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Chapter I 

INTRODUCTION 

There are many symmetries found in nature. Lorentz symmetry is a well­

known symmetry which characterizes the invariant quantities under rotational 

and boost transformations. Lorentz symmetry plays a vital part of the special 

relativity as well as a crucial fundamental symmetry to construct quantum field 

theory. The standard model is very successful to provide the descriptions of the 

elementary particles and forces . This model is also based on the quantum field 

theory and special relativity. Thus one can promote Lorentz symmetry to be the 

fundamental symmetry of elementary particle system in nature at quantum scale. 

The successful description of the gravitation is provided by Einstein's general 

relativity. Lorentz symmetry is also the local symmetry of freely falling frames 

in Einstein 's general relativity. Therefore, it is reasonable to promote that the 

Lorentz symmetry is the most fundamental symmetry of nature. 

Although Lorentz symmetry is a fundamental symmetry of nature there are 

reasonable motivations for studying the theories that Lorentz symmetry is bro­

ken. The key motivations come from the theories of quantum gravity. Lorentz 

symmetry provides a consistent way to construct both model of particle physics at 

quantum scale and theory of gravity. However, there is no guarantee that Lorentz 

symmetry is a symmetry of nature at quantum gravity scale. Furthermore, the 

candidates of quantum gravity theory such as string theory [1] and loop quan­

tum gravity [2] suggest the possibility of the existence of Lorentz violation effects. 

Hence, this is one of the theoretical possibilities to probe the physics at quantum 

gravity scale. Moreover, on the experimental side, the ability to observe physical 

properties at high energy scale is rapidly improved in several ways including ter­

restrial, astrophysical and cosmological experiments. This is also the reason why 

many researchers are interested in the Lorentz violation theories. 

The theoretical models of Lorentz violation have been investigated inten­

sively in various subjects [3, 15] . Since the main goal of this thesis is to investigate 

the effects of Lorentz violation in cosmological models , it is convenient to consider 
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only a class of the models which is relevant to cosmology. However, to be omni­

scient, we give a brief review of all interesting models of Lorentz violation in the 

Chapter II. For our convenience, we classify the Lorentz violation models into two 

approaches, kinematic and dynamical approaches. For the kinematic approach, 

we give key ideas and crucial results of two interesting models, i.e., modified dis­

persion relation and doubly special relativity [12, 13] . For other models of this 

approach, interested readers can look at [3] and references therein. 

For the dynamical approach, we discuss the modification of both the stan­

dard model of particle physics and Einstein 's general relativity. For the modified 

standard model or standard model extension, the key concepts and important 

results are briefly reviewed in the context of effective field theory. However, this 

model is not directly relevant to cosmology [3, 4, 5]. The direct cosmological appli­

cations of Lorentz violation are provided by Einstein-::Ether models, also known as 

the ::Ether models [27]. In these models, Einstein's general relativity are modified 

by including the dynamical vector field with fixed norm. These models are based 

on the effective field theory with two dynamical fields, the spacetime metric 9J.1.I/ 

and the ::Ether field AJ.I.. The general properties of the ::Ether field are characterized 

in Chapter II. 

In the ::Ether models, Lorentz symmetry is spontaneously broken by the vac­

uum expectation value, vev, of the ::Ether field. Due to the fixed norm condition, 

the effects of the time-like and space-like ::Ether field are significantly different. 

Thus the study of the ::Ether field can be divided into two parts according to the 

alignment of the rether field. Generally, there are four covariant scalar terms which 

are quadratic derivative. These kinetic terms are characterized by 4 ::Ether parame­

ters {31, {32, {33, {34. In the final part of Chapter II, we review the constraints of these 

parameters by using both consistency of the theoretical models and observational 

data [45]. 

Since the main goal of this thesis is to investigate the effects of the ::Ether 

field in cosmological models, it is convenient to discuss the interesting cosmological 

models. In Chapter III, we provide a brief review of the evolution of the universe 

and focus on two interesting periods, inflationary and late-time acceleration pe­

riod. The inflationary models provide a description of the extreme expansion of 

the universe at the early era. The dynamics of inflation is simply provided by 

slow-rolling of the scalar field, named infiaton field, on the flat potential. The 

inflationary models satisfy the observational data which suggests the almost per­

fectly uniform universe. They also provide the primordial perturbations which 
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seed the structure we observe nowadays. We discuss this mechanism in the first 

part of Chapter III. We devote the later part of Chapter III to dark energy models. 

The dark energy models provide the late-time acceleration of the universe. These 

models are classified into three groups, cosmological constant, fluid dark energy 

models and gravitational dark energy models. The characteristics, the evolution of 

the universe, the advantages and disadvantages of the basic simple models of dark 

energy are discussed in detail and are briefly summarized for other complicated 

models. 

The effects of the time-like and space-like ret her field are discussed separately. 

For the time-like case, we expect that the Lorentz violation effects due to the rether 

field take place near the Planck scale. It is reasonable to investigate the effects 

of the ret her field in the inflationary models since the information of the Planck 

scale physics can be encoded in cosmological perturbations during the inflationary 

period. We review these investigations in detail for the time-like ret her field in 

Chapter IV [116, 113, 114, 28] . 

In the other case, the space-like rether field has not attracted much attention 

because its existence violates the rotational invariance. The only one investigation 

is a toy model which the accelerating universe is driven by the cosmological con­

stant and the kinetic terms are only the Maxwell-like term [38]. The results of this 

investigation show that this model is not viable since it encounters instabilities. 

Thus we are not interested in this issue. 

The interesting application of the space-like ret her field is performed in 

the theories of extra dimensions since the rotational invariance in the three­

dimensional space is not violated. This invariance is obtained by phenomenological 

setting in which the ground state of the ret her field aligns in the extra dimensions. 

In Chapter V, we investigate the effects of the space-like rether field in Casimir 

dark energy models by using this setting. In this model, Casimir energy of various 

field fluctuations in extra dimensions plays the role of cosmological constant and 

drives the late-time accelerated expansion of the universe [107]. These models can 

solve the cosmological problem and also provide the mechanism to stabilize the 

extra dimensions. However, the extra dimensions will be destabilized when matter 

contents are taken into account. In five-dimensional spacetime, we add the rether 

field into the Casimir dark energy models with the matter contents and show ex­

plicitly that the ret her field affects these models in such that the stabilization of 

the extra dimension can be restored [108] . The results and discussions are sum­

marized in Chapter VI. The further interesting investigations are also discussed 
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in that Chapter. 
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Chapter II 

Lorentz symmetry plays an important role in fundamental physics. It is a 

symmetry of special relativity and the standard model. However, there are sug­

gestions that Lorentz symmetry may be broken, at least spontaneously, at the 

quantum gravity scale for example in string theory [1] and loop quantum gravity 

[2]. Since Lorentz violation effects are believed to have the origin from quantum 

gravity, the study of Lorentz violation models may give some insight to Planck 

scale physics. Moreover, with rapid improvement of high-energy experiments in­

cluding terrestrial, astrophysical and cosmological experiments, Lorentz violation 

theories may provide possible and interesting ways to probe physics at quantum 

gravity scale experimentally. 

In this chapter, we will begin with an overview of Lorentz violation theories. 

Then we go on to consider a specific class of the models, the so-called rether 

models as they can provide the Lorentz violation effects which may be observed in 

cosmological data. The theoretical consistency and observational constraints on 

rether models are briefly reviewed in the final part of this chapter. Cosmological 

applications of the ret her models will be discussed in the next chapter. 

2.1 Overview of Lorentz violation theories 

In this section, we review the construction of the Lorentz violation theories and 

briefly discuss the key ideas of some particular models in each theory. We start 

by classifying the breaking of Lorentz symmetry into two types. The first type is 

called the breaking of particle Lorentz invariance and the second is the breaking 

of observer Lorentz invariance. Let us explain this issue in more detail. 

The particle Lorentz invariance corresponds to the active Lorentz transfor­

mation which is a transformation of particles or localized field distribution while 

keeping the spacetime coordinates unchanged. On the other hand, the observer 
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Lorentz invariance corresponds to passive Lorentz transformation which is the 

transformation of the coordinates, X'IL = A~xv, where A~ is the Lorentz trans­

formation matrix. Note that A; corresponds to the rotational transformations in 

3-dimensional space and A? corresponds to the boost transformations along the i 

direction. In the normal situation, the active and passive Lorentz transformation 

are equivalent. However, in some particular situation, such as the existence of the 

preferred reference frame, the particle Lorentz invariance may be broken while the 

observer Lorentz invariance is still unbroken. 

The presence of the Lorentz violation can be induced by the nonzero vac­

uum expectation value of one or more quantities carrying the Lorentz indices, for 

example Aw It is called Lorentz violation coefficient. The active Lorentz trans­

formation leaves the coefficient AIL unaffected. AIL behaves as a set of four scalars 

under this type of transformation. This means that AIL sets the preferred direction 

in the spacetime. Thus the particle or active Lorentz symmetry is broken. On the 

other harid, the coefficient AIL is transformed under the observer Lorentz transfor­

mation as A~ = (A:)-l Av. The coefficient transforms covariantly as a four-vector 

since the spacetime coordinates act as the basis of the vector. Thus the observer 

Lorentz symmetry is not broken. The invariance under the passive Lorentz trans­

formation provides the observable physics which does not change when we change 

the coordinates of the observer. For the rest of this thesis, all Lorentz violation 

models that we deal with are only the particle Lorentz violation. 

Note that the theory of Lorentz violation must be constructed in the way 

that it does not conflict with the Lorentz invariant theory at the low-energy scale. 

This means that the Lorentz violation theory must reproduce the standard models 

and general relativity in some of its limit. 

There are some Lorentz violation models that meet these requirements. We 

will classify all of them into two parts. The first part is kinematic approach. The 

Lorentz violation model in this approach is not a complete theory by itself. It 

requires dynamical theory in order to explain all physics at the scale at which 

the theory takes place. For example, in the modified dispersion relation model, it 

explains only the physics of free particles but does not for interacting ones. The 

other part is dynamical approach. It is an approach to the complete theory in the 

sense that it provides the possibility to describe all physics at low energy scale. 

Moreover, it should provide the corrections of Lorentz violation effects that are 

sensible to be observed by experiments. 

We will briefly review some interesting models of the Lorentz violation theory 
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in the following subsections. Most of these discussions follow the review paper 

[3, 15] and references therein. 

2.1.1 Kinematic Approach 

Generally, Lorentz violation effects can be obtained by modifications of some rela­

tions or quantities in Lorentz invariant theory such as dispersion relation. These 

modifications are basically put in by hand with some phenomenological reason. 

Most of them have no obvious connection to the underlying fundamental theory. 

In this subsection, we briefly review the modified dispersion relation and doubly 

special relativity. 

• Modified dispersion relation 

The dispersion relation of a massive particle can be expressed as E2 = 

rn2 + p2, where E is energy, rn is mass and p is the momentum of the particle. 

This relation is Lorentz invariant. Its validity has been confirmed not only by the 

experiments but also by the consistency of theory. However, Lorentz symmetry 

might be broken at high-energy scale. We expect a small variation from the above 

dispersion relation. Our strategy is to rewrite the above dispersion relation in 

the more general form, E2 = F(p , rn). Of course, this general form should reduce 

to the Lorentz invariant relation at low energy scale. Thus we need to expand 

function F(p, m) around the Lorentz invariant relation. Furthermore, we have to 

specify what the high energy scale we will use to compare is. We expect that 

this modification is the effect of the quantum gravity with energy scale of Planck 

energy, Ep1 • Therefore, the general form of this relation can be expanded in terms 

of linear momentum, p, as 

2 2 2 (1) i (2) i ' (3) i . k 
E = m + p + Epdi P + l ij prY + l ijkP rYP / Epl + .... , (2.1) 

where I(n) is an arbitrary dimensionless function and the superscript of this func­

tion, (n), denotes the order of the expansion. As we have seen in equation (2.1), 

this relation can break the rotational subgroup of the Lorentz group due to the 

existence of non-rotational invariant combinations of pi. Most of these models 

are constructed in order to avoid this violation because the rotational subgroup is 

strongly confirmed by many experiments. Moreover, in some criteria, the broken 

rotational subgroup yields the breaking of boost invariance automatically. Thus 

more popular version of the modified dispersion relation is expressed as 

(2.2) 



8 

where Ipi is the magnitude of pi. The third and higher order terms are suppressed 

by the factor of Epl ' Actually, the first order term is more important. We can 

choose the form of j(l) in such a way that it corresponds to the energy scale we 

are interested in, for example, j(l) can be chosen as j(1) = J.L2 / E;l where J.L is 

the energy scale at which we expect to find the new physical phenomena. As 

we mentioned before, this is not the complete theory because of the lack of the 

underlying dynamical mechanism. However, some models in dynamical approach, 

such as minimal standard model extension [6], will provide similar modification of 

dispersion relation. A nice review of this issue is [4], and details together with deep 

concepts are in references therein. Moreover, the modified dispersion relation is 

often found in other models of Lorentz violation such as Doubly Special Relativity 

(we will discuss this subject later). Note that modified dispersion relation also 

provides the variation of equivalence principle [7] . 

• Doubly special relativity (DSR) 

The key idea of DSR is to modify the dispersion relation in which the pre­

ferred frame does not exist in the theory. This non-preferred frame effect is the ad­

vantage of this model since the observed physical properties are frame-independent 

and agree with the experiments. The motivation of this model comes from the 

quantum gravity effect which suggests that there is a fundamental length scale 

at which quantum theory and general relativity are comparable. This fundamen­

tal length scale violates the boost invariance of Lorentz group explicitly. Thus 

the strategy of this model is to modify action of Lorentz group in which there is 

an additional invariant quantity other than the speed of light c. The existence of 

these two invariant quantities in this model is the root of the name, Doubly Special 

Relativity. There are two approaches to this model based on modification of the 

action of the Lorentz group on physical states, namely DSRI and DSR2. To see 

the differences between DSRI and DSR2, we will consider the boost generators in 

differential representation. For DSRl , the generator of Lorentz boost along z axis 

is 

Nz = PzOE + (E + A~SR IpI2 - ADSRE2 )opz + ADSRPzPiOPi ' (2.3) 

For DSR2, the generator of Lorentz boost along z axis is 

(2.4) 

where Pi denotes the momentum of the particle along i axis. Mathematically, the 

modification of both approaches is just the adding non-linear terms to the boost 
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generators in such a way that the new invariant quantity, ADSR is obtained. One 

of the modified physical effects for DSR is a modification of dispersion relation 

which in this case can be expressed as: 

(2.5) 

and 

(2.6) 

for DSRI and DSR2 respectively. Note that the energy momentum conservation 

still holds in this theory. The comparisons between these two approaches are in­

vestigated in detail in [8]. The original idea of DSRI and DSR2 is proposed by 

Amelino-Camelia [9, 10], and Magueijo and Simolin [11] respectively. Although 

there are many interesting features of this model, it is not a complete theory be­

cause there is no dynamical mechanism behind this kinematic approach. However, 

this theory is in progress on both comparison with observation and consistency of 

the theory itself. The recent reviews of DSR is [12, 13]. 

There are other kinematic approaches to Lorentz violation theory including 

Robertson-Mansouri-Sexl (RMS) model and T H f.J1 model. We will not consider 

them here. The review of these models is [3] and interested readers can consult 

the references therein for more detail caculations. 

2.1.2 Dynamical Approach 

As we have mentioned earlier, the dynamical approach to the Lorentz violation 

theories is a complete theory in the sense that it includes both interacting and free 

dynamics of elementary particles. The dynamical approach must cover the results 

in the kinematic approach such as modified dispersion relation. This subsection 

is separated into two parts. In the first part, we will discuss the standard model 

extension (SME) . This model is the modification of the standard model of particle 

physics in which the effects of the Lorentz violation are the small corrections of 

the standard model results. The small value of these corrections comes from the 

suppression of the energy scale we consider. Thus all of models are based on 

effective field theory. 

In the second part, we discuss a modified Einstein's general relativity. Similar 

to the idea of SME, this model is the extension of Einstein's general relativity. The 

effects of the Lorentz violation are provided by introducing new degree of freedom 
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fields such as vector or tensor fields . Some results in this model are similar to 

vector-tensor theory. 

• The standard model extension 

The standard model is the most successful model describing physics of elementary 

particles. Most of its prediction are accurately confirmed by experiments. How­

ever, there are some phenomena that are not included in the standard model, for 

example, the existence of neutrino masses. Also, the model itself encounters some 

crucial problems, for example, the mass hierarchy problem. Thus many models 

are investigated in order to try to modify the standard model for explaining the 

experimental data which cannot be described by the standard model. Here, we 

identify this class of model as the standard model extension (SME). 

The standard model is the renormalizable field theory. Its Lagrangian has 

the mass dimension ~ 4 operators. This model is based on SU(3) x SU(2) x U(I) 

gauge symmetry as well as the Lorentz and CPT symmetries. Strategy of SME in 

the Lorentz violation theories is slightly different from regular SME. The purpose 

of regular SME is to explain the experimental data by using the modification of 

gauge symmetry or adding some mechanisms. However, the strategy of SME in 

the Lorentz violation theories is to construct the model that predicts the Lorentz 

violating corrections to the standard model results which will be observed in the 

next generation experiments. Thus the SME of the Lorentz violation theories 

can be obtained by adding some renormalizable Lorentz violating terms into the 

standard model Lagrangian. Let us show how to add the Lorentz violating terms 

by considering the QED sector of the standard model. These modified terms for 

electrons are 

and for photons are 

(2.8) 

where b, c, d and kF are constants represented a strength of the Lorentz violation 

correction. AI-' is a coefficient characterizing the effect of Lorentz violation, 'Ij; 

is fermionic field, ,I-' is the gamma matrices and FI-'I/ is field strength tensor of 

U (1) gauge field. We prefer to break Lorentz symmetry by breaking boost invari­

ance instead of rotational invariance because a rotational symmetry is strongly 

constrained by observational data. Thus the Lorentz violating coefficient can be 
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normalized to the form AIL = (-1,0, 0,0). Some effects of these modifications 

result in the modified dispersion relation expressed as 

(2.9) 

and 

(2.10) 

for electrons and photons respectively, where s = ±1 is the helicity state of elec­

tron. The review of the standard model extension is provided in references [3, 4, 5]. 

However, the first investigation of the SME is discussed in [6].The non-minimal 

SME which includes the mass dimension > 4 operators is also investigated. The 

effects of non-minimal SME also result in the modified dispersion relation. In 

the non-minimal SME, there are infinitely many terms which can include in La­

grangian density. However, in photon sector, by using gauge invariant action, the 

number of d-dimensional Lorentz violation operator can be counted, for example, 

36 terms for d = 5 dimensional operator [14J. Recently, the observable effects 

of Lorentz and CPT violation can be tested by certain experiments. They are 

summarized in [18]. The progress of Lorentz violation in both experimental and 

theoretical sides can be monitored by looking at the notes of Kostelecky [15, 16]. 

More recent issues of Lorentz and CPT violation can be found online in [17]. Note 

that the CPT violation is implied by Lorentz violation [19]. Therefore, searching 

for the effects of Lorentz violation is the same as finding the evidence of CPT vio­

lation. However, for the recent investigation [134], it is found that CPT violation 

does not Lead to violation of Lorentz invariance and vice versa . 

• Modified Einstein's general relativity 

Einstein's general relativity provides the description of gravitation at clas­

sical level. At quantum gravity scale, we expect that the effects of the Lorentz 

violation will be explored. It may leave some fingerprints in the low energy effec­

tive field theory. In this investigation, we will consider the effective field theory of 

Einstein's general relativity. 

The description of gravitation in Einstein's general relativity is provided by 

the metric and covariant derivatives that act on vector or tensor representations 

of GI( 4, R) under Riemannian spacetime. The description of basic particles and 

forces in the standard model is provided by spinors and gauge fields based on 
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SU(3) x SU(2) x U(l) gauge group in Minkowski spacetime. From both descrip­

tions of nature, it is not easy to connect them together because there are no spinor 

representations in GI(4, R). However, this connection can be obtained by using 

the fact that there is a local Lorentz frame at every points in spacetime manifold 

. This local Lorentz frame is a tangent space of a point in spacetime manifold 

which contains the spinor representations in Minkowski spacetime. The frame­

work that incorporates the quantities between local Lorentz frame and spacetime 

manifold is vierbein formalism. In this formalism, the gravitational description is 

provided by vierbein e~ and a spin connection w~b under Riemann-Cartan space­

time where a, b, c, .. . are indices describing the local Lorentz frame and /-£ , lI, p, .. . 

are the spacetime indices in spacetime manifold. Riemann-Cartan spacetime will 

be characterized by the curvature tensor R~Ji.v and the torsion tensor S~v' The 

vierbein formalism can be reduced to Einstein's general relativity by taking the 

torsion tensor to be zero. In the other view point, the description of vierbein 

formalism is similar to the local gauge description of the standard model in which 

the vierbein acts as the gauge field of translations. The most usefulness of this 

formalism is that, at each point in spacetime manifold, Lorentz transformations 

in the local Lorentz frame is independent on general coordinate transformations 

in spacetime manifold. In other words, physics does not change under coordinate 

transformation. This provides us the observer Lorentz invariance automatically. 

Thus it is easy to construct particle Lorentz violation theories while the observer 

Lorentz symmetry remains unbroken in this formalism. 

To construct Lorentz violation theories in the description of gravity, we can 

follow the Lorentz violation theories in the standard model by introducing the 

Lorentz violation coefficient, Aa which yields a vector in spacetime coordinates as 

AJi. = e~Aa . For the standard model , the Lorentz violating coefficient Aa can be 

chosen as a constant time-like vector Aa = (A, 0, 0, 0) in order to ensure that energy 

and momentum remains conserved. However, in the gravitational description, it 

leads to non-conservation of energy momentum tensor in spacetime coordinates 

when the Aa is covariantly constant. The most usefulness of the solutions for this 

issue is to promote the Lorentz violating coefficient as a dynamical field named 

cether field [20] . The name of ret her field comes from the fact that there is a 

constant vector pointing to a direction in spacetime in the local Lorentz frame 

every points in spacetime manifold. This means that it has a preferred frame 

which breaks the local Lorentz invariant for all points in spacetime. For simple 

model, we can fix the norm of the rether field . In the effective field theory, it can be 

performed by using constraint of potential term, for example, Lagrange multiplier 
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term. This yields the spontaneous breaking of the local Lorentz symmetry. For 

the explicit breaking, it is found that the corresponding equation of motion turns 

out to be inconsistent with Bianchi identity. This implies that explicit Lorentz 

violation is not compatible with Riemann geometry. However, it is compatible with 

Cart an-Riemann geometry [21]. Note that the spontaneous breaking of the local 

Lorentz symmetry is accompanied with spontaneous diffeomorphism violation [22]. 

lEt her theory is the most popular model among all Lorentz violation theories in 

gravity sector. The aim of this thesis is to investigate the effect of Lorentz violation 

in cosmological models. Thus it is useful to deal with ret her models and we will 

discuss this topics in detail in the next section. 

One of the interesting results of spontaneous local Lorentz violation is the 

Lorentz violation effect on the standard model. Since the Lorentz symmetry is 

spontaneously broken, the ret her fields can be decomposed into the background 

solution which is the vacuum solution and its fluctuations. These fluctuations 

will be represented in the massless Nambu-Goldstone (NG) modes for broken 

generator [22] and also massive modes [23]. The most interesting result is that 

some massless modes can be interpreted as photons. This is an alternative way to 

offer the existence of light while it is the consequence of Lorentz violation instead 

of U(l) gauge symmetry. The interpretation of graviton is also investigated in the 

same manner [24, 25]. 

2.2 .!Ether theory 

As we have mentioned in the previous section, ret her theory is the most popular 

theory among the Lorentz violation theories. It is the dynamical approach to 

Lorentz violation theory based on the effective field theory. The Lorentz violation 

of ret her theory is provided by a dynamical vector field. It is similar to the vector­

tensor gravity theory. The crucial difference is that the ret her field is constrained 

by non-vanishing constant norm. As we have seen in the previous section, the 

proper rether models must be provided by the spontaneous Lorentz symmetry 

breaking in order to avoid the inconsistency between the Bianchi identity and 

the equation of motion in Riemann spacetime. This inconsistency leads to the 

non-conservation of energy momentum tensor. For the spontaneous breaking, it 

is provided by the potential term which gives the non-zero vacuum expectation 

value. Generally, the potential can take the form V = V(Aj.L Aj.L ± v2 ), where Aj.L 

is the rether field and v is vacuum expectation value. In this thesis, we will focus 
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on the Lagrange-multiplier potential since the other forms encounter instabilities 

[26,30] . However, we will give a brief review of some interesting results of the other 

potential forms after the discussion of Lagrange-multiplier potential. Although, 

in the general framework, one must perform the calculation of this model by 

using vierbein formalism in Riemann-Cartan spacetime, it is convenient for us 

to perform calculation in Riemann spacetime by setting the torsion to be zero. 

The most general action in 4-dimensional space-time of rether theory based on 

diffeomorphism invariance and quadratic derivative is expressed as 

(2.11) 

where 

-(31(''V IlAII)('V1l All) - {32('V IlAIl) 2 

-(33(V IlAII) (VII All) - {34 All ~11 (V IlAp)(V II AP) , 
v 

(2.12) 

and 

(2.13) 

Here >. acts as a Lagrange multiplier enforcing the fixed norm condition, Mpl is 

the reduce Planck mass, R is Ricci scalar and All is the rether field. The minus 

and plus sign in the potential term represent the space-like and time-like vector 

field respectively. 

Conveniently, we take M;l as the overall factor of the action. As a conse­

quence, the rether field is dimensionless. Generally, the kinetic term of the ret her 

field needs to be small because there are no allowed regions of observations in 

which the magnitude of the ret her field is comparable to the metric. With the 

dimensionless rether field, we can rescale the field to unity by setting its vev to 

be one. This means that the kinetic term is suppressed by the rether parameters, 

{3i, which is small compared to the Planck mass. The ret her parameters are also 

interpreted as the broken scale of the Lorentz symmetry. However, if we put M;l 

only in front of R, it will provide the mass dimension to the ret her field. For this 

approach, the kinetic term is suppressed by the ratio of the norm of ret her field 

v to Mpl . These two approaches may cause confusion in the later on when we 

constrain the parameters in the model. 

Considering the kinetic terms in Lagrangian (2.12), the last term is quartic 

in the rether field . It seems like a non-renormalizible term due to the dimension 

of the coupling, if we consider the case where the rether has a dimension of mass. 
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However, we are not necessary to consider the renormalizibilty of each term since 

the theory of gravity is itself not renormalizible. It is interesting to consider 

this term since it provides the quadratic contribution to the metric and ffither 

perturbations when we expand it around the fiat background. 

In order to find the equation of motion, we vary action (2.11) with respect 

to gl-'II and AI-' . The variation of gl-'II and AI-' can be written as 

(2.14) 

(2.15) 

By using the Euler's Lagrange equation, the equations of motion for AI-' can be 

written as 

(2.16) 

where 

(2.17) 

The equation of motion for gl-'II is the Einstein field equation, 

(2.18) 

The energy momentum tensor, TI-'II' is defined as 

(2.19) 

The first term on the right hand side of the above equation can be expressed as 

APAa 
- 2/31 (V I-'APV IIAp - VP AI-' V pAil) - 2/34 -2-V pAl-' VaAII + 2'xAI-'AII 

v 

-2 (V p(A(I-'JP
II)) + V p(AP J(I-'II)) - V p(A(I-'JII))) . (2.20) 

The equation of motion for Lagrange multiplier is 

(2.21) 

We can eliminate'x in equation (2.17) by contracting All with (2.16) and then use 

(2.21). This gives 

,X = ± :2 (AIIV I-'JI-'II + ~~ All AI-'(V I-'AP) (V IIAp)). (2.22) 
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The background solutions of the ret her field with fixed norm condition also depend 

on the metric. The dynamics of the isotropic and homogeneous universe is based 

on the Friedmann Robertson Walker (FRW) metric 

(2.23) 

where a(t) is the scale factor. By using this metric, the solution of the equation 

of motion (2.16) can be chosen as 

AIL = (v,O,O,O) , (2.24) 

for the time-like <ether field and 

AIL = (0, v/a(t), 0, 0) (2.25) 

for the space-like <ether field. The difference of the background solutions due to 

the symmetry of FRW metric results in the different way of analyzing the behavior 

of the ret her field. Thus in order to investigate the effects of the rether field, we 

have to consider the time-like rether field and space-like rether field separately. 

2.3 Theoretical constraints of ret her theory 

There are many methods for constraining the ret her parameters. We divide them 

into two classes, the theoretical constraints and observational constraints. The 

theoretical constraints come from the consistency of the theory which needs to be 

stable and causal. In this section, the stability issue of rether field is reviewed and 

the causality of the Lorentz violating field is briefly discussed. 

2.3.1 Stability 

In this subsection, we will focus on the stability of the rether models. It is very 

subtle to summarize the ret her stability due to the non-conclusive status of this 

argument. There are two main requirements to figure out the stability in effective 

field theory. The fist requirement for a stable theory is that the perturbation 

around the background or the vacuum state must converge. Mathematically, the 

stability of the background solution, X o, is said to be stable if for any given small 

neighborhood, Uo, of Xo always evolves in time to another small neighborhood, 

UI of Xo. According to the fixed norm condition, behavior of the ret her field 

strongly depends on the geometry of spacetime especially for space-like ret her 
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model. Therefore, the evolution of the lEther perturbations will couple to the 

metric perturbations. It is obvious that the evaluation of the lEther perturbations 

needs to include the perturbations of the metric. It is convenient to consider 

this requirement in other view points such as the propagation behavior of the 

perturbations and the existence of tachyon fields. For the propagation behavior, it 

requires that the frequency of a perturbation wave must be real. This requirement 

leads to the constraint on the squared speed as 8
2 2:: O. It also leads to the positive 

squared mass of the massive perturbation modes. In other words, it is not allowed 

for the existence of tachyon fields . This class of stability is called that the gradient 

stability. 

The second requirement for investigating the stability is the absence of ghost 

field . The ghost field is a field which has the wrong sign of kinetic term. This 

wrong sign will lead to negative energy of the particles. The problems in this wrong 

sign kinetic term will not appear if the corresponding particle of this field does 

not interact to other particles. However, it is not easy to avoid this interaction 

because all particles will interact at least with a graviton. Thus it is not necessary 

to ignore the effect of the interaction in this view point. If the fluctuation degrees 

of freedom of the rether field are ghost fields and couple to the normal fields, the 

vacuum will decay to the ghost-nonghost states. We cannot use the conservation 

of energy to impose the limit of this decay due to the negative energy modes 

of the ghost field. This means that the zero vacuum state can decay into the 

infinite high-momentum states of ordinary particles. Although we can claim that 

it is the effective field theory that has the cut-off momentum, it still produces the 

large number of observable particles from the vacuum state. This phenomenon 

is not acceptable even though the energy of the system is still conserved. In the 

quantum level, it encounters the negative probability which is inconsistent to define 

the observable quantum quantities. One of the convenient ways to deal with the 

existence of the ghost field is to analyze of the positive Hamiltonian bound. The 

positive bound from below of the Hamiltonian can infer that there are no ghost 

fields in the system. The stability analysis in this work is adopted by considering 

these two requirements. 

Mainly, the ret her models will be classified into two types, time-like lEther 

model and space-like lEt her model. Like the Lorentz violation theories, the time­

like rether model has received more attention than space-like lEt her model due 

to the fact that violation of rotational subgroup of Lorentz group will lead to 

the violation of boost invariance. Moreover, the rotational invariance is strongly 
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confirmed by many high-precision experiments, for example, the observations of 

Cosmic Microwave Background (CMB) radiation which suggest that there is the 

almost perfect rotational invariance. However, there are the space-like rether mod­

els that provide a very tiny departure on the smooth CMB. We will discuss this 

topic in detail later. 

Let us start by considering the stability of time-like rether field. For con­

venience, we will focus on the Minkowski spacetime by following Jacobson and 

Mattingly [27]. The perturbations of the metric and rether field are expanded 

around the background 'Tll-'V and AI-' as 

91-'v = 'Tll-'V + hl-'v 

AI-' = AI-'+8AI-' 

(2.26) 

(2.27) 

where 'Tll-'V is the Minkowski metric, hl-'v is the tensor modes of metric fluctuations 

and 8AI-' is the rether fluctuation field. Both hl-'v and 8AI-' are small relative to 

their background values. 

Solving for the perturbations is a very long calculation. Therefore, we skip 

the detail calculations in this discussion and give only some important steps and 

the final results. In the first step, the solutions in the equations (2.26) and (2.27) 

are substituted into the equations of motion, (2.16) and (2.18). Second, the gauge 

choices are chosen by the symmetry of the action under diffeomorphism transfor­

mation. Third, gauge variables will be transformed into Fourier space. This step 

will provide us the resulting equations for five modes of the perturbations, two 

modes for spin-2 graviton, two modes for spin-1 ret her and one mode for spin-O 

rether. Finally, the normal modes of the system of equations are performed. This 

gives only three propagations of the normal modes whose the squared speeds can 

be written as 

2 
Stt metric 

2 
St :Ether 

. 2 
Straee 

1 

1 - .813 ' 

2.81 - .8i + .8i 

2.814{1 - .813) , 

.8123 (2 - .814) 
.814{2{1 + .82)2 - .8123{1 +.82 + .8123))' 

(2.28) 

(2.29) 

(2.30) 

where S2 = w2 
/ k2 and .8abe stands for .8a + .8b + .8e. The stability condition requires 

that the frequency w must be real. This implies that S2 2:: O. Some results 

are recovered and extended to de-Sitter space as well as inflation background by 

Lim [28] but without .84 term. The rether perturbations will decay in de-Sitter 

space and modify the spectrum of the B-mode polarization and also violate the 
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inflationary consistent relation in inflationary universe. The Hamiltonian bound 

corresponding to the ghost-free condition is also investigated in [28, 29]. In the 

Maxwell case, corresponding to (33 = -(31 , (32 = (34 = 0, it is found that there is 

a positive bound of Hamiltonian. There is another model of rether, the so-called 

unleashed tEther, which contains the potential term V = A(A~ A~ + V 2 )2 where A 

is a dimensionless parameter [30] . In this model, A is not the Lagrange mutiplier 

and then it leads to the weaker condition in which the rether norm does not need 

to be fixed. However, this model can be viewed as a generalization of the ret her 

models which arising in the limit A ---t 00 . The results of this class of the ret her 

models show that at least one of the perturbation modes is always a tachyon or 

a ghost. From the results of above analysis, it follows that the unleashed rether 

model is not stable. 

The more restrictive consideration of stability is investigated by Carroll et 

a1.[31] . Actually, the space-like rether models are also investigated in this paper 

but we will discuss this topic later. In the point of view of this consideration, 

it is argued that the stability conditions must hold in all reference frames . This 

means that the Hamiltonian must be positively bound and the perturbation must 

converge in all boost frames under the validity of the effective field theory. The 

result of this consideration shows that only the sigma model, (33 = (32 = /34 = 0, 

satisfies the stability conditions. This means that most of rether models are not 

stable. The cosmological effects of the sigma model are investigated in [32]. 

This more restrictive consideration is interpreted as the too much restrictive 

conditions [33] . The first argument in this issue is that the imaginary of the 

frequency in the boosted frames, w', leads to the imaginary wavevector, k = 

1'( k' - /3w') in the rest frame. This imaginary is excluded from the consistent theory 

even in the Lorentz invariant theory. This argument also results in the Hamiltonian 

analysis that the positive definiteness of the Hamiltonian is not necessary for the 

stability in the spontaneous Lorentz violation theory [34]. From this analysis, it is 

found that the superluminal propagation is also allowed for spontaneous Lorentz 

violation theory. This superluminal consideration also conflicts with the argument 

in [31] which uses the stability condition that the propagation speed must not be 

superluminal. 

For the space-like rether field, even though rotational invariance is violated, 

it is still investigated in order to find the departure of statistical anistropies in 

the CMB power spectrum [38]. However, it is convenient to consider the space­

like rether field in the model of higher dimensions. The higher dimensional ret her 
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models can provide the three-dimensional rotational invariance since the norm of 

the rether is obtained by fixing the direction of the rether to align to the extra 

dimensions [35, 36]. It has also been investigated phenomenologically from the 

effect of string theory [37]. 

In four-dimensional spacetime, the stability of space-like rether model with 

out fJ4 term is investigated in the de-Sitter background [39] . The Hamiltonian 

bound analysis in the flat space is also considered. It is found that the gradient 

stability conditions performed in de-Sitter background are expressed as fJ123 ~ 0 

and fJl > O. Note that these conditions are obtained by using the limit of a very 

short wavelength, k » H, and a very long wavelength, k « H. The limit of the 

comparable scale, k "-J H is not considered in this reference. However, in flat space, 

it implies that only Maxwell model, fJ123 = 0, is stable. Unfortunately, in the full 

calculation within de-Sitter background of Maxwell model, it is found that some 

modes of the perturbations diverge at the horizon crossing, k "-J H [40, 41] . This 

means that all models of space-like rether are not stable. Similar to the time-like 

rether model, the more restrictive condition is considered in flat spacetime [31]. 

This suggests that there are no stable models for space-like ret her field in four­

dimensional spacetime with or with out including fJ4 term. The counter-argument 

of the over restriction like in the time-like case has not been investigated yet. 

Moreover, the space-like model including fJ4 term in the de-Sitter space has not 

been considered. We also note that in the case of space-like unleashed rether, it 

has been investigated and pointed out that there are no stable models as in the 

time-like case. 

2.3.2 Causality 

One of the effects of Einstein's general relativity is the possibility to seek the way 

for violating the causality. It is not clear that this violation of causality can occur in 

the physical world. However, it is accepted that the well-defined theoretical model 

must provide the events which is causal. This notion is approved in the low-energy 

physics and agrees with our intuitive sense. Therefore, in order to construct the 

well-defined theoretical model, we will avoid violating the causality in Lorentz 

violation theory. The causality violation have been investigated extensively in 

the standard model extension. However, it lacks of the investigation of the rether 

models. Even in the theory of gravitation, the issue of causality is uncertain. 

In the point of view of quantum field theory, the causality can be discussed 
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in the term of microcausality. The micro causality requires that the commuta­

tion relation for any two field operators with space-like separation must vanish, 

[<I> (x), <I> (x')] = 0 for (x - x') 2 > o. This ensures that the measurement at x cannot 

affect any measurements outside the light-cone at x. However, in Lorentz violation 

theory perspective, specifically SME, it is found that the microcausality will be 

violated but the two measurements with the space-like separation are still inde­

pendent [42]. Note that this valids only in the concordant frame, the frame that 

all Lorentz violating coefficients are small. The causality of the Lorentz violation 

in QED and also in the modified Maxwell theory with the dimension 5 operator 

are investigated [43, 44]. 

In the gravity sector, the causality of the theoretical model can be viewed 

as the existence of closed time-like curve. For the time-like ret her model, the 

four-vector rether can provide the energy momentum flowing around the closed 

time-like paths [3]. However, it has not been investigated in the space-like rether 

model. We note here that some consequences of the theory of quantum gravity 

also suggest the failure of the causality [3]. 

2.4 Experimental constraints of rether theory 

Among several constructions of the rether models, the observational signals from 

the theoretical model of the rether field are extensively figured out in order to 

incorporate the existence of the Lorentz violation effects in the experiments. Some 

of the theoretical models are ruled out by observational data but some of them are 

still confront with the more sensitive experiments. In this section, we will briefly 

review the essential idea of the observational constraints from various experiments. 

However, some of them are not included here but the references are provided for 

interested readers. Most of the contents in this section follow the review paper 

[45]. 

2.4.1 Parametized-post Newtonian (PPN) parameters 

In order to compare the result of ret her theory with the Einstein's general relativ­

ity, it is convenient to study the model in the static-weak field limit. In this limit, 

both ret her and Einstein's general relativity will reduce to the Newtonian theory. 

There are ten parameters for characterizing the Newtonian corrections of general 
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metric theory of gravity [46]. These ten parameters are the so-called parametized­

post Newtonian (PPN) parameters. Five of these parameters, 6, 6, 6 , ~4 and Q3, 

characterize energy momentum conservation of the theory. Therefore, all these 

five parameters automatically vanish in both ret her model and Einstein's general 

relativity due to the consequence of the covariant action principle. The other 

two of PPN parameters, the Eddington-Robertson-Schiff parameters, f3 and " 

characterize the nonlinearity and the spatial curvature produced by gravity re­

spectively. They are both unity for the Einstein's general relativity and time-like 

rether model but it has not been investigated for the space-like ret her model. Next 

one is the Whitehead parameter, ~ , characterizes a peculiar sort of three-body 

interaction. This parameter also vanishes in both Einstein's general relativity and 

time-like rether model but it has not been investigated for the space-like ret her 

model. Finally, Ql and Q2 , which characterize the preferred frame effect, provide 

the different value comparable to the Einstein 's general relativity. While Ql and 

Q2 vanish in the Einstein' general relativity, in the time-like rether model, these 

parameters can be expressed in terms of f3i [48] as 

-8(f3j + f31(34) 
2f31 - f3r + f3j , 
Ql (f31 + 2f33 - (34) (2f31 + 3f32 + f33 + (34) 

2 f3123(2 - (314) 

(2.31) 

(2.32) 

The current observation suggests a very tiny value of these two parameters 

Ql :::; 10-4 and Q2 :::; 4 X 10-7 [49] . We have two ways to deal with this tiny 

value. First, we find the exact relation of the parameters up to the order of the 

observational constraints. In this way, we will encounter the fine tune problem. 

Second, since we have four independent parameters, we can eliminate two of them 

by setting Ql = Q2 = O. Thus there remain only two independent parameters. 

Conveniently, f32 and f34 will be eliminated by the following relations 

2.4.2 Newton's constant 

(f3~ - f31f33 - 2f3f) 

3f31 
(2.33) 

(2.34) 

In this subsection, we will consider the modification of Newton's constant due to 

the existence of an rether field . In order to examine the ret her models in Newtonian 

limit, we need to take the static-weak field limit. The corresponding metric will be 
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obtained by using the metric with scalar perturbations in the Longitudinal gauge. 

This metric can be written as 

(2.35) 

The time-like rether field corresponding to this metric with the constraint All All = 
-v2 takes the form 

All = ((1 - 1»v, 0, 0, 0). (2.36) 

This solution satisfies the equation of motion (2.16). Note that the perturbation 

1>, the gravitational potential, obeys the Poisson equation, 

(2.37) 

where GN is the Newton's constant and Pm is the mass density of the object we are 

considering. Substituting the metric (2.35) and the corresponding rether solution 

(2.36) into the Einstein field equation (2.18) gives 

(2.38) 

for (0,0) component and 

(2.39) 

for (i,j) components. Where G* is the Newton's constant of the rether model. 

From equation (2.39), we can assume that both 1> and W vanish at the spatially 

infinity. This leads to the unique solution as 1> = W. Note that the energy 

momentum of the considering object acts as the source term in the Einstein field 

equation. By comparing to the Poisson equation above, we obtain the effective 

Newton's constant as 

G 
_ G* 

N-
1 - f314/2' 

(2.40) 

The Newton's constant in a cosmological model, Ge is also modified by itself. 

Thus we can use similar strategy to figure out the modification of Ge. We begin 

with choosing the proper metric in the cosmological description. The universe is 

normally described by the spatially flat FRW metric 

(2.41) 

In the same manner with the calculation in the Newtonian limit, we will skip the 

explicit calculations and the result turns out to be that the effective Newton's 

constant in the cosmological model is 

(2.42) 
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The Newton's constant should be the same at all scales. The corrections of the 

Gc are limited by the observation of the primordial 4 He abundance at the nucle­

osynthesis period [50]. This constraint can be expressed as IGc/GN - 11 ::; 1/8. 

This constraint is satisfied automatically by using the PPN constraints. In other 

words, by setting al = a2 = 0, it turns out that Gc = G N . 

This is one of the examples which show the consequences in the rether mod­

els. Most of other models satisfy the observational data when the PPN limits 

are taken. In other words, the PPN constraints are stronger than the others. 

Other tighter experimental suggestions also constrain the parameters in the rether 

models, for example, the gravitational Cerenkov radiation [26, 51J and modified 

power spectrum of CMB radiation [52]. More examples can be found in [45] and 

references therein. 

We note that the experimental constraints above have been investigated only 

for the time-like rether model but not for the space-like ret her model. This may be 

caused by the fact that the space-like ret her model violates the rotational subgroup 

of Lorentz group. The most interesting constraint must be examined by the test 

of rotational invariance. However, the rotational invariance is strongly confirmed 

by many experiments, for example, statistical anisotropy of CMB radiation. The 

theoretical model of the space-like ret her field is constructed in order to compare to 

the observational data from CMB radiation. Unfortunately, it encounters instabil­

ities as we have mentioned in previous section. We also note that it is interesting 

to investigate the space-like rether model with higher-dimensional spacetime since 

this can avoid the rotational invariance in three-dimensional space. 



Chapter III 

COSMOLOGICAL MODELS 

The standard evolution of the universe begins with inflationary period. In 

this period, the universe extremely expands. This phenomena can solve the hori­

zon and flatness problems. Therefore, matter and radiation contents are diluted 

and the universe is cooled. The dynamical approach of the inflation can be pro­

vided by a scalar field slow rolling on the flat potential. After end of the inflation, 

all elementary matter and radiation are created by the description of the infla­

ton oscillation at the minimum of the potential. The universe in this period is 

extremely hot and all matter and radiation act as the hot soup and then we call 

this period as reheating period. The universe after this period is dominated by ra­

diation and then matter respectively. During the matter-dominated period, there 

is a crucial event in which photons are decoupled with electrons. At this time, 

atoms are formed and photons can propagate freely. In others words, it is the 

farthest that we can observe the photons. Thus we will observe these photons as 

the background radiation that comes from all directions in the sky. This radia­

tion is commonly called cosmic microwave background (CMB) radiation. After 

the matter-dominated period, the universe enters the accelerated expansion until 

nowadays. The mysterious thing that makes accelerating expansion of the uni­

verse is called dark energy. There are many models of dark energy and then we 

call the model that is responsible for the late-time acceleration of the universe as 

dark energy model. In this chapter, we will focus on two cosmological models, 

inflationary models and dark energy models. 

3.1 Inflationary models 

The Big Bang model of cosmology was successful to explain the non-static universe 

which was observed by Hubble in 1929. However, it encounters some cosmological 

problems such as horizon and flatness problems. The horizon problem comes from 

nearly perfect uniform temperature of CMB radiation while the Big Bang model 
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cannot naturally provide such uniform temperature. The flatness problem comes 

from the observation that the universe nowadays is almost flat while we need to 

unnaturally fine tune the initial conditions in order to get this flat universe. These 

problems can be solved by using the interpretation that the universe accelerately 

expanded at the very early time. In order to obtain how much the universe 

needs to expand, we introduce the number of e-fold to characterize this expansion, 

N - J HIdt where HI is the Hubble parameter at the inflationary period defined 

as H = iLl a and a is the scale factor. From the observations, N needs to satisfy 

the constraint N ~ 65. A vital part of inflationary model is the providing of tiny 

anisotropy in CMB radiation. Quantum fluctuations during inflationary period 

will seed the primordial perturbations in the cosmological scale and ultimately 

make the structure of the universe we observe nowadays. It is convenient to 

introduce the dynamical approach of inflation before discussing this topic in detail. 

The review contents in this section are found in common cosmological text books 

[53, 54, 55, 56, 57]. Some of them are collected from the review articles [58, 59, 

60, 61, 62, 63, 64]. 

3.1.1 Dynamical models of inft.ation 

A simple dynamical model of inflation is provided by a single scalar field slowly 

rolling on the flat potential. The action of this scalar field for the inflationary 

universe with FRW spacetime can be written as 

S = J d4XvC9( ~l R - ~gJLVBJLcjJBvcjJ - V(cp)) . (3.1) 

For the homogeneous and isotropic universe, this scalar field depends only on time 

cjJ = cjJ( t). The equation of motion for this scalar field is 
.. . 

cjJ + 3H cjJ + Bc/> V = O. (3.2) 

By varying action (3.1) with respect to the metric tensor, the non-zero components 

of the energy momentum tensor for the scalar field can be written as 

roo - ( ~ J>2 + V ( cjJ) ) , 

( ~ J>2 - V ( cjJ) ) 8i 
j . (3.3) 

We interpret this scalar field as perfect fluid in the universe. This leads to the 

energy density and the pressure 

Pc/> 

Pc/> 

1 '2 
2cjJ + V(cjJ) , 

~J>2 - V(cjJ). 
2 

(3.4) 

(3.5) 
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The Einstein field equation will provide the Friedmann and acceleration equation 

respectively 

(3.6) 

(3.7) 

From equation (3.7), it turns out that the condition for accelerating universe is 

Ji < V(1)). (3.8) 

This means that the kinetic term needs to be smaller than the potential term. 

In other words , inflaton field, corresponding to scalar field which is responsible 

for the inflation of the universe, needs to move slowly. The constraint from the 

observations can be written in terms of the potential as 

i t' 1 [,PI V(1)) 
N = ti Hdt = M;l J4>i V'(1)) d1> ~ 65. (3.9) 

This condition tells us that the potential needs to be flat at the inflationary period. 

This is the reason why we mentioned that inflationary models are provided by 

a scalar field slowly rolling on the flat potentials. However, this simple model 

encounters some problems, for example, the potential is not natural to yield the 

condition above, the mechanism for ending the inflation is not achieved for the 

power law model, many of the simple models cannot provide the running spectral 

indices. Many theoretical models are introduced to provide the explanation of 

observation such as k-inflation [67, 68], multi-field inflation [65, 66], DBI inflation 

[69,70, 71], vector inflation [72], !(R) inflation [73, 74]. Although, the number of 

e-fold alone is enough to indicate how much the universe expands during inflation, 

it is more convenient to consider the other sufficient but not necessary conditions, 

so-called slow-roll conditions. These conditions are expressed as 

iI M;l V'(1)) 2 

- H2 = 2 ( V ( 1») «1, (3.10) 

TJ = 
2 V''(1)) 

Mpl ( V(1)) ) « 1, (3.11) 

where € and TJ are the slow-roll parameters. € characterizes the flatness of the 

potential and TJ characterizes how long of the flatness is. 

3.1.2 Primordial power spectrum 

In this subsection, we will show how can the structures in the universe such as 

galaxies, clusters and stars form by using the inflation. In order to show that, we 
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need to consider the perturbation of inflaton field in the quantum level. The fluc­

tuation modes of inflaton field will be strengthened by the accelerated expansion 

of the universe during inflation period. This makes the transition from quantum 

fluctuations to cosmological perturbations. In particular, inflation can provide the 

primordial power spectra which is scale-invariant. Note that the scale-invariant 

power spectra was assumed in order to get the proper initial conditions before 

inflationary models were introduced. 

Due to the coupling of gravity to the other contents in the universe, the 

perturbation of inflaton field will couple to the metric. Therefore, we need to 

include the metric perturbations in our consideration. The general form of the 

metric perturbations can be written as 

2( ) (-1 -2cI> OiB+Si ) 
91-'11 = aT, 

OiB + Si (1 - 2 w) 6ij + oiojE + O(iFj) + hij 
(3.12) 

where T is conformal time related to cosmic time as dt = adT. This form of 

the metric perturbations is very convenient due to the decomposition of the per­

turbation variables. They are decomposed into three parts; scalar, vector, and 

tensor perturbation variables. The advantage of this form is that the perturbation 

modes are decoupled, allowing us to calculate the power spectra separately. In 

4-dimensional spacetime, there are ten degrees of freedom due to the symmetry 

of the metric tensor. In this perturbation form, there are four degrees of freedom 

for the scalar type, cI>, B, \II and E. For the vector type, there are two of three­

vectors, Si and Fi. However, there are the transverse constraints for each vector, 

V iSi = 0, and ViFi = O. These constraints come from the fact that we have to 

exclude the scalar degrees of freedom in the form of gradient of the scalar from 

these vector perturbations, for example, ViF. Thus, the remaining degrees of 

freedom of vector perturbations are four degrees of freedom, each vector has two 

degrees of freedom. For the tensor perturbations, there are six degrees of freedom 

of symmetric three-tensor perturbation, hij . However there are four constraints 

from the transverse and traceless constraints, Vi hij = 0 and h~ = O. Thus the 

remaining degrees of freedom are two. Note that these tensor perturbations are 

gauge invariant and correspond to the gravitational wave. 

Considering scalar perturbations of the system, we have to include the per­

turbation of inflaton into this part, 

¢ = ¢(T) + 6¢(x, T). (3.13) 

Thus it is added up to five degrees of freedom. However, we have the gauge 

constraints to eliminate some degrees of freedom. From the general coordinate 
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transformations in 4-dimensional spacetime, there are four gauge freedoms corre­

sponding to two scalar and two vector gauge freedoms. Therefore, the remaining 

scalar and vector degrees of freedom of the system are reduced to three and two 

respectively. 

Some degrees of freedom are eliminated by using the constraints from Ein­

stein equations. There are two constraints for scalar and two constraints for vector. 

Therefore, the scalar perturbations have only one degree of freedom and there are 

no remaining degrees of freedom for vector perturbations. The vanishing of the 

vector perturbations come from the fact that the universe with FRW metric is 

homogeneous and isotropic. Finally, we end up with two degrees of freedom for 

the tensor perturbations corresponding to two polarizations of gravitational wave 

and one scalar perturbation which depends on the choices of the gauge we choose, 

for example, the curvature perturbation in co-moving gauge. 

In order to get the power spectra, we have to find the equations of motion 

of perturbation fields and solve for the solutions of them. Then power spectra 

are obtained by using the amplitude of the variance of the fluctuation fields. We 

will skip explicit calculations and show only the step and important results of 

calculations for brevity. There are two ways to obtain the equations of motion at 

the first order perturbations. For the first way, one substitutes the perturbation 

in (3.12) and (3.13) into action (3.1) and then keeps the second order terms in the 

perturbed action. After that, the equations of motion at linear level in Fourier 

space can be obtained by using the Lagrange equation and Fourier transformation. 

For the second way, one finds the equations of motion first and then perturbs the 

equations of motion and keeps only the first order perturbations. In this chapter, 

we choose the first choice for our convenience. 

• Tensor modes 

For the tensor perturbations, each of degrees of freedom of hij can be char­

acterized by one scalar, h. Thus one can find the equation of one scalar and then 

add the factor 2 into the power spectrum in the final result. The action and the 

equation of motion in Fourier space can be written as 

M2 J 2 
8(2) = ~ d7d3x~ (h'2 - a.h(ih) 2 2 t , 

(3.14) 

" " (2 a) J-Lk + k - - J-Lk = 0, 
a 

(3.15) 
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where J-tk = Mp1ahk and hk is the amplitude of Fourier transformation. At the 

small scale (k2 » a"la ~ 2172), J-tk behaves as the simple harmonic oscillator. 

Thus, it implies the oscillation behavior of the gravitational wave at the small 

scale. The solution of equation (3.15) can be expressed as 

e
ikT 

( i ) J-tk = V2k 1 - k7 . (3.16) 

The power spectrum of this fluctuation can be defined via the correlation of each 

mode as 

(3.17) 

where, hk is the quantum operator corresponding to the perturbation modes hk. 

Therefore, the power spectrum of the tensor perturbation will be written as 

(3.18) 

where H is approximately constant at the inflation period and evaluated at the 

horizon crossing. Note that we use the large scale limit solution, J-tk "-J - ~ kiT to 

calculate this power spectrum. This tells us that the power spectrum decays in 

the inflation period until the tensor modes cross the horizon, they are constant 

at the super-horizon scale. This is the scale-invariant power spectrum as we have 

mentioned. 

• Scalar modes 

The second order perturbations of the action for scalar modes can be written as 

(3.19) 

where v = a{b¢+ ~~) and z = a~. The equation of motion in Fourier modes can 

be obtained, 

/I 

" (2 z ) V k + k - - Vk = O. 
Z 

(3.20) 

We can defined the gauge invariant variable called co-moving curvature perturba­

tion as n = viz . n is conserved in the super-horizon scale as long as adiabatic 

conditions are hold. Thus this quantity is directly related to the adiabatic per­

turbation and some literatures use this perturbation as the adiabatic perturba­

tion. The non-adiabatic perturbation corresponding to the entropy perturbation 
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is called iso-curvature perturbation. For the simple models, such as single field 

inflation, the iso-curvature perturbation vanishes automatically. This is also com­

patible with the observational data which gives the nearly perfected adiabatic 

initial perturbation. By comparing to the tensor case, the power spectrum of the 

scalar perturbation can be written as 

(3.21) 

To obtain this power spectrum, we use the definition of slow-roll parameters in 

(3.10) and the relation of Rand oc/> 

2 oc/> 
Rlpost inflation = "3 aH -;-lhOTiZon crossing· (3.22) 

The slow-roll condition, c « 1, implies that the power spectrum of the scalar 

modes has bigger value than the power spectrum of tensor modes. This is also 

compatible with the observational data. Conveniently, the ratio of the power 

spectrum of the tensor and scalar, the so-called consistency relation, can be defined 

as 

(3.23) 

3.2 Dark energy models 

According to the observations [75, 76], it is found that the universe is expanding 

accelerately. The ordinary matter and radiation we know cannot explain this 

phenomena since they are gravitational attractive and then lead to the collapsing 

universe. It is necessary to introduce a new content of the universe in order to 

describe the accelerating universe nowadays which is called dark energy. From the 

recent observations [77], the dark energy contributes 72% to the total energy of 

the universe. They also suggest that about 23% contributes to dark matter. Dark 

matter is exotic matter that feels only the gravitational force. We will not discuss 

this topic in this thesis for brevity. Therefore, it is only about 5 % contributing 

to the matter and radiation that we have already known. There are many models 

of dark energy but the popular and simple basic one is cosmological constant. 

This model of dark energy properly fits to the observational data. However, it 

encounters some problems. Therefore, the dynamical models of dark energy are 

introduced in order to solve these problems. Not only the fluid models but also 

the modified gravity models are introduced. In this section, we will review the 



32 

important idea of dark energy models including cosmological constant, fluid dark 

energy models and modified gravity models. The contents of this section are 

collected from the review articles and the lecture notes on cosmology schools [78, 

79, 80, 81 , 82] . 

Before considering dark energy models, we will introduce the general idea to 

obtain the accelerating universe. The homogeneous and isotropic universe in large 

scale suggests us that the large scale matter in the universe intends to be perfect 

fluid. Therefore, we begin the general consideration of the dark energy with the 

Einstein Hilbert action including the perfect fluid. 

(3.24) 

where .em is the Lagrangian density of the perfect fluid which plays the role of 

the dark energy. Varying this action with respective to the metric, one gets the 

Einstein field equation as 

(3.25) 

where G /.I.V is the Einstein tensor, RJ.Lv is the Ricci tensor, R is the Ricci scalar and 

TJ.Lv is the energy momentum tensor of the perfect fluid. The general form of this 

energy momentum tensor can be expressed as 

-p 0 0 0 

TJ.L 
0 P 0 0 

(3.26) v 
0 0 0 p 

0 0 0 p 

where p is the energy density and p is the pressure of the perfect fluid . The 

Friedmann and acceleration equation are 

(3.27) 

a 

a 
(3.28) 

where w = ~ is the equation of state parameter. Thus the condition for acceler­

ating universe is 

1 
w <--3' (3.29) 

The ordinary matter in cosmological scale can be interpreted as dust which has 

the equation of state parameter, W = O. Thus it cannot yield the accelerating 
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universe. Radiation which has w = 1/3 cannot yield the accelerating universe. 

This is the reason why ordinary matter and radiation cannot be dark energy. 

Next subsection, we will show that cosmological constant can be the dark energy 

and discuss the problems of the cosmological constant. 

3.2.1 Cosmological constant 

Cosmological constant was first introduced by Einstein in order to obtain the 

static universe as it has repulsive gravitational force. Then it was soon abandoned 

after discovery the expanding universe. Nevertheless, it was reintroduced again 

as a candidate for dark energy. To see how cosmological constant drives the 

accelerating expansion, we consider the Einstein Hilbert action with cosmological 

constant term 

(3.30) 

where A is the cosmological constant. The energy momentum tensor of cosmolog­

ical constant is 

(3.31) 

where PA = M;lA. By comparing to the energy momentum tensor of the perfect 

fluid in (3.26), the equation of state parameter of the cosmological constant is 

1 
wA = - 1<-3' (3.32) 

It is clear that cosmological constant satisfies the condition for accelerating uni­

verse. Cosmological constant also plays the role of the vacuum energy since it 

is a constant background energy that exists even when there are no matter and 

radiation in the universe. The observations suggest that the total energy den­

sity of the universe is about the critical energy density which is approximately 

Peri '" 10- 47 Ge V 4 [77]. Dark energy contributes to this value about 72 %. Thus 

we can estimate the vacuum energy density as PA '" 1O-47GeV4
. Theoretically, 

this vacuum energy density can be calculated from the quantum field theory as 

(3.33) 

where 9i = (-1)2i(2j + 1) is the degeneracy factor for a particle of spin j. kmax is 

the maximum energy scale that quantum field theory is expected to be viable. If 

kmax is order of Planck scale, the vacuum energy density is order Pvac '" 1074Ge V 4
. 
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This extreme difference in order magnitude between the observational data and 

the theoretical prediction is called cosmological constant problem. Note that the 

problem still exists if the cut off scale is set as the QeD scale, Pvac rv 1O-3Ce V 4 . 

The other problem of cosmological constant is called the cosmic coincidence 

problem, which asks why dark energy began to dominate at this epoch. The 

evolution of cosmological constant is very different from other components such 

as matter. How is the energy density of cosmological constant comparable to the 

energy of matter at this period? In other words, we need to fine-tune the initial 

value of the energy density of every components of the universe in order to get the 

present acceleration period. If cosmic acceleration of the universe began earlier, 

the structures such as galaxies would never have had existed. 

These two problems seem impossible to solve if cosmological constant is the 

dark energy unless we use the anthropic arguments. The idea of string theory land­

scape is one of the examples [133]. Since string theory compactification predicts 

a large number of de Sitter vacua, it is possible to choose the vacuum with the 

appropriate value of cosmological constant. However, using cosmological models 

with extra dimensions may solve the cosmological constant problem. Casimir dark 

energy model, which we will discuss later in detail, is one of the examples. For 

the cosmic coincidence problem, it can be solved by using the so-called tracker be­

havior, which may exist in some dark energy models such as quintessence models 

[83, 84]. The cosmic coincidence problem is beyond the scope of this thesis. 

3.2.2 Fluid dark energy 

Inspired by inflationary models, most of fluid dark energy models are scalar field 

models. The simplest scalar field models for dark energy are called quintessence 

models [83,84]. The crucial difference between quintessence and inflationary mod­

els is that quintessence models is not constrained by the e-folding condition, (3.9). 

Actually, they require the flat potential but does not need the long flatness. It is 

possible to get the accelerating universe by putting a stationary scalar field at the 

minimum of the potential. It looks easier than inflationary models because one 

does not need to find an unusual potential. However, it is not easy since we have 

to track the evolution of the universe. In other words, dark energy needs to sub­

dominate the matter and radiation during the matter- and radiation-dominated 

period. 

To see how the scalar field provides the accelerating universe, we will start 
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with the inflaton action in (3 .1) which gives us the energy density and pressure in 

(3.4) and (3.5). Thus the equation of state parameter can be written as 

p ~¢2 _ V(¢) ¢2 
W= - =. = -1+--;-.----

P ~¢2 + V(¢) ¢2 + 2V(¢) 
(3.34) 

From this equation, the accelerating universe is provided by ¢2 < V(¢) . The 

advantage of these models is their equation of state parameter and the dark energy 

density can vary with time. This enables the possibility to solve the cosmological 

constant and coincidence problems. To solve the coincidence problem, the value 

of the dark energy density at the present time must be an attractor of dynamical 

equations of dark energy. It is found that the potential in this model need to be 

runaway-type. The simple and popular runaway potentials are V = MO:+4¢-O: and 

V = M 4e->.</>/Mp l. 

For the inverse power law potential, V = MO:+4¢- O: , there are no the attrac­

tor solutions corresponding to the same order of the dark energy and dark matter, 

PDE/ PDM rv 0(1) . Thus it cannot solve the coincidence problem. However, it 

can mitigate the fine tuning of t he initial values relative to the cosmological con­

stant. The cosmological evolutions are properly provided in this potential. For 

the exponential potential, V = M 4e->.</> /Mpl , it can provide the attractor solution 

but encounters unacceptable evolution behavior, there is no matter-dominated pe­

riod. However, this behavior can be cured by introducing another scalar field or 

assuming the coupling between the quintessence field and the dark matter. 

The crucial problem of quintessence models comes from the fact that effec­

tive mass of quintessence field need to be light in order to drive the accelerating 

universe, 

m~ff = dd;2 V(¢) rv Hg rv 1O-86CeV 2. (3.35) 

In the solar system scale, the scalar field with very light mass subjects to tight 

constraints from test of the equivalence principle and fifth force [85]. Generally, 

the fifth force interaction is characterized by the Yukawa potential, V ex: e
r

/
A 

where 
r 

A is a parameter characterized the range of interaction. In order to illustrate the 

effect of the fifth force , one can roughly estimate that A is inversely proportional 

to the mass of the scalar field, A ex: _1_. Since the mass of the quintessence is very 
m e!! 

light, the interaction range is very long. Thus the fifth force must be observed 

by experiments. Unfortunately, there are no evidences of this force in the recent 

experiments. This is the main problem of the scalar field dark energy models. 

This problem will be solved by using the chameleon mechanism [85, 86]. This 
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mechanism provides the effective mass of the scalar fields which depends on the 

energy density of environments. To see explicitly how this mechanism is, we begin 

with the chameleon action, 

S = J d4Xv'-9( ~l R + Lej» - J d4xLm (1/J(i), g1i2)· (3.36) 

1/J(i) is the matter field and g1i2 is the metric related to the metric in Einstein's 

frame, gj.l.v, as 

(3.37) 

where fJi is dimensionless constant. By considering the equation of motion for 

scalar field, ¢, one obtains the effective potential and mass 

(3.38) 

(3.39) 

For the experiments on the earth, the mass square in the second term can be 

estimated as m~ = m~arth rv Pearth/M;l rv 1O- 55GeV4 which dominates the effec­

tive mass square, m~. Thus the fifth force are hidden for the terrestrial experi­

ments. Note that even in the astronomical experiments, m~ still dominates m~, 

m2 - m2 
rv 10-8oGeV4 

i-galaxy . 

There are many fluid dark energy models that we have not mentioned, for 

example, chaplygin gas [91], phantom field [92], tachyon field [89, 90], vector field 

[93], k-essence [87, 88]. We do not consider them here for brevity. However, the 

readers can follow on these topics in the review paper or the lecture notes of the 

dark energy models or the given references. 

Finally, due to the light mass of the dark energy fields, they acquire the 

quantum fluctuations. This suggests us to include the cosmological perturbations 

into our consideration. This issue is very important because they can affect the 

structure formation. Moreover, some models are ruled out by their instability. We 

also skip this issue in this thesis since it is not our main probe. 

3.2.3 Gravitational dark energy 

While the fluid dark energy models correspond to a modification of the energy 

momentum tensor on the right hand side of Einstein field equation, the gravi­

tational dark energy models correspond to a modification of Einstein tensor on 
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the left hand side of the Einstein field equation. The simple and popular models 

are f(R) gravity models. The idea of these models is to introduce an arbitrary 

function of the Ricci scalar, f (R), instead of Ricci scalar R in the Einstein Hilbert 

action. These models can be interpreted as the more general model of cosmological 

constant while f(R) = R - 2A. For the inflationary models, The proper function 

takes the form f(R) = R+aR2, where a is a positive constant. In this subsection, 

we will discuss the late-time accelerating universe from f(R) gravity models by 

following [94, 95, 96]. 

There are two approaches for f(R) gravity models. First, it is the standard 

formalism which uses the metric, 9J1.v , depending on the affine connection, rp'Y' 
In this approach, we derive the equation of motion by varying the action with 

respect to the metric. The other is Palatini formalism. In this formalism, the 

metric and the affine connection are treated as an independent dynamical variable 

and we have to vary the action with respect to both the metric and connection in 

order to obtain the equations of motion. These two approaches provide identical 

equations of motion in the case of Einstein Hilbert action. However, they provide 

the different results when we include the non-linear term of R into the action. We 

will consider only the standard approach in this thesis. For Palatini formalism, 

one can follow reference [96] and references therein. 

The idea of f(R) gravity models for dark energy is different from ones for the 

inflation because we need the mechanism to end the inflation but does not need 

for dark energy models. R2 term in f (R) gravity models for inflation guarantees 

that the acceleration will end since inflation enforces the flat universe in order 

to solve the flatness problem. Hence, R2 term will vanish at the end of inflation 

and the standard general relativity is recovered. For the dark energy models, 

the additional terms must be dominated when the universe is enforced to be flat . 

Thus the simple f(R) gravity models for dark energy can be written as f(R) = 

R - aR-n, where a and n are positive real constant. Note that the unified models 

of dark energy and inflation will be investigated by including both two terms, 

f(R) = R + a1R2 - a2R-n [97]. 

For the f(R) dark energy models, the action with matter can be expressed 

as 

(3.40) 

By varying this action with respect to the metric, the equation of motion can be 
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written as 

~JLI/ - F(R)RJLI/ - ~f(R)9JLI/ + (gJLI/D - V JL V l/)F(R) = ~2 T~r;) , (3.41) 
pi 

where F(R) = af jaR, T~~) is the energy momentum tensor of matter and 

(3.42) 

It is useful to consider the trace of this equation of motion, 

3DF(R) + F(R)R - 2f(R) = ~2 T(m). 
pi 

(3.43) 

For Einstein's general relativity, f(R) = R, we obtain F(R) = 1. This leads 

to M;IR = _T(m) as the usual gravity theory while DF(R) = O. For the f(R) 

gravity, DF( R) does not vanish. This leads to the propagating scalar degree of 

freedom, cp = F( R), named scalaron. To obtain the equation of state parameter 

of these dark energy models, we rewrite equation (3.41) as 

where 

1 _ 1 (m) (D) 
RJLI/ - 2Rg/LV - M2 (TJLI/ +TJLI/ ), 

pi 
(3.44) 

(3.45) 

In the FRW metric, one obtains two equations of motion as 

2 1 . 1 ~ 
3FH = 2(FR - f) - 3HF + M2 L.tPi, 

pl i 

(3.46) 

-2FH = P - HF+ ~2 L(Pi + Pi). 
pl i 

(3.47) 

Generally, we add all possible fluid contents in the universe in these equations 

through the summation terms. This leads to the energy density and the pressure 

of gravitational dark energy as 

Pd - M;l(~(FR-f)-3HF+(A-F)3H2), (3.48) 

Pd - M;I( -~(FR-J)+2HF+P-(A-F)(3H2_2H), (3.49) 

where A is a constant. Thus the equation of state parameter for dark energy can 

be expressed as 
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where Om = Pm/(3M;IH2
) is the density parameter of the matter and we!! 

-1 - 2H / (3H2) is effective equation of state parameter. The last approximation 

comes from the negligence of the all contents of the universe except the matter. 

The universe which is filled with the cosmological constant, the so-called de-Sitter 

universe, is reproduced by taking H rv constant and Om rv 0 and then it turns out 

that Wd = -1. To recover the standard evolution of the universe, A must be unity. 

This equation of state parameter provides the possibility to reach the phantom 

phase naturally. In other words, it provides the state that Wd < -1 while there 

are no the ghost fields in the theory. Note that the recent observations suggest 

that Wd will slightly less than -1, Wd = -1.1 ± 0.14 [98]. 

The simple model, f(R) = R-aR-n, also provides dark energy description. 

However, it encounters the instability of the perturbations [99, 100, 101] and it is 

not easy to satisfy the local gravity constraint [102]. It is found that the viable 

f(R) dark energy models need to satisfy the constraints [100, 103]: 

anf> 0, 

a'hf > O. 

(3.51) 

(3.52) 

The first and the second conditions satisfy the requirements for avoiding the exis­

tence of ghost and tachyon respectively. There are many observational constraints 

on f(R) dark energy models, for example, local gravity constraint. We do not 

discuss this topic in this thesis. 

In addition to Ricci scalar, the modification of Einstein-Hilbert action can 

be written in terms of Ricci tensor, RJ.w, and Riemann tensor, RJ.lvpu. The specific 

choice which is topologically invariant in 4-dimensional spacetime is Gauss-Bonnet 

term, 9 = R2 - 4RJ.lv RJ.lv + RJ.lvpu RJ.lvpu. The crucial property of this term is that 

it does not contribute to the equation of motion when we vary the action with 

respect to the metric. Therefore, it is convenient to couple this term to the scalar 

field in order to modify the Friedmann equation. It is possible to construct f(Q) 

dark energy models. However, they suffer the instability during the matter and 

radiation dominated period. The progress of these models are active now. We leave 

the references [94, 104, 105, 106] and references therein for interested readers. 



Chapter IV 

EFFECTS OF TIME-LIKE lETHER FIELD ON 

COSMOLOGICAL MODELS 

JEther theory is based on effective field theory. The effects of the rether field 

are relevant to the physics at the Planck scale and suppressed by factor (M/Mpl)2, 

where M is the mass scale of the rether theory. The most powerful mechanism 

that can encode quantum gravity effects is the inflation since quantum fluctuations 

are strengthen to cosmological perturbations. Therefore, it is useful to investigate 

the effects of the rether field in inflationary models. It was first investigated by 

Lim [28]. In this work, the power spectra of both tensor and scalar modes are 

calculated and the results are slightly different from the standard inflationary 

models. It is also found that the isocurvature perturbation is not generated and 

the vector perturbation modes are not relevant to the cosmological scale. Note 

that f34 term is not included in this investigation. 

The inflationary models with the time-like ret her field including f34 term are 

investigated in [114]. The perturbation equations are calculated in alternative 

way by using covariant and gauge invariant (CGI) formalism. The results in this 

investigation provide the primordial power spectra which are different from the 

results in [28] even though f34 vanishes. The effects of the time-like rether field in 

the late-time evolution of the universe are also investigated [114, 119]. 

By using the ACDM model, it is found that the matter power spectrum and 

the CMB power spectrum are slightly modified. The constraints of ret her param­

eters with observational data are also examined in [116]. In this work, by taking 

into account the constraints rether parameters from PPN, Cerenkov radiation and 

stability, the numerical constraints from CMB and Large Scale Structure data are 

performed by using modified CMBEASY code with Monte-Carlo Markov Chain 

method. We also note that the generalized rether model, in which the kinetic 

terms are generalized as K -t f(K), is used for these investigations. Recently, the 

results of the perturbations in the inflationary models with the time-like ret her 
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field are carefully calculated in [113]. These results are different from the previ­

ous investigations. The isocurvature perturbation and the vector modes of the 

perturbation are generated. The investigation of [113] also connects to the recent 

development of gravity theory named Horava gravity theory [122, 123]. The Ho­

rava gravity theory provides the time-like Lorentz violation in the same fashion 

with the time-like ::ether model [127]. In this chapter, we review and discuss the 

results of this article. 

The inflationary models with the time-like rether field are also investigated 

in the context of the coupling between the ::ether field and the scalar inflaton 

field [115, 117, 118]. The coupling t erms can be performed by introducing the 

rether parameters depending on the inflaton field , /3 --+ /3( ¢). In [115], the ::ether 

parameters are set as /3 = /313 + 3/32 = /3 ( ¢) = (¢2 and the simple potential is V = 
m2¢2. It is found that the inflation and reheating can be properly obtained in both 

with and without inflaton potential. The power spectra of tensor pert urbations 

are calculated and the result is the same with the non-coupling case. The various 

potentials and coupling forms are also investigated in [117] by using the first­

order formalism. The coupling form can be obtained by interpreting the degree 

of freedom of the rether field as the local expansion () defined as () = VaAa where 

() relates to the Hubble parameter by () = 3H. Then the coupling term takes 

the form ()¢ = -Aava¢ + total derivative. The consequent effect of this term in 

the equation of motion is that there is an external force. The various constraints 

including stability, Cerenkov, positive energy and PPN conditions are derived and 

summarized in [118]. 

Recently, the generalized ::ether model is investigated in order to play the 

role of dark energy and dark matter [121]. For dark matter, it is proposed to be 

the sources of the structure formation. However, it does not fit with observational 

data. For dark energy, it can provide the accelerating universe and properly fit 

with observational data. However, we will not consider them here. 

4.1 Inflationary model with the rether field 

In this section, we review the inflationary model which is driven by scalar inflaton 

field and contains the rether field by following [113] . We begin this section with 

adding rether field action into inflaton field action. This action is expressed as 

(4.1) 



42 

We set the norm of the time-like <Ether as unity, AJLAJL = -1. Thus the Lagrangian 

of the time-like <Ether field can be written as 

LA = -/31C\l JLAII)(\7JL All) - /32(\7 JLAJL? - /33(\7 JLAII) (\7 11 AJL) 

-/34AJL All (\7 JLAp) (\7 IIAP) + >.(AJLAJL + 1). (4.2) 

It is convenient for us to evaluate the calculations by using conformal time since 

most of the cosmological perturbations are calculated by using the conformal time. 

FRW metric with the conformal time can be written as 

(4.3) 

The <Ether field is highly constrained by homogeneity and isotropy. One of the 

allowed choices is AJL = (l/a(T), 0, 0, 0) . By using this form of the <Ether field and 

the energy momentum tensor defined in Chapter II, equation (2.19), the energy 

density and the pressure of the <Ether field can be written as 

3 2 H2 C¥A 2 H2 H' 
PA = -2C¥AMpl~' PA = 2Mpl( ~ +2 a2 )' (4.4) 

where H = a' / a, C¥A = /31 + 3/32 + /33 and prime denotes the derivative with respect 

to the conformal time. The Lagrange multiplier can be written as 

(4.5) 

By substituting the energy density of <Ether and inflaton field into Einstein field 

equation, Friedmann and acceleration equation are 

By comparing these two equations with equations (3.6) and (3.7), we can see that 

the modification is to rescale of the Planck mass M;l -+ (1 + c¥A/2)M;I' We note 

that the equation of motion for inflation field in (3.2) is not modified by the <Ether 

field. By using this rescaling, the slow-roll parameter will be obtained 

(4.8) 

It is important to note that the factor 1 + c¥A/2 need to be positive in order to 

avoid the negative gravity. This condition leads to 

C¥A > -2. (4.9) 
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The qualitative analysis of this slow-roll parameter is very useful in order to char­

acterize the dynamics of the inflation modified by the ret her field. If CtA + 2 is 

small enough, the potential of inflaton field does not need to be flat . For conve­

nient calculations with the cosmological perturbations, we choose the potential of 

the inflaton as the exponential potential. This potential leads to the power law 

inflation, a ex: r q
• Thus the slow-roll parameter can be expressed in terms of the 

equation of state parameter, E = 3(1 + w(jJ)/2. To see explicitly how the ret her 

field affects inflation dynamics, we consider the number of e-fold, 

N = itl Hdt = 2 1 {,PI V(¢) d¢;::: 65. 
ti M p1 (1 + CtA/2) J(jJi V'(¢) 

(4.10) 

From this condition, we will see that the potential does not need to be flat in order 

to solve horizon and flatness problem. 

4.2 Cosmological perturbations with rether fields 

The goal of this section is to find the primordial power spectra and compare the 

results to the standard scalar inflation. We use the same strategy as we done in 

Chapter III. In the first step, we will add the perturbations from the rether field 

into the perturbation of the metric (3.12) and the inflaton field (3.13). The ret her 

field with its perturbations can be written as 

AO = ~ + 8AO, Ai = ~(8iC + Vi - Si). 
a a 

(4.11) 

This form of the perturbations gives us two degrees of freedom from scalar pertur­

bations 8AO, C and two degrees of freedom from the transverse vector perturbation 

Vi. Notice that the transverse vector Vi is gauge-invariant. However, one degree of 

freedom for scalar perturbations will be eliminated by the fixed norm constraint. 

By perturbing the constraint equation, gl~IIAI~AII = 1, one obtains 8Ao = -CP/a. 
Thus we have one scalar and two vector degrees of freedom. Conveniently, we 

separate the calculations and discussions for each mode of perturbations. 

4.2.1 Tensor perturbations 

Substituting the rether field , the metric and the inflaton field with their pertur­

bations into the action (4.1) and expanding up to the second order in hij , one 

obtains the action for the tensor perturbations as 

S?) = 11 J drd3x ~2 ((1 - (313)h,2 - 8i h8i h) (4.12) 
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From this action, we see that the ret her field effect is only in the first term. On 

the sub-horizon scale, the gravitational wave will propagate at the sound speed 

square, 

1 
( 4.13) 

1 - (313 · 

To avoid the classical instability, one obtains the condition 

1 - (313 > o. (4.14) 

Note that this condition also yields the solutions with no instability from ghost 

field since the kinetic t erm is not wrong sign. This result agrees with the result in 

the references [27, 113, 114, 28]. Note that the differences in the expression from 

various references come from the different notation they use. By using the same 

strategy in Chapter III, the primordial spectra from the tensor modes is 

,-------:-- H2 
Ph = J 1 - (313 M2 . 

pl 

4.2.2 Scalar perturbations 

(4.15) 

It is important to consider the recent development of the gravity theory which 

is renormalizable named Horava gravity theory [122, 123] since it provides the 

Lorentz violation like rether theory [127] . However, Horava gravity encounters the 

instabilities and strong coupling at low energy [124]. The extensions of the Horava 

gravity are investigated in order to avoid such problems [125, 126]. This extension 

version is related with the ret her theory and named as BPSH theories [127] . From 

point of view of the BPSH theories, the scalar degree of freedom for the ret her field 

can be interpreted as the means of auxiliary scalar field, / , through the identity 

[125, 126] 

-8/ 
AJ.L == (-81//;1//) 1/2 . 

( 4.16) 

/ can be interpreted as a time variable since the gradient of / is time-like ev­

erywhere. Analogous to BPSH theories, the surface of constant / will define a 

foliation of the space-like surface [113] . Consequently, the perturbation of this 

scalar field is related to the ret her scalar perturbation C 

8/ 
/' = -(B + C) . (4.17) 

From this new degree of freedom, the curvature perturbation on the surface of 

constant infiaton field ( can be decomposed into two new gauge invariant variables 



( = (a + 8N where 

w -H(B+C), 

:8¢ + H(B + C) . 
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(4.18) 

(4.19) 

Geometrically, (a is the curvature perturbation on the surface of constant rether 

field and 8N can be interpreted as the isocurvature perturbation since it cor­

responds to the velocity of the rether relative to the infiaton field. 8N is also 

interpreted as the differential e-folding number between the surface of constant 

ret her field and infiaton field [113] . 

• Sub-horizon limit 

In the short wavelength limit, (a and 8N are decoupled at the first order. There­

fore, Lagrangian of them can be written as 

2 2 

£, = 2~N (8N,2 - k
28N2) + 2~a ((~2 - s~e(;) + ..... , (4.20) 

where the ellipsis denotes sub-leading terms and 

1 Z _ 21fS~{3123 2 (2 - (314){3123S~ ZN - S - (4.21) 
- 2£(1 + CiA/2)M;I' a - (1 + CiA/2)M;I' a - (2 + CiA){314 . 

In order to avoid the instabilities, one obtains the conditions 

o :::; {314 < 2, and 0 < {3123. (4.22) 

From this Lagrangian, one can find the equations of motion and their solutions. 

We summarize that there are two modes of the solutions, infiaton perturbation 

mode and ret her perturbation mode which are respectively expressed as 

Z~/2 e isakr 

(a -+ -a- J2sak ' 

Z l/2 ikT 
N e 8N-+-­
a y'2k' 

8N -+ O. 

(4.23) 

(4.24) 

Consequently, the power spectra associated to 8N and ( can be written respec-

tivelyas 

P5N = ZN(~r, 
Pc, = Pc'a + Pm = (Za + ZN)(~r· 

• Super-horizon limit 

(4.25) 

(4.26) 
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For the long wavelength limit, (a and oN are coupled. However, Lagrangian can 

be decomposed into other two independent variables as ( and oN. The leading 

terms in the Lagrangian of ( and oN can be expressed respectively as 

L, = (~ + ,812380 -1 v'4 + 2CXAM;la2('2, (4.27) 

2 M;la
2
(kr)2 ( 12 K, 2) 

LliN = ,814(1 + 3w¢) 8 oN + r 20N , (4.28) 

where 

(4.29) 

The corresponding independent solutions will be classified into two classes and 

four modes. The first class corresponding to adiabatic perturbations contains two 

modes which oN = 0 and the second class corresponding to isocurvature perturba­

tions contains two modes which oN =1= 0, ( = O. For adiabatic perturbations, there 

are the constant and decaying mode. The constant mode yields the anisotropic 

stress as 

2 (5 + 3w¢) w - <I> = -,8138t(1 = -,813 1 3 <I>. + w¢ 
(4.30) 

During inflationary period, w¢ rv -1, then leads to (w - <I» / <I> rv ,813. To obtain 

the small contribution from the anisotropic stress, the rether parameters must be 

restricted, 1,8131 :s 1. For the decaying mode, the results are (2 = 0, W = <I> <X lla-2
• 

In order to provide the initial conditions for the perturbations at the matter and 

radiation dominated period, the interesting modes are the constant modes since 

the decaying modes will vanish before perturbations reenter the horizon. The 

power spectra for the constant mode can be approximated as 

H2 
Pc. ~ 9t(1 + cxA/2)M;l (1 + O(,8123tC~)). (4.31 ) 

The leading part of this power spectra is different from the usual one by the factor 

(1 + cxA/2t1
. For the isocurvature modes, the solutions are 

(4.32) 

where 

(4.33) 

The behavior of these two solutions are characterized by a parameter K,. The ob­

servational data suggests that the primordial power spectra are almost adiabatic. 
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Thus the isocurvature modes should be sub-dominated relative to the adiabatic 

modes. This argument suggests us to eliminate the growing mode of the isocur­

vature modes. Then this suggestion leads to the constraints on a K, and ret her 

parameters as 

(4.34) 

The most interesting case is K, = 0 ---t aA = - f314 where it gives the constant pri­

mordial power spectrum. Moreover, this constraint also satisfies the PPN coditions 

where a2 = O. The amplitude of isocurvature perturbation modes is comparable 

to the adiabatic modes and also contributes to the same order for the anisotropic 

stress. However, it can be the dominant results when K, > O. 

4.2.3 Vector perturbations 

There are three transverse vector perturbation, Vi , Pi and Si. We have two con­

straints from the equation of motion of Si and the components (i j) of Einstein 

field equation. Thus this leaves only one dynamical transverse vector field in which 

its quadratic Lagrangian can be expressed as 

(4.35) 

where ~i = a Vi and 

(4.36) 

In order to avoid the instabilities, the vector perturbations need to satisfy the 

conditions 

(4.37) 

The corresponding equation of motion for the above Lagrangian can be written in 

the term of original variable, Vi = ~d a, as 

(4.38) 

It is shown explicitly in [113] that this equation is the same expression with the 

equation of the longitudinal vector, C. Thus the transverse vector is proportional 

to the rether velocity perturbation since Vi = c-;2f)iC at the supper-horizon scale. 

The evolution of the transverse vector will behave like the ret her velocity pertur­

bation and its amplitude relates to oN as V ex: V ex: a~oN = ~oN. Considering 
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the case aA = -f314 where bN is constant at the supper-horizon scale, we observe 

that V will decay since a' increases during inflationary period. For the de-Sitter 

space, the vector perturbation will decay exponentially. This argument leads to 

the vanishing of the vector perturbations as suggested in [28]. However, after in­

flation, the universe decelerates and the vector perturbations grow consequently. 

Due to the strong relation between bN and v, the estimated amplitude of the 

vector perturbations at the time of horizon reentry can roughly written as 

(
E) 1/2 (E) 1/2 V"" - v"" - bN 

f314 f314 ' 
(4.39) 

where amplitude of the velocity field v is of order bN at horizon crossing during 

inflation. If f314 is small enough comparing to E, it will affect the angular power 

spectrum of CMB anisotropy. From the calculation in [113], the estimated value 

of the CMB power spectrum can be written as 

CV "" (f3f3) 1/2 Ch "" E (f3f3) 1/2 C( 
I f3 I f3 I . 

14 14 
( 4.40) 

From the observational data [98], the contribution of the vector perturbations to 

the temperature anisotropy must be sub-dominant comparing to the scalar per­

turbations. Thus this requirement places the constraint on the ret her parameters, 

( 4.41) 

Notice that this vector source of the perturbations will affect the polarization on 

the temperature anisotropy. This issue is very interesting for further investiga­

tions. In the last of this chapter, we will end with the summary of the constraints 

on the rether parameters by using cosmological phenomena and the theoretical 

constraints. The results are shown in Table IV.I. 
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Condition Constraint 

Solution of Einstein's equations CYA >-2 

Stability of Tensors f313 < 1 

Stability of Scalars o < f314 :s; 2, 0 < f3123 

Stability of Vectors 2f31(1 + (313) 2:: -N3 

Anisotropic stress f313 ;S 1 

Non-growing scalar isocurvature modes CYA :s; -f314 

Sub dominant contribution of vectors to CMB N3 < E
2 1f3141 

Table IV.I: Summary of the theoretical and phenomenological conditions on the 

parameters of rether theories. 



Chapter V 

EFFECTS OF SPACE-LIKE .!ETHER FIELD 

ON COSMOLOGICAL MODELS 

The presence of space-like rether field in cosmological models with stan­

dard (3+ 1 )-dimensional spacetime would destroy isotropy of the three-dimensional 

space, i.e, breaks 80(3) rotational symmetry subgroup of Lorentz symmetry. Ro­

tational invariance is a well-established feature of low-energy physics. Violations 

of this symmetry must be extremely small nowadays. However, they could have 

been much larger in earlier epochs, for example, during the inflationary era. In 

order to investigate the consequences of a small breaking of rotational invariance 

from the early universe, the authors in [38] assume the existence of a space-like 

rether field that picks out a preferred direction during inflation period. They also 

study the effect of such breaking on CMB anisotropies. From the observational 

point of view, there is a phenomenon so called the Axis of Evil, an apparent align­

ment of the CMB multipoles on very large scales [128, 129], which may be related 

to breaking of rotational invariance in the early epoch. However, its statistical 

significance is hard to quantify and there is no clear explanation of this large-scale 

anomaly in terms of Lorentz violating theory. 

On the other hand, a presence of the space-like ret her field in the universe 

with compact extra-space dimensions is less problematic. One can assume that 

the vev of the rether field aligns only in the compact directions. This will leave the 

isometry group 80(1,3) of the non-compact dimensions unbroken and rotational 

invariance of low-energy physics is well preserved. Moreover, the rether field has 

unexpected behavior that can help to stabilize the extra-dimensional space. This 

behavior was first pointed out in [108] for 5-dimensional spacetime. There is a 

suggestion that the interplay between the rether field and the dynamical moduli 

field, describing size of extra dimensions may shed some light on the deep and 

previously unknown connection between the dimensionality of spacetime and the 

violation of Lorentz symmetry. Perhaps nature allows us to observe only the large 

three-dimensional space that preserves Lorentz symmetry but conceals the Lorentz 
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violating directions in the compact space. 

In this chapter, we will follow the discussion in [108] by consider five­

dimensional cosmological model with one compact extra dimension. Casimir en­

ergy from various field fluctuations in compact extra dimensions could play a 

crucial role of dark energy (a cosmological constant) and the potential for stabi­

lizing the size of the extra dimensions. In the first part of this chapter, we review 

the Casimir dark energy model [107]. Then we go on to consider the effects of 

the space-like rether field on this model. Note that, although the mechanism that 

we consider in this chapter involves the potential from the Casimir energy, the 

behavior of the ret her field is totally independent from the potential. Hence, this 

rether stabilization mechanism can apply to other types of potential. 

5.1 Casimir dark energy (CDE) models 

Casimir effect was originally predicted by Casimir in 1948 [130]. He considered 

electromegnetic vacuum between two conducting plates. In quantum field theory, 

vacuum states contain the virtual particles which are in a continuous state of fluc­

tuations. Casimir realized that the boundary condition is imposed to the system 

by the conducting plates. This causes momentum of the virtual particles to be 

discrete. Only those virtual particles that form standing wave between conducting 

plates are allowed. The energy density of this vacuum fluctuation decreases as the 

plates are moved closer. This implies that there is a small attractive force between 

the two plates. The Casimir force was first measured in 1958 by Sparnaay but with 

large experimental errors [131]. The more accurate measurement was performed 

by Lamoreaux in 1997 [132] . 

In theory with the compact extra dimensions, all fields satisfy the periodic 

boundary condition in compact directions. We will see that the Casimir energy 

from various field fluctuations in the compact directions can play the role of dark 

energy [107]. Moreover, it provides a mechanism to stabilize the extra dimension 

[109]. 

5.1.1 Casimir energy with an extra dimension 

We begin with considering the Casimir energy of bosonic degrees of freedom. It 

is convenient to consider a massive scalar field since the other bosonic degrees of 
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freedom give rise the same expression [110, 111]. It is instructive to consider the 

model with one extra dimension compactified on a circle, Sl. In this 5-dimensional 

spacetime, the metric can be written as 

(5.1) 

where a(t) is the scale factor, b(t) characterizes the radius of the extra dimension 

and the coordinates on Sl are 0 ~ y ~ 27r. Note that we allow the time-dependence 

of the radius for generality and compatibility with FRW metric. For a massive 

scalar field, the equation of motion is the Klein-Gordon equation, 

(5.2) 

The Latin indices, a, b, c, ... are five spacetime indices running as {O, 1,2,3, 4}. 

The scalar field is set to satisfy the periodic boundary condition in the compact 

direction, ¢(y = 0) = ¢(y = 27r). Its associated dispersion relation in the sub­

horizon limit can be written as 

2 

klJ.k _ 2 n 
- IJ. - m +-,;' (5.3) 

where, n E Z is the momentum number in the compact direction. Then the total 

vacuum energy contributing to Casimir energy can be written as 

E - 1 ( L ) 3 J 3 ~ V 2 2 n
2 

cas - 2 27r d k L...- k + m + b2 ' 
n 

(5.4) 

where V = L3 be the spatial volume of non-compact space. By using the identity 

J J(k)dnk = 27rn/2/f(n/2) J kn- 1 J(k)dk, we obtain 

(5.5) 

(5.6) 

where we define 8 = -(3 + 1)/2. Let us consider the massless case, m = O. By 

using the zeta function regularization procedure, the Casimir energy density per 

one bosonic degree of freedom for massless scalar field can be written as 

Pmassless = Ecas = f( -28 + 1) 22sb2s-17r3S-1((_2 + 1) 
cas V27rb r(-1/2) 8 , 

(5.7) 

where ( denotes the zeta function and we take 27rb to be the volume of compact 

dimension. For the massive case, we apply the Chowla-Selberg zeta function [111] 
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in our regularization procedure and obtain the Casimir energy density per one 

degree of freedom for the massive scalar field: 

00 

p:.~ssive = _2(27rb)2S-1(mb)(1-2s)/2 L n(2s-1)/2 K(1 - 2s)/2(27rbmn) , (5.8) 
n=l 

where Kv(x) is the modified Bessel function . The energy density of these two 

types of the scalar field depends only on the dynamical variable, b(t). The pre­

factor and the summation of the modified Bessel function indicate that the energy 

density of the bosonic part is negative. In order to get the positive finite minimum 

value of the total Casimir energy, one has to add the positive contributions into 

the system. It is found that the fermionic degrees of freedom will contribute to the 

total Casimir energy density with the same expression except for an extra minus 

sign. Thus the total Casimir energy can be written as 

P 
= N. pmassless + N pmassl.ess + N pmassive + N pmassive 

Cas b boson f f ermlon b boson f f ermlon' (5.9) 

where Nb (Nf ) and Nb (Nf ) are the numbers of bosonic (fermionic) degrees of 

freedom for massless and massive fields respectively. The qualitative nature of the 

total Casimir energy density depends on the relative magnitude of N b, N f , Nb and 

Nf · 

Phenomenologically, we take the numbers of all degrees of freedom as, Nb = 

5, Nb = 8, N f = 8, N f = 8 [108]. The massless bosonic degrees of freedom come 

from the massless graviton in (1 + d)-dimensional spacetime, N = (d-2)(d+1}/2. 

The massive bosonic degrees of freedom can interpret as the 8 massive scalar fields. 

The contribution from the other bosons such as electromagnetic vector field can 

be ignored by the phenomenological notion that they do not obey the boundary 

conditions we impose. For the fermionic contributions, the number of degrees of 

freedom is chosen in order to get the positive minimum of the Casimir energy 

density. 

The positive minimum value of the Casimir energy density is obtained from 

not only by choosing the number of degrees of freedom but also from by choosing 

the mass ratio>' = mb/mf ' where mb is the scalar mass and mf is the Dirac fermion 

mass. It is found that the mass ratio must satisfy the condition>. 2: 0.516. In 

Figure 5.1, we show the plot of the Casimir energy density as a function of b. 

By setting>. = 0.516, the positive minimum of the energy density is obtained. 

This minimum of the energy density allows the possibility to stabilize the extra 

dimension. The stabilized radius of the extra dimension corresponds to the radius 

at the minimum of the potential, b = bm in . bmin also relates to the mass of the 
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Figure 5.1: This figure shows PCas as a function of b which has the local minimum 

at b = 0.0146. The blue long-dashed line denotes the contributions from fermions. 

The green short-dashed line denotes the contributions from bosons. The black 

solid line denotes the total contribution. 

fermion and we will calculate this mass in the next subsection. Note that there 

are no unique choices for choosing the numbers of degrees of freedom, for example, 

the choice in reference [107]. 

5.1.2 Dynamics of Casimir dark energy 

In order to obtain the dynamics of the Casimir dark energy, we add the energy 

momentum tensor contributed from the Casimir effect into the Einstein field equa­

tion. The general form of the Casimir energy momentum tensor which is compat­

ible with the metric in the equation (5.1) can be written as [107] 

-PCas 0 0 0 0 

0 P a 0 0 0 
TIJ. 

v(Cas) 0 0 Pa 0 0 (5.10) 

0 0 0 P a 0 

0 0 0 0 Pb 
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where Pa and Pb are the Casimir pressure in the non-compacted and compacted 

dimension respectively. These pressures can be defined as 

Pa = - B~a (pcas Va) , (5.11) 

Pb - B~ (pcas Vb) , (5.12) 

where Va ex ad- n and Vb ex bn. Here, d is the numbers of all spatial dimensions and 

n is the numbers of the extra dimensions and d = 4, n = 1 for this model. These 

definitions automatically yield the cosmological constant behavior in 4-dimensional 

spacetime while Pa = - PCas and Pb = - PCas - bBbPcas. The conservation equation 

of the energy momentum tensor reads 

(5.13) 

where Ha = ala and Hb = bib. Substituting the energy momentum tensor into 

the Einstein field equation, one obtains 

3H~ + 3HaHb M; 3pCas , 
a 

3- - 3HaHb - _M;3(PCas + Pb), 
a 
b 

3[; + 9HaHb M; 3(PCas + 2Pb - 3Pa). 

(5.14) 

(5.15) 

(5.16) 

The behavior of the scale factor and the radius of the extra dimension are shown in 

Figure 5.2. From this figure , we will see that the extra dimension can be stabilized 

and the universe accelerately expands. The Casimir energy can be interpreted as 

the dark energy and also provides the mechanism to stabilize extra dimension. 

0.018,--------------, 
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0.004 

a(t) 0.003 

0.002 

0.001 

0.000 
2 3 4 5 6 0 2 3 4 5 6 

O.012..,..o-----o---,,...----e---....,..---:----,.J 

t 

Figure 5.2: This figure shows the behavior of the radius of the extra dimension 

(left panel) and the scale factor (right panel). 
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5.1.3 Dynamics in the radion picture 

Since the observed universe is in 4-dimensional spacetime, we have to investigate 

this model by using the 4-dimensional effective field theory. The 4-dimensional 

action will be obtained by using the KK-dimensional reduction. Since we have 

the energy momentum tensor for the Casimir energy source, the corresponding 

Lagrangian density for the Casimir source must be formulated. Since the energy 

density and pressure of the Casimir source depend only on b, it is useful to write 

down the Lagrangian density as a function of b. In the spirit of KK-dimensional 

reduction, the degree of freedom of the radius b of the fifth direction will correspond 

to a scalar field, the so-called radian field, in 4-dimensional spacetime. Therefore, 

it is convenient to write down the Lagrangian density as 5-dimensional potential 

term. Thus the action of this model can be written as 

(5.17) 

V(b) = Peas denotes the potential term in 5-dimensional spacetime. To obtain 

the 4-dimensional action, let us start with KK-dimensional reduction of the above 

action. In order to make the resulting effective action in the canonical form, we ap­

ply Weyl rescaling gp.vE = ngp.v (J-L, 1I = 1, .. . , 3) and define the new time variable 

dtE = n 1
/
2dt, aE(tE) = vTIa(t); 0, = 27rbM;/M;l. Note that M. is the Planck 

mass in 5-dimensional spacetime defined via the relation M;l = (27rbmin)M;. Thus 

0, = 1 at b = bmin . The effective action takes the form 

S4D = J d4XV-9E(~;1 RE - ~g~Vp.WVvW - U(W)), (5.18) 

where U(W) = 27rbn-2V(b) is the 4-dimensional effective potential. Here we define 

the radion field W = ~v'3ln(b/bmin). This is the usual action for a scalar field 

with specific potential. As we have mentioned in the previous chapter, the accel-

erating universe can be obtained when the scalar field is sitting at the minimum of 

its potential. The radion field corresponding to radius of the extra dimension may 

oscillate around the minimum of the potential during matter and radiation domi­

nated period and settle at the minimum of the potential, then the universe reaches 

the accelerating phase at the present time. By varying the above 4-dimensional 

action with respect to the metric, we obtain 

1 ( 1 (dW)2) 
3M2 U(w) + 2 dt ' 

pl E 

au 
aw' 

(5.19) 

(5.20) 
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where HE is the Hubble parameter in the Einstein frame defined as HE = ...!...~dat • 
aE E 

Equation (5.19) is the constraint equation and equation (5.20) is the real dynamical 

equation of motion which acts as the simple harmonic equation with friction term. 

The gradient of the potential on the right-hand side represents the force acting 

on the radion. In other words, it is the slope of the potential characterizing the 

oscillation behavior of the redion . 
. 

From the equation (5.8), the energy density behaves as P ex: m5 while b ex: 

m-l. Thus the fermion mass is related to the P~!~eTve as 

(4) ,..., ( -3)4 _ (4) _ (5) _ (mf)4 ( ) Pobs"'" 2.3 x 10 eV - Pmin - 21fbminPmin - 21f 0.0146 x 23.4 40 ,5.21 

where 23.4 is the minimum value of the potential at b = 0.0146 and the number 

40 comes from the setting of m f = 40 in the numerical simulation. This relation 

gives the fermion mass mf rv 7.6 X 10-2 eV and then leads to the radius of 

the extra dimension bmin = 0.0146 x 40/mf rv 7.7 eV-1 = 1.5 x 10-6 m. This 

value corresponds to the quantum gravity scale in 5-dimensional spacetime M. = 
(M;d21fbmin)1/3 rv 1.4 X 109 GeV. All of these behaviors and the quantities in 

the model suggest us that this is the proper model for dark energy candidates. 

However, there are some problems in this model. We will discuss in the next 

subsection. 

5.1.4 Problems of the CDE models 

The crucial problem of CDE models is the destabilization of the extra dimension 

when matter is taken into account. In the previous subsection, we assume that 

the universe is filled only by the Casimir energy. The Casimir energy can inter­

pret as dark energy and provides the mechanism to stabilize the extra dimension. 

However, the real universe does not contain only dark energy but also matter and 

radiation. Unfortunately, it is found that the extra dimension cannot be stabilized 

when matter is taken into account. To see this behavior, we start with adding the 

matter content into the model, 

S = S5D + .I d5x~.cmatteT' (5.22) 
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By varying this action with respect to the metric, the equations of motion can be 

written as 

3H~ + 3HaHb 
ii 

3- - 3HaHb 
a 
b 

3b + 9HaHb 

M; 3{PCas + Pm), 

-M; 3(Pcas + Pm + Pb) , 

M;3 (pcas + Pm + 2Pb - 3Pa) . 

(5.23) 

(5.24) 

(5.25) 

Pm is the energy density of the non-relativistic matter in 5-dimensional spacetime. 

This matter includes baryon, electron and dark matter. Since this matter repre-
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Figure 5.3: This figure shows the behavior of the radius of the extra dimension 

(left panel) and the scale factor (right panel) when the non-relativistic matter is 

taken into account. 

sents dust in the 5-dimensional spacetime, it will evolve as Pm ex 1/{a327rb). At 

the present time, the value of this energy density can be related to the energy 

density of the dark energy as PmO >=::: Pcaso2.8/7.2. By using a = {I + Z) - l, Pm can 

be expressed as 

2.8 (bmin ) { )3 Pm = 7.2Pmin -b- 1 + z , (5.26) 

where z is the red-shift. By using the numerical simulation, the evolution of the 

radius of the extra dimension and the scale factor can be shown in Figure 5.3. This 

figure shows explicitly that the extra dimension cannot be stabilized and the scale 

factor is not accelerated. In order to get more insight for this problem, we need 

to go to the radion picture in 4-dimensional spacetime. We use the conservation 

of the energy-momentum tensor in four and five dimensions to demonstrate that 

the radion field will be driven toward the minimum of the 4-dimensional effective 

potential as 

pi Pm pm bmin M2 (4) ( )2 
Ueff = UCas + O,M! 4 = UCas + 4 -b- , (5.27) 
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where UCas - 27f(b~in/b)Pcas . The matter density in 4-dimensional spacetime 

p~) = Pm(27fb) = ~ :~Pmin (27fbmin ) (1 + Z)3 is a function of (1 + z)3 and does not 

depend on the radius of the extra dimension b. 
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Figure 5.4: This is the plot of the effective potential UeJf('J!) at red shift z = 0.0, 

7.0,9.0, 11.0, 13.0 in the unit of (mf/40)4 and), = 0.516. The local minimum of 

UeJf(\If) no longer exists when the red-shift increases. 

The effective potential Ue f f with the various red-shift is illustrated in Figure 

5.4. At z = 0, the presence of non-relativistic matter will lift up the minimum 

of Uef/ slightly. However, at early time, high red-shift, the 1/b2-term in equation 

(5.27) becomes dominant and destroys the existence of the minimum. This effect 

will drive b to expand even though there is a local minimum today since the radion 

field \If has already rolled pass the minimum and cannot get back to the stable 

point. Notice that this effect is the same if matter is confined to the brane. This 

situation can be shown by adding a 4-dimensional term into the 5-dimensional 

action (5.17) 

S = S 5D + J d4xJ - g(4)Cmatter' (5.28) 

There is no dimension reduction in the matter term but the conformal transfor­

mation rescale the matter energy density as p~) /0,2. Thus, the total effective 

potential is the same as in equation (5.27). 

5.2 CDE models with the rether field 

In this section, we propose the way to solve the destabilization of the extra di­

mension in the CDE model by taking into account the simple form of ret her fields 
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[108]. In the first part, the interactions of ::ether field with other fields are discussed 

by following references [36, 35]. The simple interactions will modify the disper­

sion relation of the ordinary particles and lead to the modification of the Casimir 

energy. However, the main contribution of the ::ether effects is the modification 

of the dynamical evolution. We demonstrate these effects in both numerical and 

qualitative analysis in the later part of this section. 

5.2.1 The ret her field and its interactions 

The interactions between the ret her field and the other fields are considered in 

this subsection. It is found that only non-minimally gravitational interaction can 

directly affect the dynamical evolution of the universe. The other interactions 

affect only on the Casimir energy. Phenomenologically, we can assume that the 

rether field does not interact with other fields except graviton field. For this 

assumption, the stabilization mechanism is still viable due to the minor effect of 

the modification. However, the possible simple interactions will be investigated in 

this section for generality. 

We begin an investigation with choosing the simple form of the ::ether field. It 

is instructive to consider only the Maxwell-type kinetic term of the ::ether field due 

to the non-complicated calculation. In the sub-horizon scale, corresponding to the 

Minkowsky spacetime, this type of the rether field can avoid the instability issue 

[39]. However, it encounters the instability at the horizon crossing scale [40, 41]. 

For the particle interactions, it is convenient to consider only in sub-horizon scale. 

By setting {31 = 1/2, {33 = -1/2, {32 = {34 = 0 and adding the interaction 

terms, the action of this system can be written as 

s = J d5X~( - ~Vabvab - -\(AaAa - v2) + L£i)' 
~ 

(5.29) 

where Vab = V'aAb - V'bAa· The terms in the summation of equation (5.29), £i, 
represent various interaction terms of the ret her field with other fields that we will 

discuss later. If we neglect the interaction terms for the moment, the equation of 

motion for the rether field can be written as 

V' a V ab + V -
2 A b Ac V' d v cd = O. (5.30) 

Any solutions with Vab = 0 will solve the equation of motion (5.30). In order 

to preserve Lorentz invariance in the 4-dimensional non-compact spacetime, we 
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choose the background solution such that the rether is a space-like vector field 

which has non-vanishing components along the extra fifth dimension, 

Aa = (0,0,0,0, v). (5.31) 

We now consider the effect of the interaction terms Ci in (5.29) which can 

include the terms corresponding to the rether field coupled to scalars, vectors, 

fermions and gravity. Let us begin with the interaction effect of the rether with a 

real massive scalar field ¢. By imposing Z2 symmetry, Aa ---t _Aa, the Lagrangian 

for the scalar field with the lowest-order coupling is 

1 2 1 2 2 Q~ Aa Ab 
C~ = -2(8a¢) - 2m ¢ - 2--:;;;:-8a¢8b¢, (5.32) 

where Q~ is the dimensionless coupling constant characterized the strength of the 

scalar interaction. We insert the fraction v2 into this term to normalize the rether 

field. In order to provide all effects in the system, including ret her fields, scalar 

fields and their interaction, to be in the same order, the coupling constant should 

be order of unity. The corresponding equation bf motion for the scalar field takes 

the form 

(5.33) 

Expanding the scalar field in Fourier modes ¢ ex e ikaxa, one obtains the modified 

dispersion relation, 

(5.34) 

Note that the above interaction term is lowest order when the Z2 symmetry is 

imposed. However, if we ignore to impose this symmetry, the leading term will 

also vanish by using the integration by part [36]. 

Next we consider the fermion terms. By imposing the Z2 symmetry, the 

Lagrangian for a fermionic field with the leading interaction term can be written 

as 

(5.35) 

where Q.,p is the dimensionless coupling constant of the fermions. By using the 

same manner with the scalar field case, the corresponding modification of the 

dispersion relation for the fermionic case can be written as 

(5.36) 
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The form of this equation is different from the analogous equation in the bosonic 

case: i.e. the second term on the right-hand side increases by the factor (1 + 0:'~)2. 
However, if we do not impose the Z2 symmetry, it is found that the leading terms 

are expressed as 

and the corresponding dispersion relations for each term are 

m
2 + (v + k5?' 

m 2 
- 2mO:',pk5 + (1 + O:'~)k~. 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

For the vector field, we consider an Abelian gauge field Ba , with the strength 

tensor Fab = \1 aBb - \1 bBa. The Lagrangian with leading interaction term is 

1 ab O:'~ Aa Ab cd 
CB = -"4 FabF - 2~g FacFbd· (5.41) 

By varying this Lagrangian with respect to the field Ba , one obtains two indepen­

dent equations corresponding to the 5 and J.L components. After we choose gauge 

choice as B5 = 0, these two equations can be expressed as 

k5kJ.Lf.J.L - 0, 

(kJ.LkJ.L + (1 + O:'~)k~)f.1I - kllkJ.Lf.J.L - 0, 

(5.42) 

(5.43) 

where f.J.L is the polarization vector. These two equations can be decomposed into 

two modes. The first mode corresponding to k5 = 0 provides us the usual result for 

the photons. The other corresponding to kJ.Lf.J.L = 0 yields the dispersion relation 

(5.44) 

Finally, we consider the rether field which couples non-minimally to gravity. 

This can be described by the action 

Sg = J d5X~( ~! R+ CigAaAbRab) , (5.45) 

where Cig is the dimensionless graviton coupling constant and M. is the Planck 

mass in 5 dimensional spacetime. By varying this action with respect to the metric 

tensor, we obtain the equation of motion Gab = M;3Tab(g) with 

Tab(g) = Cig ( RcdACAdgab + \1c\1a(AbAC) + \1b\1c(AaAC) 

\1c\1d(ACAd)gab - \1c\1
C(AaAb)) , (5.46) 
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Let us consider a small fluctuation of the metric 

gab = 'TJab + hab · (5.47) 

Following the explanation in the gauge field case, we have freedom to choose the 

gauge choice. Here the gauge hJ1.5 = 0 is chosen [36]. The metric perturbations 

can be decomposed into 

(5.48) 

where TJJ1.l/hJ1.1/ = 0, hJ1.1/ presents the propagating modes of the gravitational wave, 

<I> denotes the Newtonian gravitational field and ~ is a component associated with 

the radion field describing the mode of the extra dimension. By setting <I> = 0 = ~, 

and considering transverse waves, a>"h>..J1. = 0, the gravitational equation of motion 

becomes 

(5.49) 

This equation gives the modified dispersion relation for graviton 

(5.50) 

5.2.2 Casimir energy with the ret her field 

Casimir energy can be modified by the effect of the interactions of the rether 

field with various fields through the dispersion relations. In the previous section, 

we have shown the modified dispersion relation of various fields. In cosmological 

background, the wave number in the extra direction can be written as 

n2 

ki = b2 ' (5.51) 

Thus the dispersion relation for scalar field in equation (5.3) will be modified as 

2 

kJ1.k _ 2 ( 2) n - J1. - m + 1 + at/> b2 ' (5.52) 

Then the Casimir energy in (5.4) and (5.5) is also modified as 

2 
k2 2 ( 2) n + m + 1 + a<l> b2 ' 

2 

k2 2 ( 2) n + m + 1 + at/> b2 ' (5.53) 
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It is just replacing ~ with (1 + a~) ~. In order to regularize the Casimir energy 

in usual way, we rescale k and m as k2 = {I + a~)k'2 and m2 = {I + a~)m'2 . Thus 

the Casimir energy will be rewritten as 

(1+ a 2)2 L 32 3/ 2 j. J 2 
__ ...:....¢ _ (_) 7r k,2dk' ~ k,2 + mf2 +::.. . (5.54) 

2 27r r(3/2) ~ b2 
n 

Since the integrand of k' is the same as the usual one, we can evaluate in the 

same manner and it leaves the difference only in the pre-factor. Thus we can 

immediately write down the Casimir energy density per one bosonic degree of 

freedom with the rether coupling a¢ as 

Pmassless ('" ) boson ,-,¢ -

Pmassive(a ) 
boson ¢ 

r{ -28 + 1) 22sb2s- 17r3s- 1 
r(-1/2) (1+a~)s ((-28+1) , (5.55) 

2{27rb )2s-1 ( mb ) (1-;28) ~ (2s-1}/2 K ( 27rbmn ) 
- (1 + a 2) s ~ ~ n (1-2s}/2 ~' 

¢ V 1 + a¢ n=l V 1 + a¢ 

(5.56) 

for the contributions from massless and massive scalar fields respectively. We can 

see that the rether effects are just rescaling the Casimir energy and scalar mass 

by factors (1 + a~)2 and (1 + a~) - 1 /2 respectively. In the other bosonic particles, 

we can evaluate in the same manner due to the same modification of dispersion 

relations. We just replace the coupling constant and their mass into the above 

expression and we do not show them here. 

For the fermion , it can be classified into three cases depending on how the 

modified dispersion relations are. It is not easy to regularize the energy when Z2 

symmetry is not imposed since we cannot rescale the mass m and the wave number 

k in the usual way as done in the scalar field case. We leave this investigation in 

further works. In this model , we will focus on the modification of the dynamical 

behavior in order to avoid the destabilization of the extra dimension. Thus we 

can leave the complicated regularization by imposing that the rether field does not 

interact with other fields except graviton which always minimally interacts with 

all fields. Thus t he Casimir energy will be the same in this case. Furthermore, 

we can compactify the extra dimension by imposing the Z2 symmetry on the fifth 

direction. In this case, the regularization of Casimir energy can be evaluated in 

the same manner with the scalar field case by inserting minus sign and replacing 

mb ~ ml, (1 + a~) ~ (1 + a~)2 . Therefore, the Casimir energy densities per one 
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degree of freedom of massless and massive fermion can be written respectively as 

P
massl.ess (a ) 
/ermum t/J 

P
massive (a ) 
ferm,OTI t/J 

p 

r( -28 + 1) 22sb2s-17f3s-1 

- r( - 1/2) (1 + a~)2S ((-28 + I), (5.57) 

2(27fb)2S-1 ( mfb ) (1-2s)/2 ~ (2s-1)/2 K (27fbmfn) 
(1 + a 2 )2s 1 + a 2 L n (1-2s)/2 1 + a 2 . 

t/J t/J n=l t/J 
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Figure 5.5: Interactions between bosons/fermions and ret her field can affect the 

Casimir energy. In this figure , we fix the mass ratio :x = 0.516. The Casimir 

energy density P is presented in the y-axis in units of (mJi40)5. The solid, long 

dashed and short dashed line denote the Casimir energy density when the coupling 

constants are (at/> , at/J) = (0.0,0.0), (1.0,0.644), and (1.5,0.897) respectively. The 

value of bmin and Pmin increase as we increase the value of the coupling constants. 

The shape of the potential well gets shallower as the coupling increases. We set 

ag = at/> for simplicity. 

The total Casimir energy density can be rewritten as 

where the numbers of degrees of freedom can be chosen in order to get the existence 

of the local minimum as we have done in the usual case. Note that the energy 

densities for each field depend on the coupling constant. Thus we have to specify 

this coupling by hand or neglect all of them for non-interacting case. In order 

to obtain how the interactions affect the Casimir energy density, we plot the 

energy density with various coupling constants as shown in Figure 5.5. As we have 

mentioned, the energy density of scalar fields modify as PCas(e/ f) = (1 + a;)2 PCas. 

This modification yields the result that Pmin increases when the coupling constant 
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increases. In the same strategy, mass of scalar field will be modified as ms(eJ f) = 

(1 +a~)-1/2ms. Thus the mass will be decreased as increasing the coupling constant 

and yields increasing of bm in as shown in Figure 5.5. 

5.2.3 Dynamics of CDE with ret her fields 

The dynamical behavior of the universe is analyzed by using the Einstein field 

equation. In order to take into account the effects of the rether field, we add the 

contributions from energy momentum tensor of the ret her field and the effective 

gravity coupling in equation (5.46) into the Einstein field equation. Thus the total 

energy momentum tensor will be expressed as 

Tab(total) = Tab( Cas) + Tab(A) + Tab(g) + Tab(m)' (5.60) 

The energy momentum tensor of the rether field with Maxwell-kinetic term can 

be expressed as 

Tab(A) = VacVbc - ~VcdVcdgab + v-2AaAbAcY'dVcd. (5.61) 

For the metric in equation (5.1), the solution of the rether field can be written as 

A
a 

= (0,0, 0,0, b~))' (5.62) 

Substituting this solution into equation (5.61), one obtains the non-zero compo­

nents of the rether energy momentum tensor 

(5.63) 

From this expression, one can see that the energy density of the rether field is 

proportional to the time-derivative of b, PA ex: b. We expect that this contribution 

will slow down the radion field at the matter-dominated period. In other words, 

it slows down the radion field before the local minimum of the potential will exist. 

By adding all contents, the dynamical equations in (5.23)-(5.25) can be rewritten 

as 

3H; +3HaHb 

a 
3- - 3HaHb 

a 
b 3,; + 9HaHb 

-3 1 2 2 
M* (PCas + Pm + 2V Hb)' (5.64) 

_M;3 (pcas + Pm + Pb - (1 - 2ag)v2 D), (5.65) 

M;3 (pcas + Pm + 2Pb - 3Pa - 2(1 - 2ag)v2 D) (5.66) 
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Figure 5.6: These graphs illustrate cosmological dynamics of the universe which 

includes non-relativistic matter content and the rether field in the extra dimension. 

Left: The scale factor a (upper) and the Hubble constant for the non-compact di­

mensions H a (lower) as the function of time. H a oscillates as the deceleration 

period of the universe and it settles down to the constant value when the uni­

verse enters a de Sitter phase. Right: The scale factor b (upper) and the Hubble 

constant for the compact extra dimension Hb (lower) as the function of time. Hb 

oscillates between positive and negative region before settles down to zero. The 

extra dimension is stabilized although non-relativistic matter is present. 
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We will follow the same step to characterize the evolution of the universe. 

The numerical simulation of the above coupling equations is illustrated in Figure 

5.6. From this simulation, it is found that the extra dimension can be stabilized 

while the scale factor is accelerated. The Hubble parameters of both extra di­

rection, Hb, and non-compact directions, Ha , are also shown in this figure. Note 

that we ignore all interactions in this simulation. In order to figure out the role 

of the ret her field explicitly, we also simulate the evolution of the radius, b, with 

various values of the ret her vev. This behavior is shown in Figure 5.7. Note that 

we exclude the matter content in this simulation to show the role of the rether 

field explicitly. From this figure, it is clear that the contribution from the ret her 

field can slow down the radion field. 
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Figure 5.7: The dynamics of the radius b(t) for the compact direction as a function 

of time with different values of parameter v. In the absence of ret her field v = 0, 

b(t) shows oscillation behavior around its critical value bmin before stabilizing at 

this value. Non-vanish value of v reduces the influence of Casimir force. As 

the value of v increases, the oscillation frequency and amplitude decrease. If the 

vev of the ret her field is large enough, for example v = 100, oscillation behavior 

disappears. The extra dimension evolves smoothly to its stable fixed point. The 

time variable t is presented in the unit of Hubble time t H. The time for stabilization 

to occur is around rv 6tH' The condition for stabilization of b is 6: ~ 10-5. 



69 

In the qualitative analysis, we consider the dynamics of the system by using 

the 4-dimensional effective field theory. For this proposal, we will investigate the 

system in the radion picture by considering the 5-dimensional action with the 

rether fields, 

(5.67) 

To see the role of the rether field explicitly, we omit the Lagrange multiplier, 

matter and gravity coupling terms in this consideration. Following in the same 

step, the 4-dimensional action is obtained by using the KK-dimensional reduction . . 

Therefore, the 4-dimensional action can be written as 

(5.68) 

where we define the dimensionless parameter Q2 = tt3. This action gives rise to . 
the following set of equations: 

1 ( 1 2 (dW)2) 
3M2 U(w) + 2(1 + Q) dt ' 

pi E 

1 au 
(1 + (2) aW· 

(5.69) 

(5.70) 

The ret her factor 1/(1 + (2) on the right-hand side of equation (5.70) reduces 

the influence of the potential gradient -au / aw. In other words, it reduces the 

force acting on the oscillator. As a consequence, it will slow down the oscillation 

frequency of W around the minimum of the potential U(w). If this factor is big 

enough, W will move down the potential at very slow speed since the friction term 

dominates. We can tune v such that there is enough time for the universe to create 

the minimum of Ueff(w) before the radion rolls pass it. By this mechanism, the 

stability of the extra dimension can restore. 

Let us compare the stabilization time tstab of the moduli field with the age 

of the universe. The age of the universe in our model is 

1 11 
tage = - 3 

Hao 0 xJDcasimir + Dmx 

dx 1.5376 '" 1 5376 
H 

"'. tH, 
aO 

(5.71) 

where we set DCasimir = 0.72 and Dm . 0.28. From Figure 5.6, the stabilization 

time tstab ~ 6tH. Then, tstab ~ 3.90tage is greater than the age of the universe. 

The constancy of the 4-dimensional gravitational constant up to very early epoch 

of the universe will post strong constraint on the size of the extra dimension. 

The oscillation behavior of the moduli field may contradict with astronomical 
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observations. In order to construct a more realistic cosmological model of this 

scenario, the extra dimension should reach its stable fixed point before the present 

time, i.e, tstab ;S tage which require fine tuning of many parameters. The new 

possible solution is that we assume very high value of v so that the oscillation 

of b has a very long period. The moduli will evolve smoothly with no oscillating 

behavior. We can choose the value of v such that the size of the extra dimension 

changes so slowly and it cannot alter the results of the standard evolution of the 

universe [108]. 

In this analysis we assume homogeneous and isotropic distribution of non­

relativistic matter. However, local matter distributions might perturb the radion 

and knock it over the minimum, causing the (local) catastrophic expansion of the 

fifth dimension. In [107], it was also noted that the minimum of the potential well 

is generally not deep enough to prevent the quantum tunneling of the radion. At 

this stage, it is not clear whether these two difficulties can be solved by the new 

mechanism. These aspects of instability in the presence of the rether are still open 

questions. 

We note that this is only a toy model since we restrict our attention on 5-

dimensional spacetime. It is useful to extend the consideration to the 6-dimensional 

spacetime because it is possible to solve the hierarchy problem. Moreover, in 

M1+3 x 1I'2 spacetime, there exists the true minimum in the shape moduli direc­

tion and the usual local minimum in the 5-dimensional spacetime becomes the 

saddle point [112] . 



Chapter VI 

DISCUSSIONS AND SUMMARIES 

In this thesis, we briefly reviewed the theories of Lorentz violation by fol­

lowing [3]. Such theories are classified into kinematic and dynamical approaches. 

The crucial idea and the consequent effects of the interesting models in' Lorentz 

violation theories, including modified dispersion relation, doubly special relativity, 

standard model extension and <ether models, are discussed. The rether models are 

examined in detail since they are directly relevant to the cosmological models. In 

order to realize the rether models, the consistency of the theoretical model and 

the constraints from the observational data are considered. It is found that the 

time-like <ether models are viable in some ranges of the <ether parameters [45] . For 

the space-like <ether models , it is not intensively investigated and the conclusive 

argument is only that the <ether models with Maxwell-like kinetic term are not 

stable [40, 41]. For the other types of the Lagrangian, the conclusive arguments for 

the instability issue have not been investigated yet. This issue is very interesting 

to be investigated in further works. 

The cosmological models are also reviewed in this thesis in order to be the 

basic knowledge for investigating the cosmological effects of the <ether field. Ac­

cording to the standard evolution of the universe, there are two periods that the 

universe accelerately expands, the very early and the present eras. The success­

ful theoretical models that can properly explain the accelerating universe at the 

early era are inflationary models. The simple dynamics of the inflationary mod­

els is provided by the slow-rolling of a scalar field on the flat potential. The 

crucial characteristic of the inflationary models is that the scale-invariant primor­

dial power spectra are obtained naturally. These power spectra correspond to 

the constant amplitude of the perturbations. These perturbations are the initial 

cosmological perturbations to seed of the structure we observe nowadays. Since 

inflationary models take place at the very early time, they intend to encode the 

signal of the quantum gravity theories. It is useful to consider the <ether effects 

in these models and we discuss this topic in Chapter IV. 
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The late-time acceleration of the universe is also reviewed in this thesis. Dark 

energy is adopted as an explanation for the late-time acceleration. We discuss the 

simple and useful models of dark energy in both fluid and gravitational approach. 

Although dark energy models share the same behavior with inflationary models, 

providing the accelerating universe, the crucial characteristics are different. In the 

inflationary models, it needs to end the accelerating expansion of the universe but 

it does not need for the late-time acceleration. Moreover, the dark energy must 

track the standard evolution of the universe in which there are the matter and 

radiation dominant periods before the present time. It is not easy to naturally 

obtain this behavior in dark energy models. The very simple and useful model of 

dark energy is cosmological constant model. It properly fits to the observational 

data but it encounters the cosmological constant problem and coincidence prob­

lem. The simple single scalar field dark energy models called quintessence models 

are proposed to eliminate these problems but they do not naturally provide the 

standard evolution of the universe. Alternative ways to obtain the late-time accel­

eration come from the modified gravity approach. However, the viable theoretical 

models do not provide the natural description of the local gravity. Phenomeno­

logically, it is interesting to add the effects of the ret her field into the dark energy 

models. 

In Chapter IV, the effects of the time-like ret her field on inflationary mod­

els are discussed. The inflationary models including the time-like vector field are 

intensively investigated due to the fact that the observations suggest the isotropic 

and homogeneous universe in spatial dimensions. The effects of the rether field 

on inflationary model are investigated in two approaches: interacting and non­

interacting approaches. We briefly summarize the results of the interacting ap­

proach by following [115, 117, 118J. It is found that the rether field can affect 

the dynamics of the inflaton field. The inflaton potential is not necessarily flat 

in some forms of the interaction terms. Moreover, the inflation can be reached 

even without inflaton potentials. We consider the non-interacting approach in de­

tails by following [28, 114, 116, 113J. The results of all investigations are slightly 

different . The main content of that chapter follows the careful interpretations 

and analysis in [113J. It is found that the background evolution of the universe 

is modified in such a way that the slow-roll parameters can be controlled by the 

rether parameters. The primordial power spectra of the adiabatic scalar modes 

and tensor modes are slightly modified. The significant effects of the ret her field 

are placed on the existence of the isocurvature perturbations and the vector modes 

of the perturbations. The phenomenological constraints on the rether parameters 
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are obtained in order to suppress and exclude the effects that the observation data 

does not suggest. The constraints of ret her parameters are summarized in Table 

IV.l. 

The effects of the space-like rether field are not intensively investigated due 

to the violation of rotational invariance. However, it is investigated as a toy 

model in order to figure out the signals of the statistical anisotropy in CMB power 

spectrum [38]. The kinetic term of this model contains only the Maxwell term 

and the accelerating universe is driven by the cosmological constant. However, 

the ret her field in this model encounters the theoretical inconsistency such as 

instabilities [31, 39, 40, 41]. 

In order to avoid the rotational symmetry violation in three spatial dimen­

sions, one can introduce the extra dimensions and sets the norm of the rether field 

in such extra dimensions. The theories of the extra dimensions are motivated from 

one of the candidates of quantum gravity theories such as string theory. Thus it 

is convenient to consider the effects of the rether field in the theoretical models 

with extra dimensions. One of the dark energy models with the extra dimensions 

is the Casimir dark energy models [107] . The accelerating universe is driven by 

cosmological constant which is interpreted as Casimir energy. The Casimir energy 

naturally emerges from this system since the extra dimensions are compactified 

with some boundary conditions. This interpretation of these models can solve 

the cosmological constant problem automatically. Moreover, it also provides the 

mechanism to stabilize the extra dimensions. However, the extra dimensions will 

be destabilized when the non-relativistic matter is taken into account. 

In Chapter V, we add the ret her field into the Casimir dark energy models 

in order to provide the stabilization mechanism of the extra dimension [108]. It 

is found that the rether field can play the role of the friction and slow down the 

radion field before it passes the minimum of the potential. In other words, The 

extra dimension can be stabilized when we take into account the effects of the 

rether field. In this investigation, we consider only the Casimir dark energy model 

in 5-dimensional spacetime. It is more useful if the 6-dimensional spacetime are 

examined since it is possible to solve the hierarchy problem. The observational 

constraints of the rether parameters on this model is very interesting since it lacks 

of investigations. We leave these interesting topics to further works. 
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