PRELIMINARY

The Algebra of Quaternions

Let 1.i,j and k denote the elements of the standard basis for \mathbb{R}^4 . The quaternion product on \mathbb{R}^4 is then the \mathbb{R} -bilinear product with 1 as its multiplicative identity by the formulae $i^2 = j^2 = k^2 = -1$, ij = k = -ji, jk = i = -kj and ki = j = -ik. In this thesis we shall denote the \mathbb{R} -algebra of all quaternions by " \mathbb{H} ". See [3].

Each quaternions $q = a_0.1 + a_1.i + a_2.j + a_3.k$ ($a_n \in \mathbb{R}$ for all n) is uniquely expressible in the form Re(q) + Pu(q), where Re(q) = $a_0.1 \in \mathbb{R}$ and $\text{Pu}(q) = a_1.i + a_2.j + a_3.k \in \mathbb{R}^3$, Re(q) being called the real quaternion part of q and Pu(q) the pure quaternion part of q.

The conjugate \bar{q} of a quaternion q is defined to be the quaternion Re(q) - pu(q). Hence $\bar{a}+\bar{b}=\bar{a}+\bar{b}$, $\bar{\lambda}a=\lambda\bar{a}$, $\bar{a}=a$ and $\bar{a}b=\bar{b}\bar{a}$ for all a, be H and λ eR. Moreover, a eR if and only if $\bar{a}=a$, while $\text{Re}(a)=\frac{1}{2}$ (a+ \bar{a}) and $\text{Pu}(a)=\frac{1}{2}$ (a- \bar{a}). See [3].

Let $a = a_0 + a_1 \cdot i + a_2 \cdot j + a_3 \cdot k$ the non-negative number $|a| = (aa)^{\frac{1}{2}} = (\sum_{n=0}^{3} a_n^2)^{\frac{1}{2}} \text{ is called the absolute value of the quaternion}$ a. If $a \neq 0$, then $|a| \neq 0$ and $\frac{a\overline{a}}{|a|^2} = \frac{\overline{a}a}{|a|^2} = 1$. So we have :

Proposition 1.1 H is a division ring.

Proof. See [3]. #

Proposition 1.2 | a.b | = | a || b | for all a, b & H.

Proof. See [3]. #

Proposition 1.3 H is complete with respect to this absolute value.

Proof. Standard. #

Linear algebra over IH.

Definition 1.4 A left vector space X over $\mathbb H$ is a set of elements in which the operations of addition and scalar multiplication on the left are defined such that 1) X is an abelian group under addition and if x, $y \in X$ and α , $\beta \in \mathbb H$ then

- $2) \quad \alpha(x+y) = \alpha x + \alpha y,$
- 3) $\alpha(\beta x) = (\alpha \beta) x$,
- 4) 1.x = x,
- 5) $(\alpha + \beta)x = \alpha x + \beta x$.

From now on unless otherwise specified a vector space over IH means a left vector space over IH. Examples of vector spaces over IH

(i)
$$\mathbb{H}^n$$
 (ii) $S = \{ (z_n)_{n \in \mathbb{N}} \text{ in } \mathbb{H} \}$

(iii) $C = \{(z_n)_{n \in \mathbb{N}} \mid z_n \in \mathbb{H} \text{ for all } n \in \mathbb{N} \text{ and } (z_n)_{n \in \mathbb{N}} \text{ converges } \}$

Definition 1. 5 Let X be a vector space over \mathbb{H} and $\emptyset \neq \mathbb{A} \subseteq X$. Then \mathbb{A} is said to be a vector subspace or subspace of X if and only if $\alpha X + \beta y \in \mathbb{A}$ for all x, $y \in \mathbb{A}$ and for all α , $\beta \in \mathbb{H}$.

Definition 1.6 Let X be a vector space over H and $A \subseteq X$. The span of A, written by $\langle A \rangle$, is the set of all (finite) linear combinations of A.

Definition 1.7 Let X be a vector space over H and $A \subseteq X$. Then A is called convex if $sA + tA \subseteq A$ for $o \subseteq s$, $t \subseteq 1$, s + t = 1: balanced if $tA \subseteq A$ for $|t| \subseteq 1$; and absorbing if for every $x \in X$ there exists an

 $\epsilon > 0$ such that $tx \in A$ for $|t| < \epsilon$. For a balanced convex and absorbing set A, define $||x|| = \inf \{ t > 0 \mid x \in tA \} . ||.||$ is called the gauge of A.

Definition 1.8 Let X be a vector space over H. A vector subspace S of X is called maximal if and only if $S \neq X$ and $X = S + \langle x \rangle$ for some $x \in X$.

Definition 1.9. Let X be a vector space over H. A subset $(V_{\alpha})_{\alpha \in T}$ of X is said to be linearly independent if and only if for any finite V_{α} , V_{α} , ..., V_{α} , $\sum_{m=1}^{\infty} \beta_m V_{\alpha} = 0$ implies that $\beta_m = 0$ for all m.

 $(V_{\alpha})_{\alpha \in I}$ is <u>linearly</u> <u>dependent</u> if and only if it is not independent.

Definition 1.10 A linear independent set spanning a vector space X is called a basis or base of X.

Definition 1.11 Let X,Y be vector spaces over \mathbb{H} and $f: X \to Y$ a map. Then f is said to be <u>linear map</u> if and only if f(ax + by) = af(x) + bf(y) for all x, y \in X and for all a, b \in \mathbb{H} .

Topological Prerequisites

Definition 1.12 A pseudometric on a set X is a real valued function d on the set X x X such that

- (1) d(x, y) = d(y, x) > 0 for all x, y $\in X$,
- (2) d(x, x) = 0 for all $x \in X$,
- (3) $d(x, z) \le d(x, y) + d(y, z)$ for all x, y, z $\in X$. If also, (4) d(x, y) = 0 implies that x = y, d is called a metric.

Defintion 1.13 Let X be a topological space. $S \subseteq X$ is said to be of the <u>first category</u> in X if it is the union of a sequence of closed sets each of which has empty interior. Tf S is not the first category in X it is said to be of the <u>second category</u> in X.

Theorem 1.14 (The Baire category theorem) A complete pseudometric space X is of the second category in itself.

Proof : See [1]. #

Definition 1.15 Let $(x_{\delta})_{\delta \in D}$ be a net in a topological space X, a \in X. We say $x_{\delta} \rightarrow$ a if and only if for each neighborhood U of a there exists a $\delta \in D$ such that $\delta' \geq \delta$ implies that $x_{\delta} \in U$.

Theorm 1.16 Let X, Y be topological spaces and $f: X \to Y$. Then f is continuous at $a \in X$ if and only if $x_{\delta} \to a$ implies that $f(x_{\delta}) \to f(a)$ for each net $(x_{\delta})_{\delta \in D}$ in X.

Proof : See [1]. #

Corollary 1.17 Let T, T' be topologies on a set X such that for any net $(x_{\delta})_{\delta \in D}$ in X, $x_{\delta} \to a$ in (X, T) implies that $x_{\delta} \to a$ in (X, T'). then T \supseteq T'.

 $\underline{\text{Proof}}$: By Theorem 1.16, the identity map $i:(X,T)\to(X,T)$ is continuous. #

Theorem 1.18 Let be a collection of topologies for a set X. Then there exists a unique topology, denoted by v Φ (= the set of all unions of finite intersections of members in Φ), such that for any net $(x_{\delta})_{\delta \in D}$ in X, $x_{\delta} \to a$ in $(X, v\Phi)$ if and only if $x_{\delta} \to a$ in (X, T)

for each T $\in \Phi$. For any topological space Z, a function $f: Z \to (X, v\Phi)$ is continuous if and only if $f: Z \to (X, T)$ is continuous for each $T \in \Phi$.

Proof : See [1]. #

Theorem 1.19 Let X be a set and $F = \{f_{\alpha} : X \to Y_{f_{\alpha}} | \alpha \in I\}$ where for each $\alpha \in I$, $Y_{f_{\alpha}}$ is a topological space. Then there exists a unique topology on X, denoted by wF, such that for any net (x_{δ}) in X, $x_{\delta} \to a$ in (X, wF) if and only if $f_{\alpha}(x_{\delta}) \to f_{\alpha}(a)$ in $Y_{f_{\alpha}}$ for each $\alpha \in I$. For any topological space Z, a function $g: Z \to (X, wF)$ is continuous. if and only if $f_{\alpha} \circ g$ is continuous for each $\alpha \in I$.

Proof: Suppose $F = \{f\}$ where $f : X \to Y$. Let $wf = \{f^{-1}(G) | G$ is an open set in $Y\}$. wf is a topology for X and $f : (X, wf) \to Y$ is continuous, so for any net (x_{δ}) in X such that $x_{\delta} \to a$ in (X, wf) we get that $f(x_{\delta}) \to f(a)$ in Y. Conversely, suppose that $f(x_{\delta}) \to f(a)$ in Y where (x_{δ}) is a net in (X, wf) and $a \in X$. We must show that $x_{\delta} \to a$ in (X, wf). Let U be an open neighberhood of A in A since A in A some neighberhood A of A in A since A in A some neighberhood A of A in A since A in A some neighberhood A of A in A since A in A some neighberhood A of A in A some neighborhood A some neighborhood A of A in A some neighborhood A some neighborhood A of A in A some neighborhood A so in A so in A so in A some neighborhood A so in A s

be a net converging to a. Then $f(g(x_{\delta})) \rightarrow f(g(a))$ therefore,

 $g(x_{\delta}) \rightarrow g(a)$ in (X, wf). Hence g is continuous.

In the general case, let wF = v { wf α | f α F, α \in I} = the set of all unions of finite intersections of members of \bigcup { wf α }.

By Theorem 1.18, wF is a topology on X. By Theorem 1.18,

 x_{δ} +a in (X,wF) if and only if x_{δ} →a in (X,wf_{α}) for all $\alpha \in I$. By the one function case, x_{δ} →a in (X,wf_{α}) for all $\alpha \in I$ if and only if $f(x_{\alpha})$ → f(a) in $Y_{f_{\alpha}}$ for all $\alpha \in I$. The uniqueness of wF come from Corollary 1.1.7. We shall now prove the rest of the theorem. Let Z be any topological space. Suppose $g: Z \to (X, wF)$ is continuous. Let $\alpha \in I$. Since f_{α} is continuous in (X, wf_{α}) , f_{α} og : $Z \to Y_{f_{\alpha}}$ is continuous. Conversely, suppose f_{α} og is continuous for each $\alpha \in I$. We must show that $g: Z \to (X, wF)$ is continuous. Let $a \in Z$. Let (x_{δ}) be a net in Z such that $x_{\delta} \to a$. Since f_{α} og is continuous for f_{α} decomposition of f_{α} decomposition $f_$

Definition 1.20 Let $\{X_{\alpha}\}$ be a family of topological spaces. $\alpha \in I$ The product $\P X_{\alpha}$ is the set of all functions $x: I \to \bigcup X$ such that $\alpha \in I$ $X_{\alpha} \in X_{\alpha}$ for each $\alpha \in I$. [we write X_{α} for X_{α}]. For two spaces X_{α} , Y_{α} we write the product as $X_{\alpha} \times Y_{\alpha}$. By X_{α} we mean $\P \{X_{\alpha} \mid \alpha \in I\}$ with $X_{\alpha} = X$ for each $\alpha \in I$. For each $\alpha \in I$, define $P_{\alpha} : \P X_{\beta} \to X_{\alpha}$ by $P_{\alpha}(x)$ = X_{α} . Given $\alpha \in I$, P_{α} is called the projection on the α th factor.

Theorem 1.21 Let $\{X_{\alpha} \mid \alpha \in I\}$ be a family of topological spaces. There exists a unique topology on ΠX_{α} (called the product topology) such that for any net $(x_{\delta})_{\delta \in D}$ in ΠX_{α} , $x^{\delta} \rightarrow a$ if and only if $x^{\delta}_{\alpha} \rightarrow a$ for

each $\alpha \in I$. For any topological space Z and function $g: Z \to \P X_{\alpha}$, g is continuous if and only if P_{α} og is continuous for each $\alpha \in I$.

Proof : See [1]. #