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ABSTRACT

Monte Carlo simulation compared chi-square statistics, parameter
estimates, and root mean square error of approximation values using normal and
elliptical estimation methods. Three research conditions were imposed on the
simulated data: sample size, population contamination percent, and kurtosis. A
Bentler-Weeks structural model established the relationship between the sample
variance-covariance matrix and the specified population model. The elliptical
generalized least squares estimation method provided the better chi-square results
in the presence of kurtosis. The parameter estimates were similar across research
conditions for both the normal and elliptical estimation methods. The root mean
square error of approximation values were robust in the presence of kurtosis for the
elliptical estimation methods. The root mean square error of approximation is
therefore the preferred inferential approach to assessing model fit in the presence of
kurtosis because of known distributional properties and determination of confidence
intervals for hypothesis testing.
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Some type of estimation method is used in all parametric statistics, e.g.,
regression analysis, factor analysis, discriminant analysis, and canonical correlation
analysis (Ferguson & Takane, 1989). The various estimation methods are used to
derive sample estimates of population parameters (Marcoulides & Hershberger,
1997). The estimation methods however produce different results depending upon
assumptions made by the researcher. In structural equation modeling, various
normal and elliptical estimation methods can be used to estimate population
parameters from sample data. Least squares (LS), generalized least squares (GLS),
and maximum likelihood (ML) estimation procedures assume a normal distribution
(Bollen, 1989). Elliptical LS (ELS), Elliptical GLS (EGLS), and Elliptical re-weighted
least squares (ERLS) procedures assume an elliptical distribution (Bentler, 1992).

Related Research Literature

In practice, one typically does not know the population variance-covariance
and the population parameter(s). Hence, an estimation method is used to obtain
sample estimates of the unknown population parameter(s) based on the sample
variance-covariance matrix. Once sample parameter estimates are derived, one can
compute the model implied sample variance-covariance matrix, ¥ . Sample parameter
estimates are derived such that is as close to S as possible. The difference between S
and ¥ is typically indicated by a chi-square statistic, although the root mean square of
approximation is also recommended (Schumacker & Lomax, 1996). Obviously, if
S - =0, then the sample parameter estimates derived from the estimation method
perfectly reflect the population parameters based on the fit function, F(S, ¥(0)), and
chi-square equals zero.

Normal Distribution Theory

The normal distribution with certain statistical assumptions has played a
fundamental role in multivariate statistical analysis (Muirhead, 1982). A sufficient
condition for the underlying normal distribution assumption to hold is that the
observed variables do not have excessive kurtosis. Basically, the kurtosis of each
observed variable should equal zero, which is the kurtosis of a normal distribution
(Bollen, 1989; Browne, 1974). In structural equation modeling, several normal
estimation methods are available depending upon the fit function.

The least squares estimation method (LS) which assumes multivariate normal
distributed variables minimizes the following fit function: F ;= .5tr [(S- ¥)*] where the
degrees of freedomare: df =.5(p + q)(p + ¢ + 1) - t, and t =the number of independent
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parameters to be estimated, n = the number of observations or sample size, (p + q) =
the number of observed variables analyzed, and tr = the trace or diagonal sum of the
matrix elements (Schumacker & Lomax, 1996). The fit functionis equalto(n-1)F ,
which yields a chi-square statistic. The generalized least squares estimation method
(GLS ) yields the following fit function: F . =.5 tr[(S - X) S']*, where S is a positive
definite weight matrix of residuals derived from differences in the matrix elements
(ie., S - X). The default estimation method in most computer programs is the
maximum likelihood estimation method, which can be derived by assuming that the
observed variables are multivariate normal distributed. The ML parameter estimates
are obtained by minimizing the following discrepancy function: F,, = tr (SX7) - (p
+q)+In X | -In1S|. Ifthecovariance matrix, S, is close to the predicted population
matrix, ¥, then the sample data fits the model, and F,; approaches zero (i.e., if S, then
Inll-InlS| 0). Likewise,if S, then the trace or sum of the diagonals will be
approximately equal to (p + q), the number of observed variables analyzed, and the
value of tr (S ) - (p + q) will approach zero. In large samples and under specific
conditions ( Browne, 1974, 1984; Joreskog, 1967 ), (n-1)F,, ~ X*, where (p* - q) and
p* = p(p+1)/2 are the degrees of freedom and q is the number of parameters to be
estimated. Therefore, the ML fit function yields a chi-square statistic.

The multivariate normal distribution of z variables has a mean vector, p, and
a covariance matrix, ¥, described by the density function:

1

N2 ¢

where Y = height of the normal curve for z variables, T = a constant 3.1416, and d =base

-z22/2

Y=

of Napierian logarithm = 2.7183 (Ferguson & Takane, 1989). Standard score variables
have a mean = 0 and a standard deviation=1,sop=0and =1. The area under the
normal distribution is unity (see Figure 1).

31



¢ A Comparison of Normal and Elliptical Estimation Methods in Structural Equation Models ¢

Figure 1 Normal Distribution

A general formula to derive sample parameter estimates in a structural
equation model given the normal distribution assumption is (Bentler, 1992):

2

0y = 27'r|(S- 2, |

The weight matrix, denoted as W, in this general formula, is replaced by any of the
three normal theory estimators of ¥.':

(a) W,= 1 (identity matrix) gives normal least squares(LS)

(b) W, = S gives normal generalized least squares(GLS)

(c) W, = X' gives normal re-weighted least squares(ML).

Elliptical Distribution Theory

Elliptical distributions are based on a broad class of distributions that include
both heavy and light tailed symmetric distributions relative to the normal
distribution. The characteristic function of an elliptical distribution for some function
Y ( Muirhead,1982) is of the form:

p(t) ="y (V).
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For m 22, Berkane and Bentler (1986) defined

2m _ (Zm)'
: 2" m!

(i (m) +1)(p)"

where W™(0) and ¥’ (0), respectively, are the m" and the first derivative of ‘P,
=E(X X, X

i2m).

evaluated at zero. Assume p=0 withoutloss of generality,and p ,, .,
Berkane and Bentler (1986) showed that, ifi =1i,=... =i

=1, then:
y(0)

(w'(0)”

This relationship characterizes the elliptical distribution, i.e., if a random variable y

2

k(m)+1=

has density fy (y), if all odd moments are zero, and if the (2m)" moment exists and is
defined by p, = C(m)(n)™, for some constrained C depending on m, then y is
elliptically distributed.

The multivariate elliptical distribution of y variables has a mean vector, p, and
a covariance matrix, ¥, described by the following density function (Bentler, 1992):

ky det(2) " gk, (- 1)'E 7" (2= )

where k, and k, are constants and g is a non-negative function. This density function
yields an elliptical distribution. The y variables have a common kurtosis parameter of:
gliil

©= 30, 1

which describes the tails of the distribution relative to the multivariate normal
distribution. The multivariate normal distribution is therefore a special case of the
multivariate elliptical distribution when K =0. Values for the parameter K, other than
0 (zero), characterize elliptical distributions (Berkane & Bentler, 1987a; 1987b).
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Figure 2 Elliptical Distribution

A general formula to derive sample parameter estimates given an elliptical
distribution assumption (Bentler, 1992) is:

0, =210+ 1)_1tr[(S—$W2]2 _d[tr(s_ o, ]_2

The weight matrix, denoted as W, in this general formula is replaced by any of three
elliptical estimators of ¥:

(a) W,= I (identity matrix) gives elliptical least squares(ELS) estimates;

(b) W, = S (fixed) gives elliptical generalized least squares(EGLS) estimates;

() W, = X (iteratively updated) gives elliptical re-weighted least squares
(ERLS) estimates.

The Mardia-based K coefficient (Mardia, 1970; 1974) can be used in computing
elliptical computations (Bentler, 1992). The default computation of K (Shapiro &
Browne, 1987) is given by:

= ———-————gz'p
p(p+2)’

1
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2

where, g, = N7'LV (2, - ;)'S‘l(z, - Z_) - p(p+2)

is the deviation from the expected multivariate Mardia-based K kurtosis value. The z
notation references raw score and mean vectors, respectively. The normalized
(standard score) estimate is given by:

gZ,p
@p(p+2)/N)"”

2

which, in large samples, operates the same as the unit normal variate in the normal
distribution. The normalized estimate can be used to test the null hypothesis of
multivariate normality.

The relative merits of alternative estimators of K has not yet been established
(Bentler, 1992). In non-elliptical populations, these estimators do not necessarily
converge. The Mardia-based coefficient, however, does have asymptotic expectation
and variance, such that:

E(k)=F.

The use of normal or elliptical distributions in structural equation modeling is
based on theoretical considerations. It is possible that failures of normal or elliptical
estimation methods can be associated with the estimation of K (Tyler, 1982 & 1983). In
most estimation methods, however, an assumption underlying the fit function is that
the variables have some particular multivariate distribution, either normal or
elliptical. Consequently, the chi-square ( X?) test is used as a goodness-of-fit test (fit
function) between S and X, given optimal sample weight estimates.

Chi-Square, Parameter Estimates and Kurtosis

Chi-Square

A number of studies have investigated the chi-square statistic in normal and
non-normal data samples. Innon-normal samples containing kurtosis, the chi-square
statistic based on the ML estimation method was too large, causing the rejection of a
true structural equation model too often ( Bentler, 1992; Harlow and Newcomb, 1984;
La Du and Tanaka, 1989; Muthen and Kaplan, 1985; Tanaka, 1984). In studies using
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ML estimation with normal samples, the chi-square statistic had little bias with
samples ranging fromn > 30 (Geweke & Singleton, 1980), to n = 200 (Boomsma, 1983),
ton =500 (Browne, 1982, 1984), to n = 1000 (Muthen & Kaplan, 1985). Wang, Fan, and
Willson (1996) explained that the adjusted chi-square test (Satorra-Bentler re-scaled
chi-square) reported in the presence of elliptical distributed data can pfovide
acceptable conclusions given an appropriate sample size that balances the statistical
power of the test with sampling variation. Hoogland and Boomsma (1998) suggested
that the ML chi-square statistic often rejected the true model when the sample size was
smaller than five times the number of degrees of freedom of the model. When the
observed variables had an average positive kurtosis as large as 5.0, the sample size
may have to be increased by up to10 times the size of the model. Given that the model
is appropriate, the GLS chi-square statistic may have an acceptable performance for a
sample size that is two times smaller than the sample size needed for an acceptable
performance of the ML chi-square statistic.

Weng and Cheng (1997) recommended that although chi-square values given
by ML, LS, and GLS estimators differ, the effects of this discrepancy on relative fit
indices may diminish as sample size increases. For example, if a model fits the data
and the sample size is very large, ML and GLS estimation methods yield a very similar
chi-square statistic (Browne,1974).

Parameter Estimates

The effects of various estimation methods on the parameter estimates in
structural equation models has also been studied. Harlow(1985) concluded that ML
and ERLS parameter estimates were comparable in a Monte Carlo factor analysis
simulation study. Muthen and Kaplan(1985) found no difference between parameter
estimates using the ML and GLS estimation methods. Henly(1993) pointed out a
striking similarity between ML and GLS estimates. Wang, Fan, & Willson(1996) also
found the results from the ML and GLS methods to be practically identical, except for
some insignificant differences.

Boomsma(1983) in a Monte Carlo study using ML estimation with normal
continuous data, found that Generally for N = 200 there is little bias in estimating
parameters... (p.116). Boomsma also examined categorical, skewed, and kurtotic data,
and he concluded that parameter estimates were unbiased for N = 400 using the ML
estimation method. Boomsma's findings were supported in a Monte Carlo study by
Muthen and Kaplan(1985) which studied estimates based on ordered categorical data
using ML, GLS and ADF estimation methods. Muthen and Kaplan found that ML,
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GLS, and ADF methods were unbiased when using a sample size of 1000. Browne
(1982, 1984) conducted a Monte Carlo study of ML and ADF estimation in both normal
and non-normal continuous data withN =400 and N =500. Browne further suggested
that parameter estimates were unbiased when using ML estimation in normal
samples.

Hoogland and Boomsma (1998) found that the bias of ML parameter estimates
increased when the level of univariate skewness and kurtosis deviated increasingly
from normal theory values. Hoogland & Boomsma also suggested that a larger
sample size(n > 500) was a remedy for obtaining unbiased parameter estimates.
Wang, Fan, and Willson(1996) concluded that population parameter mean estimates
across 100 replications approached the population values as the sample size increased
from 200 to 1000. The differences between the minimum and maximum parameter
estimates decreased remarkably with an increased sample size. The quality of
parameter estimates was not of much concern even with non-normal data, provided
that appropriately large samples were used. Wang, Fan, and Willson also found that
the parameter estimates appeared to stabilize when the sample size reached 500.
Weng and Cheng(1997) compared the three normal theory estimators and found that
ML and LS estimation methods yielded identical parameter estimates, which were
slightly different from GLS estimates.

Kurtosis

A number of studies have examined the impact of kurtosis in non-normal data.
Browne (1982, 1984) developed an asymptotic distribution free index which permitted
the use of a generalized least squares estimator even when the variables exhibited
excessive kurtosis (peakness) or insignificant kurtosis(flatness) in the multivariate
normal distribution. Social scientists frequently are concerned about the skewness in
their data; however, Browne indicated that it is kurtosis, not skewness, that was critical
because kurtosis is a term in the mathematical expression for the covariances. That s,
when data are not normally distributed, the researcher must know about the variables
kurtosis, as well as the variable means and covariances, in order to make inferences
about individual patterns of scores.

Harlow (1985) studied elliptical distributed data in factor analysis and found
the ERLS ( Elliptical reweighted least squares) estimation method performed the best
under various levels of kurtosis (K > 0). Hoogland and Boomsma (1998) further
concluded that the bias in parameter estimates increased when the absolute value of
kurtosis increased. They discovered a remarkable effect on the sign of the kurtosis,
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namely, the bias of ML estimates is positive for platykurtic distributions and negative
for leptokurtic distributions. Bias becomes most extreme when the underlying
distribution is highly leptokurtic.

The elliptical distribution differs from the normal distribution based on
kurtosis in the sample data. One would therefore expect the chi-square statistics,
parameter estimates, and root mean square error of approximation values to differ
when comparing results from these two distributions. It is anticipated that, normal
estimation methods in structural equation modeling would yield biased results when
using non-normal sample data. Moreover, elliptical estimation methods should out
perform normal estimation methods given elliptical data distributions.

Methods and Procedures

The EQS 5.7 software program (see appendix) permitted the specification of
different population data contamination percentages ( .05 and .10), sample sizes (1000,
5000, 10000), and kurtoses (1, 2, 3), which followed suggestions by Mattson (1997) and
Mooney (1997). This yielded a2 X3X 3 design with 18 unique research conditions. The
EQS5.7 program generated a sampling distribution based on 100 replications of these
conditions. The fit function (X?), structural coefficient ( ), and root mean square error
of approximation values were saved in separate files and compared in tables across
these research conditions.

Simulated Data Sets

The EQS 5.7 software program (Bentler & Wu, 1995) was used to generate
pseudo-random samples of data to compute the sample variance-covariance matrix.
Previous research by Bang and Schumacker (1998) has indicated that pseudo-random
number generators don’t produce normal distributions of data with sample sizes less
than 10,000. Three sample sizes of 1000, 5000, and 10000 were chosen for the study to
reflect this lack of normality in pseudo-random number generators when comparing
the estimation methods.

Non-normal distributions were created by generating a normal distribution
with pand , and adding a smaller percent non-normal distribution with the same p,
but with a variance-covariance equal to K* X. The scale factor, , which creates the
non-normal population, ranges between 1 and 10. The present study used values of K
=1, 2, or 3, because the use of values greater than 3 generated elliptical data which
failed to converge using either normal or elliptical estimation methods in the study.
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The smaller percent non-normal distribution which is added to a normal distribution
can range between 0% and 100%, but is usually 10% or less; 5% and 10% were used in
the study. Structural equation modeling estimates are typically asymptotic, meaning
that they approach the true population value as sample size increases. These sample
sizes are therefore suitable, especially since several researchers (e.g., Bentler,1992;
Browne, 1982,1984) have suggested that larger sample sizes may be needed when
estimation methods are based on fourth-order moments (kurtosis).

Structural Model

Gerbing and Anderson (1992, 1993) suggested that using substantively
meaningful models in Monte Carlo simulation may increase our understanding of the
results and that most simulation studies in structural equation modeling have used
from two to six latent variables, with two to six indicators for each latent variable. In
this study, a specific population model was simulated based on the Bentler-Weeks
(Bentler & Weeks, 1980) structural equation model (see Figure 3).

The number of distinct values in the sample variance-covariance matrix is ten
(10). This can be calculated as: .5(p + q) (p + q + 1), where p = the number of dependent
variables and q = the number of independent variables. The degrees of freedom for
the chi-square statistic is calculated as the number of distinct values in the sample
variance-covariance matrix minus the number of parameters to be estimated. Since
there are ten distinct values in the sample variance-covariance matrix and six
parameters to be estimated in the model (four E’s, D2, and ), the degrees of freedom

is equal to four.

Figure 3 Bentler-Weeks Model

The Bentler-Weeks structural model is specified in the EQS 5.7 software
program using the /EQUATION command to generate the population variance-
covariance matrix. The EQS program /EQUATION command specifies fixed factor
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loadings of .80 (validity coefficients) for the observed variables that identify both the
exogenous factor, F1, and the endogenous factor, F2. The /EQUATION command
further indicates that V1 and V2 are two observed variables that are indicator
(manifest) variables of F1 (exogenous factor) and that V3 and V4 are two observed
variables that are indicator (manifest) variables of F2 (endogenous factor). A
structural coefficient indicates that F1 predicts F2. The following set of /EQUATION
command lines indicate the Bentler-Weeks structural equation model in the program:

/EQUATIONS
V1 =.8*F1 + El;
V2 = 8*F1 + E2;
V3 = .8*F2 + E3;
V4 = .8*F2 + E4;
F2 = *F1 + D2;

where V1-V4 are observed variables, E1-E4 are measurement errors of the observed
variables, Fland F2 are factors (latent variables), and D2 is the error of prediction for
F2.

Data Analysis

The EQS 5.7 software program (Bentler & Wu, 1995) was used to simulate
normal and elliptical distributions of data (see Figures 1 and 2) and estimate chi-
square, structural coefficient, and root mean square error of approximation values for
18 unique research conditions based on sample size, population contamination
percent, and kurtosis. The EQS 5.7 software program is annotated to indicate which
command lines were changed for each of the research conditions. For example,
CASES was used to specify the different sample sizes, METHODS was used to specify
pairs of normal and elliptical estimation methods, and CONTAMINATION was used
to indicate the smaller percent non-normal distribution and kurtosis factor. A
sampling distribution based on 100 replications using a pseudo-random number
generator with different seed values produced a point estimate for chi-square,
parameter, and root mean square error of approximation values. The EQS 5.7
software program provided the necessary summary statistics.

The model chi-square values can be compared against a critical chi-square
value of 9.488 at the .05 level of statistical significance for four degrees of freedom and
a root mean square error of approximation value equal to or less than .05, implying a
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close fit. Kurtosis values should be greater than the value of k > -2/(p+2), where p is
the number of measured variables (Bentler and Berkane,1986; Tyler,1982). Given 4
measured variables, k > -.25. The user should be aware that the application of elliptical
distributions to structural equation modeling is based on theoretical considerations.
There is little experience that can be used to provide guidance on how to avoid
breakdowns in the method, i.e., misleading results. It is possible that potential failures
of elliptical estimation methods can be associated with poor estimation of k, hence
poor estimation of the sample variance-covariance matrix.

Monte Carlo simulations were conducted based on generating data from a
known population model, then estimating this true population model under different
research conditions. Consequently, power determination was not required in the
study. In practice, testing a null hypothesis of model fit requires power and sample
size considerations. Schumacker and Lomax (1996) and MacCallum, Browne, and
Sugawara (1996) provide programs and recommendations for power calculations and
sample size. For example, the Hoelter critical N, whichis CN =( %2/ F) + 1, gives
the sample size at which F would lead to a rejection of the null hypothesis. Their
programs also use modification index values and root-mean-square error of
approximation (RMSEA) values. The RMSEA values, together with the degrees of
freedom (df) for the model, the sample size (n), and Type I error rate (alpha) are used
to calculate power. RMSEA <= .05 are considered a close fit; values between .05-.08
are considered fair fit, between .08-.10, mediocre fit, and RMSEA > .10, poor fit.

Results

The chi-square values at k = 1 for both normal and elliptical estimation
methods yielded similar results across the research conditions. These findings were
expected because only sample size effects were present, with percent contamination
having no impact. The results more clearly reflect the outcome of data generated
using a pseudo-random number generator (An average chi-square value of 3.84 was
obtained from the sampling distribution based on 100 replications using a normal
distribution with sample sizes greater than 10,000). The structural coefficients were
similar for both normal and elliptical estimation methods across the research
conditions. The root mean square error of approximation (RMSEA) was robust across
the research conditions for all estimation methods, except under extreme levels of
contamination (10%) and kurtosis (k=3).
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Least Squares Estimation

The normal least squares (LS) and elliptical least squares (ELS) estimation
methods are compared in Tables 1 to 6. As the percent non-normal data and kurtosis
increased, the chi-square values increased, but the elliptical least squares estimation
method computed lower chi- square values. The structure coefficients and root mean
square error of approximation values (RMSEA) remained similar, but were more
distorted under conditions of extreme percent contamination (10%) and kurtosis
(k=3). The least squares estimation method failed to yield a solution (lacked
convergence) under these conditions, returning fewer than the required 100
replications.

TABLE 1 LS versus ELS method: Contamination = 5%, n = 1000

Contamination n k Xst xzm Yo Yers RMSEA[S RMSEAELS
5% 1000 1 42305 4.2393 -0087 .0087 .0315 .0316
(2.716) (2.731) (1.011) (1.011) (.024) (.024)
2 97972 72139 -0184 .0184 .0795 .0663
(7.045) (5.152) (1.209) (1.209) (.037) (.032)
3 296109 11.3825 .1250 -.1250  .1883 .1150
(16.19) (2.592) (1.531) (1.538) (.063) (.041)

TABLE 2 LS versus ELS method: Contamination = 5%, n = 5000

Contamination n k Xis Lers Yis Yos RMSEA . RMSEA
5% 5000 1 41767 41820 -.0012 .0012 .0148 .0149
(2.529) (2.535) (1.008) (1.008)  (.009) (.009)

2 282544 205225 .0017 -.0017 .0688 .0588

(12.73)  (9.193) (1.210) (1.005) (.018) (.015)

3 138.278 51.0223 -.0481 -.0053 1944 1196

(4423) (16.968) (1.607) (1.612) (.034) (.021)
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TABLE 3 LS versus ELS method: Contamination = 5%, n = 10000

Contamination n k XZLS Xers Yis Yos RMSEA . RMSEA_
5% 10000 1 3.8879 3.8868 .0020 -.0020 .0103 .0103
(2.451) (2.442) (1.007) (1.007) (.007) (.007)
2 49.7868 36.2468 .0001  -.0001 0667 .0573
(17.960) (12.995) (1.206) (1.206) (.012) (.010)
3 270.248 979009 .0139 -.0139  .1936 1183
(64.657) (23.491) (1.601) (1.601) (.025) (.015)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in parentheses in
the tables. Results based on 100 replications\ (r), except when k=3 due to non-convergence (n= 1,000,k =3, r=79; n
=5,000, k=3, r =97, n=10,000, k = 3, r = 99).

TABLE 4 LS versus ELS method: Contamination = 10%, n = 1000

Contamination o k X y G Yis Yus RMSEA . RMSEA_ .
10% 1000 1  4.2305 4.2393 -.0087 .0087  .0315 0316
(2.716) (2.731) (1.011) (1.011) (.024) (.024)
2 181399 119387 .0086 -.0086  .1350 .1089
(10.274) (6.632) (1.398) (1.398) (.045) (.037)
3 393374 23.6486 .5394 0272 2772 2415
(20.380) (10.458) (1.783) (2.012) (.090) (.072)

TABLE 5 LS versus ELS method: Contamination = 10%, n = 5000

Contamination n k X s Xeis Yis Yas RMSEA . RMSEA_
10% 5000 1 41767 4.1820 -0012 .0012 .0148 .0149
(2.529) (2.535) (1.008) (1.008) (.009) (.009)
2 731212 47.4799 0084 -.0084 1291 .1049
(21.596) (14.038) (1.005) (1.005) (.020) (.016)
3 243548 84.0961 -4071 4071 3231 1918
(28.048) (10.651) (2.142) (2.142) (.016) (.011)
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TABLE 6 LS versus ELS method: contamination = 10%, n = 10000

Contamination n k Xis Xers Yis Yos RMSEA . RMSEA, .
10% 10000 1 3.8879 3.8868 .0020 -.0020 .0103 .0103
(2.451) (2.442) (1.007) (1.007) (.007) (.007)
2 141967 921144 0032 -0032  .1286 1046
(33.885) (21.816) (1.406) (1.406) (.016) (.013)
3 439.546 152562 -1.890 1.890  .3163 .1883

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in parentheses in
the tables. Results based on 100 replications (r), except when k=3 due to non-convergence (n = 1,000, k=3,r=17;n

=5,000,k=3,r=5n=10000,k=3,r=1).

Generalized Least Squares Estimation

The normal generalized least squares (GLS) and elliptical generalized least
squares (EGLS) estirmation methods are compared in Tables 7 to 12. As the percent
non-normal data and kurtosis increased, the chi-square values increased, but the
elliptical generalized least squares estimation method computed lower chi-square
values. The structure coefficients and root mean square error of approximation values
(RMSEA) remained similar across research conditions and were more robust under
conditions of extreme percent contamination (10%) and kurtosis (k=3) than the
previous least squares estimation methods. The elliptical generalized least squares
estimation methods also performed better under these extreme conditions and
returned the required 100 replications, except for percent=10%, n=1000, k=3.

TABLE 7 GLS versus EGLS method: Contamination = 5%, n = 1000

Contamination n k y Xers Yis Yos RMSEA . RMSEA,
5% 1000 1 42199 4.2282 -0068  .0068 0108 .0109
(2.687) (2.700) (1.005) (1.005) (.013) (.013)
2 89916 6.5332 -.0094 .0090 .0291 .0199
(6.098) (4.379) (1.107) (1.103) (.021) (.019)
3 289084 10.2459 -.0112 .0092  .0748 .0359
(15.008) (5.197) (1.290) (1.264) (.025) (.017)
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TABLE 8 GLS versus EGLS method: Contamination = 5%, n = 5000

Contamination n k Xis Xeis Yis Yus RMSEA  RMSEA,
5% 5000 1 41577 4.1629 -.0001 .0001 0046 .0046
(2520) (2.526) (1.005) (1.005) (.005) (.005)
2 25.4624 182719 .0007 -.0006 .0256 0134
(10.827) (7.674) (1.110) (1.106) (.007) (.019)
3 116.339 39.6596 .0006 -.0003 .0740 0417
(34.803) (11.372) (1.301) (1.275) (.011) (.006)
TABLE 9 GLS versus EGLS method: Contamination = 5%, n = 10000
Contamination n k ) Y Yis Yus RMSEA . RMSEA, .
5% 10000 1 3.8791 3.8781 .0022 -.0022 0027 0027
(2443) (2.434) (1.006) (1.006) (.003) (.003)
2 44.6443 32.1243 -.0006 .0007 0313 .0260
(15.073) (10.707) (1.107) (1.103)  (.005) (.005)
3 222.340 76.1177 -.0050 .0068 .0734 0422
(47.854) (15.914) (1.293) (1.005)  (.008) (.004)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in parentheses in

the tables based on 100 replications.

TABLE 10 GLS versus EGLS method: Contamination = 10%, n = 1000

Contamination n k s s Yis Yo RMSEA . RMSEA,
10% 1000 1 42199 42282 -.0068 .0068 .0108 .0109
(2.687) (2.700) (1.005) (1.005) (.013) (.013)
2 16.3307 10.4576 -.0134 .0126 .0518 .0362
(8.802) (5.409) (1.207) (1.197) (.020) (.018)
3 525078 17.0954 .0203 -0028 .1078 .0554
(19.686) (6.044) (1.548) (1.500) (.023) (.014)
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TABLE 11 GLS versus EGLS method: Contamination = 10%, n = 5000

Contamination n k Xis Xers Yis Yus RMSEA . RMSEA,
10% 5000 1  4.1577 4.1629 -.0001  .0001 .0046 .0046
(2.520) (2.526) (1.005) (1.005) (.005) (.005)
2 626112 397008 .0008 -.0007  .0536 0418
(17.123) (10.729) (1.206) (1.196) (.007) (.006)
3 239.777 758848 .0013 -0102  .1082 .0597
(42.825) (13.401) (1.561) (.993)  (.009) (.005)

TABLE 12 GLS versus EGLS method: Contamination = 10%, n = 10000

Contamination n k Xis iy Yis Yos RMSEA . RMSEA
10% 10000 1 3.8791 3.8781 .0022 -.0022 .0027 .0027
(2.443) (2434) (1.006) (1.006)  (.003) (.003)
2 120.921 76.6337 .0020 -.0019 .0537 .0423
(26.454) (16.420) (1.208) (1.199)  (.006) (.004)
3 476.482 150.603 .0020 -.0016 .1084 .0604
(67.304) (20.726) (1.565) (1.511)  (.007) (.004)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in parentheses in

the tables based on 100 replications (r), except for n = 1,000, k = 3, r = 98.

Maximum Likelihood Estimation

The maximum likelihood (ML) and elliptical re-weighted least squares (ERLS)
estimation methods are compared in Tables 13 to 18. As the percent non-normal data
and kurtosis increased, the chi-square values increased, but the elliptical re-weighted
least squares estimation method computed lower chi-square values. The structure
coefficients and root mean square error of approximation (RMSEA) values remained
similar across research conditions and were similar to results obtained using the least
squares estimation methods. The elliptical re-weighted least squares estimation
method however performed better under extreme conditions and returned the
required 100 replications, except for percent = 10%, n=1000, k=3.
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TABLE 13 ML versus ERLS method: Contamination = 5%, n = 1000

Contamination n k y G Xeis Yis Yus RMSEA, . RMSEA_ .
5% 1000 1 42436 42473 -0068  .0068 0111 0111
(2.733) (2.756) (1.009) (1.009) (.013) (.013)
2 9.6928 7.4258 -0105 .0102 .0309 .0228
(6.969) (5.478) (1.118) (1.114) (.023) (.021)
3 344752 144736 -0160 .0104 .0820 0464
(20.240) (9.083) (1.339) (1.314) (.030) (.022)

TABLE 14 ML versus ERLS method: Contamination = 5%, n = 5000

Contamination n k X y 25 Yo Yas RMSEA . RMSEA_
5% 5000 1 41790 4.1919 -.0001 .0001 .0047 .0047
(2.532) (2.542) (1.006) (1.006) (.005) (.005)
2 27.5948 20.926  .0007  -.0005 .0330 .0278
(12.300) (9.495) (1.115) (1.111)  (.009) (.008)
3 140.185 56.576  .0015 -.0010 .0813 .0504
(47.217) (20.010) (1.337) (1.311) (.014) (.009)

TABLE 15 ML versus ERLS method: Contamination = 5%, n = 10000

Contamination n k Xis Yers Yis Yas RMSEA, RMSEA,
5% 10000 1 3.8867 3.8880 .0022  -.0022  .0027 .0027
(2.449) (2442) (1.006) (1.006) (.003) (.003)
2 484701 36.8498 -0005 .0008  .0327 0281
(17.268) (13.391) (1.112) (1.108) (.006) (.005)
3 268350 108.588 -.0047 .0050  .0807 0111
(64.916) (27.782) (1.328) (1.301) (.009) (.013)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in parentheses in
the tables based on 100 replications.
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TABLE 16 ML versus ERLS method: Contamination = 10%, n = 1000

Contamination n k Xis p Yis Yus RMSEA . RMSEA, .
10% 1000 1 42436 4.2473 -.0068 .0068 ,70111 0111
(2.733)  (2.756) (1.009) (1.009) (.013) (013)
2 18.5216 13.0090 -.0159 .0152 .0559 .0428
(10.869) (7.759) (1.230) (1.221) (.023) (.021)
3 65.9481 26.8282 .0514 .0257 1212 .0726
(28.302) (12.471) (L671) (1.636)  (.028) (.021)
TABLE 17 ML versus ERLS method: Contamination = 10%, n =5000
Contamination n k i e Yis Yos RMSEA, RMSEA_
10% 5000 1 41790 4.1919 -.0001 .0001 .0047 0047
(2532) (2.542) (1.006) (1.006) (.005) (.005)
2 71.6210 49.9599  .0006 -.0007 .0575 .0473
(21.113) (15.285) (1.229) (1.213)  (.009) (.007)
3 309.804 121.616  .0027 -.0110 .1230 0762
(65.043) (27.830) (1.675) (1.003) (.012) (.008)
TABLE 18 ML versus ERLS method: Contamination = 10%, n = 10000
Contamination n k Xos Xeis Yis Yos RMSEA , RMSEA,
10% 10000 1 3.8867 3.8880 .0022 -.0022 .0027 .0027
(2.449) (2442) (1.006) (1.006) (.003) (.003)
2 138.753 96.809 .0019 -0020 .0576 .0478
(32.933) (23.670) (1.009) (1.215) (.007) (.006)
3 618.058 242540 .0029 -.0025 1235 .0769
(102.49) (43.120) (1.678) (1.628) (.010) (.007)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in parentheses in

the tables based on 100 replications (r), except for n=1000, k=3, r = 96.
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Conclusions and Recommendations

The elliptical estimation methods performed better overall than the normal
estimation methods in the presence of increasing contamination and kurtosis, e.g.,
the normal least squares (LS) estimation method failed to reach a solution (lacked
convergence) under increased kurtosis. The elliptical generalized least squares
(EGLS) estimation method overall performed better than the other estimation

methods in computing chi-square, structure coefficient, and root mean square error of
approximation values under increasing contamination and kurtosis. Previous
findings by Bentler (1983a), Harlow and Newcomb (1984), Muthen and Kaplan
(1985), and Tanaka (1984) which indicated that ML chi-square estimates were too
large, causing the rejection of a true structural equation model too often, was
supported in the study. The tendency for increased levels of kurtosis to affect elliptical
estimated chi-square statistics, as reported by Harlow (1985), was also substantiated
in the present study. In contrast, the findings by Weng and Cheng (1997) that chi-
square values computed by LS, GLS, and ML estimators differ, but the effects diminish
as sample size increased was not supported, especially under increased kurtosis in
this study.

The effects of various estimation methods on the parameter estimate in the
structural equation model was found to be minimal. This was supported by
Harlow(1985), who concluded that ML and ERLS parameter estimates were
comparable in a Monte Carlo simulation study; Muthen and Kaplan(1985), who
found no difference between parameter estimates using ML and GLS estimation
methods; Henly(1993), who pointed out a striking similarity between ML and GLS
estimates; and Wang, Fan, & Willson(1996) who also found the results from ML and
GLS estimation methods to be practically identical as sample size increased.

The root mean square error of approximation (RMSEA) was robust across the
research conditions and estimation methods. The root mean square error of
approximation values were especially robust in the presence of kurtosis using the
elliptical estimation methods. The root mean square error of approximation is
therefore the preferred inferential approach to assessing model fit because of known
distributional properties and determination of confidence intervals for hypothesis
testing.

In practice, researchers are often confronted with non-normal data, i.e.,
skewness and kurtosis. Recommendations based in part on the findings in this study
and related research indicate several suggestions. First, determine the sample size
and power needed to conduct a test of the structural model using programs by

49



¢ A Comparison of Normal and Elliptical Estimation Methods in Structural Equation Models 4

MacCallum, Browne, and Sugawara (1996) and/or Schumacker & Lomax (1996).
Second, based on a comparison of non-normal data transformation methods, use a
probit regression transformation to produce an approximate normal distribution of
data to handle skewness. Third, use the elliptical generalized least squares estimation
method with non-normal kurtotic data. Fourth, report the root mean square error of
approximation (RMSEA) and associated confidence interval to test hypotheses
concerning model fit. And finally, when reporting chi-square statistics, conduct the
Bollen-Stine bootstrap technique to yield a test of the sufficiency of the obtained model
chi-square value and/or report the Satorra-Bentler re-scaled chi-square statistic
(Chou, Bentler, Satorra, 1991).
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