CHAPTER IV

MATRIX SEMIGROUPS

In this chapter, we are concerned with matrix semigroups. First, we recall the following notation: For any field F and for any positive integer n,
 over F, ;

triangulan matrices over F
and $D_{n}(F)=$ the matrix semigroup of all $n \times n$ diagonal matrices over F.

There are two main-purposes in this chapter. The first one is to show that if F has a proper dense subsemigroup under its multiplication, 6 a then so each of the above matrix semigroups does. The second one is to show that if F is a finite field, then none of the above matrix semigroups has aproper dense subsemigroup $9 ? \cap$?

The following lemma give a general property of matrices.

Lemma 4.1. Let A and B be $n \times n$ nonsingular matrices over a field F. If $\operatorname{det} A=\operatorname{det} B$, then there exists an $n \times n$ matrix C over F such that $A=B C$ and $\operatorname{det} C=1$.

Proof : Assume that $\operatorname{det} A=\operatorname{det} B . \quad$ Then $\operatorname{det}\left(B^{-1} A\right)=1$. Since $\mathrm{B}^{-1} \mathrm{~A}$ is nonsingular, there is an $\mathrm{n} \times \mathrm{n}$ matrix D over F such that $D B^{-1} A=I_{n}$ where I_{n} is the $n \times n$ identity matrix over F. Then $A=B D^{-1}$, and $1=\operatorname{det} I_{n}=(\operatorname{det} D)\left(\operatorname{det}\left(B^{-1} A\right)\right)=\operatorname{det} D$ which implies that $\operatorname{det} D^{-1}=1$.

To prove the first two theorems, we need the following lemma.

Lemma 4.2. Let $\left(F,+,^{\circ}\right)$ be a field and S a matrix semigroup over F satisfying the following properties :
(i) $\quad\{\operatorname{det} A \mid A \in S\}=F$ or $F-\{0\}$.
(ii) For $A \in S$, if A is nonsingular, then $A^{-1} \varepsilon S$.

Assume that the semigroup (F, \cdot) has a proper dense subsemigroup. Then S has a proper dense sulbsemigroup.

Proof : Let n be a positive integer such that $S \subseteq M_{n}(F)$.

Let U be proper dense subsemigroup of the semigroup ($F, \cdot \cdot$).
Since $F-\{0\}$ is a subgroup of $\left(F,{ }^{\bullet}\right)$, by Theorem 1.2 , $\operatorname{Dom}(F-\{0\}, F)=F \in\{0\}$ (under the multiplication of F). If $0 \notin U$,
then U is a subsemigroup of the group $(F \in\{0\}, \cdot)$, So $F=\operatorname{Dom}(U, F)$
 This implies that $U \cap(F \backslash\{0\}) \neq \varnothing$. Hence $\{A \varepsilon S \mid \operatorname{det} A \varepsilon U\} \neq \varnothing$ since $F-\{0\} \subseteq\{\operatorname{det} A \mid A \in S\}$ by assumption. Let

$$
\bar{U}=\{A \in S \mid \operatorname{det} A \varepsilon U\}
$$

If A and $B \in S$ are such that $\operatorname{det} A, \operatorname{det} B \in U$, then $A B \in S$ and $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B\rangle \varepsilon U$, so $A B \varepsilon \bar{U}$. Since $U \subset F$, there is an
element $a \in F \mathcal{F}$. Then $a \varepsilon F \backslash\{0\} \subseteq\{\operatorname{det} A \mid A \varepsilon S\}$. Hence there is a matrix $C \varepsilon S$ such that $\operatorname{det} C=a \notin U$. Thus $C \varepsilon S \backslash \bar{U}$. Hence \bar{U} is a proper subsemigroup of S.

We claim that \bar{U} is dense in S. To prove the claim, let $A \in S$. If $\operatorname{det} A \in U$, then $A \in \bar{U} \subseteq \operatorname{Dom}(\bar{U}, S)$. Assume that $\operatorname{det} A \notin U$. Since U is dense in (F, \cdot), there are $u_{0, u_{1}, \ldots, u_{2 m} \varepsilon U, x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots}$ $\ldots, y_{m} \varepsilon \mathrm{~F}$ such that

$$
\begin{aligned}
\operatorname{det} A & =u_{0} y_{1}, \\
& =x_{1} u_{1} y_{1}, u_{0}=x_{1} u_{1}, \\
& =x_{1} u_{2} y_{2}, y_{1} y_{1}=u_{2} y_{2}, \\
& =x_{2} u_{3} y_{2}, x_{1} u_{2}=x_{2} u_{3}, \\
& \cdot \cdot, \cdot . \cdot \\
& =x_{m} u_{2 m-1} y_{m}, x_{m} 1_{2 m-2}=x_{m}^{u} u_{2 m-1}, \\
& =x_{m} u_{2 m}, u_{2 m-1} y_{m}=u_{2 m} .
\end{aligned}
$$

Since $\operatorname{det} A \notin U, \operatorname{det} A \neq 0$ which implies that all of $u_{0}, u_{1}, \ldots, u_{2 m}$, $x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{m}$ are elements of $F<\{0\}$. But $F \backslash\{0\} \subseteq\{\operatorname{det} A \mid A \in S\}$, so there are matrices $B_{0}, B_{1}, \ldots, B_{2 m}, C_{1}, C_{2}, \ldots$ $\ldots, C_{m}, D_{1}, D_{2}, \ldots, D_{m}$ in such that
$\cot _{B_{i}}^{9}=u_{i}^{m}$ for $i=0,1, \ldots, 2 m$, $?$

$$
\text { ค } 99 \cap \begin{aligned}
& \operatorname{det} G_{i}=x_{i} \text { for } i=1,2, \ldots, m \text { and } \\
& \operatorname{det} D_{i}=y_{i} \text { for } i=1,2, \ldots, m .
\end{aligned}
$$

Then all of $B_{0}, B_{1}, \ldots, B_{2 m}, C_{1}, C_{2}, \ldots, C_{m}, D_{1}, D_{2}, \ldots, D_{m}$ are nonsingular, $B_{0}, B_{1}, \ldots, B_{2 m} \varepsilon \bar{U}$ and

$$
\begin{aligned}
\operatorname{det} A & =\operatorname{det}\left(B_{0} D_{1}\right), \\
& =\operatorname{det}\left(C_{1} B_{1} D_{1}\right), \operatorname{det} B_{0}=\operatorname{det}\left(C_{1} B_{1}\right), \\
& =\operatorname{det}\left(C_{1} B_{2} D_{2}\right), \operatorname{det}\left(B_{1} D_{1}\right)=\operatorname{det}\left(B_{2} D_{2}\right), \\
& =\operatorname{det}\left(C_{2} B_{3} D_{2}\right), \operatorname{det}\left(C_{1} B_{2}\right)=\operatorname{det}\left(C_{2} B_{3}\right),
\end{aligned}
$$

$$
=\operatorname{det}\left(C_{m} B_{2 m-1} D_{m}\right), \operatorname{det}\left(C_{m-1} B_{2 m-2}\right)=\operatorname{det}\left(C_{m} B_{2 m-1}\right)
$$

$$
=\operatorname{det}\left(C_{m} B_{2 m}\right), \quad \operatorname{det}\left(B_{2 m-1} D_{m}\right)=\operatorname{det}\left(B_{2 m}\right)
$$

Since $\operatorname{det} A=\operatorname{det}\left(B_{0} D_{1}\right)$ and $\operatorname{det} B_{0}=\operatorname{det}\left(C_{1} B_{1}\right)$, by Lemma 4.1, there are $X_{1}, Y_{1} \varepsilon M_{n}(F)$ such that $A=B_{0} D_{1} Y_{1}, B_{0}=C_{1} B_{1} X_{1}$ and $\operatorname{det} X_{1}=\operatorname{det} Y_{1}$ $=1$. But for each $i \varepsilon\{1,2, \ldots \cdot m-1\}, \operatorname{det}\left(C_{i} B_{2 i}\right)=\operatorname{det}\left(C_{i+1} B_{2 i+1}\right)$, so for each i $\varepsilon\{1,2, \ldots, m-1\}$, there is X_{i+1} in M_{n} (F) such that $\operatorname{det} X_{i+1}=1$ and $C_{i} B_{2 i}=C_{i+1} B_{2 i+1} X_{i+1}$. By the assumption (ii), we see that $X_{i}, Y_{1} \varepsilon S$ for all i, $\varepsilon\{1,2, \ldots, m\}$. Since for each i $\varepsilon\{0,1, \ldots, m-1\}, B_{2 i+1} x_{i+1} \in \sin \operatorname{det}\left(B_{2 i+1} X_{i+1}\right)=\operatorname{det} B_{2 i+1}$ $=u_{2 i+1} \varepsilon U$, we have that $B_{2 i+1} X_{i+1} \varepsilon \bar{U}$ for all i $\varepsilon\{0,1, \ldots, m-1\}$. Now, we have that

$$
\begin{equation*}
A=B_{0} D_{1} Y_{1} \text { and } D_{1} Y_{1} \varepsilon S \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
& \text { ศนย์วิทยทรัพยากร } \\
& \mathrm{CB}_{0}=\mathrm{C}_{1} \mathrm{~B}_{1} \mathrm{X}_{1} \text {, } \tag{2}
\end{align*}
$$

> Since $\operatorname{det}\left(B_{1} X_{1} D_{1} Y_{1}\right)=\operatorname{det}\left(B_{1} D_{1}\right)=\operatorname{det}\left(B_{2} D_{2}\right)$, there exists $Y_{2} \varepsilon M_{n}(F)$ such that det $Y_{2}=1$ and $B_{1} X_{1} D_{1} Y_{1}=B_{2} D_{2} Y_{2}$. It follows from the assumption (ii) that $Y_{2} \varepsilon S$. Because $\operatorname{det}\left(B_{3} X_{2} D_{2} Y_{2}\right)=\operatorname{det}\left(B_{3} D_{2}\right)=$ $=\operatorname{det}\left(B_{4} D_{3}\right)$, there exists $Y_{3} \varepsilon M_{n}(F)$ such that $\operatorname{det} Y_{3}=1$ and
$B_{3} X_{2} D_{2} Y_{2}=B_{4} D_{3} Y_{3}$. Then $Y_{3} \varepsilon S$ by the assumption (ii). By this process, we have that there are $Y_{1}, Y_{2}, \ldots, Y_{m}$ in S such that
and thus

$$
\begin{equation*}
B_{2 i-1} X_{i} D_{i} Y_{i}=B_{2 i} D_{i+1} Y_{i+1}, i=1,2, \ldots, m-1 \tag{3}
\end{equation*}
$$

$$
D_{i} Y_{i} \in S, i=1,2, \ldots, m
$$

Since $\operatorname{det}\left(B_{2 m-1} X_{m} D_{m} Y_{m}\right)=\operatorname{det}\left(B_{2 m-1} D_{m}\right)=\operatorname{det} B_{2 m}$, there exists $Y \varepsilon M_{n}(F)$ such that det $Y=1$ and $B_{2 m-1} X_{m} D_{m} Y_{m}=B_{2 m} Y$. By assumption (ii), $Y \varepsilon S$. Since $\operatorname{det}\left(B_{2 m} Y\right)=\operatorname{det} B_{2 m}=\mu 2 m \in U$, we have that $B_{2 m} Y \in \bar{U}$. Hence we have $Y \in S$ and

$$
\begin{equation*}
B_{2 m-1} X_{m} D_{m} Y_{m}=B_{2 m} Y \cdot \varepsilon \bar{U} \tag{4}
\end{equation*}
$$

Thus, we have from (1)-(4) that

$$
\begin{aligned}
& A=B_{0}\left(D_{1} Y_{1}\right), B_{0} \varepsilon \bar{U}_{2} D_{1} Y_{1} \in S \text { (from (1)), } \\
& =C_{1}\left(B_{1} X_{1}\right)\left(D_{1} Y_{1}\right), B_{1} X_{1} \varepsilon U_{1} \varepsilon S, B_{0}=C_{1}\left(B_{1} X_{1}\right) \text { (from (2)), } \\
& =C_{1} B_{2}\left(D_{2} Y_{2}\right), B_{2} \varepsilon \vec{U}, D_{2} Y_{2} \varepsilon S, B_{1} X_{1} D_{1} Y_{1}=B_{2} D_{2} Y_{2} \text { (from (3)), } \\
& =C_{2}\left(B_{3} X_{2}\right)\left(D_{2} Y_{2}\right), B_{3} X_{2} \varepsilon \bar{U}, C_{2} \varepsilon S, C_{1} B_{2}=C_{2}\left(B_{3} X_{2}\right) \text { (from (2)), } \\
& =C_{2} B_{4}\left(D_{3} Y_{3}\right), B_{4} \varepsilon \bar{U}, D_{3} Y_{3} \varepsilon S, B_{3} X_{2} D_{2} Y_{2}=B_{4} D_{3} Y_{3} \text { (from (3)), }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (from (2)), } \\
& =C_{m}\left(B_{2 m} Y\right), B_{2 m} Y \varepsilon \bar{U},\left(B_{2 m-1} X_{m}\right)\left(D_{m} Y_{m}\right)=B_{2 m} Y \quad(\text { from (4)). }
\end{aligned}
$$

Thus by Theorem 1.1, $A \in \operatorname{Dom}(\bar{U}, S)$.
This proves that \bar{U} is a proper dense subsemigroup of S, as required. \#

Let F be a field and n a positive integer. It is clearly seen that the matrix semigroups $M_{n}(F)$ and $G_{n}(F)$ satisfy the properties (i) and (ii) of Lemma 4.2. If for $x \in F \backslash\{0\}$, the $n \times n$ matrix

$$
\left[\begin{array}{llllllll}
x & 0 & 0 & 0 & . & \cdot & \cdot & 0 \\
0 & 1 & 0 & 0 & . & . & . & 0 \\
0 & 0 & 1 & 0 & \cdot & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdot & 0 \\
0 & 0 & 0 & 0 & \cdot & \cdot & 1
\end{array}\right]
$$

is an element of $D_{n}(F)$ and also of $U_{n}(F)\left[L_{n}(F)\right]$ whose determinant is x. Hence the matrix semigroups $D_{n}(F)$ and $U_{n}(F)\left[L_{n}(F)\right]$ satisfy the property (i) of Lemma 4.2. If A is an $n \times n$ diagonal matrix which is nonsingular, then A^{-1} is clearly a diagonal matrix. It was proved in [5], page 410 that if A is an n, n upper triangular matrix which is nonsingular, then A^{-1} is upper triangular. Hence $D_{n}(F)$ and $U_{n}(F)\left[L_{n}(F)\right]$ satisfy the property (ii) of Lemma 4.2.

Therefore, by Lemma 4.2, we obtain the following theorem.

Theorem 4.3. Let $F=(F,+, \cdot)$ be alfield and n a positive integer. If (F, \cdot) has a proper dense subsemigroup, then each of the matrix semigroups $M_{n}(F), G(F), D_{n}(F), U_{n}(F), L^{m}(F)$ has a proper dense subsemigroup. 61 N| $660 \mathrm{NW} \mid \mathrm{N} / \mathrm{Cl} 1610$

Theorem 4.3 and the lemma given below show that all matrix semigroups mentioned above over the field of real numbers or the field of complex numbers always have proper dense subsemigroups.

Lemma 4.4. The multiplicative semigroup of real numbers, (\mathbb{R}, \cdot) and the multiplicative semigroup of complex numbers, (\mathbb{C}, \cdot) have proper dense subsemigroups.

Proof : Let S be any one of (\mathbb{R}, \cdot) or (\mathbb{C}, \cdot), and let

$$
U=\{x \in S| | x \mid \leqslant 1\}
$$

Then U is a proper subsemigroup of S and $1 \varepsilon U$. To show that U is dense in S, let $x \in S$. If $x \in U$, then $X \in \operatorname{Dom}(U, S)$. Assume that $x \notin U$. Then $|x|>1$, so $\frac{1}{x} \in S$ and $\left|\frac{1}{x}\right|<1$. Thus $\frac{1}{x} \in U$ and

$$
x=1 \cdot x, 1 \varepsilon U, x \in S
$$

$$
=x \cdot \frac{1}{x} \cdot x, \frac{1}{x} \varepsilon U, x \in S, 1=x \cdot \frac{1}{x},
$$

$=x \cdot 1,1, \frac{d}{\frac{7}{2}} \frac{1}{x} \cdot x=1$
which implies by Theorem 1.1 that $x \in \operatorname{Dom}(U, S)$. \#

Theorem 4.5. For any positive integer n, each of the matrix
semigroups $M_{n}(\mathbb{R}), M_{n}(\mathbb{C}), G_{n}(\mathbb{R}), G_{n}(\mathbb{C}), U_{n}(\mathbb{R}), U_{n}(\mathbb{C}), L_{n}(\mathbb{R}), L_{n}(\mathbb{C})$, $D_{n}(R), D_{n}(\mathbb{C})$ has a proper dense subsemigroup.

In the last part of this chapter, we shall show that over any finitefield F, each of the matrix semigroups $M_{n}(F), G_{n}(F), D_{n}(F)$, $U_{n}(F), E_{n}(F)$ has no proper dense subsemigroup for every positive integer n .

If F is a finite field and n is a positive integer, then $G_{n}(F)$ is a finite group, so by Theorem 2.5 , it has no proper dense subsemigroup.

Theorem 4.6. For any positive integer n, if F is a finite field, then the matrix group $G_{n}(F)$ has no proper dense subsemigroup.

To prove the theorem for the case of $M_{n}(F)$, we need the two following lemmas. The first one is also used to prove the theorems for the cases of $D_{n}(F), U_{n}(F), L_{n}(F)$

Lemma 4.7. Let n be a positive integer, F a field and $S=M_{n}(F)$, $D_{n}(F), U_{n}(F)$ or $L_{n}(F)$. Let $U /$ be a dense subsemigroup of S. Then $U \cap G_{n}(F) \neq \varnothing$, and if F is finite, then $G_{n}(F) \cap S \subseteq U$.

Proof : It is clearly seen that the set $\{A \in S \mid A$ is singular $\}$ is an ideal of S, so it is not dense in S (see Chapter I, page 9). Then, if U does not contain any nonsingular matrices, then $U \subseteq\left\{A \in S \mid A\right.$ is singularlso is not dense in S. Thus $U \cap G_{n}(F) \neq \varnothing$. Then $U \cap G_{n}(F)$ is subsemigroup of the matrix group $G_{n}(F)$. Claim that Dom(UคGG $\left.(F), G_{n}(F) \cap S\right)=G_{n}(F) \cap$ s. Let $A \varepsilon G_{n}(F) \cap S$. If $\bar{A} \in U$, then $A \in U \cap G_{n}(F) \subseteq \operatorname{Dom}\left(U \cap G_{n}(F), G_{n}(F) \cap S\right)$. Assume that $A \not \& U$. Since U is dense in S, there are $B_{0}, B_{1}, \ldots, B_{2 m} \varepsilon U$, $c_{1}, c_{2}, \ldots, c_{m}, D_{1}, D_{2}, \ldots . D_{m} \in S$ such that $b ? ?$ o

$$
\begin{aligned}
A & =B_{0} D_{1}, \\
& =C_{1} B_{1} D_{1}, B_{0}=c_{1} B_{1}, \\
& =C_{1} B_{2} D_{2}, B_{1} D_{1}=B_{2} D_{2} \\
& =C_{2} B_{3} D_{2}, c_{1} B_{2}=C_{2} B_{3} \\
&
\end{aligned}
$$

$=C_{m} B_{2 m-1} D_{m}, C_{m-1} B_{2 m-2}=C_{m} B_{2 m-1}$,
$=C_{m} B_{2 m}, \quad B_{2 m-1} D_{m}=B_{2 m}$.

The nonsingularity of A implies that each of $B_{0}, B_{1}, \ldots, B_{2 m}, C_{1}, C_{2}, \ldots$ $\ldots, C_{m}, D_{1}, D_{2}, \ldots, D_{m}$ is nonsingular. Then by Theorem 1.1, we have that $A \in \operatorname{Dom}\left(U \cap G_{n}(F), G_{n}(F) \cap S\right)$. Hence we have the claim.

It is clear that $I_{n} \in S$. It is known that for a nonsingular matrix $A \in M_{n}(F)$, if A is diagonal, then so is A^{-1}, and if A is upper [lower] triangular, then so is A^{-1}. These imply that $G_{n}(F) \cap S$ is a subgroup of $G_{n}(F)$.

Assume that F is a finite field. Then $G_{n}(F) \cap S$ is a finite group which implies that $U \cap G /(F)$ is a subgroup of the group $G_{n}(F) \cap S$. Therefore by Theorem 1.2, Dorm $\left.U \cap G_{n}(F), G_{n}(F) \cap S\right)=U \cap G_{n}(F)$. But it was proved that $\operatorname{Dom}\left(U \cap G_{n}(F), G_{n}(F) \cap S\right)=G_{n}(F) \cap S$, so we have $U \cap G_{n}(F)=G_{n}(F) \cap S$, and hence $G_{n}(F) \cap S \subseteq U$, as required. \#

For an $n \times n$ matrix A over a field and for $i, j \varepsilon\{1,2, \ldots, n\}$, the notation $A_{i j}$ is used to denote the element (entry) of A in $i^{\text {th }}$ row and $j^{\text {th }}$ column.

Lemma 4.8. Let F be a field and n a positive integer. Let S be a subsemigroup of the matrix semigroup $M_{n}(F)$ such that $G_{n}(F) \subseteq S$. If S contains a matrix in $M_{n}(F)$ of rank k with $k<n$, then S contains all matrices in $M_{n}(F)$ of rank $\leqslant k$. Gn particular, if S ontains a matrix in $M_{n}(F)$ of rank $n-1$, then $S=M_{n}(F)$.

Proof : Let $A \in S$ be such that $\operatorname{rank}(A)=k, k \leqslant n-1$. If $B \varepsilon M_{n}(F)$ is such that rank $(B)=k$, then $B=P A Q$ for some $P, Q \in G_{n}(F)$, so we have that $B \in S$ since $G_{n}(F) \subseteq S$ and $A \in S$. Thus S contains all matrices in $M_{n}(F)$ of rank k. If $k=0$, we have nothing to do. Assume $k \geqslant 1$. Let C and D be matrices in $M_{n}(F)$ defined by

$$
c_{i j}= \begin{cases}1 & \text { if } i=j \leqslant k \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
D_{i j}= \begin{cases}1 & \text { if } 2 \leqslant i=j \leqslant k+1 \\ 0 & \text { otherwise } .\end{cases}
$$

Then $\operatorname{rank}(C)=\operatorname{rank}(D)=k$, so $C, D E S$. Let $E=C D$. Then $E \in S$ and

$$
E_{i j}=\sum_{\ell=1}^{n} c_{i \ell} D_{\ell j}= \begin{cases}1 & \text { if } 2 \leqslant i=j \leqslant k \\ 0 & \text { otherwise }\end{cases}
$$

Thus rank $(E)=k-1$. If $B \in M(F)$ is of rank $k-1$, then $B=P E Q$ for some $P, Q \in G_{n}(F)$ which implies that $B \in S$. Thus S contains all matrices in $M_{n}(F)$ of rank $k-1$. By induction process, we have that S contains all matrices in $M_{n}(F)$ of rank $\leqslant k$. \#

Theorem 4.9. For any positive integer n, if F is a finite field, then the matrix semigroup $M_{n}(F)$ has no proper dense subsemigroup.

Proof : Wet 4 be a dense subsemigroup of $M_{n}(F)$. By Lemma 4.7, $G_{n}(F) \subseteq U$. We shall prove that U contains a matrix in $M_{n}(F)$ of rank $n-1$. Suppose that U does not contain any matrigesin $M_{n}(F)$ of rank $n-1$. Let $A \in M_{n}(F)$ of rank $n-1$. Then $A \notin U$. Since U is dense in $M_{n}(F)$, then there are $B_{0}, B_{1}, \ldots, B_{2 m} \in U, C_{1}, C_{2}, \ldots, C_{m}, D_{1}, D_{2}, \ldots$ $\ldots, D_{m} \varepsilon M_{n}(F)$ such that

$$
\begin{aligned}
& A=B_{0} D_{1} \text {, } \\
& =C_{1} B_{1} D_{1}, B_{0}=C_{1} B_{1} \text {, } \\
& =C_{1} B_{2} D_{2}, B_{1} D_{1}=B_{2} D_{2} \text {, } \\
& =C_{2} B_{3} D_{2}, C_{1} B_{2}=C_{2} B_{3} \text {, } \\
& =C_{m} B_{2 m-1} D_{m}, C_{m-1} B_{2 m-2}=C_{m} B_{2 m-1} \text {, } \\
& =C_{m} B_{2 m} \text {, } \\
& B_{2 m-1} D_{2 m}=B_{2 m}
\end{aligned}
$$

Then $\operatorname{rank}(A) \leqslant \operatorname{rank}\left(B_{i}\right)$ for $i=0,1, \ldots, 2 m$. But rank $(A)=n-1$ and U does not contain any matrices in $M_{n}(F)$ of rank $n-1$, it follows that rank $\left(B_{i}\right)=n$ for $i=0,1, \ldots, 2 m$. Thus all $B_{0}, B_{1}, \ldots, B_{2 m}$ are nonsingular. Since $B_{0}=C_{1} B_{1}, \bar{C}_{1}$ is nonsingular. From $C_{i} B_{2 i}=C_{i+1} B_{2 i+1}$ for $i=1,2, \ldots, m-1$, we have that $C_{i+1}=C_{i} B_{2 i} B_{2 i+1}^{-1}$ for $i=1,2, \ldots, m-1$. The nonsingularity of $B_{1}, B_{2}, \ldots, B_{2 m}, C_{1}$ implies that C_{i} is nonsingular for all $i=1,2, \ldots, m$. In particular, C_{m} is nonsingular. Hence $C_{m} B_{2 m}=A 1 s$ nonsingular. It is a contradiction since $\operatorname{rank}(A)=n-1$.

Thus, U contains a matrix in $M_{n}(F)$ of rank $n-1$. It follows from Lemma 4.8 that $U \equiv M_{n}(F)$. This proves that $M_{n}(F)$ has no proper

Qemma 4.7 and the following lemmadare used to prove that for every positive integer $n, D_{n}(F)$ has no proper dense subsemigroup if F is a finite field.

Lemma 4.10. Let F be a field and n a positive integer. Let S be a subsemigroup of the matrix semigroup $D_{n}(F)$. .For a positive integer k with $k \leqslant n-1$, if S contains all matrices in $D_{n}(F)$ of rank k, then
S contains all matrices in $D_{n}(F)$ of rank $\leqslant k$.

Proof : Assume that k is a nonnegative integer, $k \leqslant n-1$ and S contains all matrices in $D_{n}(F)$ of rank k. If $k=0$, then we have nothing to do. Assume that $k \geqslant 1$. Let $A \in D_{n}(F)$ be of rank $k-1$. Then $A_{i j}=0$ if $i \neq j$ and the number of all $i \varepsilon\{1,2, \ldots, n\}$ such that $A_{i i} \neq 0$ is $k-1$. Since $k-1 \leqslant n-2$, there exist $\ell, m \in\{1,2, \ldots, n\}$ such that $\ell \neq m,{ }_{\ell \ell}=A_{m m}=0$. Define the $n \times n$ matrices B and C over F by
and

Then $B, C \in D_{n}(F)$ and $\operatorname{rank}(B)=\operatorname{rank}(C)=k$. It is clearly seen that $A=B C$. Since $^{n}, \subset \varepsilon, S, A \in S$. Hence S contains all matrices in $D_{n}(F)$ of rank $k-1$. By induction process, we have that S contains

Theorem 4.11. For any positive integer n, if F is a finite field, then the matrix semigroup $D_{n}(F)$ has no proper dense subsemigroup.
$\underline{\text { Proof }: ~ L e t ~} U$ be a dense subsemigroup of $D_{n}(F)$. By
Lemma 4.7, $\dot{G}_{n}(F) \cap D_{n}(F) \subseteq U$.

Let $\ell \varepsilon\{1,2, \ldots, n\}$. Suppose that U does not contain any matrices $A \in D_{n}(F)$ with $\operatorname{rank}(A)=n-1$ and $A_{\ell \ell}=0 . \quad$ Let $E \varepsilon D_{n}(F)$ be such that rank $(E)=n-1$ and $E_{\ell \ell}=0$. Then $E_{i j}=0$ if i $\neq j$ and $E_{i i} \neq 0$ for every $i \neq \ell$, and $E \notin U$. Since U is dense in $D_{n}(F)$, there are $B^{(0)}, B^{(1)}, \ldots, B^{(2 m)} \varepsilon U, C^{(1)}, C^{(2)}, \ldots, C^{(m)}, D^{(1)}, D^{(2)}, \ldots, D^{(m)} \varepsilon D_{n}^{(F)}$ such that

$$
\begin{aligned}
& E=B^{(0)} D^{(1)} \\
& =C^{(1)_{B}^{(1)}} D^{(1)}, B(0)=C^{(1)_{B}(1)} \\
& =C^{(1)_{B}}{ }^{(2)} D^{(2)}, B^{(1)} D^{(1)}=B^{(2)} D^{(2)} \\
& =C^{(2)} B^{(3)} D^{(2)}, C C^{(1)_{B}^{(2)}}=C^{(2)} B^{(3)} \\
& =C^{(m)} B^{(2 m-1)} D^{(m)}, C^{(m-1)} B^{(2 m-2)}=C^{(m)} B^{(2 m-1)} \\
& =C^{(m)} B^{(2 m)}, \quad B^{(2 m-1)}(m)=B^{(2 m)} \text {. } \\
& =C^{(m)} B^{(2 m)}, \quad B^{(2 m-1)_{D}(m)}=B^{(2 m)} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \mathrm{E}_{\ell \ell}=\mathrm{B}_{\ell \ell}^{(0)} \mathrm{D}_{\ell \ell}^{(1)} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& =C_{l \ell}^{(1)} \mathrm{B}_{l \ell}^{(2)} \mathrm{D}_{l \ell}^{(2)},{ }_{B_{l \ell}}^{(1)} \mathrm{D}_{l \ell}^{(1)}=\mathrm{B}_{l \ell}^{(2)} \mathrm{D}_{\ell \ell}^{(2)} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& =C_{\ell \ell}^{(m)} B_{l \ell}^{(2 m-1)} D_{l \ell}^{(m)}, \quad C_{l \ell}^{(m-1)} B_{l \ell}^{(2 m-2)}=C_{l \ell}^{(m)} B_{l \ell}^{(2 m-1)}, \\
& =C_{l \ell}^{(m)} B_{l \ell}^{(2 m)}, B_{l \ell}^{(2 m-1)} D_{l \ell}^{(m)}=B_{l \ell}^{(2 m)} .
\end{aligned}
$$

But $E_{\ell \ell}^{\circ}=0$ and U does not contain any matrices $A \in D_{n}(F)$ with rank $n-1$ and $A_{l \ell}=0$, it follows that $B_{l l}^{(i)} \neq 0$ for $i=0,1, \ldots, 2 m$. Since
$B_{l \ell}^{(0)}=C_{l \ell}^{(1)} B_{l \ell}^{(1)}, C_{l \ell}^{(1)} \neq 0 . \quad$ From $_{l l}^{(i)} C_{l \ell}^{(2 i)}=C_{l \ell}^{(i+1)} B_{l \ell}^{(2 i+1)}$
for $i=1,2, \ldots, m-1$ and $B_{l \ell}^{(1)}, B_{l \ell}^{(2)}, \ldots, B_{l \ell}^{(2 m)}, C_{l \ell}^{(1)} \neq 0$, it follows that $c_{l l}^{(i)} \neq 0$ for $i=1,2, \ldots, m$. In particular, $c_{l l}^{(m)} \neq 0$. Hence $E_{l \ell}=C_{l \ell}^{(m)} B_{l \ell}^{(2 m)} \neq 0$. It is a contradiction since $E_{l \ell}=0$. This proves that U contains a matrix $A \in D_{n}(F)$ such that rank $(A)=n-1$ and $A_{\ell \ell}=0$. Claim that U contains all matrices B in $D_{n}(F)$ of rank $n-1$ and $B_{l \ell}=0$. Let $B \in D_{n}(F)$ be such that rank $(B)=n-1$ and $B_{\ell \ell}=0$. Let $C, D \in D_{n}(F)$ be defined by

$$
c_{i j}=\left\{1 \quad \cos ^{i f} i=j=\ell,\right.
$$

and

Then $C, D \in G\left(F 9 \cap D_{n}(F), G O C, D / E G\right.$. D /Therefore $A C D \in U$. It is easy to see that $B \cong A C D$, so $B \varepsilon U$. Hence we have the claim. But since ℓ is arbitrary in $6,2, \cap, n$ it follows that 9 contains all matrices in $D_{n}(F)$ of rank $n-1$. From $G_{n}(F) \cap D_{n}(F) \subseteq U$ and Lemma 4.10, we have that $U=D_{n}(F)$.

Therefore, $D_{n}(F)$ has no proper dense subsemigroup. \#

The last theorem of this chapter shows that for any positive integer n and for any finite field $F, U_{n}(F)$ has no proper dense
subsemigroup. To prove this theorem, Lemma 4.7 and the following two lemmas are required.

Lemma 4.12. Let F be a field, n a positive integer and S a subsemigroup of the matrix semigroup $U_{n}(F)$. For a positive integer k with $k \leqslant n-1$, if S contains every matrix in $U_{n}(F)$ having the number of zero entries on its main diagonal $\leqslant k$, then s contains every matrix in $U_{n}(F)$ having exactly $\overline{k+1}$ zero entries on its main diagonal.

Proof : Assume that k is a positive integer and s contains

 every matrix in $U_{n}(F)$ which has the number of zero entries on its main diagonal $\leqslant k$. Let $A \in U_{h}(F)$ be such that A has exactly $k+1$ zero entries on its main diagonal. Let $i_{1}, i_{2}, \ldots, i_{k+1} \in\{1,2, \ldots, n\}$ be such that $i_{1}<i_{2}<\ldots<i_{k+1}$ and $A_{i_{1}}=A_{i_{2}}=\ldots=A_{i_{k+1}}=\ldots$, Then $A_{i i} \neq 0$ for all i $\varepsilon\{1,2, \ldots, \ldots, n\}-\left\{i_{1}, i_{2}, \ldots, i_{k+1}\right\}$.Case $1: i_{1}=1$ We define the $n \times n$ matrices B and C over F by

$$
C_{i j}= \begin{cases}A_{i j} & \text { if } i=1, \\ 1 & \text { if } i=j, i \neq 1 \\ 0 & \text { otherwise }\end{cases}
$$

so $B, C \in U_{n}(F)$. By defining B and C, we see that for $i \in\{1,2, \ldots, n\}$, $B_{i i}=0$ if and only if i $\varepsilon\left\{i_{2}, i_{3}, \ldots, i_{k+1}\right\}$, and $C_{i i}=0$ if and only
if $i=1$. Then B has exactly k zero entries on its main diagonal and C has exactly one zero entry on its main diagonal. Hence by assumption $B, C \varepsilon S$. Since B and C are upper triangular, it follows that $(B C)_{i j}=0=A_{i j}$ for all $i, j \varepsilon\{1,2, \ldots, n\}, i>j$ and $(B C)_{i i}=B_{i i} C_{i i}$ for all i $\varepsilon\{1,2, \ldots, n\}$. It is clearly seen that $B_{i i} C_{i i}=A_{i i}$ for all i $\varepsilon\{1,2, \ldots, n\}$. Then $(B C)_{i i}=A_{i i}$ for all i $\varepsilon\{1,2, \ldots, n\}$. For i, $j \in\{1,2, \ldots, n\}, i<j$, we have that

$$
(B C)_{i j}=B_{i i} C_{i j}+B_{i, i+1} C_{i+1, j}+\cdots+B_{i j} C_{j j}
$$

since B and C are upper triangular. Thus, for $j=2,3, \ldots, n$,

$$
\begin{aligned}
(B C)_{1 j} & =B_{11} C_{1 j}+B_{12} C_{2 j}+\ldots+B_{1 j} C_{j j} \\
& =A_{1 j}+0+0=A_{1 j} .
\end{aligned}
$$

If i, $j \in\{1,2, \ldots, n\}, i<j, i \neq 1$, then $j \neq 1$, so we have that

$$
\begin{aligned}
(B C)_{i j} & =B_{i i} C_{i j}+B_{i, i+1} C_{i+1, j}+\ldots+B_{i j} C_{j j} \\
& =0+0+\cdots+0+A_{i j}=A_{i j}
\end{aligned}
$$

 Case 2 : $9^{i}>1$. Define the $n \times n$ matrices B and c over F by

$$
B_{i j}= \begin{cases}1 & {\text { if } i=j \leqslant i_{1}}^{0} \\ \text { if } i \leqslant i_{1}-1 \text { and. } i \neq j, \\ A_{i j} & \text { otherwise }\end{cases}
$$

and
and

$$
C_{i j}= \begin{cases}A_{i j} & \text { if } i \leqslant i_{1}-1, \\ 1 & \text { if } i=j \text { and } i>i_{1}, \\ 0 & \text { otherwise } .\end{cases}
$$

Then $B, C \in U_{n}(F)$. By defining of B and C, we have that for i $\varepsilon\{1,2, \ldots, n\}, B_{i i}=0$ if and only if il $\varepsilon\left\{i_{2}, i_{3}, \ldots, i_{k+1}\right\}$, and $C_{i i}=0$ if and only if $i=i_{1}$. Then B has exactly k zero entries on its main diagonal and C has exactly one zero entry on its main diagonal. Hence by assumption, B, $C \in S$. Claim that $B C=A$. Because B and C are upper triangular, $(B C)_{i j}=0=A_{i j}$ for all $i, j \in\{1,2, \ldots, n\}, i>j$. Since $B_{i i}=1$ and $C_{i i}=A_{i i}$ if $i \leqslant i_{1}$ and $B_{i i}=A_{i i}$ and $C_{i i}=1$ if \geqslant ione have that $B_{i i} C_{i i}=A_{i i}$ for all i $\varepsilon\{1,2, \ldots, n\}$. Then (BC) $\frac{1}{i \dot{x}}=A_{i j}$ for all i $\varepsilon\{1,2, \ldots, n\}$.

For i, $j \in\{1,2, \ldots, n\}, i f i \leqslant j$ and $i \leqslant i_{1}-1$, then

$$
\begin{aligned}
(B C)_{i j} & =B_{i j} C_{i j}+B_{i, i+1} C_{i+1, j}+\ldots+B_{i j} C_{j j} \\
& =A_{i j}+0+\ldots+0=A_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& =0+0+\cdots+A_{i_{1} j}=A_{i_{1} j} .
\end{aligned}
$$

If i, $j \in\{1,2, \ldots, n\}, i_{1}<i<j$, then

$$
\begin{aligned}
(B C)_{i j} & =B_{i i} C_{i j}+B_{i, i+1} C_{i+1, j}+\ldots+B_{i j} C_{j j} \\
& =0+0+\ldots+A_{i j}=A_{i j} .
\end{aligned}
$$

Thus $A=B C \varepsilon S$.
Hence S contains every matrix in $U_{n}(F)$ having exactly $k+1$ zero entries on its main diagonal.

Lemma 4.13. Let F be a field, n a positive integer and $A \varepsilon U_{n}(F)$. If $\ell \in\{1,2, \ldots, n\}$ is such that $A_{\ell \ell} \neq 0$, then there exists $P \varepsilon G_{n}(F) \cap U_{n}(F)$ such that $(P A)_{\ell \ell}=1,(P A)_{i \ell}=0$ for all $i<\ell$ and $(P A)_{i j}=A_{i j}$ if $i \leqslant j<\ell$.

Proof: Let $\& \in\{1,2, \ldots, n\}$ and ${ }_{l \ell} \neq 0$. Define the $n \times n$
matrix P over F by

$$
\begin{aligned}
& \text { if } i=j \neq \ell, \\
& \text { if } i=j=\ell, \\
& \text { if } i<\ell, j=\ell \text {, } \\
& \text { otherwise. }
\end{aligned}
$$

Then $P \varepsilon G_{n}(F) \cap U_{n}(F)$ and $(P A) l \ell=P_{l \ell}{ }_{l l} / \ell l=A_{l l}^{-1} A{ }_{l l}=1$. For $i<\ell$, we have

If $i \leqslant j<\ell$, then

$$
\begin{aligned}
(P A)_{i j} & =P_{i i} A_{i j}+P_{i, i+1} A_{i+1, j}+\ldots+P_{i j} A_{j j} \\
& =A_{i j}+0+\ldots+0 \\
& =A_{i j} \quad
\end{aligned}
$$

Theorem 4.14. For any positive integer n, if F is a finite field, then the matrix semigroup $U_{n}(F)$ has no proper dense subsemigroup.

Proof : Let U be a dense subsemigroup of $U_{n}(F)$. By
Lemma 4.7, $G_{n}(F) \cap U_{n}(F) \subseteq U$.
Let $\& \in\{1,2, \ldots, n\}$. Suppose that U does not contain any $\operatorname{matrix} A$ in $U_{n}(F)$ with $A_{\ell \ell}=0$ and $A_{i i} \neq 0$ for all $i \neq \ell$. Let $E \in U_{n}(F)$ be such that $E_{l \ell}=0$ and $E_{i i} \neq 0$ for all $i \neq \ell$. Then $E \notin U$. Since U is dense in $U_{n}(F)$, there are $B^{(0)}, B^{(1)}, \ldots, B^{(2 m)} \in U$, $C^{(1)}, C^{(2)}, \ldots, C^{(m)}, D^{(1)}, D^{(2)}, \ldots, D^{(m)} \in U_{n}(F)$ such that

$$
=C^{(m)} B^{(2 m-1)} D_{D}^{(m)}, C^{(m-1)} B_{B}^{(2 m-2)}=C^{(m)} B^{(2 m-1)}
$$

$$
=C^{(m)_{B}(2 m)}, B^{(2 m-1)_{D}(m)}=B^{(2 m)}
$$

Then we have

Since U does not contain any matrices A in $U_{n}(F)$ with $A_{\ell \ell}=0$ and

$$
\begin{aligned}
& =C_{l l}^{(2)} B_{l l}^{(3)} D_{l \ell}^{(2)}, C_{l l}^{(1)} B_{l l}^{(2)}=C_{l l}^{(2)} B_{l l}^{(3)} \text {, } \\
& =C_{\ell \ell}^{(m)} B_{\ell \ell}^{(2 m-1)} D_{l \ell}^{(m)}, C_{l \ell}^{(m-1)} B_{l \ell}^{(2 m-2)}=C_{\ell \ell}^{(m)} B_{l \ell}^{(2 m-1)} \text {, } \\
& =C_{l l}^{(m)} B_{l \ell}^{(2 m)}, B_{l \ell}^{(2 m-1)}{ }_{D}^{(m)}=B_{l \ell}^{(2 m)}{ }_{l l}^{(2 m} .
\end{aligned}
$$

$$
\begin{aligned}
& E=B^{(0)} D^{(1)} \\
& =C^{(1)} B^{(1)} D^{(1)}, B^{(0)}=C^{(1)_{B}^{(1)}} \\
& =C^{(1)_{B}^{(2)}} D_{D}^{(2)}, B^{(1)_{D}}(1)=B_{D}^{(2)} \text { (2), } \\
& =C^{(2)_{B}^{(3)}} D^{(2)}, C^{(1)} B_{B}^{(2)}=C^{(2)_{B}^{(3)},}
\end{aligned}
$$

$A_{i i} \neq 0$ for all $i \neq \ell$, it follows that $B_{\ell \ell}^{(i)} \neq 0$ for $i=0,1, \ldots, 2 m$. Since $B_{l \ell}^{(0)}=C_{l \ell}^{(1)} B_{l \ell}^{(1)}, C_{l \ell}^{(1)} \neq 0$. From the fact that $C_{l \ell}^{(1)} \neq 0$, ${ }_{B_{l \ell}^{(i)}}^{(i)} \neq 0$ for all i $\varepsilon\{1,2, \ldots, 2 m\}$ and $C_{l \ell}^{(i)}{ }_{B l \ell}^{(2 i)}=C_{l \ell}^{(i+1)}{ }_{B}^{(2 i+1)}$ for all i $\varepsilon\{1,2, \ldots, m-1\}$, we have that $C_{\ell \ell}^{(i)} \neq 0$ for all $i \varepsilon\{1,2, \ldots, m\}$. In particular, $C_{l l}^{(m)} \neq 0$. Hence $C_{l l}^{(m)} B_{l \ell}^{(2 m)}=E_{l \ell} \neq 0$. It is a contradiction since $\mathrm{E}_{\ell \ell}=0$. Then there exists $B \varepsilon U$ be such that $B_{\ell \ell}=0$ and $B_{i i} \neq 0$ for alli $\neq \ell$. Note that if $P \in G_{n}(F) \cap U_{n}(F)$, then $P_{i i} \neq 0$ for all i $\varepsilon\{1,2, \ldots, \ldots, n\}$ which implies that $(\mathrm{PB})_{i i} \neq 0$ for $i \neq \ell$. Hence it follows from Lemma 4.13 that there exist $P^{(1)}, P^{(2)}, \ldots . P^{(n-1)} \varepsilon G_{n}(F) \cap U_{n}(F)$ such that

$$
P^{(n-1)} \ldots P^{\left.(2)_{P}^{(\lambda)} B\right)^{2} j=j \neq \ell} \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i<j \neq \ell\end{cases}
$$

Let $C=P^{(n-1)} \ldots P^{(2)} P^{(1)} B$. Since $B \in U$ and $G_{n}(F) \cap U_{n}(F) \subseteq U$, we have $C \in U$ and

$$
(C C)_{i j}= \begin{cases}1 & \text { if } i=j \neq \ell \\ 0 & \text { if } i=j=\ell \\ 0 & \text { if } i<j \neq \ell\end{cases}
$$

Define the $n \times n$ matrix Q over F by . .

$$
Q_{i j}= \begin{cases}-1 & \text { if } i=j=\ell \\ c_{i j} & \text { otherwise }\end{cases}
$$

Then $Q \in G_{n}(F) \cap U_{n}(F)$, so $Q \in U$. Therefore $C Q \in U$ and

And if $i<\ell$, then

$$
\begin{aligned}
(C Q)_{i \ell} & =c_{i i^{Q}} Q_{i \ell}+C_{i, i+1} Q_{i+1, \ell}+\ldots+c_{i \ell} Q_{\ell \ell} \\
& =1 c_{i \ell}+0+\ldots+0+c_{i \ell}(-1)=0
\end{aligned}
$$

Hence

Let $D=C Q$. Then $D \in U$ and

Next, we claim that for any matrix $A \in U(F)$, if $A_{\ell \ell}=0$ and $A_{i i} \neq 0$
 $\mathrm{A}_{\text {ll }}=0$ and $\mathrm{A}_{\text {ii }} \neq 0$ for all $i \neq \ell$. By the previous proof, there exist $R, S \in G_{n}(F) \cap U_{n}(F)$ such that $R A S=D$. Since $D \varepsilon U$ and $G_{n}(F) \cap U_{n}(F) \subseteq U$, it follows that $A=R^{-1} D S^{-1} \varepsilon U$.

This proves that U contains every matrix $A \in U_{n}(F)$ having ${ }^{A_{\ell \ell}}=0$ and $A_{i i} \neq 0$ for all $i \neq \ell$. But since ℓ is arbitrary in $\{1,2, \ldots, n\}$, it follows that U contains every matrix in $U_{n}(F)$ having
exactly one zero on its main diagonal. By Lemma 4.12, U contains every matrix in $U_{n}(F)$ having some zeros on its main diagonal. But we have that $G_{n}(F) \cap U_{n}(F) \subseteq U$, this implies that U contains every matrix in $U_{n}(F)$ having nonzero entries on its main diagonal. Hence $U=U_{n}(F)$.

The following theorem is a consequence of Theorem 4.6, 4.9, 4.11 and 4.14 .

Theorem 4.15. Let E be a fiefld, n a positive integer and $\mathrm{S}=\mathrm{G}_{\mathrm{n}}(\mathrm{F})$, $M_{n}(F), D_{n}(F), U_{n}(F)$ or $L_{n}(F)$. If S has a proper dense subsemigroup, then F is infinite.

It is natural to ask whether the converses of Theorem 4.3 and Theorem 4.15 are true. They cannot be answered in this research yet. We leave them as conjectures as follows: Let $F=(F,+, \cdot)$ be a field, n a positive integer and $S=M_{n}(F), G_{n}(F), D_{n}(F), U_{n}(F)$ or $L_{n}(F)$. Conjecture 1. If S has a proper dense subsemigroup, then (F, \cdot) has a proper dense subsemigroup.

Conjecture 2. - If F is an infinite field, then S has a proper dense

Observe that the " if " parts and " only if " parts of Conjecture 1 and Conjecture 2 are true if F is the field of real numbers or the field of complex numbers:

