## Preliainary Investigation on Suibable Coating Conditions

Suilable coaling conditions were investigated by coating sucrose crystals with cuating sojation which had composition as previously presented in Table 2. Tho suitable coating conditions using top spray method whapreviously described in Table 4.

Uniform coating of Dolymer on sugar crystals was simply Lested by observation of smooth color of erythrosine and loss of sucrose sweetened taste. Fian $11 y$, erythrosine dye was subst,iluted by propranolol hydrochlörfáde


## 

The sucrose crystals were coated with coating solution having composition as previously described in Table 3 but only the amount, and lype of plasticizers were varied as presented in the following Table 5 and 6.

Table 5 Composition of Coating Formulations 1-4


Table 6 composition of Coating Formulations 5-10


Physical property evaluation of beads coated with formulation 1-10

The sucrose crystals coated with different formalabion of coating solution were examined using scanning elcotron microscope (SEM) al different) maginification ( $x 35$ and $\times 500$ ). The cross-section of the coatea beads was also observed for the film morphology at x 100 magnifioabion.

Figure 11 shomed the scanning electron photomicrograph of uncoated sucrose crysthats, The shape and surface topography of coated sucrose beads prepared at different type and content of plasticizers is shour in Figno $12-21$. The surface of boads was covered with rough eonting porous layer but some of them had rather smooth surface.
 surface and viuiformity of conting (Hizuryep). More rough and porous coating furface of the beads were obtained when using coating solution of formulation $2-4$ which containing $1-3 \%$
 (1-3\% castor oil) gave thinner coatingfilm than fophulations 2-4
 was increased (Figure 16-18). Formulation B-10 (1-3\% PEG 4000) provided the thickest conting film and when PFG 4000 content was increased, more rough surface was observed (Figure 19-21).

She physical properties of the beads formulation 1-10 are shown in Table 7. The mean size of the coated beads using formulation $1-10$ was about $700 \mu \mathrm{~m}$. Size of sucrose beads


A

B

Figure 11 Photomicrographs of uncoated sucrose crystal
(Key: A sucrose beads $x 100$, B sucrose surface x 500)


Figure 12 Photomicrographs of coated sucrose beads formulation 1
(Key : A coated beads $\times 35, B$ coating surface $\times 500$, C cross-section $x$ 100)


A

B

C

Figure 13 Photomicrographs of coated sucrose beads formulation 2
(Hey $=A$ coated beads $\times 35$, B coating surface $\times 500$,
C cross-section $x$ 100)


Figure 14 Photomicrographs of coated sucrose beads formulation 3
(Key: A coated beads $\times 35$, B coating surface $\times 500$, C cross-section $\times 100$ )


Figure 15 Photomicrographs of coated sucrose beads formulation 4 (Key: A coated beads $\times 35, \mathrm{~B}$ coating surface $\times 500$, C cross-section $\times 100$ )


Figure 16 Photomicrographs of coated sucrose beads formulation 5
(Key: A coated beads $x 35$, B coating surface $x 500$,
C cross-section $\times$ 100)


Figure 17 Photomicrographs of coated sucrose beads formulation 6
(Key = A conted beads x 35 , B coating surface $\times 500$, C cross-section x 100)


Figure 18 Photomicrographs of coated sucrose beads formulation 7 (Key: A coated beads $\times 35$, B coating surface $\times 500$, C cross-section $\times 100$ )


Figure 19 Photomicrographs of coated sucrose beads formulation 8 (Key : A coated beads $\times 35$, B coating surface $\times 500$, C cross-section $\times 100$ )


Figure 20 Photomicrographs of coated sucrose beads formulation 9
(Key: A coated beads $\times 35$, B coating surface $\times 500$,
C cross-section $x$ 100)


Figure 21 Photomicrographs of coated sucrose beads formulation 10
(Key: A coated beads $\times 35$, B coating surface $\times 500$,
C eross-section $\times 100$ )

Table 7 The Physical Properties of the Beads Formulations 1-10

| Formulation | Mean | Bulk | Tapped | Carr's | Friability |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  | size | Density | Density | Index | ( $x)$ |
|  | $(\mu)$ | $(g / \mathrm{ml})$ | $(\mathrm{g} / \mathrm{ml})$ |  |  |


| 1 | 689.9 | 6.93 | 0.60 |
| :---: | :---: | :---: | :---: |
| 2 | 708.09 | 6. 12 | 0.80 |
| 3 |  | 5.56 | 0.50 |
| 4 | 689 | 7.11 | 0.40 |
| 5 | 692 | 3.64 | 0.60 |
| 6 | 701 | 5.26 | 0.50 |
| 7 | 702 | 7.55 | 0.60 |
| 8 | , | 7.02 | 0.90 |
| 9 | 703.54 | 7.84 | 0.70 |
| 0 |  |  | 0.90 |


ข
จุฬาลงกรณ์มหาวิทยาลัย

coated by coating solution which composed of several plasticizers was not apparently different.

The bulk density, tapped density and Carr's compressibility index of coated beads are also presented in Table 7. The compressibility was interpreted to predict the flowability of the beads. The⿻ flower compressibility was obtained from beads with bether rlowabifhy. For sucrose beads, it was observed that thore was not apparently different among formulation 1-10. The producta preppreff according to the formulations 1-10 were not apparentily diffefent in bullo density.

The frialijuly of beads are presented in Table 7. Formulations 8-10, using PE 98000 as clasticizer showed tendency to increase friabilaty
bissolntion eftery everination of formulations $1-10$

The rease-peofiles of coated theads were studied by basket method in different medimas 0.1 N HCl , phosphate buffer pht 6.8 anf pildhanged method. The dissolutipn data of the beads coated by the individual Gormulations are presemled in Tables $31-42$ (see appends $x$ a) 6699920 glycerylmonostearate, eastor oil and polyethylene glycol 4000. The dissolution rates of the coated beads which were composed of plasticizer and non-plasticizer and were studied by basket method in 0.1 NHCl , phosphate buffer pil 6.8 and pll change method are tabulated in Tables $29 \cdots 32,33-36$ and $37-40$ (Appendix A) and are
$\qquad$
「ORIIH TIOH 4

Figure 23 Release profile of coated sucrose beads formulalion 2-4 in 0.1 N Hel


Figure 25 Release profile of coabed sumose basds formation B-10 in 0.1 N HCl

Fizure zt kulease pongife ofatoated sucaose beads formulal, ion 1



Figure 27 kelease profite of coated sucrose beads formulation $2-4$ in phosphate buffer pll 6.8


Figure 28 kelease pobitio urgooated sucrose beads formulat ion $5 \cdot 7$





Shown graphically in Figures 22-25, 26-29 and 30-33.
Toabed beads eontaining dyeerylmonostorarate and castor oil as plasticizer when using 0.1 N NCl as the medium relsased approximately $58 \%$ of the drag in $t .5 \mathrm{hr}$. (Figure 23,24 Table 30, 31). Non-platiticizer coabed beads release (6.jt of the drug in 1.5 hrs which was ;iaithy to tho beads using Peq 4000
 classified in 2 eromize atesord the the thelease rate in 0.1 N nel.

The Int anther M9 Plastimizers on drug release from
 change method fon fic hys. She release data in pll change method of rastod bead: combefinfing andecery lumbstorarato, catstor oil and non-plast.icizer uery lumathan fif furter pll 6.8 and the retease

 which contained den tome in pll chamen-mwthenere higher than the


The congent of each plast, icizor type wore investigated
 content of elycerylwonostearsite and cazapor oil showed tendency 1.0
 propranolol hydrochloride when its amount in coating rormutation was intreased. The effect of plasticizer content, on the drug release wore nol. different when using different dissolution media. The releasy profiles in pll change melhod exhibited biphasit curves which conld be seperated in 2 period between " 2 hr, and $2-12$ hr. And it wats observed that it had rerlective
point. to be a platoan phase at, $1.5-2 \mathrm{hr}$.

From the drug release profiles, the coaled boads which contained $3 \%$ glyoerylmonosbearate gave the lowest release profile. : 6 , this formulation was used for further modiricalion of release characteristic lom somply with the USP standard for drug rolease of propramstol hydrothtoride sustained reloase cajsulos by oulercoating the coabed headry whe the coaling solution which was composed of the polymex withou indation of tho drug as shown in

 coaled beads ont formental,ion t? tent wetreoaled with conting solution contained mixed polymer of ET $+5 x$ IIPMC and $1 \%$ PG (formulation 13, Figure 36), they, were founded lo have more smooth
 Whe suterenaled formulation, drug raseate coulde he retard and


Moan size of coabed beads were increased in all foroulations which prepared by outerooating prosess. It. was found 1.hat the outoreonted formalation have a trend los decerease bhe eompressibilily. However, after onlereoating proecesis, ib, was fiond Lhat bulk densily bad tondency to decline, and higher friabilily kas mbserved, moept. fismonlations 12 and 13 . (soos Table 9 ,

Table 8 Composition of Coating Formulations 11-13


Table 9 The Physigal Properties of the Beads Formulations 11-13
 थ Formulation Mean Bulk Tapped Carr'se Friabiliby Formulation Mean Bulk Tapped Carr'se Friability
 (\%)
( $\mu$ )
792.11
0.37
0.39
5.59
0.80

11
(g/al)
(g/ml)

12
838.05
0.35
0.37
5.20
0.30

13
839.27
0.39
0.42
6.49
0.20


Figure 34 Photomicrographs of coated sucrose beads formulation 11
(Key: A coated beads $\times 35$, B coating surface $\times 500$,
C cross-section $\times 100$ )


Figure 35 Photomicrographs of coated sucrose beads formulation 12 (Key: A coated beads $\times 35$, B coating surface $\times 500$, C cross-section x 100)


Figure 36 Photomicrographs of coated sucrose beads formulation 13
(Key: A coated beads $x 35$, B coating surface $\times 500$,
$C$ cross-section $\times 100$ )

Dissolution study evaluation of formulations $11-13$

The dissolution profiles (in pll change method) of the couted beads of formulation 1, 4 when outercoated with outercoating solution as presented in Table 8 were illustrated in Figure 37.

The dissolution dialo of formulation 11 (outercoating on formulation 1) was given $85 \%$ rel case in 3.5 hr.but formulation 12 (outercoating on formathaty 4) was shown $35 \%$ release in the same time period (Figure 37 Table 41).

To investigata atole of hydrophillic film former on drug release profiles, fopquintion 4 were coated by $10 \%$ EC conting solution and the $f=x+$ are of $10 \% \mathrm{RC}, 5 \%$ HPMC and $1 \% \mathrm{PG}$ as plasticizer as described $\frac{1}{2}$ focmintation 12 and 13 , respectively. It was seen that the mptraso rate of formulation 12 was $35 \%$
 film former gave $-42 \%$ release (Figure 37) Table 41).

##  ข

## Q 90 Thopouted beratson rormunation 4 werd Wutercoated with outercoating solutions $14-16$ which contained different concentration of ethylcellulose in the range $5,7,15 \%$,

 respectively as presented in Table 10 . The composition of coating solution formulation 17 was shown in Table 10.

Figure 37 Roleaso pryfild gh quated sucruso beads formulation $11-13$ in pll chantg aietaroct


D FORMLIATION 14
TME (hr.)
Figure 38 Release profile of coated sucrose beads formulation 14-16 in pll change method

Table 10 Composition of Coating Formulations 14-17


Table 11 The Physieal Properties of the Bohds Formulations 14-17



| 14 | 666.83 | 0.50 | 0.56 | 10.24 | 0.30 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | 651.84 | 0.40 | 0.43 | 10.00 | 0.50 |
| 16 | 729.75 | 0.34 | 0.37 | 6.90 | 0.70 |
| 17 | 764.13 | 0.32 | 0.34 | 6.45 | 0.70 |

Physical proporty evaluation of formulations 14-17

Comparison of the coated beads from formulation 14, 15 , 12 and 16 prepared by outercoating the beads of formulaton 4 with outercoabing solution containing ethylcellulose ul. $5,7,10$ and $15 \%$ respectively, more rough surface and more thickness of coated film were seen (Figure 39,40 , 85 wad 41).

jissolution farndy evaluation of formulations 14-17 drug release profiles while drug contents was kepl at $5 \%$ Formulations $14,15,12$ and 16 werp modified from formulation 4 by coating with 5,5 , 10 and $15 \%$ EC , respectivedy.

The release data of formalation $14,15,12$ and 16 in pH chmeg motbod at. 1056 wo was 88.11, 87 98,3798 and $46.42 \%$ release, respectively (Figure 37 and 38 Table 42,41 and 43 ).

The coaled beads of formulaton 12 gave the slowest drug release, followed by the beads of formulation 16,15 and 14 , respectively.

In order to show that the conlent of drugs and film former had an effect on drug release, coating solution according


Figure 39 Photomicrographs of coated sucrose beads formulation 14
(Key: A coated beads $\times 35$, B coating surface $x 500$,
C cross-section $\times 100$ )


Figure 40 Photomicrographs of coated sucrose beads formulation 15
(Key: A coated beads $\times 35$, B coating surface $\times 500$, C cross-section $\times 100$ )


Figure 41 Photomicrographs of coated sucrose beads formulation 16
(Key: A coated beads $\times 35$, B coating surface $\times 500$,
C cross-section $\times 100$ )


Figure 42 Photomicrographs of coated sucrose beads formulation 17
(Key: A coated beads x 35 , B coating surface $\times 500$
C cross-section $\times 100$ )


Fizure 43 Reloasy worfice vergated sucrose beads formalation 17



Figure 44 Release profile of coated sucrose beads formulation 18-20 in pH change wethod
to formulation 17 was developed by increasing the amount of the drug and film former from $5 \%$ up to $10 \%$ and after that outercoating by $10 \%$ EC coating solution was performed as shown in Table 10.

16 was observed that when the amount of drugs and EC were increased, more smooth surface and higher thickness was found as shown in Figure 35 (Formulation 12) and Figure 42(Formulation 17).

The release rate of formulation 17 was $76.69 \%$ in pll change method at 1.5 hr while the coabing beads of formulation 12 was only $41.73 \%$ release (Figure 43,37 Table 42, 40). The release rate of formitation 17 whe higher than formulation 12 in pll change method, 0.1 N HCl and phosphate buffer pll 6.8. This indicated the effect of the drug and ethyfuedlulose content in the inner coating solution on the drue reperse frow the rilm.

FORMULATIONS CHB-20

In orcter to decrease the drug release of the coated beads in formulation 14, 12 and 16 , so additional outercoating procedure wôs performed/on the coated beads $\}$ with the same amount of $5 \%$ EC coating solution ( 1200 ml .) as described ty formulations


Physical property evaluation of formulations 18-20

Formulations 18,19 and 20 gave rough surface and more thickness coated film, so the double overcoating might not be suitable in preparing the product (Figure 45-47).

Table 12 Composition of Conting Formulations 18-20


Table 13 The Physjeal Properfies of the Beads Formulations 18-20

( $\mu$ )
(g/al) (g/ml)

| 18 | 666.83 | 0.43 | 0.45 | 6.38 | 0.60 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 19 | 651.84 | 0.41 | 0.43 | 5.48 | 0.90 |
| 20 | 729.75 | 0.39 | 0.41 | 4.58 | 1.00 |



Figure 45 Photomicrographs of coated sucrose beads formulation 18
(Key: A coated beads $\times 35$, B coating surface $\times 500^{\circ}$, C cross-section $x$ 100)


Figure 46 Photonicrographs of coated sucrose beads formulation 19
(Key: A coated beads $x 35$, B coating surface $x 500$,
c cross-section $x$ 100)


Figure 47 Photomicrographs of coated sucrose beads formulation 20
(Key: A coated beads $\times 35$, B coating surface $\times 500$,
C cross-section $\times 100$ )

In double outercoating process, bulk and tapped density as well as the compressibility was further decreased. The friability of the coated beads increased (formulation 18-20), formulation 20 gave highest friability conted beads.

## Dissolution study evaluation of formulations $18-20$

The releasc diata of tho hoads in formalabions 18, 19 and 20 at the fime of 155 he were $14.61,57.26$ and $68.21 \%$, respectively (Figure in fathe 13, 14, 15). The dissolution rate of formatation 18 was the fowost, and the pelcase data of formulation 19 was lower than of formhation 20.

To Dhemstitate the effect of tyen of plasticizer on the release raty of the drug, the castor fil was incorporated in the coating solution replacing glycerylmonostearate as presented


## 

It. was found that the castor oil could reduce the release rate of the drug when compared with glycerylmonostearate, the release of coated beads in formulation 21 at. 1.5 hr was $37.68 \%$ The coated beads of formulation 21, was further otercoated with $5 \%$ EC coating solution containing $1 \%$ castor oil as shown in

Table 14 Composition of Coating Formulations 21-22


Table 15 The Physical Properties of the Beads Formulations 21-22 Formulation Mean? 9 Budk 9 Tapped TCarr's Friability ค. $9 \%$ Size Deskity Dengity Index

21
705.50
0.28
0.33
16.67
0.10

22
734.10
0.30
0.32
4.57
0.20


Figure 48 Release profila of egnced sucroso beads formulation 21-22
in pll change methú


Figure 49 Release profile of coated sucrose beads formulation 23-27 in pll change method


Figure 50 Photomicrographs of coated sucrose beads formulation 21
(Key : A coated beads $\times 35$, B coating surface $\times 500$,
C cross-section x 100)


Figure 51 Photomicrographs of coated sucrose beads formulation 22
(Key: A coated beads $x 35$, B coating surface $\times 500$,
C eross-section $x$ 100)
formulation 22. But it was found that the release of the drug was increase to $63.23 \%$ in 1.5 hr . (Figure $48 \mathrm{Table} \mathrm{47)}$.

Physical property evaluation of formulations 21-22

Table 15 present the physical property of the coated beads obtained from formulabion 22 ant 22.

Formulation 21 and ge2 save pocous and bulk film (Figure 50, 51). The change of Dithyicizer rrom glycerylmonostearabe to $5 \%$ castor oil (foramladion/21) gave the highest, compressibility value bul after outcreouted process, the eompressibility was wuch decreased. When slycogy limosigarate was substituted by castor oil as plasticizer, the coated fordts showed the lowest, rriability (formu)ation 21 and Tablectis)


1" order to adjust the release rate of the propranolol hydrochlorfat, bhe egmethution of the beids ohaving different. release characteristies was 6 investigated. As formutation 21 gave the fopest drug roleased sobvat, the formiawion 21 was combined with other formulations (such as Formulations 12 and 17) which had satisfactory drug release approaching the uSp specirication at the first. 2 hrs . (nol more than $30 \%$ release).

The coated beads of formulation 12 and 21 were combined in the ratio of $1: 1,1: 2,1: 3,1: 4,1: 5,2: 1,3: 1,4: 1$ and $5: 1$ (as presonted in Formulations 23-31 Table 16).

Table 16 Composition of Coating Formulations 23-31


## Dissolution study evaluation of formulalions 23-31

The release rates at 1.5 hr of the formulations 23-31 were $33.04,41.03,36.30,48.24,38.82,39.66,41.95,41.25$ and $38.70 \%$, respectively (Figure $49,52-55 \mathrm{Table} 48-52$ ). The release rate of formulations $23,24,25,26$ and 27 at. 4 hrs were 60.39 , $57.47,49.68,59.44$ and $48.36 \%$. brt the amount of the drug release given by formulalions $28,29,30$ and 31 were nol apparent.ly different, approximataiy, $99 \%$ at 4 hrs. Coated beads of formulation 28-31 showed no diffepence of drug release al, 14 and 24 hr .

FORMULATTON: $32-36$

The coated bodde of formmation 17 and 21 were combined in the rabio of $1: 1,1: 2,2,1: 5,1: 7=$ and $1: 3$ (as presented in Formulations


Dissolution shudy evalughion of formulations 32-36

## ศนยวิทยทรพยากร

The
release rate of the coated beads of formulation
 (Figure 56 Table $52-54$ ). ft was found that as the ratio of formulation 21 was increased, the percentage of drug release tended to decline at 4,14 and 24 hrs.


Figure 52 Releaso profife ocgoated suerose beads formulation 28


Figure 53 Release profile of coated sucrose beads formulation 29
in pll change method


Figure 54 Release prorife of gogtedisucrose beads formulation 30 in pll change qeltatit


Figure 55 Release profile of coated sucrose beads formulation 31 in pll change nethod


Figure 56 Release profile of couled sucrose beads formulation 32-36 in ph change mettrox


Figure 57 Release profile of coated sucrose beads formulation 37-40
in pll change method

## FORMUIATIONS 37-44

As castor oil was found to retard the release of the drus so it was investigated by incorporation into outerconting solution in combination with ethylcellulose.

Formulation 4 was chosen to be outercoabed by outercoating solution which conposed of $5 \%$ EC and $3 \%$ castor oil al. the volume of $500,1000,1500$ and 2000 al as shown in formulation $37,38,39$ and $/ 40$, respeebively (see Table 18).

The vgling of onterconting solution had an effect on the Lhickness of 641 m whef hret influthced drug release profile. The release rabe of then gevaled beads of formulabion 37 bo 40 al. 1.5 hr were $45,08,20,30,12.43$ and $7.58 \%$, rospechively

 increased, the celease rabes t,ended to latemanse.

Compatison of the release data among formulations 37-40 and the USP XXII requirement, for propranolo] hydrochloride extended rapasd Bapsieqs cure shown in Taple 20 . The release profile of formulation 38 was found bo be higher than USP XXII
 USP XXII requirement. So that, the volume of outercoating solution between 1000~1500 wl were expected to be suitable overcoating in order to have the release rates conform to the USP standard. So the formulation 4 was outercoated with same outercoating solution in the range $1100,1200,1300$ and 1400 ml . (as presented in Formulations 41-44 Table 19).

Table 18 Composition of Coating Formulations 37-40


Table 19 Composition of Conting of Formulations 41-44


The release rate of the coated beads of formulation 41 to 14 at 1.5 hr were $16.11,14.49,16.35$ and $11.19 \%$, respectively (Figure 58 Tables 58 and 59). All formulations gave the release rate in limit of USP standard except the release rate at 24 hr of formulation 42, 43 and 44 were lower than that of the USP XXII standrad (Tables 35 and 36 sèe Appendix A)

So that, the formalation al, was found to be the most similar. The conted beads of fomation 41 gave the release of the drug within the renge My various time intervals as required by the USP XXII standord. The Ghree lots of formulation 41 were prepared in order 46 observe the reproducibility and variation of coating process and the celease pattorn was shown in Figure 59 and Table 20.


Table 20 Comparison angnge MSD XXIL Requirement. and Three l.ols
 : USP range 41 lot 41 lot


Figure 58 Release profifutofranted sueruse beads formulation 41-44
in phl chang wethod


Figure 59 Release profile of coated sucrose beads formulation
4] lota. 41 lot3 in ph change method


Figure 60 Photomicrographs of coated sucrose beads formulation 41 lot. 1
(Key : A coated beads $\times 35$, B coating surface $\times 500$,
C cross-section $x$ 100)


Figure 61 Photomicrographs of coated sucrose beads formulation 41 lot. 2
(Key: A coated beads x 35 , B coating surface $\times 500$,
C cross-section $\times 100$ )


Figure 62 Photomicrographs of coated sucrose beads formulation 41 lot. 3
(Key: A coated beads x 35 , B coating surface $\times 500$,
C eross-section x 100)


Figure 63 Photomicrographs of coated sucrose beads formulation 42
(Key: A coated beads $\times 35$, B coating surface $\times 500$,
C cross-section x 100)


Figure 64 Photomicrographs of coated sucrose beads formulation 43
(Key: A coated beads $x 35$, B coating surface $x 500$,
C cross-section $\times 100$ )


Figure 65 Photomicrographs of coated sucrose beads formulation 44
(Key : A coated beads $x 35$, B coating surface $x 500$,
C cross-section $x$ 100)

Physical property evaluation of formulalions 37-4A

For formulalions 41-44, it was found lhat. Lhere were
 L.he volame of sulereonling sofulion was raised (Fignre 60-65).
for varialion of sutercoating solntion volume in
 each formulation will mesped be bill densily and friabiliby (soc trable: : 1).

FORMULATIONS $45-5 n=3$

I: h home exposiofentax formiat, ion, the pellet: were


 prosedures as previonsly deseribed for suermae cryshal.

The anoynt. and bype of plashicizer were varied as
 as formatations $1-10$.


Physical property evaluation of formulabious 45..54

The scanning electron photonicrographs of mecoated pelluta wort shown in Fignre 66. The shape and surface Lopography of coated pelfelas which prepared at different. bype and conlent of


Table 21 The Physical Properlies of the Beads Formulalions; 3y-44


Table 23 Composibion of Coabing Formulalions 49-54

|  | Formulation |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C'omporateal. |  |  |  |  |  |  |
| (\%10/v) | 49 | 50 | 51 | 52 | 53 | 54 |

Propranolol HC:

F:hyy Iccllulose

Ca:lor wil

IJ: 4000

Flhamal qs.


ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย


Figure 66 Photomicrographs of uncoated pellets
(Key: A beads x 100 , B beads surface $x 500$ )


Figure 67 Photomicrographs of coated pellets formulation 45
(Key: A coated beads $x 35$, B coating surface $x 500$,
C cross-section x 100)


Figure 68 Photomicrographs of coated pellets formulation 46
(Key = A coated beads $\times 35$, B coating surface $\times 500$,
C cross-section $\times$ 100)


Figure 69 Photowicrographs of coated pellets formulation 47
(Key: A coated beads $\times 35$, B coating surface $\times 500$,
C cross-section $\times 100$ )


Figure 70 Photomicrographs of coated pellets formulation 48
(Key: A coated beads $\times 35$, B coating surface $\times 500$, C cross-section x 100)

Formatalion 45 gave smooth surface and mirormily of eoatime (Figure 67). For formulations 46-48, there were mors rongh
 68-70).

Mean :size of the brads using formulations 45 -54 tas aboub $830 \mu . \quad$ Size isf the roohed pellels wilh different. plasticizers were not apparently dirfuemb. When comparing with sucrose erystal, than mengofe size of coabod pellels was larger





 il was lower b


Distaolufion shudy ovalyztion of formulations 45-54 ศนยวิทยทรัพยากร
\%
dissolutions rate of ethe ewataed equellols which
 method in 0.1 N HCl , phosphate buffer pll 6.8 and pll change method. Dal, are Labulabed in Tables 67.-70, $71-74$ and 75.78 (Appendix A). and aro illushrabed graphically in Figures 71-74, 75-78 and 79-82.
 be elassified intos 2 groups. The first. was eomposod of


Table 24 The Physical Properties of Lhe Beads Formulations 45 : 94

| Formulat.ion | Hean | Bulk | Tapped | Carr's | Friabilily |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sime | Densil.y | Densily | Index | (\%) |
|  | (11) | $(8 / 418)$ | ( $8 / 1 \mathrm{l}$ ] ) |  | . |
| 45 | B2 |  |  | 3.36 | 0.30 |
| 110 | 8:20 | E5 5 | 12..6\% | 2.5! | 0.20 |
| 17 |  |  |  | 1.75 | 0.40 |
| 18. |  |  |  | 3.39 | 0.20 |
| 49 |  |  |  | 2.61 | 0. 30 |
| 50 |  |  |  | 2.59 | 0.20 |
| 5.1 |  |  |  | 2.54 | 0. 10 |
| 12. | 823 |  |  | 2.61 | 0.20 |
| ! 2 | 825.9 |  | 0.54 | 3.15 | 0.30 |
| 5.4 |  | 1.51 | 0.5 | 3.39 | 0.40 |



Figure 72 Release profile of coabed pellebs formalabion $46=48$ in 0.1 N HCO


 in phosspmen theffare pre 6. 8


Tinfistirs.)
Fizure $\overrightarrow{76}$ Release profile of soabed pellels formalabion $46-48$ in phosiphater burfor pill 6.0


Figure 78 Release profile of coated pellets formulation 52-54
in phosphate buffer pH 6.8


Figure 79 Releatse profile of coated pellotia formulation 45
in pll chavge net.fare

in pll chango method


Figure 81 Releasy pyofile of goated pellets formulation 49-51 in pll chande toothoid

in pll change method

PEG 4000 and non-plasticizer. It gave the similar profiles of release data in each group and at various time intervals $(1.5,4$, 8 and 12 hr ).

On the other hand, the release data in pll change method can be classified in 3 groups. The first were glycerylmonostearate and castior oil. The other was composed of PEG 4000. The last one was nontphasheizer at $1.5,4,8$ and 12 hr . The three types of pastieizer were investigated al 3 levels of $1 \%$, $2 \%$ und $3 \%$ an finerensing content of plasticizer, glycerylwonostearnive wach/castor oil shoved a trend to docrease drug release. But. pEg 1000 gave fastier drigg release. And the same results could be cound fir aboclease media, at. all sampling time and all levels of peri 10 O 0 .

The release, 要伎ites of pellets(in pll change nedium) exhibited biphasic cereves having reflective point, at $1.5-2$ hr. Formulation 48 gave the lowest relase-profiles. So, it was chosen for modifitation to have slower reTease producl.

## ศึษย์ใิิทำษทรัพยากร

จุหาจงคณณณมมหาวิมมษยาลัยั ethylcellulose in outercoating solution on drug release profiles, formulation 48 was chosen to be coated with outercoating solution contains $5 x, 7 \%$ and $10 \%$ EC (as presented in Formulations 55, 56 and 57 Table 25).

Table 25 Composition of Coating Formulations 55-57


Physical property evaluation of formulations 55-57

1. 16 was found that as the ethylcellulose content. in ontercoating solution was incronsed, coating surface had more rough but the thickness of film was not apparently different (Figures 83-85). The higbest) friability was attained when formulation 57 was ised (sea Table 26 ). The density and coupressibility had a brend to deerease corresponding to the increase of ac content in ompercoating solution. Dissolybion study evajuation of Cormulations 55-57 The dissumu. ion Thente at 1.5 hr of these coated pellet.s of formulations 55,56 Hmd 57 HeV8 $59.54,77.62$ and $84.64 \%$,
 formulation 57 cotribitod the highost rotamef rate and the coated pellets formulation 56 gave higher rate than of formatation 55.

## ศุนย์วิทยทรัพยากร

 จุหาลงกรณ์มหาวิทยาลัย

Figure 83 Photomicrographs of coated pellets formulation 55
(Key: A coated beads $x 35$, B coating surface $x 500$,
C cross-section x 100)


Figure 84 Photonicrographs of coated pellets formulation 56
(Key = A coated beads $x 35$, B coating surface $x 500$,
C cross-section $x$ 100)


Figure 85 Photomicrographs of coated pellets formulation 57
(Key : A coated beads $\times 35$, B coating surface $\times 500$,
C cross-section $x$ 100)


Figure 86 Releasa profile of coated pellets formulation 55-57 in pll change imethot


Figure 87 Release profile of coated pellets formulation 58-61
in pll change method

## FORMULATIONS 58-65

Formulabion 48 was overcoated by coating solution which composed of $5 x$ EC and $3 x$ castor oil at the volume of 500 , 1000, 1500 and 2000 ml as shown in formulation $58,59,60$ and 61 , respectively (see Table 27 ). Aifd it was outercoated by coating solution which composeal of $5 \%$, 5 and $3 \%$ eastor oil at the volume of $1100,1200,1300$ and 14000 m ] AS shown in formulations 62, 63, 64 and 65 , respectivaty 609 Tufle 283

Physical property evalation of formulations 58-65

It was found thit flomens ing the volume of outercouling solution resulted in fisagith नorye rough surface and thitimess. Formalalion 63 gave bhergwose sriabilil.y coaled pollobs.

Mearcizo of tho coatod poitotis fus about $830 \mu$ and increased in stze when the volume of outercoating solution incroased, and if had larger magn size than coated sucrose. The coated perfutso of rompiation 63 pxhmited tengency to decrease 9
in the compressibility and friability asee Table 20).
 and compressibility of the coated pellets were lover than of coated sucrose. It means an increase in flownbility. The coated pellets were loss friable than coated sucrose.

Table 27 Composition of Coating Formulations 58-61


Table 28 Conposition of Coating Formulations 62-65


Table 29 The Physical Properties of the Beads Formulations 58-65



Figure 88 Photomicrographs of coated pellets formulation 60
(Key: A coated beads $\times 35$, B coating surface $\times 500$,
C cross-section $\times 100$ )


Figure 89 Photomicrographs of coated pellets formulation 61
(Key: $\AA$ coated beads $x 35$, B coating surface $x 500$,


Figure 90 Photomicrographs of coated pellets foraulation 62 lot. 1
(Key $=\mathrm{A}$ coated beads $\times 35$, B coating surface $\times 500$,
C cross-section x 100)


Figure 91 Photomicrographs of coated pellets formulation 62 lot. 2
(Key: A coated beads $\times 35$, B coating surface $\times 500$,
C cross-section $\times 100$ )


Figure 92 Photomicrographs of coated pellets formulation 62 lot. 3
(Key : A coated beads $\times 35$, B coating surface $\times 500$,
C cross-section $\times 100$ )


Figure 93 Photomicrographs of coated pellets formulation 63
(Key : A coated beads x 35 , B coating surface $\times 500$,
C cross-section $x$ 100)


Figure 94 Photomicrographs of coated pellets formulation 64
(Key : A coated beads $\times 35$, B coating surface $\times 500$, C cross-section x 100)


Figure 95 Photomicrographs of coated pellets formulation 65
(Key : A coated beads $x 35$, B coating surface $\times 500$,
c cross-section $\times 100$ )

Dissolution study evaluation of formulations 58-65

From the release data of formulations 58 to 61, it was found that as the volume of the outercoating solution was increased, the release rate was decreased (Figure 87 Tables 60-61).

Comparison of the release rate among formulations 58-61 with the USI XXIJ requireagn for propranolol hydrochloride extented release eapsites, the release profile of formulation 59 uas found to be highor han USP XXII standard while the release of formulation 60 was mofr than USP XXIt requirement. Therefore, the volume of ondergoiding $\frac{30}{}$ intion betmeen 1000-1500 nal. were expectod to be suftifile foragnterconting in order to have the reloase rato monronmed $1 . \%$ thajisp xxy standard.

The release Akcto Jisy of formulations 62 to 65 were
 respectively. fty release rate of them were in the limit of the USP XXII standrad excopl the release data 24 hr of formulation 63, 64 and 65 which were lovery than of the USP XXIT standard (Table 30) P\% Thas, rofmplation 62 was choseqn do be the most suitable formulation in compliance with the USP sfofdard. After that, otbree experimental Gromplations 62 were repented in ordor to observe the reproducibility and variation of coating proeess, which might affect the rolease pathern as shown in Figure 97.


Table 30 Comparison among USP XXII Requirement and Threo Lots of Formulation 62



Figure 96 Release profileroc coated pellets formulation 62-65 in pH ufmee uthor


Figure 97 Release profile of coated pellets formulation
62 lot1-62 lot3 in ph change method

