CHAPTER V

LOCAL CONVEXITY

Definition 5.1 Let X be a TVS(IH). X is <u>locally convex</u> (lc) if each neighborhood of 0 includes a convex neighborhood of 0.

Example 5.2 (1) Every normed space over H is a locally convex space over (H.

(2) Let
$$\ell_{\mathbb{H}}^{\frac{1}{2}} = \{ z = (z_n)_{n \in \mathbb{N}} | z_n \in \mathbb{H} \text{ and } \sum_{n=1}^{\infty} |z_n|^{\frac{1}{2}} < \infty \}$$

with $\|z\|_{\frac{1}{2}} = \sum_{n=1}^{\infty} |z_n|^{\frac{1}{2}}$. We shall show that $\ell_H^{\frac{1}{2}}$ is not locally convex.

Claim that $\|\cdot\|_{\frac{1}{2}}$ is a paranorm on $\ell_H^{\frac{1}{2}}$. Clearly, $\|0\|_{\frac{1}{2}} = 0$. Let

$$z \in \ell_{lH}^{\frac{1}{2}}$$
. Then $||z||_{\frac{1}{2}} = \sum_{k=1}^{\infty} |z_k|^{\frac{1}{2}} = \sum_{k=1}^{\infty} |-z_k|^{\frac{1}{2}} = ||-z||_{\frac{1}{2}}$. Let $w, z \in \ell_{lH}^{\frac{1}{2}}$.

Then
$$\| w + z \|_{1_2} = \sum_{k=1}^{\infty} |w_k + z_k|^{\frac{1}{2}} \le \sum_{k=1}^{\infty} |w_k|^{\frac{1}{2}} + \sum_{k=1}^{\infty} |z_k|^{\frac{1}{2}} = \| w_k \|_{1_2} + \| z_k \|_{1_2}.$$

let (t_k) be a sequence in \mathbb{H} such that $t_k \to t$ for some $t \in \mathbb{H}$ and let

 $(z_k)_{k \in \mathbb{N}} \stackrel{C}{=} \stackrel{1}{\mathbb{N}} \stackrel{1}{=} \text{ be a sequence such that } ||z_k - z||_{\frac{1}{2}} \to 0 \text{ for some } z \in \ell_H^{\frac{1}{2}}.$

Then
$$\|t_k z_k - tz\|_{l_2} = \sum_{n=1}^{\infty} |t_k z_k^n - tz^n|_2 = \sum_{n=1}^{\infty} |(t_k - t)(z_k^n - z^n) + t(z_k^n - z^n)$$

$$+ \ (t_k^- \ t) \ z^n \Big|^{\frac{1}{2}} \leq \ \sum_{n=1}^{\infty} |t_k^- \ t|^{\frac{1}{2}} |z_k^n - z^n|^{\frac{1}{2}} + \ |t|^{\frac{1}{2}} + \ \sum_{n=1}^{\infty} |z_k^n - z^n|^{\frac{1}{2}} + \ \sum_{n=1}^{\infty} |t_k^- \ t|^{\frac{1}{2}} |z^n|^{\frac{1}{2}}$$

As $k \to \infty$, we get that $\left|t_k - t\right|^{\frac{1}{2}} \to 0$ and $\left|z_k^n - z^n\right|^{\frac{1}{2}} \to 0$, since the

absolute value | . | is continuous and + is continuous. Hence

 $\|\mathbf{t}_{k}\mathbf{z}_{k} - \mathbf{t}\mathbf{z}\|_{\mathbf{I}_{2}} \to 0$ as $k \to \infty$ so we have the claim. It is clear that $\|\cdot\|_{\mathbf{I}_{2}}$

is not a seminorm. Let $U = \{z \in \ell_{|H|}^{\frac{1}{2}} | ||z||_{\frac{1}{2}} \le 1 \}$. We must show that U includes no convex neighborhood of 0. Let $V \in N(\ell_{|H|}^{\frac{1}{2}})$ be convex. Then there exists an $\epsilon > 0$ auch that $V \supseteq \{z | ||z||_{\frac{1}{2}} \le \epsilon \}$. Let $\epsilon' = \epsilon^2 \in H$. Choose $n_0 \in N$ such that $\frac{1}{n_0} < \epsilon^2$. Let $x_0 = \frac{1}{n_0} \sum_{k=1}^{n_0} \epsilon' \delta^k$ where δ^k is

the sequence z in $\ell_H^{\frac{1}{2}}$ such that $z_k = 1$ and $z_\ell = 0$ if $\ell \neq k$. Since $\| \epsilon \delta^k \|_{\frac{1}{2}} = \sum_{k=1}^{\Sigma} \| \epsilon' z_k \|^{\frac{1}{2}} = (\epsilon^2)^{\frac{1}{2}} = \epsilon \le \epsilon, \epsilon' \delta^k \in \{ z \in \ell_H^{\frac{1}{2}} \mid \| z \|_{\frac{1}{2}} \le \epsilon \} ;$

hence $\varepsilon' \delta^k \in V$ for all $k \in N$. Let $x_0 = \frac{1}{n_0} \sum_{k=1}^{n_0} \varepsilon' \delta^k = (\frac{\varepsilon'}{n_0}, \frac{\varepsilon'}{n_0}, \dots, \frac{$

for all i, $\sum_{i=1}^{n} \lambda_i = 1$ and $x_i \in V$ for all $i \in \{1,2,3,...,n\}$. We shall

prove this by induction on n. If n = 1 then $1.x_i = x_i \in V$; so it is true for n = 1. Suppose that it has been show for n - 1 > 1 that every

element Σ $\lambda_i x_i \in V$, where $\lambda_i \geq 0$ for all i and Σ $\lambda_i = 1$. Consider i = 1 n = 1 n = 1 n = 1 n = 1 Σ $\lambda_i x_i$ where $\lambda_i \geq 0$ for all i and Σ $\lambda_i = 1$. Let $\alpha = \Sigma$ λ_i i = 1 i = 1

Case 1 $\alpha = 0$. Then $\lambda_i = 0$ for all $i \le n-1$. Hence $\sum_{i=1}^{n} \lambda_i x_i$

 $= \lambda_n x_n = 1.x_n = x_n \in V.$

Case 2 α \neq 0. By the induction hypothesis, y $\sum_{i=1}^{n-1} \frac{\lambda_i}{\alpha} x_i \in V$.

Since V is convex, $\sum_{i=1}^{n} \lambda_i x_i = \alpha y + (1-\alpha)x_n \in V$ so we have the claim.

Since $\delta^k \in V$ for all $k = 1, 2, ..., n_0$ and $\sum_{k=1}^{n_0} \frac{1}{n_0} = 1$ by the previous

claim, $X_0 = \frac{1}{n_0} \sum_{k=1}^{n_0} \delta^k = \sum_{k=1}^{n_0} \frac{1}{n_0} (\delta^k) \in V$. Thus $\|x_0\|_{L_2} = \sum_{k=1}^{n_0} (\frac{1}{n_0})^{\frac{1}{2}}$ $= n_0 (\frac{1}{n_0}) = n_0^{\frac{1}{2}} > 1 \text{ so } x_0 \in U \text{ therefore } V \subseteq U. \text{ But } V \text{ was arbitary };$

so U includes no convex neighborhood of therefore $\ell_{|H|}^{\frac{1}{2}}$ is not locally convex. #

Definition 5.3 Let X be a TVS(H). Then B C X is called a barrel if and only if B is a balanced convex absorbing closed subset of X.

Theorem 5.4 Let X be a locally convex TVS(H). Then X has a local base of neighborhoods of 0 which are barrels.

<u>Proof</u>: Let $U \in N(X)$ be closed and convex. Since $U \in N(X)$, there exists a balanced neighborhood W of 0 such that W \subseteq U. Let V = the convex hull of W. Then $V \in N(X)$, V is balanced, V is convex and V \subseteq U. Since U is closed, $\overline{V} \subseteq U$ so \overline{V} is balanced, convex and closed. Since $\overline{V} \in N(X)$, by Theorem 3.18, \overline{V} is absorbing therefore \overline{V} is barrel; hence X has a local base of neighborhoods of 0 which are barrels. #

Lamma 5.5 Let X be a vector space over IH and B a filter base of covex sets such that for each $U \in B$, $\frac{1}{2}$ U includes a member of B. Then B is additive.

Proof: Let $U \in B$. By assumption, $\frac{1}{2}U \subset V$ for some $V \in B$.

Since U is covex, $U \subset \frac{1}{2}U + \frac{1}{2}U \subset V + V$. So B is additive. #

Theorem 5.6 Let X be a locally convex Space over H and B a totally bounded subset of X. Then the balanced convex closure of B is also totally bounded.

Proof: Claim that if B is totally bounded then \bar{B} is totally bounded. Let $U \in N(X)$. Choose a closed set $V \in N(X)$ such that $V \subseteq U$. Since B is totally bounded, $B = \bigcup_{j=1}^{n} B_j$ where B_j is small of order V for all j = 1, 2, ..., n. Since B_j is small of order V, $B_j - B_j \subseteq V$ for all j = 1, 2, ..., n. Hence, by Theorem 3.24, $\bar{B}_j - \bar{B}_j \subseteq \bar{B}_j - \bar{B}_j \subseteq \bar{V} = V$ for all j = 1, 2, ..., n so \bar{B}_j is small of order V for each j = 1, 2, ..., n. Since $V \subseteq U$, \bar{B}_j is small of order V for each $V \subseteq U$, \bar{B}_j is small of order $V \subseteq U$, \bar{B}_j is small of order $V \subseteq U$, \bar{B}_j is small of order $V \subseteq U$, \bar{B}_j is small of order $V \subseteq U$, \bar{B}_j is small of order $V \subseteq U$, \bar{B}_j is small of order $V \subseteq U$, \bar{B}_j where \bar{B}_j is small of order $V \subseteq U$, \bar{B}_j is small of order $V \subseteq U$, \bar{B}_j where \bar{B}_j is small of order \bar{V} for each \bar{V} is $\bar{B}_j \subseteq \bar{V}$.

Let B_1 be the balanced convex hull of B, that is, for all $X \in B_1$, $X = \sum_{i=1}^{S} r_i b_i$ where $r_i \in [H]$, $b_i \in B$ and $\sum_{i=1}^{S} |r_i| \le 1$, $i = 1, 2, \ldots, s$. We must show that B_1 is totally bounded. If we can show that B_1 is totally bounded by the claim. Hence the balanced covex closure of B is also totally bounded. Let $U \in N(X)$. We must show that there exists a finite set $G \subseteq X$ such that $B_1 \subseteq G + U$. Since X is a C space over C, there exists a balanced convex set C is a C space over C, there exists a balanced convex set C is a C such that C is a C space over C is since C is a bounded, there exists a finite set C is a finite set C is a C is a

Let $G = \{ \sum_{i=1}^{n} a_i f_i | a = (a_1, a_2, ..., a_n) \in A \}$. Then G is a finite set.

Claim that $B_1 \subseteq G + U$. Let $x \in B_1$. Since B_1 is the balanced convex

hull of B, $x = \sum_{i=1}^{s} s_i b_i$ where $r_i \in \mathbb{H}$, $b_i \in B$ and $\sum_{i=1}^{s} |r_i| \le 1$, i = 1, 2, ..., s

Since B \subseteq F+V, $b_i = f_{j(i)} + v_i$ for some $f_{j(i)} \in$ F and $v_i \in V$,

i = 1,2,...,s. Let $w = \sum_{i=1}^{s} r_i f_{j(i)}$ and $v = \sum_{i=1}^{s} r_i v_i$. Then $x = \sum_{i=1}^{s} r_i b_i$

 $= \sum_{i=1}^{S} r_{i}(f_{j(i)} + v'_{i}) = \sum_{i=1}^{S} r_{i}f_{j(i)} + \sum_{i=1}^{S} r_{i}v_{i} = w + v. \text{ Since V is}$

balanced and convex, $v_i \in V$ and $\sum_{i=1}^{S} |r_i| \le 1$, $v = \sum_{i=1}^{S} r_i v_i \in V$. We must

show that $w \in G + V$. Write $w = \sum_{i=1}^{n} q_i f_i$ where each $q_i = 0$ or q_i is the

sum of the r and each r appears exacty once. Thus $\sum_{i=1}^{n} |q_i| \le 1$

 $\sum_{i=1}^{s} |r_i| \le 1$, so $q = (q_1, q_2, ..., q_n) \in D$. Choose $a = (a_1, a_2, ..., a_n)$

 $\text{ \in A$ such that } \|q-a\| \leq \frac{1}{m}. \quad \text{Then } w = \sum_{i=1}^n q_i f_i = \sum_{i=1}^n a_i f_i + \sum_{i=1}^n (q_i - a_i) f_i.$

Let $g = \sum_{i=1}^{n} a_i f_i$ and $v_1 = \sum_{i=1}^{n} (q_i - a_i) f_i$ so $w = g + v_1$. Clearly $g \in G$.

We must show that $v_1 \in V$. Write $v_1 = \sum_{i=1}^{n} (q_i - a_i) f_i = \sum_{i=1}^{n} m(q_i - a_i) (\frac{f_i}{m})$.

Since F \subseteq mV, $f_{i/m} \in V$ for each i. $\sum_{i=1}^{n} |m(q_{i} - a_{i})| = m \sum_{i=1}^{n} |q_{i} - a_{i}| =$

 $m \| q - a \|_1 \le m(^1/m) = 1$. Since V is balanced and covex, $f_i/_m \in V$ for

each i and $\sum_{i=1}^{n} |m(q_i-a_i)| \le 1$, $v_1 = \sum_{i=1}^{n} m(q_i-a_i) (f_{i/m}) \in V$. Hence $x = \sum_{i=1}^{n} m(q_i-a_i) (f_{i/m}) \in V$.

 $w + v \in G + V + V \subseteq G + U$. Since $x \in B_1$ was arbitrary, $B_1 \subseteq G + U$ so we have the claim. #

Lemma 5.7 Let (X, ||.||) be a seminormed space over ||.|| is continuous if and only if $\{x | ||x|| \le 1\} \in N(X)$.

 $\underline{\text{Proof}}$: (\Longrightarrow) The statement is clearly true.

 $(\Leftarrow) \ \, \text{For } r > 0, \ \, \text{let } U_r = \{\,\, x \, \big| \, \|x \, \| \leq r \,\,\}. \quad \text{Let } (x_\delta)_{\delta \in D}$ be a net in X such that $x_\delta \to 0$. Since $U_\epsilon = \epsilon U_1 \in N(X)$ for all $\epsilon > 0$, there exists a $\delta \in D$ such that $\delta' \geq \delta$ implies that $x_\delta \in U_\epsilon$ so $\|x_\delta\| \leq \epsilon$ for all $\delta' \geq \delta$. Now $\|x_\delta \| = \|x_\delta \| - \|0\| = \|x_\delta \| - 0 \leq \epsilon \|x_\delta\| + 0$; hence $\|\cdot\|$ is continuous at 0. Let $a \in X$. Let $(x_\delta)_{\delta \in D}$ be a net in X such that $X_\delta \to a$. We must show that $\|x_\delta\| \to \|a\|$. Since $x_\delta \to a$, there exists a $\delta \in D$ such that for all $\delta' \in D$, $\delta' \geq \delta$ implies that $x_\delta' \to a$. Hence $\|\cdot\| x_\delta \| - \|a\| \leq \|x_\delta - a\| \leq \epsilon/2 < \epsilon$ so $\|x_\delta\| \to \|a\|$ therefore $\|\cdot\|$ is continuous at a. Since a was arbitrary, $\|\cdot\|$ is continuous on X. #

Theorem 5.8 Let(X, T) be a locally convex TVS(IH). Then there exists a set P of seminorms such that $T = \sigma p$.

Proof: Let P be the set of continuous seminorms. Since $0 \in P, P \neq \emptyset$. To show $\sigma P \subseteq T$. Let $(x_{\delta})_{\delta \in D}$ be a net in (X, T) such that $x_{\delta} \to 0$. Then $p(x_{\delta}) \to 0$ for each $p \in P$ so $x_{\delta} \to 0$ in σP and therefore by Corollary 1.17, $\sigma P \subseteq T$. We must show that $T \subseteq \sigma P$. Let $(x_{\delta})_{\delta \in D}$ be a net in $(X, \sigma P)$ such that $x_{\delta} \to 0$. Let $U \in N(X)$ be a balanced convex set. Let p be the gauge of U. Since $\{x \mid p(x) \le 1\} \in N(X)$, by Lemma 5.7, p is continuous. Then there exists a $\delta \in D$ such that $\delta > \delta$ implies that $p(x_{\delta}) < 1$ so $x_{\delta} \in U$ for all $\delta > \delta$ therefore $x_{\delta} \to 0$ in (X, T). By Corallary 1.17, $T \subseteq \sigma P$ hence $T = \sigma P$. #

Notation: We write (X,P) for any locally convex TVS(H) where to pology is σP , where P is the family of continuous seminorms.

Theorem 5.9 Let P be a family of seminorms on a vector space X over IH. Then for any $U \in N(X, \sigma P)$ there exists an $\epsilon > 0$ and $p_1, p_2, \dots, p_n \in P$ such that $U \supseteq \bigcap_{i=1}^n \{x | p_i(x) < \epsilon\}$.

Theorem 5.10 Let (X,P) be a lc space over \mathbb{H} and $f \in X$.

Then $f \in X'$ if ans only if there exists an M > 0 and $p_1, p_2, \ldots p_n \in P$ such that $|f(x)| \leq M \sum_{i=1}^{n} p_i(x)$ for all x. If P is the set of all continuous seminorm, $|f| \leq p$ for some $p \in P$.

 $\underbrace{\text{Proof}} : \ (\Longrightarrow) \text{ Suppose that } f \in X'. \text{ Then } \{x \big| |f(x)| \leq 1\} \in N(X)$ so by Theorem 5.9, there exists an $\epsilon > 0$ and $p_1, p_2, \ldots p_n \in P$ such that $\{x \big| |f(x)| \leq 1\} \supseteq \bigcap_{i=1}^n \{x \big| p_i(x) < \epsilon\}. \text{ Let } p = \sum\limits_{i=1}^n p_i. \text{ Let } x \in X \text{ be }$ such that $p(x) < \epsilon$. Then $x \in \bigcap \{x \big| p_i(x) < \epsilon\}$ so $|f(x)| \leq 1$. We must show that $|f(x)| \leq \frac{1}{\epsilon} \sum_{i=1}^n p_i(x)$ for all $x \in X$. Suppose that there exists

an $x \in X$ such that $|f(x)| > \frac{1}{\epsilon} \sum_{i=1}^{n} p_i(x)$. Then there exists a t > 0 such that $|f(x)| > t > \frac{1}{\epsilon} \sum_{i=1}^{n} p_i(x)$. Let $y = (\frac{1}{t}) x$. Then $p_i(\frac{x}{t}) = \frac{1}{t} p_i(x) \le \frac{1}{t} \sum_{i=1}^{n} p_i(x) < \epsilon$. But $|f(\frac{x}{t})| = \frac{1}{t} |f(x)| > 1$, a contradiction,

 $\frac{1}{t} p_{i}(x) \leq \frac{1}{t} \sum_{i=1}^{t} p_{i}(x) < \epsilon. \quad \text{But } |f(\frac{1}{t})| = \frac{1}{t} |f(x)| > 1, \text{ a contradiction},$ $\text{hence } |f(x)| \leq \frac{1}{\epsilon} \sum_{i=1}^{t} p_{i}(x) \text{ for all } x \in X.$

 $(\Leftarrow) \text{ Let}_{\epsilon} > 0 \text{ be given. By assumption, there exists}$ an M and $p_1, p_2, \ldots, p_n \in p$ ruch that $|f(x)| \leq M \sum_{i=1}^{\infty} p_i(x)$ for all $x \in X$.

Let $p = \sum_{i=1}^{n} p_i$. Let $x \in X$ be such that $p(x) < \frac{\epsilon}{1+|M|}$. Then $|f(x)| \le 1$

M $\frac{\epsilon}{1+|M|}$ < ϵ so f is continuous at 0. Since f is linear and continuous at 0, f is continuous everywhere. #

Theorem 5.11 Let (X, P) be a locally convex space over \mathbb{H} . Then $S \subset X$ is bounded if and only if p(S) is bounded for each $p \in P$.

 $\underline{Proof}: (\Longrightarrow)$ Suppose that S is bounded. Let $p \in P$. We must show that p(S) is bounded: Since p is a seminorm, $U = \{x \mid p(x) < 1\}$ $\in N(X)$. Since S is bounded, there exists an $m \in \mathbb{N}$ such that $S \subseteq mU$. Then p(x) < m for all $x \in S$ so p(S) is bounded.

 (\Leftarrow) Let (x_n) be a sequence in S. Then, for each $p \in P$, $p({}^Xn/{}_n) = p({}^Xn/{}_n) = p({}^Xn/{}_n) = 0$, since S is bounded; hence ${}^Xn/{}_n \to 0$, by Theorem 3.29. #

Definition 5.12 Let X, Y be vector spaces over [H and A a set of maps from X into Y. A is called total over X if and only if f(x) = 0 for all $f \in A$ implies that x = 0.

Theorem 5.13 Let (X, P) be a lc space over IH. Then X is separated if and only if P is total.

<u>Proof</u>: (\iff) Let y = 0. Since P is total, there exists a $p \in P$ such that p(y) > 0. Let $U = \{x \mid p(x) < (\frac{1}{2})p(y)\}$. Then $U \in N(X)$ and $y \in U$. So X is separated.

 (\Longrightarrow) Suppose that P is not total. Then there exists an $x \in X$ such that x = 0 and p(x) = 0 for all $p \in P$. By Theorem 5.9, $x \in U$ for all $U \in N(X)$. By Theorem 3.22, X is not separated. #

Corallary 5.14 Let (X,P) be a locally convex separated space over [H. Then X' is total over X.

Proof: Let $x \in X \setminus \{0\}$. By Theorem 5.13, since X is separated P is total. Hence there exists a $p \in P$ such that p(x) = 0. Let y = (X, p). Then Y is seminormed space over IH. By Theorem 3.6, since $\{0\}$ is closed and $x \notin \{0\}$, there exists an $f \in Y$ such that f(x) = 1 $\neq 0$. Since $\sigma p \supseteq \sigma p$, $f \in X'$ so X' is total . #

Theorem 5.15 Let (X, P) be a locally convex space over |H| and $f \in S'$, where S is a vector subspace of X. Then there exists an $F \in X'$ such that F = f on S.

Corollary 5.16 Let X be a locally convex space over IH, S a subspace and $x_0 \in X \setminus \overline{S}$. Then there exists an $F \in X'$ such that $F(x_0) = 1$ and F = 0 on S.

Proof: Defince $f: S + \langle x_0 \rangle \to \mathbb{H}$ as follows: let $x \in S + \langle x_0 \rangle \to \mathbb{H}$ as follows: let $x \in S + \langle x_0 \rangle \to \mathbb{H}$ as follows: let $x \in S + \langle x_0 \rangle \to \mathbb{H}$ as follows: let $x \in S + \langle x_0 \rangle \neq \overline{S}$ as ubspace, $x_0 = 0$; hence f is well-defined. ker $f = \{x \in S + \langle x_0 \rangle \mid f(x) = 0\} = S$. Since $x_0 \notin \overline{S}$, ker f = S is not dense in $S + \langle x_0 \rangle$. We want to show that ker f is closed. Suppose that ker f = S is not closed. Then there exists a $p \in \overline{S}$ such that $p \notin S$. Hence $f(p) \notin S$ is not closed. Then there exists a $p \in \overline{S}$ such that $p \notin S$. Hence $f(p) \notin S$ and f(p) = f(p) = f(p) = 1 so $f(x_0 - p) = f(x_0) - f(p) = 1 - 1 = 0$. Hence $f(p) \in S$ so $f(p) \in S$. Since $f(p) \in S$ and $f(p) \in S$ is a subspace of $f(p) \in S$. Since $f(p) \in S$ therefore $f(p) \in S$ therefore $f(p) \in S$ as contradiction. Thus ker $f(p) \in S$ is closed so by Theorem 3.47, $f(p) \in S$ continuous. By Theorem 5.15, there exists an $f(p) \in S$ such that $f(p) \in S$ is $f(x) \in S$.

Corollary 5.17 Let X be a locally convex space over \mathbb{H} . Then S is fundamental if and only if for all $f \in X'$, f = 0 on S implies that f = 0.

 $\underline{\operatorname{Proof}}:$ (\Leftarrow) Suppose that S is not fundamental. Let $x \in X \setminus \overline{S}$. By Corollary 5.16, there exists an $F \in X'$ such that F(x) = 1 and F = 0 on \overline{S} so F = 0 on S but $F \neq 0$.

 (\Longrightarrow) Suppose that S is fundamental. Let $f \in X'$ be such that f = 0 on S. We must show that f = 0. Let $x \in X$. Then $x \in \langle S \rangle$ hence either $x \in \langle S \rangle$ or x is a cluster point of $\langle S \rangle$. If $x \in \langle S \rangle$ then $x = \sum_{i=1}^{N} \lambda_i s_i$ for some $\lambda_i \in \mathbb{H}$ and $s_i \in S$, $i = 1, 2, \ldots, n$.

Then $f(x) = f(\sum_{i=1}^{n} \lambda_{i} s_{i}) = \sum_{i=1}^{n} \lambda_{i} f(s_{i}) = 0$. If x is a cluster point of $\langle s \rangle$ then there exists a net $(x_{\delta})_{\delta \in D}$ in $\langle s \rangle$ such that $x_{\delta} \to x$. Since f is continuous, $f(x_{\delta}) \to f(x)$. Since $x_{\delta} \in \langle s \rangle$ for all $\delta \in D$, $x_{\delta} = \sum_{i=1}^{n} t_{\delta}^{i} s_{\delta}^{i}$ for some $t_{\delta}^{i} \in \mathbb{N}$. Then $f(x_{\delta}) = f(\sum_{i=1}^{n} t_{\delta}^{i} s_{\delta}^{i})$ is $t_{\delta}^{i} = 0$. Hence $t_{\delta}^{i} = 0$. So $t_{\delta}^{i} = 0$.

Theorem 5.18 Let (Y, P) be a locally convex TVS(IH) and X a TVS(IH).

A linear map $f: X \to Y$ is continuous if and only if pof is continuous for each $p \in P$.

Proof : (⇒) pof is the composition of continuous maps
for each p4 P.

 $(\Leftarrow) \text{ Let } (x_{\delta})_{\delta \in D} \text{ be a net in X such that } x \to 0.$ Since $p \in P$ is continuous, $p(f(x_{\delta})) \to 0$; hence, by Theorem 3.11, $f(x_{\delta}) \to 0 \text{ in P.} \text{ Thus f is continuous at } x = 0 \text{ ; hence everywhere. } \#$

Lemma 5.19 Let X be a vector space over H. Let p,q be seminorms on X. Let $f \in X^{\#}$ satisfy $|f(x)| \le p(x) + q(x)$ for all x. Then there exist q, $h \in X^{\#}$ with $|g(x)| \le p(x)$, $|h(x)| \le g(x)$ and f = g + h.

 $\underline{Proof}: \text{ Let } Y=X\times X. \text{ Define } r:Y\to \mathbb{H} \text{ by } r(x,y)=p(x)+q(y).$ Then r is a seminorm on Y. Let $D=\{(x,x)\big|x\in X\}$. Define $U:D\to\mathbb{R} \text{ by } u(x,x)=f(x).$ Since $|f(x)|\leq p(x)+q(x) \text{ for all } x$, $|u(x,x)|\leq r(x,x) \text{ for all } x.$ By Theorem 2.7, we can extend u to Y. with $|u(x,y)|\leq r(x,y).$ Then $f(x)=u(x,0)+u(0,x), |u(x,0)|\leq r(x,0)=p(x)$ and $|u(0,x)|\leq r(0,x)=q(x).$ Let g(x)=u(x,0) and h(x)=u(0,x). Then $g,h\in X^\#$ with $|g(x)|\leq p(x), |h(x)|\leq q(x)$

and f = g + h. #

Theorem 5.20 Let Φ be a collection of locally convex topologies on a vector space X over H. Then $f \in (x, v\Phi)'$ if and only if there exists $T_1, T_2, \ldots, T_n \in \Phi$; $g_1, g_2, \ldots g_n \in X^\#$ such that each $g_i \in (X, T_i)'$ and $f = \sum_{i=1}^n g_i$.

 $\frac{\text{Proof}}{\text{proof}}: \iff \text{Since } v\Phi \supseteq T_{\underline{i}} \text{ for all } \underline{i} = 1, 2, ..., n \text{ and } \underline{g}_{\underline{i}} \in (x, v\Phi)', f = \sum_{\underline{i} = 1}^{n} g_{\underline{i}} \in (x, v\Phi)'.$

(\Rightarrow) Let P(T) be the set of all continuous seminorms on (X, T) for each T $\in \Phi$. By theorem 5.8, (X, T) = (X, P(T)) for all T $\in \Phi$. By Theorem 5.10, there exist $p_1, p_2, \dots p_n \in P(T)$ and an M > 0 such that $|f(x)| \leq M \sum_{i=1}^{n} p_i(x)$ for all x. By Lemma 5.19, there exist $g_1, g_2, \dots, g_n \in X^\#$ and $g_1, g_2, \dots, g_n \in X^\#$ and $g_1, g_2, \dots, g_n \in X^\#$ for all i such that $g_1 \in X^\#$ for all i continuous for all i and $|g_1(x)| \leq p_1(x)$ for all x. Since g_1 is continuous for all i. Hence $g_1 \in (X, T_1)'$ is such that $g_2 \in (X, T_1)'$ is such that $g_3 \in (X, T_1)'$ is such that $g_4 \in (X, T_1)'$ is

จุหาลงกรณมหาวทยาลย