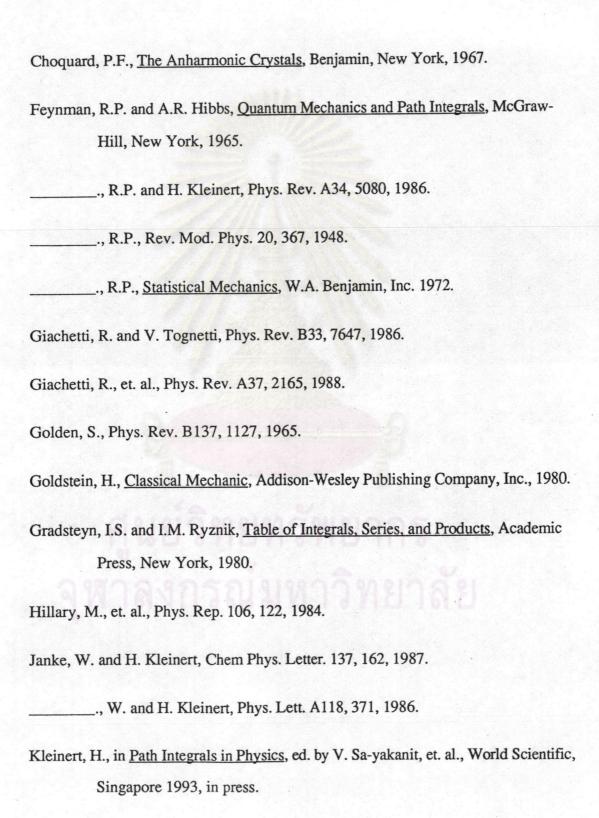
REFERENCES



Sakurai, J.J., Modern Quantum Mechanics, Addison-Wesley Publishing Company, Inc., 1985.

Schulman, L.S., <u>Techniques and Applications of Path Integration</u>, John Wiley & sons, Inc., 1981.

Symankik, K., J. Math. Phys. 6, 1155, 1965.

Weyl, H., The Theory of Groups and Quantum Mechanics, Dober Publ., New York, N.Y. 1950

Wigner, E.P., Phys. Rev. 40, 749, 1932.

APPENDIX

SELF-CONSISTENT APPROXIMATION

At this point we like to introduce an alternative approach to Feynman-Kleinert approximation. It is developed by a Legendre transform and cumulant expansion via self-consistent theory used to study the anharmonic crystals for long time ago[Choquard 1967, Samathiyakanit and Glyde 1973]. Let us consider the action of one particle in one-dimensional potential

$$S = \int_0^{\beta \tilde{n}} d\tau \left[\frac{M}{2} \dot{x}^2 + V(x) \right]. \tag{1}$$

Now we try to expand in Taylor series the potential V(x) about any point x_0 , then

$$V(x) = V(x_0) + (x - x_0) V'(x_0) + \frac{1}{2!} (x - x_0)^2 V''(x_0) + \frac{1}{3!} (x - x_0)^3 V'''(x_0) + \dots$$
 (2)

We can construct an exponential operator by using the fact that $e^x = 1 + x + x^2/2! + x^3/3! + \dots$ in order to rewrite (2) in a new form as follow

$$V(x) = e^{(x-x_0)\nabla} V(x_0), \qquad (3)$$

where $\nabla = \partial / \partial x$ and $e^{(x-x_0)\nabla}$ expressed as an exponential operator

$$e^{(x-x_0)\nabla} = 1 + (x-x_0)\nabla + \frac{1}{2!}(x-x_0)^2\nabla^2 + \frac{1}{3!}(x-x_0)^3\nabla^3 + \dots$$
 (4)

For any distribution function, we have the expectation

$$\langle V(x)\rangle = \langle e^{(x-x_0)\nabla}\rangle V(x_0). \tag{5}$$

Next we use a cumulant expansion of $\langle e^x \rangle$ [Kubo 1962], defined as

$$\langle e^{x} \rangle = \exp\left\{ \langle x \rangle + \frac{1}{2} [\langle x^{2} \rangle - \langle x \rangle^{2}] - \frac{1}{6} [\langle x^{3} \rangle - 3 \langle x \rangle^{2} \langle x \rangle + 2 \langle x \rangle^{3}] + \dots \right\}, \tag{6}$$

to expand $\langle e^{(x-x_0)\nabla} \rangle$ in the following

$$\langle e^{(x-x_0)\nabla} \rangle = \exp \left\{ \left[\langle x-x_0 \rangle \nabla \right] + \frac{1}{2} \left[\langle (x-x_0)^2 \rangle \nabla^2 - \langle (x-x_0)\nabla \rangle^2 \right] + \dots \right\}. \tag{7}$$

In case of Gaussian averaging, only the expectation value of $(x - x_0)^2$ is not zero[Kubo 1962], then we have

$$\langle e^{(x-x_0)\nabla} \rangle = \exp\left\{\frac{1}{2}\langle (x-x_0)^2 \rangle \nabla^2\right\}$$
 (8)

Now we back to the action S in (1) to construct a trial or model action S_0 , of course we should construct it in a harmonic form with a force constant \emptyset or $M\Omega^2$. That is

$$S_0 = \int_0^{\beta\hbar} d\tau \left[\frac{M}{2} \dot{x}^2 + \frac{1}{2} \emptyset (x - x_0)^2 \right], \qquad (9)$$

note that we shift the center to x_0 . In the same manner with the other approach we can write that

$$Z = Z_0 \langle e^{-S_0/\hbar} \rangle_0 \tag{10}$$

where $\langle ... \rangle_0$ is the expectation calculated with the trail distribution $e^{-S_0/\hbar}$ and Z_0 is the trial partition function. By using the first cumulant expansion in (10) we obtain

$$Z = Z_0 \exp \left\{ \langle -(S - S_0)/\hbar \rangle_0 \right\}$$

$$= Z_0 \exp \left\{ -\frac{1}{\hbar} \int_0^{\beta \hbar} d\tau \left[\langle V(x) \rangle_0 - \frac{1}{2} \emptyset \langle (x - x_0)^2 \rangle_0 \right] \right\}$$

$$= Z_0 \exp \left\{ -\beta \left[\langle V(x) \rangle_0 - \frac{1}{2} \emptyset \langle (x - x_0)^2 \rangle_0 \right] \right\}. \tag{11}$$

To obtain the general condition for choosing the self-consistent force constant \emptyset , we consider the free energy $F \equiv -1/\beta \ln Z$. From (10) and (11) this may be written as a sum of harmonic and anharmonic parts

$$F \equiv -\frac{1}{\beta} \ln Z_0 - \frac{1}{\beta} \ln \exp\left\{-\frac{1}{\hbar} \langle S - S_0 \rangle\right\}$$

$$= -\frac{1}{\beta} \ln Z_0 + \left(\langle V(x) \rangle_0 - \frac{1}{2} \varnothing \langle (x - x_0)^2 \rangle_0\right)$$

$$= F_0[\varnothing] + \Delta F[\varnothing, B]. \tag{12}$$

Here F_0 is a function of \emptyset only and ΔF is a function of \emptyset and the correlation function

$$B = ((x - x_0)^2)_0. (13)$$

The variation of \emptyset and B gives

$$\delta F = \frac{\delta F_0}{\delta \emptyset} \delta \emptyset + \frac{\delta F_0}{\delta B} \delta B + \left(\frac{\delta \Delta F}{\delta \emptyset} \delta \emptyset + \frac{\delta \Delta F}{\delta B} \delta B \right)$$
(14)

Consider the derivative

$$\frac{\delta F_0}{\delta B} = 0$$

$$\frac{\delta F_0}{\delta \emptyset} = \frac{1}{\beta \hbar Z_0} \int \mathcal{D}x \, e^{-S_0/\hbar} \, \frac{\delta S_0}{\delta \emptyset}$$

$$= \frac{1}{2} \langle (x - x_0)^2 \rangle$$

$$= \frac{1}{2} B \tag{15}$$

so that

$$\delta F = \frac{1}{2}B\delta \emptyset + \left(\frac{\delta \Delta F}{\delta \emptyset}\delta \emptyset + \frac{\delta \Delta F}{\delta B}\delta B\right) \tag{16}$$

On introducing the function $R \equiv F - \frac{1}{2}B\emptyset$, which amounts to a Legendre transformation, (13) gives

$$\delta R = \delta F - \frac{1}{2} \emptyset \delta B - \frac{1}{2} B \delta \emptyset$$

$$= -\frac{1}{2} \emptyset \delta B + \left(\frac{\delta \Delta F}{\delta \emptyset} \delta \emptyset + \frac{\delta \Delta F}{\delta B} \delta B \right)$$
(17)

so that

$$\left(\frac{\delta R}{\delta B}\right)_{\emptyset} = -\frac{1}{2}\emptyset + \left(\frac{\delta \Delta F}{\delta B}\right)_{\emptyset}.$$
 (18)

We now choose \emptyset by including the anharmonic contribution to the free energy ΔF and requiring that the contribution from it to the force constant vanishes, that is from (18) that

$$\left(\frac{\delta\Delta F}{\delta B}\right)_{\emptyset} = 0 \tag{19}$$

This mean that \emptyset is chosen so that the anharmonic contribution to the force constants is already include in the effective harmonic approximation. For the first cumulant approximation, ΔF is defined as, see (12)

$$\Delta F = \langle V(x) \rangle_0 - \frac{1}{2} \emptyset \langle (x - x_0)^2 \rangle_0. \qquad (20)$$

Then we have

$$\left(\frac{\delta\Delta F}{\delta B}\right)_{\emptyset} = \frac{\delta}{\delta B} \langle V(x) \rangle_0 - \frac{1}{2} \emptyset , \qquad (21)$$

the condition (19) and the expression (5) give us

$$\frac{\delta}{\delta B} \exp\left\{\frac{1}{2}B\nabla^2\right\} V(x_0) = \frac{1}{2}\emptyset \tag{22}$$

so that

$$\emptyset = \nabla^2 \langle V(x) \rangle_0. \tag{23}$$

This final result satisfy the condition for choosing Ω in Feynman-Kleinert method as described before, see Eq. (5.60) and note that $\emptyset = M\Omega^2$.

ศูนยวทยทรพยากร งหาลงกรณ์มหาวิทยาลัย

CURRICULUM VITAE

Mr. Tawatchai Chaisawat was born on June 30, 1964 in Ratchaburi. He received his B.Sc. degree in physics from Chulalongkorn University in 1987.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย