presented in Table 66 (Appendix F), these indicated that first-order model would possibly be followed.
4.2.3 Theodianes

The Higuchi plot and first-order plot were shown in Figure 80 and 81, respectively. In $0.1 \mathrm{~N} . \mathrm{HCl}$, the highest correlation coeffieient was 0.9977 that obtained from first-order plot(Table 19). In buffer pH 6.8, the highest correlation coefficient was 0.9871 that obtained from zero-order plot(Table 19). In further treatment, tbe relesse profile of theodur (R) in $0.1 \mathrm{~N} . \mathrm{HCl}$
would probably follow Higuchi 6 model with the correlation coefficient of rate of release against 6/d was higherd than that of rate sgainst Q as tabulated in Table 22.

4.2.9 Nuelin(R)

From the Figure 82-83 and the values of correlation coefficient of relationship tabulated in Table 19 pointed out that the highest correlation coefficient value in $0.1 \mathrm{~N} . \mathrm{HCl}$ and

Figure 78. The Higuchi Plots of Quibron T/SR

Figure 79. The First-order Plot of Quibron T/SR

Figure 80. The Higuchi plot of Theodur<R

Figure 81. The First-order Plot of Theodur(R)

Figure 82. The Higuchi Plot of Nuelin (R)

Log \% Drug Remained

Figure 83. The First-order Plot of Nuelin $\langle R\rangle$
buffer pH 6.8 obtsined from Higuchi plot and first-order plot, respectively. In further treatment, the linearity between plat of rate of release against $1 / Q$ and Q of Nuelin(R) in buffer pH 6.8 was rather indifferent and the t-value showed no statistical significance difference(Table 66, Appendix F), but in $0.1 N . \mathrm{HCl}$ the correlation coefficient value of rate of releasie sgainst $1 / Q$ was higher than that of rate against Q. In conclusion, the Higuchi model would possibly be operative in 0.1 N HCl
4.2.10 The Produets Tested in pH Change Method
4.2.10.7. Theodur (R)
426.0 From Figure 60,84, and 85 and the highest value of correlation coeffieient in Table 24 that obtained from zero-order plot indicated that the release of this product would possibly follow zerio-order model.
4.2.10.2 Nuelin(R)

coefficient in table 24 showed that the first-order model
 correlation coefficient value of rate versus $1 / Q$ was higher than that of rate versus Q as shown in Table 25 and indicated that Higuchi model would probably be operative.

4.2.10.3 Formalation XIX

The Figures 84-85 and the correlation coefficient values in Table 24 indicated that first-order

Figure 84. The Higuchi Plot of Formulation XIX Matrices, Nuelin(R) and Theodur $\langle\mathrm{RD}$ in pH Change Method

Log \% Drug Remained

Figure 85. The First-order Plot of Formulation XIX Matrices, Nuelin(R) and Theodur (R) in pH Change Method
model and Hißuchi model were interested. In further evaluation, the correlation coefficient value of rate against $1 / Q$ was higher than that of rate agrinst Q and the statistical significance difference was observed as presented in Table 66(Appendix F), these pointed out that Higuchi model mould possibly be operative.

Table 24. Correlation coefficient of the relationships between percent drug relessed vercus time (A), percent drug released versus square root time (B), and log percent drug remained versus time (b) in ph change method.

Table 25. Comparison of linearita Between plots of rate of release sgainst reciprocgtamount ($1 / Q$) and amount (Q) of theophylline release from the Formulation XIX and comercial products. from pH change method

4.3 The Evaluation of Drug Release Mechanism

The dissolution data was analyzed to clarify drugs release mechanism using equation $M_{t} / M_{\infty}=k t n$ (Equation 7) as previous discussion in the section of the analysis of drug release mechanism. The Datatest computer program as presented in Appendix D was employed for this interpretation. All results were shown in Table 26-28.

Table 26. The values of kinetic constant (k), release exponent (n) and correlation coefficient (r^{2}) following linear regression of dissolution data for values of $\mathrm{Mt}_{\mathrm{t}} / \mathrm{Mm}_{\infty}$ in 0.1 N.HCl.

Formulation	n Relesse Exponent	k Kinetic Constant	r^{2} Coeffi Correl
BLANK	0.77	0.380	0.9995
I	0.57	0.193	0.9984
II	0.52	0.181	0.9973
III	0.54	0. 126	0.9993
IV	0.51	0.121	0.9990
V	0.73	0. 1117	0.9980
VI	0.64	a. 110	0.9985
VII	0.55	0.112	0.9983
VIII	0.51	0.121	0.9890
IX	0.61 3	0. 208	0.9921
X	0.71	20.207	0.9912
XI	0.63	0. 198	0.9892
XII	0.62	10.192	0.9926
XIII	0.57	10.183	0.9906
XIV	0.55	0.187	0.9916
XV	0.70	0. 222	0.9903
XVI	(2) 0.65	0.253	0.9914
XVII	0.69	0.173	0.9581
XVIII	180.73	0.152	0.9996
XIX	0.76	0.176	0. 9995
Quibron (R) 0.79 Nuelin(R), 0.45 Theodur <2 0.759		$\begin{array}{cc} 0.516 & 0.9997 \\ 0.183 \\ 0.112 \end{array} \overbrace{0} 0.9980$	
9			

Table 27. The values of hinetic constant (k), release exponent (n) and correlation coefficient (r^{2}) following linear regression of dissolution data for values of $\mathrm{M}_{\mathrm{t}}, \mathrm{M}_{\infty}$ in phosphate buffer pH 6.8

Formulation	n Release Exponent	k Kinetic Constant	r^{2} Coefficient of Correlation
BLANK	0.87	0.304	0.9999
I	0.53	0.158	0.9980
II	0.56	0.129	0.9995
III	0.52	0.124	0.9992
V	0.51	0.116	0.9990

 regression of dissolution data for values of $\mathrm{Mr}_{\mathrm{r}} / \mathrm{M}_{\infty}$ in pH change method.

Formulation	n Release Exponent	k Kinetic Constant	r^{2} Coefficient of Correlation
XIX	0.73	0.162	0.9965
Nuelin<R)	0.61	0.096	0.9938
Theodur $\langle R\rangle$	0.93	0.072	0.9935

These exponent values were compared with the value of cylindrical sample in Table 7, except the values obtained from Formulations VVIII were compared with the value of cylindrical sample in Table 8.

4.3.1 The Blank Theophylline Matrix

The blank matrix was dissolved both in 0.1 N . HCl and in phosphate buffer pH 6.8 , the release exponent n were 0.77 and 0.87, respectively(Table 26-27). These results indicated that the mechanism of drug release pas anomalous(non-Fickian) transport.
4.3.2 The Formlations I-IV Matrices

The theophylline-ethylcellulose matrices were not dissolved and not swelled. The value of $n, k, r 2$ were shown in Table 26-27. In $0.1 \mathrm{~N} . \mathrm{HCR}$ and phosphate buffer pH 6.8 , the trends of the release exponent anas decrease when the ethylcellulose was increased. These indicated that at 100 concentration of ethylcellulose the mechanism was not only Fickian diffusion but have other mechanism such zs leaching from the water channel. In higher ethylcellulose? the ediease/ exponent n was?approached to 0.45 that indicated that the main mechanjsm was closer to Fickian, transport and the other methanism was decressed. 9 From thif evaluation? it could be predicted that when the concentration of ethylcellulose was increased until the critical concentration was reached, the mechanism would be Fickian transport.

4.3.3 The Formulations V-VIII Matrices

The theophylline-HPMC matrices were formed a gelatinous matrix and swelled. The release exponent n, the kinetic
constant k and the correlation coefficient $r 2$ were shown in Table 26-27. The release exponent value would be compared with the value in Table 8. The release mechanism was anomalous(non-Fickian) transport. The release exponent value tended to be decreased when the amount of HPMC was increased

4.3.4 The Formulations IX-XII Matrices

separated the evaluation into two parts according to the characteristic in the dissolution medium. In $0.1 \mathrm{~N} . \mathrm{HCl}$, The matrix was ruptured into special patzern. The highest release exponent value was obtained forma 10% HPMCP matrix. This may be that this concentration was an optimunaconcentration of HPMCP for using as disintegrant. The release exponent n which compared to Table 7 was indicated that the mechanism as anomalous transport. In phosphate buffer pH 6.8, the matrix was dissolved completely in the range of the testing time. The highest release exponent n was obtained when using 10\% of HPMCP. The release meghanism was seemed to be anomalous transport.

To increase release of theophylline from matrix tablets containing ethylcellulose, water soluble additives such as PVP K30 and lactose were incorporated as channeling agents.

The ethylcellulose-PVP K30 matrices were not dissolved but had some erosion. The value of n, k and r^{2} were shown in Table 26-27. In both medium, the release exponent n of

Formulations XIII and XIV indicated that the release mechanism was anomalous transport. When ethylcellulose was reduced to $1 \% \mathrm{w} / \mathrm{w}$ (in Formulations XV and XVI), it was found that the matrix was completely dispersed in phosphate buffer pH 6.8 within 9 hours. The release exponent n pointed out that the release mechanism was anomalous transport. The value of n from phosghate buffer pH 6.8 was higher than the value from 0.1 N . HCl , it wes possibly according to the matrix erosion in phosphato buffer pH 6.8 was higher than in 0.1 N . HCl. This result might be duef to the property of PVP K30.
4.3.6 The Formulations XVII-XIX Matrices

The wheophylline-ethylcellulose-lactose matrix was slowly eroded in $0.1 \mathrm{~N}, \mathrm{HCl}$. The value n was increased when increasing the amount of lactose for decreasing the amount of ethylcellulose(Table 26). Ta phosphate buffer pH 6.8 , the value n was rather steady when inereasints the smount of lactose, but the value n was increase when decreasing the amount of ethylcellulose in the matrix. Fingily the release, mechanism of this matrix was anomalous trafisport.f Iretosel led to multiplicity fof matrices which

followed the same release mechanism.

The release mechanism of Theodur $\langle R\rangle$ was not clear because the correlation coefficient value was rather low. The release mechanism of Quibron(R) was anomalous transport. The n vslues from $0.1 \mathrm{~N} . \mathrm{HCl}$ and phosphate buffer pH 6.8 were 0.79 and 0.78 , respectively. The release mechanism of Nuelin<R> in $0.1 \mathrm{~N} . \mathrm{HCl}$ was Fickian diffusion with n value $=0.45$. But Nuelin〈R> was eroded
in buffer pH 6.8 and the release mechanism was anomalous transport with n value $=0.84$.

4.3.8 The Products Tested by pH Change Method

In the pH change method, the Formulation XIX, Nuelin(R) and Theodur(R) were studiod. The release exponents n of Theodur(R), Formulation XIX and Nuelin(R) were $0.93,0.73$ and 0.61 , respectively(Table 28). These indicated that the release mechanism of these three products were anomalous transport and the release mechanism of Theodur<R> was the nearest to the zero-order transport. When the value of approached 1.0 , phenomenologically one might conclude that the release was approaching zero-order.

5. Projected in vivo Dsts

The results showed wide variations in the pattern of the in vitro release, both in abselute temas and in the influence of pH . Variation of these magnitudes would be expected to have significant influence in vivo.

Formalation XIX, Theodur(R), and Nuelin(R) were compared by using 9 simurated pharmacokinetias modal. 9.0 Al 16 details and assumptions were as following:

1. Dissolution was the rate-limiting process for absorption
2. All drug release would be absorbed, whether in the stomach or intestine, i.e. no absorption window problems. The oral bioequivalent (F in Equation 1) equaled to one.
3. No biotransformation process occurred during absorption.
4. The elimination rate remained constant.
5. Pharmacokinetic parameters were obtained from the report of Malee Sae Jung (1988). The selected prameters were received from Thai male non-smoking group which had average body weight about 60 kg.
6. The release rate that calculated from the release profile should be used to calculate the individual dose every 15 minutes. Then, from these doses and selected pharmacokinetic parameters, the drug plasma concentration of individual could be calculated, using Equation 1. Finally, the drus plasma concentration of overall individual doses conld be demived.
7. Assumed that after 12 hours, the matrices were passed through the GI tract and eliminated from the buman body. The GI tract presents some unusualdieatures that are not found in other routes of drug administration. The relatively brief transit time through the GI tract, approximately 12 hours, constrains the length of prolongation that can be expected. The variability in stomach emptying time and the rather severe chemical conditions of the stomach were additional limiting factors in the choice of prolonging mechanisms for thas soute, Regarding intestinal transit time in man the data. listed in Table 29(Dávis et al a 1984; Ritschel, 1989) could be used as a guidelife. 26 Anvenetusion, dverall 6 transit time of tablets was summed and the result was 617 minutes or about 10 hours.

From these assumptions, the drug plasma concentration of individual dose could be calculated for every 15 minutes until 24 hours. The latter dose would produce the drug plasma concentration that shifted from the former for 15 minutes as shown in Figure 86 (data from Formulation XIX in pH change method). From the

Figure 86. The Simulated Plasma Concentration of Individaul. Dose from Fommiation XIX Matrix

Figure 87. The Simulated Plasma Concentration Profile of Three Products Assumed that Delivered by One Dose every 15 Minutes, Amount of Dose was respected to the Release Rate
dissolation data(Formulation XIX, Nuelin(R) and, Theodur<R)in pH change method), each matrix could be divided to 48 individual dose, and created 43 curve of drug plasma concentration that shifted from the other for 15 minutes scale. Therefore, the cumalation curve as depicted in Figure 87 could be derived by summation the individual curve together.

Table 29. Gastrointestinal transit time in minutestSD of pellets and intact tablets in homans.

* For pellets the transit time is for 50% of the particles to leave or arrive at the particularesite:

Theodur(R) showed a highest predieted blood level than any of the otheroproduets on the perk of plood level which was reached at ten hours and maintained for two hours was about $6 \mu \mathrm{~g} / \mathrm{ml}$.

blood level. The platem of blood level was reached at time about

 four hours and maintained for sbout eight hours. The peak of plateau was about $5 \mu \mathrm{~m} / \mathrm{ml}$.Nuelin(R) had a lowest peak of blood level which was about $3.5 \mu \mathrm{~g} / \mathrm{ml}$. The nearly plateau state was reached within five hours and maintained for seven hours.

