CHAPTER 2
.3 FLEXURAL THEORY

Basic Assumptions and General Theory of Flexure

Assumptions used i Y ion of deflections curvatures

and ultimate bending zed as follows:
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the strain distribution at the critical sections of the test beams in

this study (Fig.4.14 to 4.18) also verified this assumption.

The stress—-strain relationship of steel wire with an indefinite

yield point is defined its yield strength at 0.2 % offset of the strain



Normally, a bi-linear stress-strain relationship is assumed as shown

in FPig. 3.1,

The bond between steel and concrete is true only when no
excessive cracks occured. However it is not perfectly correct

since local bond failures occur in vicinity of cracks.

Concrete Stress Distrib

Strain py tress dise ons due to various stages
of loading are s \ » '

At early st : . No a,\ in the section, the
tensile strength of account for calculating
the resisting moment ! - eel their stress-strain

responses are in elast
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for resisting momene since it is v ry small when compared to the resis-
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bendinq strength by using appropriate compress ve stress distributions
such as traperzoidal, parabolic, triangular shape etc. In this study
it is assumed that compressive stress distributions are in parabolic,
triangular and Nedderman's form, then the resglts will be compared to
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that from 1977 ACI Code method.



Internal Force and Moment

Based on the above assumptions, internal forcés and moments

at various stages can be derived as follows:

a) Before Cracking Stqgg_; ft<fr (Fig. 2.1)
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p So the intedh.i resisting moment of critical section is
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b) At Cracking Stage , ft = fr

By substituting ft = £, modulus of rupture, into
equation 2.3 yields.
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where fr is modulus of rupture of concrete approximately

obtained from spliting tensile test

kd = /2pn+(pn)2—pn

where P =

can be written as

ceeese(2.6)

The intern forces can be expressed as
ceseea(2.7)
ceeeee(2.8)

The internal ‘;_;g_ -f gPar be determined from each

individual forcg as
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- ¢) Stress-strain relationship of parabolic shape

Fig. 2,3 Stress and Strain Distribution and its Relationship

of Parabolic Shape
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¢ = distance from neutral axis to extreme

compression fitpr

€ = compressive strain at ultimate compressive

strength, f":

X

‘distance from neutral axis to compression
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And that b @ssive stress distribution

-

can be written as:
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According to 1977 ACI Code "’ the ultimate bending strength

can be written as: (Fig. 2.4)

=
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strength reduction factor, for fexure = 0.9

where ¢

tangular stress block
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a) Modulus of Elasticity of Concrete

Due to small range in taking tension of concrete into
account, it is presumed that modulus of elasticity in tension of
concrete is the same as in compression. It is recommended by 1977

1977 ACI Code that
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E, = 15,100@ cis s 2 19

where fé is cylindrical compressive strength in ksc. and

(11)

test results shown in Fig. 3.4 have proved its validity.

b) Moment of Inertia

* Before crack t of inertia may be based on

éa small difference arising

=~ einforcement is also

the gross concrete s
from whether or not
included. Howev ‘. \ 8. 3 e the cracking load,
that of cracked

between cracks (1) ‘

the moment of in

transformed sect

The ended to use effective
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moment of inertia, as p “' by Bransc ) in 1963, which includes

- the effect of load level :“_ €6 Of cracking as:

e (MM 30T aflotm fa— e 1 SRR L

Ef v_ LS R T A ’ cr

where M E cracking moment m

@ymmmml RS
ama\an'ﬁtﬁf‘“wﬁ%maﬂ

= gross moment of inertia (neglecting reinforcemen t)

Icr = cracked transformed section moment of inertia
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Moment-Curvature Relationship

Fig. 2.5 shows an element of a reinforced concrete member
with equal end moments. The radius of curvature, R, is measured to

the neutral axis. The rotation between the ends of the element is

given by
» dx
R seces e (20 17)
and the curv h 1 tion per unit length of
member is

.....-(2.18)

LRI ) :(2. 19)
The theoretical ?"'!"{ e relationship may be determined
by incrementing. cbncrete strain at the ext: !mpression fiber and

rce equilibrium is found
by adjusting itse f until the compression force in concrete is equal
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curvature curve can be plotted within a range of values for compreasive

neutral axis depth-

strain.

Ductility is defined as the ratio between ultimate and yield

curvature. It was proposed by Furlong( 16) that
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Fig. 2.5 Moment-Curvature
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U = 140.235 %

where U = ductility index

L is usuall:

3 Uw:-lll be 4.5 to 5.7

fferential equation of
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horizonta istance along beam length
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I = moment of inertia

For a simply-supported beam, span length L, subjected to any

loading shown in Fig. 2.6
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L
M = 03 RiL = [ f(@).(L-c)de

y L
Ry = ¢/, fl@).(ecdde .....(2.22)

and bending moment at distance x away from Rl is

deflection

In this s upported beams subjected

to two symmetric ldle~-third point of span

length shown in Fi @éction becomes
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Due to varidtgdon of load amd moment of intertia equation
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