Chapter III

File System on UNIX

Files System Concept

ed in system as a file and every file

as a sequence of bytes. For.exar etic ail messages, characters typed

on keyboard, line printer Wa flowin hus, there are many kinds of

files on a UNIX system, anized in 2 archical structure starting with

the root directory, whic onta 4 and other directories as mentioned in
assified as follows (Valley, 1991):

treats everything, which is a se

r storing data, An ordinary file is always a part
of a larger structure called stem --the,system dynamically manages disk space,
automatically determining to §t9‘r§£q {ig on and allocating disk space for the
file as needed-- and can exi r@# -f-'e"}iu_, inds of devices, mainly disk drives.
Ordinary files are used for both pﬁmirfem' ‘temporary storage of information. The
file can be organized for either seggg?fjal, ot random access.

et Dt ‘.r'\.-

&,

fi

A dlrect(@ “ile. ﬂ is used for grouping files
together into meaningful categories. It can contain mu ple occurrences of any file
type, including other directories. The file name of a directory consists of from one to
fourteen charac n&aﬁﬁm ﬁﬁ ﬂiﬂ/"i:nnot appear in a file
name, all other lad aracters, and
non-ASCII codes.

o Vo mmmm& AANHIE L v o

removed) -the "." and ".." file names, called dot and dot-dot, respectively. These file
names are written when the directory is created.

The “” file is itself a directory. It is a link to the directory that contains
it. As a result, a reference to the "." file is always a reference to the current directory.
While, the «..” file is also a directory. It is a link to the directory containing the current
directory, often called the parent directory.

25

As mentioned above (see figure 1.1), the UNIX file system stores a
hierarchical structure or tree-like structure where each non-terminate node
corresponds to a directory. The top of this tree is a single directory conventionally
called the "root directory”" --"/". A pathname that does not begin with "/" character is
called a "relative pathname" and gives the route to the file relative to a user's
"current working directory"

3. Special Files

character-special, block-special, and pipes’ / @haracter-special and block-special files
are peripheral devices. While, pipes e coupling between the output of
one program and the inp o be passed immediately from
program to program wit it on an external medium.

fers data in fixed-size blocks
and can access any da _ f time as any other such as
disk and diskette drives. ecial files require data transfer in
units of a byte or a fe r than r seetors. Furthermore, there is
often no way to set or d e ioning. These devices are able to read
but not write, or to this large class of devices are

A block-sp

terminals, magnetic tape m 6 ~code readers, plotters, page
scanners, and printers. Howeyer, disk an drives may also support a character
device interface in addition t thé.{mﬁﬂfed evice interface

The te 'nal, for'éﬁ'éfﬁﬁe,l 6 fter
that move the cursor.and da
display.

blaced at arbitrary positions on the

=

| — .
In UNIX Jstem most devices are listed in'the "/dev" directory or in one
of its subdirectories.

AU INUNINARI.
o mmmmum ANAA Y s s o

because all other directories branch from it like the branches and leaves of a tree.

The "/bin" Directory
The "/bin" directory contains executable program files.

The "/dev" Directory
The "/dev" directory is reserved for block-special and character-special
files.

26

The "/etc" Directory
This directory should contain miscellaneous files needed for system

operation, administration, and maintenance.

The "/lib" Directory
The "/lib" directory contains the C compilation system, including the
compiler itself and the function libraries.

files and a repository for short-lives
ust have read, write, and search

These provide space.
files created during the execut
permission for all general useis.

The "/usr"mf‘u |
It is used fi g

The "/tmp" and "/usr/tm, & igectories

The "/usr/lib
The "/usr/lib"/di

The "/usr/mclude" Dnﬁfpry /e o

This dlri&tory usuaﬂy‘ ntains the used with the C standard

L
Files & Directory Info%tlorr i ﬁj
All users in UNIX system will be assigned a login name and password with

their own "hom ﬁﬂ ’lm m u%mi tering to the system.
When users lo 1 be requesting their login and

password. While'a user login is known as login-id, the system a lyreco izes it as
Wn 2e SY gn

o rorB i B Be1a: ShA ot o9 Lo | 23;::;‘::::::,2

placed in 4 single group called "other". Therefore, user access to the file system will
be determined by the permissions granted to user uid and group-id.

library.

The file "/etc/passwd" contains all the login information about each user
separated by colons login-id, uid, group-id, login-directory and shell are all contained
in "/etc/password.

UNIX is a multi-user system, therefore, permissions are concerned with
protecting resources from damage by unauthorized users. However, users must have
privileges such as being allowed to create and manipulate their own files under their

27

"home directory"”. When a file or a directory is created, every attempt to access it is
checked against every the file's or directory's permissions. If the check fails, the access
is prohibited. Besides permissions, when files and directories are created the kernel
allocates an inode to contain a description of the file. The inode is filled in with all the
information needed to manage and protect the file. This information can be seen by
using the "Is" command. Furthermore, there are three times contained in the inode.
First, the time which the contents of the file were last modified (written). Second, the
time which the file was last used (read and execute). Finally, the time which the inode
itself was last changed.

Permissions are simply means b)!'whj -
resources. Every file onWNTX sysier
there is a special user Qi

e granted access to the system
issions for access. However,
er-user, who can read or

The file permissions are

As mentioned I, thet ' kh;gé‘%f permissions for each file.
Moreover, different permissi iy to nt people. Permissions can be
represented in a standard xs" command. This notation
represents permissions as a to the first bit, the first group

Concerning it, ifit i
"d". Ifit is "=, it mdrcat@that this

For th that there are three
types of pe mﬁ'ﬁiwns Firstly, read
permission on a qrectory means t at the appropnate class of users is able to list the
names of files and sub-directories cor rtained withinthe directo ,? This does not mean

N T A R W s
permissio led the" acces ndividual files.

Concerning a file, this "r" permission means that user can read the content of the file.

Secondly, write permission on a directory enables a user to create new files
and remove existing files in the directory. It does not permit a user to modify the
contents of existing files unless the individual file permission is granted. It would,
however, be possible to remove an existing file and create a new one. For a file, this
"w" permission means that a user can write anything into it.

28

Thirdly, execute permission, also called search permission on a directory,
allows a user to move into the directory or change to other directory. In addition, to
open a file, or execute a program, a user must have execute permission on all
directories leading to the file as specified in the file's pathname. Regarding a file, this
"x" permission means that user can execute that file.

With regard to "w" permission, even if "group" and "other" users allow you
to write a file, the system will not allow you to change its permission bits.

Nevertheless, please remember that onl wner of a file or a directory may change
the permissions on a file or a di_rgq\x‘ » the utilities which are provided by
\

UNIX. & | (21

System Calls and Librarvw b 4 -
Haviland and 53/ fed that.
System c the software developer’s passport into the UNIX
kernel. The kernel is a si ; are whi ﬁ; yermanently memory-resident

and deals with a UNI cess scheduling and control. In essence, the
kernel is that part of UN i alif "lés an operating system proper. All user
processes and all file s > fesou e, monitored and controlled by
the kernel. '

ay a programmer would call an
ifference between a subroutine and a
s the code executed is always part
from a library; with a system call
the kernel itself and not be

1s Eaking process and kernel is

ordinary C subroutine or function. The ess

system call is that when a program calis a subr
of the final object p m, even if it was linke
the major part of the
calling program. In other words the calling progra
usually achieved via a software interrupt mechanism.

¢ o o/
UNIX ﬁﬁ%ﬂﬂﬂ:g rﬂlﬁjtmﬁny system calls which
make up the primitives: o' de tandard I/O routines

ultimately used by the system call interface for manipulating and working with both

files and™di M'I' Q, m S ‘ WEI . will present some
system lmhi ﬁe ﬁ tﬂm;:z; ﬂ:ﬁn oth files and

directories!

#include <stdio.h>
int fopen (const char *path, const char *type);
extern FILE *stdin, * stdout, * stderr;

Opens the file named by path for operations of type "type". A FILE block
and a stream buffer are allocated using "malloc". The stream files stdin, stdout, and
stderr are always open and may be used without an explicit fopen request.

29

The character string, for example, pointed to by "type" must specify one of
the following values:

"r" Open the file for reading. Sets the file pointer to the first byte of the file.

"w" Opens the file for writing. Created the file if it does not exist; otherwise
truncates it to zero length. Sets the file pointer to the first byte of the file.

#include <stdio.h>
int fread(void *ptr,int size,int elems,FILE *stream),

Retrieves a number of data ¢ ach "size" bytes long, from the stream
file "stream" and stores them in consecutive of the array pointed to by "ptr".
Reading stops when "elems®. glement: ce nsferred, EOF is encountered, or

an I/O error occurs. f": @ negative, no elements are
‘transferred. One call tra ¢s at mo: -

#include <stdio.
#include <unistd.
int fseek (FILE

Performs a logi the strea eam" by setting an internal file
pointer to a new byte offset #ithin the file at which the next read or write request will
begin transfer of data. Th] s computed as the sum of the signed value
of offset and a byte displace i

#include <stdio.h> -—‘

=y

long ftell(FI’{AE *stream),

en " as a byte offset from
the beginning of the ﬁlqj

#include <stdio. >

o R EREFEE) 1] 3 W E) 1)

Closes q"!he stream file pointed to by "sﬁam The coptents of the stream

" AR TR TRARTINY QY

Hinclude <stdio.h>
int fwrite (const void *ptr, int size, int elems, FILE *stream);,

Writes successive elements of the array pointed to by "ptr", each "size" bytes
long, to the stream file "stream". Writing stops when "elems" elements have been
transferred or an I/O error occurs. If the value of "elems" is O or negative, no
elements are transferred.

30

int chdir (const char *path);,

Sets the current working directory to the given "path". Path names that do
not begin with "/" are taken to be relative to the current working directory, as specified
by the path argument.

int chmod (const char *path, int modes);

le named by "path" to the 12 low-order

5

Sets the access permissions, 0
bits of mode. The effective user

r or the owner of the file.

This is the W gxec wnctions replaces the current
’ .

process image with a he. ment for these functions is
the pathname of a file whi

Stores the pathn e T directory in the character array pointed to
by "buf"; the length of the patl_}ym 16510 will het exceed "size" bytes.

4 a
Allocates an aga of storage at least 'size" bytes long, properly aligned for any
data type.

@Mﬂc&ﬂﬂmﬁ g7n79
poimd‘ri%mmm@mmm A 2o

low-order bits of "mode" as modified by the process file creation mask.
void perror (const char *mes);
Writes the error message corresponding to the current value of errno to the

standard-error file. The message text is preceded by the null-terminated string pointed
to by "msg", which may use to explain the context in which the error occurred.

31

int rmdir (const char *path);

Removes the directory named pointed by "path" if the directory is empty, if it
is not a mount point , if it is not the current directory of any process, and if the calling
process has write permission in the parent directory. The directory is considered
empty when it contains only the "." and ".." entries.

#include <string.h>
char *strcat (const char *si,

t char *s2),

/ d of the string pointed to by
ncatenatlon of the two original

Copies the string point;
"s1", forming a single unk
strings.

#include <stri
char * strcpy

Copies the null i ‘string | pointed to oy "s2" to the character array
pointed to by "s1". '

opy of the current (parent)
e sﬁ'ne program.

system (const.char *command)

el A8 AL VLI D 1

copy of the shell for execution as a command. The shell invoked by, system" is always

”‘"‘”“"Q"W"Tﬂ"ﬁ'ﬂ"ﬂ’[fﬂ“ﬁ d ’] TREE

#include <stdio.h>
int fprintf (FILE *stream, const char *format, ...);

Writes the result string to the stream file stream instead of to standard output.
void exit (int status),

Terminates the current process after performing clean up actions, including
closing all open files

32

Shell Command

The UNIX shell is both a command interpreter and a programming language.
To manipulate and access files and directories, UNIX provides a shell which has
built-in commands.

When a user logs in, "login" starts a shell process. A "-" is prefixed to the

name of the login shell (-sh), which causes the shell to read commands from the files
if they exist. Moreover, when the shell is first
' standard output(1), standard error(2);
e descriptor”. The following shell
aeshell commands in regard to file

started it opens three files; standar
and associates each file with a
commands are either UNI
and directory access. (Valle

pwd
Prints the cu
return

Used only within 7 saf a\ to exit to the last command
executed. 7 \ '

chmod mede | 4 X

Changes the me access permissions of "pathmas directed by the "mode"
operand. Only the ownerfofdile or director, ©r the superuser, can change permissions.

AUEINENITNENT
RININIUUNIININY

33

"mode" may be specified as a octal value or as a symbolic expression listed in
Table 3.1 and 3.2

Permission Octal Value
Read by owner 400
Write by owner 200

Execute by owne _ 100

permission

Y

ead r
g P ke av rite W
oifier o absolute = ecute X

-y LY,

AN InENIHEIAT—
VbR el me) jankld

34

cp filename target

Copies the files specified by "filename" to "target". "target" can be a
directory, an existing file, or a new file. You can specify multiple filenames only when
"target" is a directory.

If "target" is a directory, then all files are copied into that directory with the
same filenames. If target is an existing file, then the input file is copied to it and the
mode, owner, group, and links remain i If target is a new file, then the input file
is copied to it and the mode, owner, f the new file remain the same as the
old file. .

find

Locates files es specified in "expr". The
first argument to "find" m

Is [opts] [fi

Lists files and ptions or without a filename

y. If the file name is specified,
1, then the files in the specified

specified, "Is" lists all o
only that file is listed.
directory are listed.

.....

mkdir

Creates a new directory n tory" Themode of the new dlrectory is
set to "777" as modifie i Phe “mkdir" command requires
that the parent dnrect ' o ﬂ the user making the new

FRoHA 1891 TN

Moves ?r renames the specified files to target. The file and target cannot be

drecto T LI b mum'a‘:n‘ﬁmaﬁmm:

whether the file can be overwritten. If so, then the file is moved to the target file name.
If the target file cannot be written to, then "mv" prints the target file permission mode
and asks for a response. "mv" then reads from the standard input and moves the file if
permissible. Otherwise, "mv" exits with a nonzero exit status.

m [opts] file(s)

Removes specified files. Removal of a file requires write permission for the
directory ; the file is in, but does not require write or read permission for the file itself.

35

rmdir directory

Removes the directories specified as arguments to it. The directory must be
empty.

du

Summarizes disk usage by displaying the amount disk space used by each file
and directory.

df

Summarizes free dik spa isplayifg the amount of disk space available

Compresses or packg't ied files or standard input.
Uncompresses Or/€x| ¥ extracts the specified files or standard input.

Standard editor o

pico W X ‘

Simple text eﬂor in the style of the Pine Comﬂser which displays oriented
text editor.

- ﬂum ‘l’lEJﬂﬁWEJ’]ﬂi
mﬂmmmumwm /i1 R

the format of a file, to extract selected lines from a file, to tabulate numeric information
in a file, or to prepare a full-scale report from a sorted data file.

T1909%50%

	Chapter III. File System on Unix
	Files System Concept
	Files & Directory Information
	Permissions
	System Calls and Library Subroutines
	Shell Command

