Chapter 1T

Curses Libraries Overview

Introduction

een-based file utilities program on

For this study, "Developme
: ~usi as the user interface. Thus, the

routines and libraries for scieen hand »_vailable.
The goal of this e tandard tools for controlling
the CRT/VDO terminal S \ : ’_ dling tools come in the form of a C

library called "curses" whigh'is #ei impo; At 1o, e _programmer writing interactive
screen-based programs : UKL .- ﬁ

This is th€ highgst, level of screen control. The library allows the
programmer to control sgreens via . " ndent data structure called a
“window”. This protects the the nitty-gritty of low-level terminal
control, and for this reason i ed to low-level counter parts.
When "curses" routines actually n, they attempt to do it as efficiently
as possible. Indeed, ' ed lo sely from the expression
cursor motion optimi‘ ation (Goodhear

"curses" Wi : Univers of California Berkeley, and
has a long history. However, it has only recently been adopted as a part of AT&T
System V as a standard®past of their version of UNIX known as the Berkeley

:sg:::::dlf)rn:t-@u E}sbz ﬂ*ﬂ‘%ﬁ%%‘] r]ﬂeget of the library that
i i} mﬁﬁﬁﬁfﬁ“ﬂwﬂmﬂ"m i

character Sets and color, with even better optimization. (Goodheart, 1991)

The "curses" library provides terminal independence and a clean
easy-to-work-with interface for the programmer. Moreover, the UNIX "curses"
package not only provides the portable standard, but also provides an interface which
is both complete and easy to use.

Curses Advantages

Since curses is a cursor optimization utility, it will minimize the amount of
cursor movement around the screen when it is updated. The following list shows some
advantages of curses : (UNIX System V/386 release 3.2 Programmer's Gulde Volume
11, 1988)

1. It saves the time describing in a program when the program is updated.

2. It saves a user's time wher creen is updated.

3. It reduces the load on 's communication lines when the screen
is updated.

4. : v out the myriad of terminals on
which the program might f ———

Overview Feature and I

N
To master "¢

data structure known a / F&' " E\\ ' S X

of an image of what a pag r ectang ‘ Hor \- 'the terminal display may look
like. Its dimensions are de e y Sout ities, those being the sides of
the physical screen. I coutre ,é;g dimension ?’t -' epresented as a one character

s to understand the "curses"
internal data representation

in length and one charac hei; (his, is the smallest window --the size of one
character. , =
Haiadiad - e

=TT

gy g E
At <

f;
y
ﬂ‘lJEJ’WlEJﬂﬁWEJ']ﬂ'ﬁ
quﬂﬂﬂﬁm URIINYIAY

10

"curses" : The Data structure, which is an internal representation of a curses
window, is defined in the "/usr/include/curses.h" include file and is typedefed
WINDOW as follows (Goodheart, 1991) :

struct_win_st {
short _cury, _curx;
short maxy, maxx;
short begy, begx;
short flags;
chtype _attrs;
bool
bool
bool &
bool fiSe ad!,
bool
bool

}; #F = :; rF3
typedef stru wﬂfsf;]

extern WINDOW Fsidscr, *cur

EE TS

According to theswindow data Gstructure in the standard include file :

<curses.h> (as!sho ﬁjg@enﬁﬁﬁpﬂﬁa : OW data structures
-~ virtual-win ers, "curser" ‘and s : "curscr" (current screen)

window holds a data representation of what is curzently displayed,on the real terminal

e Bl Tl LT b bl bR Eher, is provided
"stdscr" (standar: h ft t en, is provided

as a default which represents your terminal screen window for program to work with.
Furthermore, characters can be written into this window at any position.

To deal with many screens, "curses" allows programmers to create new
windows individually within the stdscr --standard screen by using the "curses"
"newwin" routine.

All "curses" routines totally depend on this window structure. It is used to
solely to hold data and information which describe a window, and is used to build a
potential image of a portion of the true terminal screen.

11

Curses-based Program

General curses program structure is shown below:

#include <curses.h>

main()

initscr();
/* main body */**

endwin(),
exit(0);

When writing a cut
header file <curses.h> whlch, on-$
files <stdio.h>, <tern

= =S INCIHaea SOt yooaneart 7o
‘s).'stem, then <sgtty k ;; 5

haised prog he programmer needs fo include the
ystem V. matically includes the terminal header
£ if running a BSD or XENIX

,_.:I
ﬂ'lJEl’WIWIﬁWEI']ﬂ‘i
amaﬁnimum'mmaa

do any command line processing

|

initialize “curses” using

1 19§
W Rl
—

lW

AUEAINERINEINS
ARIRIN[AR NG S

Figure 2.3 The Basic Structure of a Curses Program

12

13

As presented in figure 2.2 and 2.3, the initscr() routine must be called prior to
any other curses function. It initializes certain curses data structures and also
determines the type of terminal from the "TERM" variable in the environment.
Similarly, the endwin() function should always be called before the program exits. It
will restore the original terminal state, tell curses to set the terminal driver back into
and out-of-curses mode and move the terminal's cursor to the lower left-hand corner.

The other functions concerned with curses-based programs are shown below:

refresh()

wrefresh(win)

These two functi@ L dscr" and the window pointed
to by "win" respectively™Wheatefic "W h() is called it compares the two
screen images (terminakssc ' r" or window) and sends a stream of
characters to the terminal n look like stdscr or window

i dd W " g 5
the window "win". : ate 1s doneitothe physical terminal screen until

doupdate() is called.
doupdate()
L -3
This function, compmsf : cr)-to the physical screen. It
updates the part of thé-physi _.;-asﬂ_-*:.{w last being updated.

Facilities Provided bv

Curses ﬂrowdes ‘many functions which are specifically set up to deal with the

"stdscr" wind ﬂeﬁas nﬂ ﬁgﬁp&iﬂ ﬁ "curses" provides
co s lerary Manual)

function names

Q‘Wﬁﬂ’“ﬂﬂ”ﬁfﬁfﬁ‘mwﬂ NYIRE

Mode Setting

After the call to initscr(), a program that calls curses routines will usually
set the terminal mode for input and output. Thus, curses provides a comprehensive set
of routines for setting and reading the terminal driver modes.

14

keypad(win,bf)

This function allows the programmer to toggle the function keypad on or
off. If "bf" is TRUE, this function will enable the keypad. By default the keypad is
disabled: this means the function getch() will not treat special keys (such as arrow or
function keys) any differently from ordinary alphanumeric keys on the keyboard.
However, if the keypad is enabled, getch() will return an integer representation of the

character sequence received.

Sets the terminal means that characters typed at
the terminal are not buf:e?, We immediately available to
the program as they ar cyboard,. t having to wait for a line

delimiter. The tty drive quit, start and stop characters,
but canonical processing

cbreak()

nocbreak()

Resets the tre
keyboard are now buffe iver,andi s processed in units of lines.

noecho()

This mode dlsables.gﬁ\g: jthe terminal screen. The driver is set

into half-duplex mode:lCWB Er'é ne w by wgetch()

Enables echoing back to the terminal screenaThe driver is set into
full-duplex mode. Used irf'cenjunction with viget

the keyboard t %M ugdnﬂu ﬁ)ﬂﬁm i‘s characters typed at

e working window. When the window is refreshed the characters

=TERTRAIHRANINE 1 E

nonl(), nl()

Both of these functions control the translation of a new-line. The default
mode is nl() which translates a new-line into carriage-return and linefeed on output,
and return is translated to new-line on input. The function nonl() disables this
translation.

15

savetty()

This function saves the settings of the current terminal (tty) modes in an
internal buffer. It is automatically called by initscr().

resetty()

This function restores the terminal (tty) modes to what was originally
saved in the internal buffer, set by savetty

reset_shell mode(

sut-of-curses state. This routine
d before entering the curses

Sets current
restores the tty driver
program.

‘ ign, curses provides a routine to the
programmer for creating a new i e terminal screen separate from
the default windows supplied

function displayed as fa

ELeT] ﬁ*ﬁlﬁﬁf@ ﬁ‘m
s A VTR TTTOE I IITE T o

ncols : The maximum horizontal dimension of the new window,
specified in units of columns.

begy : The line coordinate, specifying where the new window will
start in relation to the "stdscr" vertical dimension.

begx : The column coordinate, specifying where the new window
will start in relation to the "stdscr" horizontal dimension.

The system will create a new window the same size as the terminal screen
if the arguments to newwin() are newwin(0,0,0,0) or newwin(LINES,COLS,0,0).

16

3. Adding Characters & Strings to the Standard Screen

Curses provides routines for the programmer to put characters and
simple strings into both standard screen and a window which can be concluded as
follows :

int addch(ch)
chtype ch;

Like the a n; this, fuj ‘;{ on puts: he character "ch" into the
stdscr" the programm € targ \~ ition on the screen by moving the
cursor to the specified y, ing \ haracter into the screen.
int
WINDOW
chtype ch;

This funetion | for puttin cters"ch" within window "win"
created by newwin() functions. The fo ,--_--.:';:_-:"—--i---------—f‘1‘h uged to put a character into
the window also, but s screen.

\Eaddch(wm Vo X éh)

Zﬁ”uﬂ'mﬂmwmm

chtype ch;

QW &:ﬂﬂﬁm NN Y

char~ *str;

int

This function writes all characters of the null-terminated character string
"str" on the standard window --stdscr.

17

int mvaddstr(y, x, str)

int vy,
int X:
¢har st

This function provides the coordinates y,x which can be specified on the

screen before writing the string "str".

win" at the current y,x
v.x where the string cank

int waddstr(win, str
WINDOW *win;
char . Patr,

This function"add ing "str" to the specified window
; functions provides variables

int W3
WINDOW
int
int X
char *sfr;

2

SR oy =
Printing Formatfed Output

ol -
» ;:—f‘
n d
char *fmf:
Buifansmingng

*win,

ammmm NN Y

int mvwprintw(win,y x,fmt,[,arg]...)
WINDOW *win;

int y;
int X
char - *imt;

The four functions above are used for printing formatted output. They

convert, format and print the arguments "arg", under control of the format argument
"fmt", into the standard screen and also specified window pointed to by "win

18

5. Moving Around a Window

int move(y,x)
int vy,
int X

The first function of cursor movement is used to control the movement
of the cursor on the stdscr screen by specifying the new coordinates y,x (row,col)
relative to the top left-hand corner. Ne eless the physical cursor is not actually

This fu

0cs th '- changes the current cursor
to the location y,x in the : ’ \\
getyx (win y. Al

WINDO l - &‘ ¥ & Mg
int) % %w :
int X, "M =
‘ !f 4 -J‘
This ﬁmctlon is r-”’"" -:;1 »’-_ ent cursor y,x coordinates of the
cursor in the window:po a pordinates are relative to 0,0 of
stdscr. Lo DY,

Y X

6. Reading fiom The Keyboard m
Z‘@ﬁmwﬂmwmm

! ma»amm AN Y

WINDOW *win;

mvwgetch(win,y,x)
WINDOW *win,
int y;
int X;

k4

The above functions are used to read in a character from the terminal.
Moreover, the functions beginning with "mv" can specify the y,x coordinates on the
stdscr or window to get character. The ﬂrst 2 functions deal with stdscr and

19

the others are associated with the window "win". Normally the program will hang
untili a character has been entered if in cbreak() mode,
or after the first new-line if in nocbreak() mode. However, unless echo has been
turned off with noecho(), the character returned will also be echoed into the designated
window "win".

Curses provides the functions--getstr(), mvgetstr(), wgetstr() and
mvwgetstr()-- which can make a series of calls to getch() and wgetch() until a
new-lme camage return, or the "Enter"| key is recelved The contents of the mput

int get
char %

TNYINT

Curses has functions which can edit text on the screen,,clear whole areas
:;:;zsmﬂm ATRARTINT ARG =
void erase()

void werase(win)
WINDOW *win;

To clear the window to blanks, curses provides functions erase() for
stdscr and wrease() for specified windows. werase() resets the entire window pointed
to by "win" to blanks, without setting the clear flag.

20

int clear()

int weclear(win)
WINDOW *win;

Like erase() and werase(), these function are used to clear a window to
blanks also. wclear() resets the retire window pointed to by "win" to blanks. It does
this by calling the function werase() to erase the contents then sets the current y,x
coordinates of the window to 0,0. eyer, the clear screen will be effective when
screen is updated.

The following :, - leting the character under the
cursor. Each character aft ifted left, and the last character
becomes blank. The curs OS ; s unchanged. mvdelch() is exactly the
same as the others excep rst | to the given coordinates.

The_ paramefers"win" in the above functions is the specified window

pointed to and ﬁ Pprnfictéry Vi répieSéir The b fostiany

The following functions are used f%.msertmg ac acter "ch" at the

arn AWAR, mmmmmm S g

the same s the deleting functions.

int insch(ch)

chtype ch;

int mvinsch(y, x, ch)
int Y,

int %

chtype ch;

21

int winsch(win,ch)
WINDOW *win,
chtype ch;

int mvwinsch(win, y, x, ch)
WINDOW *win;

int y;

int X;

chtype ch;

8. Video Attribute Q\\ ’, //

Based on the '- 0 attribifes of thete e inal, curses provides functions
to display many styles of'té Prog . exploit the following capabilities to
draw a character on the 7 /’f;ﬂ : \\\\h‘%‘"’ akes it stand out differently
from other characters be1 digplay yles su gh light, bold and underline are
available. /

Curses has a
on or off and setting the
current attributes of a ‘Wi
either directly or indirect!
the WINDOW structure vari

specifically for turning attributes
lisplayed on the screen. The
acters written into a window
the functions that manipulate
"stdser" and "window".

int
chtype

attron(attr

int : A
chtype ﬂrs; m

int _ attrsét(attrs)

'ﬁ’%ﬂ’&‘l’lﬁ]ﬂﬁﬂﬁ]’]ﬂ‘i

amﬁ;ﬁ"ﬁgfﬁf NAINYIAY

The prior four functions set on the current attribute "attrs" in window

L] "

win".
int wattroff{win, attrs)
WINDOW *win,
chtype attrs;

This functions turns off the current attribute "attrs" in window "win".

mtmnmm nmumnnmmq '
|mmmmunn nu'mu

22

int wattrset(win,attrs)
WINDOW *win;
chtype attrs;

This function sets the current attribute in window "win" to that given in
"attl'S".

In addition, curses provides functions which can turn on and off standout
mode displayed on stdscr and specifi pointed to by "win" as follows:

his attribute as being
5 in highlight mode.
e displayed inverse

e displayed bold
Text wﬂl be dlsplaye blinking on and off.

: @%@‘ﬂﬂ‘ﬂiﬂﬂ\’lﬂ’i

beep)

. HAININ AN AL, o o

flash()

alarm

This function signals the user at the terminal by making the terminal
screen flash.

23

Compiling Curses-Based Program
A curses program is compiled under UNIX like any other C program. The

"cc" compiler is used as usual but the linker must be instructed to link the compiler out
“put with the curses libraries ("/lib/libcurses.a").

For example, to compile the program june.c you enter at the command line:

AULINENINYINg
IR TUUMINYAE

	Chapter II. Curses Libraries Overview
	Introduction
	Overview Feature and Data Structure
	Curses-Based Program
	Facilities Provided by Curses
	Compiling Curses-Based Program

