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APPENDIX

SELF-CONSISTENT APPROXIMATION

At this point we like to i ‘-\‘ \“ ! / ernative approach to Feynman-Kleinert

approximation. It is developed b; nsform and cumulant expansion via

self-consistent theory 1Sed-io sty *-m&uu crystals for long time

ago[Choquard 1967 (Thivakant: and G \ Let us consider the action of

one particle in one-dig

(1)

(2)

Wecanconsﬁm‘y 'mf t?t e* = 1+x+x2/2!
+x3/31+ Tt ; ﬁ

QW?MW&@!W’WVIBWGB i

where V = 0/0x and e(*-%)V expressed as an exponential operator

ex-x)V = 14+(x-x)V +21—!(x-xo)2V2

sl om0, (4)

For any distribution function, we have the expectation
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(VW) = (e&-=%)Vx). (5)
N?xt we use a cumulant expansion of (e*) [Kubo 1962], defined as
(ex) = exp{(x)+1[(x2)-(x)]

-3(x)2(x)+2(x)+ .. ), (6)

.

. ' ™

In case of Gaussian ofily the exp n value of (x- xp)2 is not

zero[Kubo 1962], then
(8)
Now we back to ¢ ":.;Ta:n'm:-:r-:;_:_:_:.;gv:.aa-.a:;.i.-..:..;if model action So, of course
, AL )
we should constructn : emnstant @ or MQ. Thatis

A o
o R AT RN A oot e

9
write that

Z = Zole-Solh), (10)

where (. . .)o is the expectation calculated with the trail distribution e -So/% and Z,

is the trial partition function. By using the first cumulant expansion in (10) we obtain
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Z = Zoexp{(-(S-So)/#)o}

B
= zoexp{-%] dr[(wx))o-%ﬁ((x-xo)z)o]

0
= Zoesp{-B[(V)o-18(kx-x0)2)o] | 11
; ‘\ i |
To obtain the general condition for choosingtheself-consistent force constant D, we
consider the free energy P’ /B in w) and (11) this may be written

as a sum of harmonic aad"anharmor

(12)

Here F is a functign o nction of @ and the correlation

g

function

E‘: = (x-o. 0 (13)
mmﬁm@luﬂanﬂﬂﬂ’ﬂiﬂﬂ‘i
adrikandiEy o
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= H{(x-x0)?)

(15)

so that

(16)

On introducing the

transformation, (13) gi

an

so that

(18)
We now choose @ B including t! ATMONIC con&ution to the free energy AF

and.requmnﬁh.zitj: €ofitribution from it-fo the force constant vanishes, that is from

e A SRR AS
ammmaﬁ“ﬁmwmaa e

This mean that @ is chosen so that the anharmonic contribution to the force constants

is already include in the effective harmonic approximation. For the first cumulant
approximation, AF is defined as, see (12)

CAF = (Vix))o-16(kx-x0))o. (20)
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Then we have

8AF) - & ET &
(@) = Zivano-go. 1)

the condition (19) and the expression (5) give us

(22)
so that

(23)
This final result sati “eynman-Kleinert method as

) U
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