CHAPTER 1T

FUNDAMENTAL CONSIDERATION

Theory of Thin, Isotropic Elastic at.es

The thin plate . Dona: he@he absence of membrane
forces, is based on( e sections remain plane

during Dbending and //44/ a\\\‘- - Sm 1all comparing with the

thickness of the plaié. Ahe fe orces on the deflection

are also disregarded. J \\

Consider a thin 8 " ickness h the material of

which has the modulus o ity . E and Poisson’s ratio v 1in

ig.1 in which- D =

z ' Iso the sign convention
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of stress resultant using the notations and ¢onventions of Timoshenko

and womowsxﬂvpeﬁ a?w m'ﬂujdeﬂection, v .of

the middle surface of the plat.e suhaect.ed to t.ransverse force of

mtensra W‘] a ﬁﬁ.ﬁ mw fﬂtﬂﬂ ananﬁnd twisting

moments &nd shears per unit length of the section, as follows :
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If a boundary : c8, it is generally assumed that

along this edge there isting moments and also no

vertical shears. Kirc . oroved pe boundary conditions are

too many and that two ' e enough for the complete

determination of ., he hat, the edge twisting

moment. can be v.t"?o e produce a resultant

boundary shear forcé or called Kirchhoff sheat or supplemented shear
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By incorporating twisting moments into supplemented shears,

the corner forces , R, arised from the jump of twisting moments at
each corner have to be considered and can be written as

R = M -M = 2M (8)

of forces in the z-direction

"and moments about x- and G- Xes t.he governing biharmonic

(n,t) (Fig.3) the ak
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or R

= D(1-v)
In which, the flofmals ‘and ddgents en the first side of the
corner are denoted by sul h other side by subscript 2

along the path as shown i seful transformation matrices

for normal and up £o tHe third order are also

given in the Append m
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the bounaa.ry integral formulation is the Betti’s reciprocal theorenm

(11). It states that for any two equilibrium states of stresses and
compatible displacements, A and B, of a linearly elastic body the
total external work done by the forces A during the corresponding
displacements caused by the forces B is equal to the total external

work done by the forces B during the corresponding displacements



caused by the f orces A.

Method of Analysis

Consider two distinct systems of compatible deflections and .

equilibrium states of stresses as shown in F1g 5. One is the real

plate, the problem under con

siderat hich is the rectilinear plate

of K sides having L e domain, 0 , with free

boundary condition loadse
The other is the vir

a unit singular 1

of intensity q(Z,m).

~asterisks, subjected to

(x,y), the solution : _ ' the non-homogeneous equat.ion
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where r (;—x) + (n—y) is the gdistance between point (x,y)
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'cart.esmn co-ordinates. The expressions of slopes and desired stress
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resultants of the virtual plate can be obtained by appropriate

differentiation of the deflection function w" (x,y3&,m).

The direct boundary integral methods of analysis are those

that make use of the energy principle, i.e. Betti’s reciprocal theoren,



as nentioned earlier. Imposing the boundary conditions on the real
plate where normal bending moment and supplemented shear are

prescribed as zero and applying Betti’s reciprocal theorem between  the

two systems in Fig.5, we obtain
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in which
»* s
w = deflection of the virtual plate
»* »*
ow ow = slope with respect to ¢ and n
98 o respectively of the virtual plate
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domain of plate

(X, ¥), (&,1) co-ordinates

(X_»¥_ Vs € _oM,) co-ordinates of interior support

(X,y), (Z,m) co-ordinates on the boundary.
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The above gquation gives the deflection of any interior poiht.
(x,¥), Ww(x,y), in terms of boundary values, aw(Z,n)/on, w(Z,m) and
wE M) . v, L0 ), v (E_,m_ )/35 and ou_,(E_,m_,/3m , for
Nw L8ueiskh o 12 1000000

Approaching (x,y) to the boundary (x,y) and rearranging,

equation (18) becomes
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where ¢ is the included angle ( for smooth boundary point, ¥ = T )
at the boundary point.

Differentiating equation (19) with respect to the outward
normal direction, n(x,y), to obtain

(X, y) = j:auh(x,,';, WX, V32,1 w(g,nndr(g,m
2mon(x,y) I an(x |

- I oR (X,¥38,,m 0

k=1,2 an(x,y)

(x.y'zm)dn(i.n)

0 (X,y)

ﬂuﬂﬁﬂﬁlﬂﬁﬂmﬂ‘i

‘17 K a“ (g 1,“0.‘)8 w (X,y’.};"lv“el)

HW’W&WNHTAWU’W&H

b4 *
o R e
- Kﬂawﬂ(gc,,nﬂ)a W (x,y;icl,nﬂ)] , (X,y) €T (20)

an an(x,y)am



13

Now, approach (x,y) to the location of each supports :
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Equations (19),(20),(21),(22) and (23) constitute (2+3L)

Fredholn integral equations of the second kind in two unknown

functions w , 9w/on which are continuous functions throughout the
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boundary, K unknown values of w,, k = 1,2,3,...,K at each corners and
3L unknown values of w_,, 9w_,/d , 2w_,/2m, 1 = 1,2,3,...,L it tile
the domain which will be solved numerically as to be elaborated in the
next chapter.
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