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Lorentz symmetry is a fundas symmetry in nature. It plays an impor-

tant role in both particle physics pic quantum scale and gravitation
theories in macroscopic ---4.,: weve try is expected to be broken
ua.ntum gravity. It is possible

that some consequent efleefS of Lorenta " cu.n be found in the low-energy
effective field theories. catigat the ntz violation effects gain a lot
of attention over the ps iw . d ma \ es to study these effects
have been developed e Lor b2 on. effects in cosmological models are

provided by the existgfice/of thie miier field 1 is thesis, an investigation of
the ether field effects igfdifided iuto fwalparts tlme-llke and space-like sther
field. For the time-like sther ”_ ,.-_’. anstraints for the sether parameters are

-F.a'\l'

imposed by several experimef; 5 The' sthi
the stability of the mndelsw s of ¢
tionary models are teviewed. The dyn ation is slightly modified and
the primordial pertutbations are sij T or the effects of space-like
ather field on the ccgmlog;: cal models, we consider Ea Maxwell-like zether field in
the Casimir dark energy m odels in 5—d1 ional spacetime. In the Casimir dark

energy mm:l ﬁﬁcﬂ? g qiﬂ &E’Iﬂ ﬁmensmn are destroyed
when nun-rela@ws ic matter is taken into account found that the sether field
can r ﬁ ion field will be
nweﬁmfﬁc {amﬂlm (iftgi , the radion

field ca.n settle down at the minimum of the potential and the stability is restored.

¢ parameters are also constrained by
s viable time-like sether field in infla-
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Chapter 1

INTRODUCTION

There are many symmel h‘“ L ture. Lorentz symmetry is a well-
known symmetry which »f"“"--.::” erizes 1 iant quantities under rotational

and boost transformationg"Loirent? sy ays a vital part of the special
relativity as well as a cruet®lfMitdamental Symmetry to construct quantum field
theory. The standard méte // S to. provide the descriptions of the

¢ based on the quantum field

_ orentz symmetry to be the
fundamental symmetryfc l r am in nature at quantum scale.
The successful descfiption Etgi 4 t A\Pre ided by Einstein's general
relativity. Lorentz s lu metry of freely falling frames
in Einstein’s general relativity--Theref 8 reasonable to promote that the
Lorentz By:nmetry is the aﬁyﬁ ::F- ptal,syn metry of nature.

elementary particles®ang
theory and special rglfti

Although Leie Shm etry of nature there are

reasonable motivations Lttt Lorentz symmetry is bro-
ken. The key moti il ions come from the theories’@f quantum gravity. Lorentz
symmetry provides a dousistent way to donstruct both model of particle physics at

v AL PRSP o

symmetry is & ‘symmetry of na.t‘.g.re at quantum gravity sca]e Furthermore, the

TR AR o o
umdﬁv ﬁg t the fth f Lore iolation effects.

Hence, this is one of the theoretical possibilities to probe the physics at quantum
gravity scale. Moreover, on the experimental side, the ability to observe physical
properties at high energy scale is rapidly improved in several ways including ter-
restrial, astrophysical and cosmological experiments. This is also the reason why
many researchers are interested in the Lorentz violation theories.

The theoretical models of Lorentz violation have been investigated inten-
sively in various subjects [3, 15]. Since the main goal of this thesis is to investigate
the effects of Lorentz violation in cosmological models, it is convenient to consider



only a class of the models which is relevant to cosmology. However, to be omni-
scient, we give a brief review of all interesting models of Lorentz violation in the
Chapter 11. For our convenience, we classify the Lorentz violation models into two
approaches, kinematic and dynamical approaches. For the kinematic approach,
we give key ideas and crucial results of two interesting models, i.e., modified dis-
persion relation and doubly special relativity [12, 13]. For other models of this
approach, interested readers can look at [3] and references therein.

For the dynamical approachwe discuss the modification of both the stan-

dard model of particle physics and Emgwiu’s general relativity. For the modified
standard model or standard model extbrnSion” the key concepts and important
results are briefly reviewsd™ i the cointextofeffertive field theory. However, this

model is not directly réle
cations of Lorentz
the ether models |
by including the d
on the effective field tlfog
and the sther field A
in Chapter I1.

he direct cosmological appli-
zin-eether models, also known as
seneral relativity are modified

(ixed werm. These models are based
: \x lds, the spacetime metric g,
N e sether field are characterized

In the sther models, is spontaneously broken by the vac-
num expectation value, 4. Due to the fixed norm condition,
the effects of thegime-like . pace-like mtherfiali fre significantly different.
Thus the study w” atotwo parts according to the
alignment of the st o field. Generally, there are fo it ovariant scalar terms which
are quadratic derivativé. AL hese kinetic tepms are characterized by 4 ther parame-

BT T o S

parameters bythsing both mnslsbgncy of the theoretmal models and observational

““IRIANN T URIANYA Y

Sthce the main goal of this thesis is to investigate the effects of the sther
field in cosmological models, it is convenient to discuss the interesting cosmological
models. In Chapter I1I, we provide a brief review of the evolution of the universe
and focus on two interesting periods, inflationary and late-time acceleration pe-
riod. The inflationary models provide a description of the extreme expansion of
the universe at the early era. The dynamics of inflation is simply provided by
slow-rolling of the scalar field, named inflaton field, on the flat potential. The
inflationary models satisfy the observational data which suggests the almost per-
fectly uniform universe. They also provide the primordial perturbations which



seed the structure we observe nowadays. We discuss this mechanism in the first
part of Chapter III. We devote the later part of Chapter III to dark energy models.
The dark energy models provide the late-time acceleration of the universe. These
models are classified into three groups, cosmological constant, fluid dark energy
models and gravitational dark energy models. The characteristics, the evolution of
the universe, the advantages and disadvantages of the basic simple models of dark
energy are discussed in detail and are briefly summarized for other complicated
models.

ather field are discussed separately.
violation effects due to the sther
able to investigate the effects
e information of the Planck

The effects of the time-lik
For the time-like case, we éxpeet t
field take place near the"Planck scile
of the sether field in the
scale physics can be€ //,}( ;%“E‘:\ bations during the inflationary
period. We reviewathesgfingostiss he time-like sther field in
Chapter IV [116, 113114 ’ ' \

% =

In the other casg spe e-ﬂ' heri i has not attracted much attention
because its existence viglatdh thé tt lationalinvariance. The only one investigation
1l| ] l"
is a toy model which the ficcelstiting uaiyerse is driven by the cosmological con-

stant and the kinetic terms & Ry il well-like term [38]. The results of this
investigation show that S i

Thus we are not

s since it encounters instabilities.

v‘:";;‘-_ a2 X
The interesti ther field is performed in

the theories of ext dlmensmns since the rotational invariance in the three-
mmemmnal ﬁm fwrﬁ ined by phenomenological
setting in w ﬂ- me the d the extra dimensions.
In Chapter V, we investigate the effects of the space-like sgher field in Casimir
d 64 8 B V] W) Chghrs ot s
field flii¢tuations in extra dimensions plays the role of cosmological constant and
drives the late-time accelerated expansion of the universe [107]. These models can
solve the cosmological problem and also provide the mechanism to stabilize the

extra dimensions. However, the extra dimensions will be destabilized when matter
contents are taken into account. In five-dimensional spacetime, we add the sther

field into the Casimir dark energy models with the matter contents and show ex-
plicitly that the sether field affects these models in such that the stabilization of
the extra dimension can be restored [108]. The results and discussions are sum-
marized in Chapter VI. The further interesting investigations are also discussed



in that Chapter.
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Chapter 11

Lorentz symmetry ;“ im go
symmetry of special relativity anc model. However, there are sug-
gestions that Lorentz , at least spontaneously, at the
quantum gravity scale foaeCafiplo in string t [1} and loop quantum gravity
[2]. Since Lorentz 1 nave the origin from quantum
gravity, the study e )l ¢ give some insight to Planck
scale physics. Moreg#€r #vigh i il ’ ‘ﬁ’ at of high-energy experiments in-

y “ Al exp eriments, Lorentz violation

theories may providé pogsible sting ¥ ays to probe physics at quantum

In this chapter, we will'g . 3 Overview of Lorentz violation theories.

Then we go on to conside 2 he models, the so-called sther
models as they cagy ; i m"? which may be observed in
cosmological data™"Lhe ¢ nd observational constraints on

@ther models are buiéfly reviewed in the na.l‘pa.rt of this chapter. Cosmological

applications of the @thernodels will bddiscussed in the next chapter.

AUBINENINGINT
*1q W‘Q‘ﬂ"f B e s

In this sectmn we review the construction of the Lorentz violation theories and
briefly discuss the key ideas of some particular models in each theory. We start
by classifying the breaking of Lorentz symmetry into two types. The first type is
called the breaking of particle Lorentz invariance and the second is the breaking

of observer Lorentz invariance. Let us explain this issue in more detail.

The particle Lorentz invariance corresponds to the active Lorentz transfor-
mation which is a transformation of particles or localized field distribution while
keeping the spacetime coordinates unchanged. On the other hand, the observer



Lorentz invariance corresponds to passive Lorentz transformation which is the
transformation of the coordinates, z'* = Alz", where AY is the Lorentz trans-
formation matrix. Note that hj- corresponds to the rotational transformations in
3-dimensional space and AY corresponds to the boost transformations along the i
direction. In the normal situation, the active and passive Lorentz transformation
are equivalent. However, in some particular situation, such as the existence of the
preferred reference frame, the particle Lorentz invariance may be broken while the
observer Lorentz invariance is still unbroken.

The presence of the be induced by the nonzero vac-

uum expectation value o carrying the Lorentz indices, for
fieient. The active Lorentz trans-
formation leaves the coeffign hehaves as a set of four scalars
under this type of trafisfguf: 1, sets the preferred direction
in the spacetime. Thils thé phydifle ora ent#symmetry is broken. On the
other hand, the coeffigient LADSIR: ed un . er the observer Lorentz transfor-

example A,. It is called Loren

mation as A, = (A)) A,
since the spacetime eborgingtes s the ba
Lorentz symmetry is ngf ho :'_-: 1 ;
formation provides the oberyalile physie ich'does not change when we change
the coordinates of the obseryl: For. $hiefest, of this thesis, all Lorentz violation

models that we deal w Ay tifes mlai‘.ton

i -"-‘,{: s covariantly as a four-vector
‘of the vector. Thus the observer
oe under the passive Lorentz trans-

Note that thesth '
that it does not co .? with the Lorentz Tnvariant theory at the low-energy scale.
This means that the Lareatz violation thgory must reproduce the standard models

wnd genersl @G EHFHIEIAT WIS

some Lorentz violation models.that meet thege,requirements. We
¥ “@Wﬂ ORTRAL LRI = q‘ﬁ“ﬁ Sppeiges; The
Lorentzqviolation model in this approach is not a complete theory by itself. It
requires dynamical theory in order to explain all physics at the scale at which
the theory takes place. For example, in the modified dispersion relation model, it
explains only the physics of free particles but does not for interacting ones. The

e constructed in the way

other part is dynamical approach. It is an approach to the complete theory in the
sense that it provides the possibility to describe all physics at low energy scale.
Moreover, it should provide the corrections of Lorentz violation effects that are
sensible to be observed by experiments.

We will briefly review some interesting models of the Lorentz violation theory



in the following subsections. Most of these discussions follow the review paper
[3, 15] and references therein.

2.1.1 Kinematic Approach

Generally, Lorentz violation effects can be obtained by modifications of some rela-
tions or quantities in Lorentz invariant theory such as dispersion relation. These
modifications are basically put in by hand with some phenomenological reason.

special relativity. ‘-—-—_
e Modified disM
The dispersio a magsive | ican be expressed as F? =
m? + p*, where E is i1 ass and p is the momentum of the particle.
This relation is Lorent; b, ,' yalid \ has been confirmed not only by the

experiments but Sisien ."However, Lorentz symmetry
might be broken at hi 8 16 We exp A smaH variation from the above
dispersion relation. Ou ite' the above dispersion relation in
the more general form, E? = "=P urse, this general form should reduce
to the Lorentz invayis Tow e alg” Thus we need to expand
function F(p,m) t,,r_ ———— nv A8l Furthermore, we have to
specify what the mﬁ e ﬁmpm is. We expect that
this modification effect of the qua.ntum gravity with energy scale of Planck

Z?E;rg:m,ﬂ,m ﬁ Ne m‘wﬂ‘]’ﬂﬁ be expanded in terms
where ﬂnﬁ Tﬁ;ﬁzﬂ ?iﬁﬁ%'g’?”%ﬁ*ﬂ (2.1)

itrary dimensionless function and the superseript of this func-

tion, (n), denotes the order of the expansion. As we have seen in equation (2.1),
this relation can break the rotational subgroup of the Lorentz group due to the
existence of non-rotational invariant combinations of p'. Most of these models
are constructed in order to avoid this violation because the rotational subgroup is
strongly confirmed by many experiments. Moreover, in some criteria, the broken
rotational subgroup yields the breaking of boost invariance automatically. Thus
more popular version of the modified dispersion relation is expressed as

E* =m® +p* + EufOp| + fPp* + fOpl*/ By + ..., (2.2)



where |p| is the magnitude of p'. The third and higher order terms are suppressed
by the factor of E,. Actually, the first order term is more important. We can
choose the form of f!) in such a way that it corresponds to the energy scale we
are interested in, for example, f(!) can be chosen as f) = p?/E? where p is
the energy scale at which we expect to find the new physical phenomena. As
we mentioned before, this is not the complete theory because of the lack of the
underlying dynamical mechanism. However, some models in dynamical approach,
such as minimal standard model extension [ﬁ]. will provide similar modification of

(we will discuss this AT ). a LAt madified dispersion relation also

provides the variatign

The key idea of PSR ig" ; 3 - the dispersion relation in which the pre-
ferred frame does not exiét i SEheor : s norkpreferred frame effect is the ad-
vantage of this model sincef Lserved physi sical properties are frame-independent
and agree with the experim# >4 ation of this model comes from the
quantum gravity effect whidk stiizt ;i_'_ A there is a fundamental length scale
relativity are :,_; pparable. This fundamen-
tal length scale vieiate group explicitly. Thus
the strategy of this E}d&l 15 L0 mod! on of L@nﬂz group in which there is
an additional invariantf(w.ntity other than the speed of light c. The existence of
these two in t it i - name, Doubly Special

SR ] O

Relativity. T are twc- approaches to this model n modification of the

s TR

d;fferentla.] representation. For DSR1, the generator of Lorentz boost along 2 axis

at which quantuny.#héory and geners

is
A
N. = pOs+ (E + 22 1ol — AoseE"), + Aosup:pp:  (23)
For DSR2, the generator of Lorentz boost along = axis is
N; = p.0g + E8p, + Apsrp:(EOr + pi0,,), (2.4)

where p; denotes the momentum of the particle along ¢ axis. Mathematically, the
modification of both approaches is just the adding non-linear terms to the boost



generators in such a way that the new invariant quantity, Apsg is obtained. One
of the modified physical effects for DSR is a modification of dispersion relation
which in this case can be expressed as:

Er=m?+ P? + AQSREPE, (2.5}
and

E?* =m? 4+ p* + 20 psrE(p® — E?), (2.6)

for DSR1 and DSR2 respecti ;.,__\' ‘-‘.‘ £ . the energy momentum conservation

still holds in this theory. ¥l eomparistnéapefiveen these two approaches are in-

vestigated in detail in"i8}*Fhe original ieaofPSR1 and DSR2 is proposed by

Amelino-Camelia [9, 10]_an@8iagueijo and Siymolin [11] respectively. Although

there are many interest g ?/ﬁ’a? : :\\\\2‘:?‘%_ it'is not a complete theory be-

|l# i ﬂ'.' l»:'lr |%i:ﬂ\\
W

cause there is no d ematic approach. However,

this theory is in progsés ot ' ; ﬁ\-\\ observation and consistency of
the theory itself. The gécegt feviews af SR, i8

There are other ki 1 arentz violation theory including
Robertson-Mansouri-Se adelind T'Hep model. We will not consider
them here. The review of thes ol i818] and interested readers can consult
the references therein more det 1 l._,- ‘u

Y J

[

%.
2.1.2 Dy'ﬂ | ‘-h

- D
As we have i ﬂ j ' the Lorentz violation
theories is a mt ﬁﬁj ﬁﬁm‘lﬁm ﬁth interacting and free
dynamics of eﬂmentary particlesy The dynamical approach must cover the results
o SRR L B Yy i i,
is separfated into two parts. In the first part, we will discuss the standard model
extension (SME). This model is the modification of the standard model of particle
physics in which the effects of the Lorentz violation are the small corrections of

the standard model results. The small value of these corrections comes from the
suppression of the energy scale we consider. Thus all of models are based on

effective field theory.

In the second part, we discuss a modified Finstein's general relativity. Similar
to the idea of SME, this model is the extension of Einstein’ s general relativity. The
effects of the Lorentz violation are provided by introducing new degree of freedom



10

fields such as vector or tensor fields. Some results in this model are similar to
vector-tensor theory.

¢ The standard model extension
The standard model is the most successful model describing physics of elementary

particles. Most of its prediction are accurately confirmed by experiments. How-
ever, there are some phenomena that are not included in the standard model, for

example, the existence of neutr 4 Also, the model itself encounters some
crucial problems, for hy problem. Thus many models
are investigated in ordel andard model for explaining the

he standard model. Here, we
Leéxtension (SME).

experimental data whig
identify this class of

The standardModel 4y o ' able field theory. Its Lagrangian has
the mass dimension < hj ased on SU(3) x SU(2) x U(1)
gauge symmetry as welfasfhé 1 I it BT :\ metries. Strategy of SME in
the Lorentz violation"thgbrigs i atdy ciff m regular SME. The purpose
of regular SME is to explain t ‘ ‘n a by using the modification of

gauge symmetry or addiflg gpme i _ s."However, the strategy of SME in
the Lorentz violation theori -r 516 -_‘«_j' the model that predicts the Lorentz
violating correctiong standard m wiich will be observed in the
next generation ;:;_e;_'-:' ents.— Thus thi -T; orentz violation theories
can be obtained by Adding ble | o ntz violating terms into the
standard model Lagr ian. Let us shuw how to add the Lorentz violating terms

o tﬂw Ei PNFIE emossss omer
q mﬁﬁﬂﬁm‘w nedy e

and Eorqphotrms are

~ kE Ao AP, (28)
where b, ¢, d and kr are constants represented a strength of the Lorentz violation
correction. A" is a coefficient characterizing the effect of Lorentz violation, v
is fermionic field, ¥* is the gamma matrices and F*¥ is field strength tensor of
U(1) gauge field. We prefer to break Lorentz symmetry by breaking boost invari-
ance instead of rotational invariance because a rotational symmetry is strongly
constrained by observational data. Thus the Lorentz violating coefficient can be
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normalized to the form A* = (—1,0,0,0). Some effects of these modifications
result in the modified dispersion relation expressed as

E*=m?+p*—2bsp—(c—ds) p* (2.9)
and
2 _ 1, N.q
E? = (1+§h)p (2.10)

yhere s = +1 is the helicity state of elec-
: ion is provided in references [3, 4, 5].
Huwever, the first investigdtien © _ iscussed in [6].The non-minimal

for electrons and photons respec iV

SME which includes th& iiss-dimefision ‘--m-*': is also investigated. The
effects of non-minimal SMF_ 4 ie.modified dispersion relation. In
the non-minimal S ere ; \ Jterms which can include in La-
grangian density. HoWe I \ - 'gauge invariant action, the
number of d-dimensigfial £o t ab f‘:"‘- \}-\ an be counted, for example,

tecently, the observable effects
of Lorentz and CPT viglation e y , ertain experiments. They are
summarized in [18]. The progrefg of plation in both experimental and
theoretical sides can be mond ﬁ-ﬂ ; ab the notes of Kostelecky [15, 16].
More recent issues of Lorentzand FOP T wiolation can be found online in [17]. Note
that the CPT violalic plied by io [19]. Therefore, searching
for the effects of LN NIORNOHIREN lid the evidence of CPT vio-
lation. However, furgle recent investigat 134 @B found that CPT violation

does not Lead to vmla.pn of Lorentz i inyar iance and vice versa.

+ o) y,,mm,, ;1 ;wmg'm‘a'
@eﬂmmmmma Ao s .

sical level. At quantum gravity scale, we expect that the effects of the Lorentz
violation will be explored. It may leave some fingerprints in the low energy effec-
tive field theory. In this investigation, we will consider the effective field theory of
Einstein’s general relativity.

The description of gravitation in Einstein’s general relativity is provided by
the metric and covariant derivatives that act on vector or tensor representations
of GI(4, R) under Riemannian spacetime. The description of basic particles and
forces in the standard model is provided by spinors and gauge fields based on
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SU(3) x SU(2) x U(1) gauge group in Minkowski spacetime, From both deserip-
tions of nature, it is not easy to connect them together because there are no spinor
representations in G1(4, R). However, this connection can be obtained by using
the fact that there is a local Lorentz frame at every points in spacetime manifold
. This local Lorentz frame is a tangent space of a point in spacetime manifold
which contains the spinor representations in Minkowski spacetime. The frame-
work that incorporates the quantities between local Lorentz frame and spacetime
manifold is vierbein formalism. In

this formalism, the gravitational description is

provided by vierbein e, and on wy’ under Riemann-Cartan space-
time where a, b, c, . - e docal Lorentz frame and u, v, p, ..
are the spmtime indices I spa tq'e nmemann-ﬂamm spacetime will

be characterized by athte ten. \;\\\ d the torsion tensor S),. The
s ‘.‘;.‘h.:??!t: general relativity by taking the

vierbein formalism
ity the description of vierbein
onf the standard model in which
o 15l T'he most usefulness of this
formalism is that, af s# 101 " \ . old, Lorentz transformations
in the local Lorentz fram \ )'w al coordinate transformations
in spacetime manifold. Iy thets vords, physics does not change under coordinate
transformation. This providésus th _;_7 sfver Lorentz invariance automatically.
Thus it is easy to gonstrul [Lorentz Violation_theories while the observer

Lorentz symmet
f '

To construct | . 88 1] he@&criptinn of gravity, we can
follow the Lorentz vlr.?'latlon theories i m the standard model by introducing the

h:-rentz viol uﬁMﬂm ﬁmnjgweume coordinates as
= E“A an coefficient A, can be

chnsen as a constant time-like vecfor A s_} ﬁﬁ in ord&r %usure that energy
1'1

torsion tensor to be
formalism is similar to
the vierbein acts as

and deﬁcnptlun, it
leads td' non-conservation of energy momentum tensor in spacet:me coordinates
when the A, is covariantly constant. The most usefulness of the solutions for this
issue is to promote the Lorentz violating coefficient as a dynamical field named
@ther field [20]. The name of @ther field comes from the fact that there is a
constant vector pointing to a direction in spacetime in the local Lorentz frame
every points in spacetime manifold. This means that it has a preferred frame
which breaks the local Lorentz invariant for all points in spacetime. For simple
model, we can fix the norm of the sther field. In the effective field theory, it can be

performed by using constraint of potential term, for example, Lagrange multiplier
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term. This yields the spontaneous breaking of the local Lorentz symmetry. For
the explicit breaking, it is found that the corresponding equation of motion turns
out to be inconsistent with Bianchi identity. This implies that explicit Lorentz
violation is not compatible with Riemann geometry. However, it is compatible with
Cartan-Riemann geometry [21]. Note that the spontaneous breaking of the local
Lorentz symmetry is accompanied with spontaneous diffeomorphism violation [22].
Ether theory is the most popular model among all Lorentz violation theories in

gravity sector. The aim of this thesis is to investigate the effect of Lorentz violation

L. _Since the Lorentz symmetry is
oinposed into the background
ations. These fluctuations
will be represented i ene (NG) modes for broken
generator [22] and alsgfingss & ~-r‘ * 1 most interesting result is that
some massless mod ; o “.. . ~{: This is an alternative way to
offer the existence of light hﬂg% th 74 L0 ns ence of Lorentz violation instead

1 1
of U(1) gauge symmetry. M hédaterpreta pf graviton is also investigated in the

Lorentz violation effect qu
spontaneously brokéti,
solution which is

same manner [24, 25]. : :

.._‘r- d ™

;=

S 0
2.2 /Ether tl : m

0712101133 (31171 ity
theory amnﬂ i6l ical approach to
Lorentz violation theory based orf the effectivesfield theuy} The Lorentz violation

ot ) ) VT B S YY) e o e et

tensor Q‘aﬂt}; theory. The crucial difference is that the sther field is constrained
by non-vanishing constant norm. As we have seen in the previous section, the

proper zther models must be provided by the spontaneous Lorentz symmetry
breaking in order to avoid the inconsistency between the Bianchi identity and
the equation of motion in Riemann spacetime. This inconsistency leads to the
non-conservation of energy momentum tensor. For the spontaneous breaking, it
is provided by the potential term which gives the non-zero vacuum expectation
value. Generally, the potential can take the form V = V(A*A, + v?), where A,
is the sether field and v is vacuum expectation value. In this thesis, we will focus
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on the Lagrange-multiplier potential since the other forms encounter instabilities
[26, 30]. However, we will give a brief review of some interesting results of the other
potential forms after the discussion of Lagrange-multiplier potential. Although,
in the general framework, one must perform the calculation of this model by
using vierbein formalism in Riemann-Cartan spacetime, it is convenient for us
to perform calculation in Riemann spacetime by setting the torsion to be zero.
The most general action in 4-dimensional space-time of sther theory based on
diffeomorphism invariance and quadratic derivative is expressed as

= +Lv), (2.11)
where e —
Lx = P A '\{i-;a* 2
AL AN (T !-\i:* V,.A,)(V,AP), (2.12)
and |
&
(2.13)

Here A acts as a Lagrang Jewstier eifercing the fixed norm condition, My is
the reduce Planck mass, R is” id A” is the ether field. The minus
and plus sign in the potentia-téer 16 Y he space-like and time-like vector
field respectively. & -

- Y "

of the action. As a conse-

Conveniently, m Iﬂl
quence, the sther fiéld is dimensionless. Generally, The kinetic term of the sether

field needs t mmf egions of observations in
which the m%i f 1 'ﬂm the metric. With the
dimensionless ther field, we caw rescale thefield to unity by setting its vev to
be Y HE I B AL LI ] fr parmot,
B;, whidh is small compared to the Planck mass. The sther parameters are also
interpreted as the broken scale of the Lorentz symmetry. However, if we put M;
only in front of R, it will provide the mass dimension to the sther field. For this
approach, the kinetic term is suppressed by the ratio of the norm of =ther field
v to M. These two approaches may cause confusion in the later on when we

constrain the parameters in the model.

Considering the kinetic terms in Lagrangian (2.12), the last term is quartic
in the ather field. It seems like a non-renormalizible term due to the dimension
of the coupling, if we consider the case where the sther has a dimension of mass.
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However, we are not necessary to consider the renormalizibilty of each term since
the theory of gravity is itself not renormalizible. It is interesting to consider
this term since it provides the quadratic contribution to the metric and sther
perturbations when we expand it around the flat background.

In order to find the equation of motion, we vary action (2.11) with respect
to g" and A*. The variation of g, and A, can be written as

oudavdg™, (2.14)

Og8pa = —§

(2.15)

By using the Euler’s wations of motion for A* can be

written as
(2.16)
where
b\ A+ AP
= ‘ "’\ %+ By o2 ?,A,], {2.17]
The equation of motion Br g s the 4 in field equation,
(2.18)
W Y
The energy momentis: .
o J!-I
20+ guL. (219)

_— mﬂml’.l mmmm IR
-ﬂsswrf wwwﬁ

EIA v+ 22AA,

Vo(Awd’y) + V(A Jyy) — Ve(Awdf) )- (2.20)
The equation of motion for Lagrange multiplier is
A A" = £, (2.21)

We can eliminate A in equation (2.17) by contracting A* with (2.16) and then use
(2.21). This gives

B

1
A=t (A"vﬂy:, LAY AR(V, AP)(V, A,,)) (2.22)
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The background solutions of the ather field with fixed norm condition also depend
on the metric. The dynamics of the isotropic and homogeneous universe is based
on the Friedmann Robertson Walker (FRW) metric

ds® = —dt* + a®(t)dz;dz’, (2.23)

where a(t) is the scale factor. By using this metric, the solution of the equation
of motion (2.16) can be chosen as

(2.24)

for the time-like aether field Anc
(2.25)

for the space-like setHer G€lds Lhe \k\ \\ background solutions due to
\‘\ .y

the symmetry of FR ay of analyzing the behavior

of the ther field. Tiafls il grder {0 it \\\x ffects of the ether field, we

\
\

2.3 Theoretical ; s of sether theory

ke ®ther field separately.

There are many retho nstrainin, g a.meters. We divide them
into two classes, the-thieoretical-tons séivational constraints. The
theoretical constraint$ cor he theory which needs to be
stable and causal. In t.hm section, the stablhty issue of sther field is reviewed and

R ﬁﬁ?\“ﬁﬂ%‘ﬂ"ﬁﬁﬁ“ﬁ‘“
“‘aﬁ"‘i‘&wﬂﬁmmqwmaa

In this 1ubsectmn, we will focus on the stability of the sether models. It is very
subtle to summarize the sther stability due to the non-conclusive status of this
argument. There are two main requirements to figure out the stability in effective
field theory. The fist requirement for a stable theory is that the perturbation
around the background or the vacuum state must converge. Mathematically, the
stability of the background solution, Xj, is said to be stable if for any given small
neighborhood, Uy, of X always evolves in time to another small neighborhood,
U, of Xy. According to the fixed norm condition, behavior of the ather field
strongly depends on the geometry of spacetime especially for space-like sther
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model. Therefore, the evolution of the sether perturbations will couple to the
metric perturbations. It is obvious that the evaluation of the sther perturbations
needs to include the perturbations of the metric. It is convenient to consider
this requirement in other view points such as the propagation behavior of the
perturbations and the existence of tachyon fields. For the propagation behavior, it
requires that the frequency of a perturbation wave must be real. This requirement
leads to the constraint on the squared speed as s* > 0. It also leads to the positive
squared mass of the massive perturbation modes. In other words, it is not allowed

f/ﬁuf stability is called that the gradient

The second requires investigatime the stability is the absence of ghost
field. The ghost fiel ong sign of kinetic term. This

wrong sign will lead 0 ng //{g 0 m

sign kinetic term wall" not" 4P gf he.

for the existence of tachyon fi
stability.

. The problems in this wrong
mg particle of this field does
to avoid this interaction
iton. Thus it is not necessary

not interact to othergpe
because all particles v - Jeast wit
to ignore the effect of thgfingeractips i§ \‘"- nt. If the fluctuation degrees
of freedom of the sthef figd are Bkt el A -‘ ouple to the normal fields, the

vacuum will decay to the'g tes. We cannot use the conservation

of energy to impose the LRl vy
of the ghost field T OV
infinite high-mom 13;,

due to the negative energy modes
i state can decay into the

Although we can claim that
it is the effective field theory 1t-ofi alentum, it still produces the
large number of obserﬁahle particles frum the vacuum state. This phenomenon

N 1N (130108114
quantum | cotn ﬁ: s inconsistent to define
the o Aﬁle quantum qunntm& One of th&convenient to deal with the

d o ek 3 Bty b ook il bound. The

positive bound from below of the Hamiltonian can infer that there are no ghost
fields in the system. The stability analysis in this work is adopted by considering
these two requirements.

Mainly, the @ther models will be classified into two types, time-like sether
model and space-like sther model. Like the Lorentz violation theories, the time-
like sether model has received more attention than space-like mther model due
to the fact that violation of rotational subgroup of Lorentz group will lead to
the violation of boost invariance. Moreover, the rotational invariance is strongly
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confirmed by many high-precision experiments, for example, the observations of
Cosmic Microwave Background (CMB) radiation which suggest that there is the
almost perfect rotational invariance. However, there are the space-like sether mod-
els that provide a very tiny departure on the smooth CMB. We will discuss this
topic in detail later.

Let us start by considering the stability of time-like sther field. For con-
venience, we will focus on the Minkowski spacetime by following Jacobson and
Mattingly [27]. The perturbations cEe metric and sether field are expanded

(2.26)
(2.27)

or modes of metric fluctuations
d 5A* are small relative to

where 7, is the
and dA" is the @t

their background

ulation. Therefore, we skip

sive pnly some important steps and
. : n 1 the equations (2.26) and (2.27)
are substituted into the equations of (2.16) and (2.18). Second, the gauge
choices are chosen by the syfatisetiy | ; n under diffeomorphism transfor-
mation. Third, ga _:‘.*:::1.,;,,-._ ...... e transformed ‘ Fourier space. This step
"if- of the perturbations, two
Her and one mode for spin-ﬂ

will provide us thé“ras

modes for spin-2 grawiton, two modes for spin-1 a

eether. Finally, the nmﬁﬂ modes of the@s§stem of equations are performed
gy ) b IV e e e
be written as

9 wmmmw’nwma t e

28, -pi+ 3
S wiher = 2B14(1 = Ba) ’ (2.9)
Al B123(2 — Pu4) 1 (2.30)

trace Bra(2(1 + B2)? — Bras(l + B2 + Bras))

where s? = w?/k* and B stands for 8, + By + Be. The stability condition requires
that the frequency w must be real. This implies that s* > 0. Some results
are recovered and extended to de-Sitter space as well as inflation background by
Lim [28] but without $; term. The ther perturbations will decay in de-Sitter
space and modify the spectrum of the B-mode polarization and also violate the
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inflationary consistent relation in inflationary universe. The Hamiltonian bound
corresponding to the ghost-free condition is also investigated in [28, 29]. In the
Maxwell case, corresponding to 83 = —f;,0; = B4 = 0, it is found that there is
a positive bound of Hamiltonian. There is another model of sther, the so-called
unleashed ether, which contains the potential term V = A(A*A, + v?)? where A
is a dimensionless parameter [30]. In this model, A is not the Lagrange mutiplier
and then it leads to the weaker condition in which the sther norm does not need
to be fixed. However, this model can be viewed as a generalization of the mther
it he results of this class of the sther
ion modes is always a tachyon or
llows that the unleashed sther

models which arising in the limit
models show that at least one of |
a ghost. From the resulf®ofabo
model is not stah:7
The more r 1@ Cofal
al.[31]. Actually, thefSpae
but we will discuss tlfS Wpi
it is argued that the s old in all reference frames. This
means that the Hamilto _ » e punid and the perturbation must
converge in all boost ffimgs _. hefyali s ofithe effective field theory. The
result of this consideratiol shass tha h‘ sigma model, f3 = fa = G4 =0,
satisfies the stability {:Dndltl %ﬁ» 5 that most of sther models are not
stable. The cosmoltgicd af€ investigated in [32].

Whility is investigated by Carroll et
‘are alse investigated in this paper
of view of this consideration,

-

This more reserictiv -”'1"1"I s the too much restrictive
conditions [33]. Thelfirst argument i this issue { that the imaginary of the
frequency in the boosted, frames, w’, lgads to the imaginary wavevector, k =

T e Ya——

even in the Loféntz invariant t.heu . This argument also results in the Hamiltonian

mmﬁmmmﬂﬁmm sk

found that the superluminal propagation is also allowed for spontaneous Lorentz

violation theory. This superluminal consideration also conflicts with the argument
in [31] which uses the stability condition that the propagation speed must not be
superluminal.

For the space-like ther field, even though rotational invariance is violated,
it is still investigated in order to find the departure of statistical anistropies in
the CMB power spectrum [38]. However, it is convenient to consider the space-
like eether field in the model of higher dimensions. The higher dimensional ather



20

models can provide the three-dimensional rotational invariance since the norm of
the sether is obtained by fixing the direction of the sther to align to the extra
dimensions [35, 36]. It has also been investigated phenomenologically from the
effect of string theory [37].

In four-dimensional spacetime, the stability of space-like sether model with
out f4 term is investigated in the de-Sitter background [39]. The Hamiltonian
bound analysis in the flat space is also considered. It is found that the gradient

stability conditions performed in deg Si background are expressed as fi33 = 0

and #; > 0. Note that these conditiony areobtained by using the limit of a very
short wavelength, k >> Hpand a very lo velength, k < H. The limit of the
comparable scale, k ~ Hismot consideredinthisreference. However, in flat space,

it implies that only MaXwalifuddel, F15y = Dyis st able. Unfortunately, in the full
calculation within de*Sitief bglhitround of Masawell 'model, it is found that some
modes of the perturhb#ition® / ge.af, the Liocizon eressing, k ~ H [40, 41]. This
means that all models oflike 2tk 15\ ‘w.“ ble. Similar to the time-like
ive 'conglifio \ }1“:- in flat spacetime [31].
: hle: for space-like @ther field in four-
dimensional spacetime Wit I/ o ) g @ term. The counter-argument
asé has not been investigated yet.

‘ ing fy.term in the de-Sitter space has not
been considered. We 2 ‘that in t spéice-like unleashed ether, it
has been investigatedl and pointed out tf i’ o stable models as in the

time-like case. E m
253 c@bie INENTNYINT
SR e

the physical world. However, it is accepted that the well-defined theoretical model
must provide the events which is causal. This notion is approved in the low-energy
physics and agrees with our intuitive sense. Therefore, in order to construct the
well-defined theoretical model, we will avoid violating the causality in Lorentz
violation theory. The causality violation have been investigated extensively in
the standard model extension. However, it lacks of the investigation of the sther
models. Even in the theory of gravitation, the issue of causality is uncertain.

In the point of view of quantum field theory, the causality can be discussed
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in the term of microcausality. The microcausality requires that the commuta-
tion relation for any two field operators with space-like separation must vanish,
[®(x), ®(z")] = 0 for (x—=')? > 0. This ensures that the measurement at = cannot
affect any measurements outside the light-cone at z. However, in Lorentz violation
theory perspective, specifically SME, it is found that the microcausality will be
violated but the two measurements with the space-like separation are still inde-
pendent [42]. Note that this valids only in the concordant frame, the frame that
all Lorentz violating coefficients are small. The causality of the Lorentz violation

in QED and also in the modifiag t eur‘y with the dimension 5 operator
are investigated [43, 44]. \

'h.._\_\_.

soretical model can be viewed
for the time-like sther model, the
four-vector eether -!G : oment 0 flowing around the closed
time-like paths [3]. HBweser 1§ Has nig "‘ pestigated in the space-like ether
model. We note heregfhasde conseguences e theory of quantum gravity
also suggest the failure #f

In the gravity see
as the existence of closed

2.4 Experimer ints of sether theory

Among several consgructions of thg-observational signals from
the theoretical madgl-of e #th ield vely figured out in order to
incorporate the exist®lce o efl Li in the experiments. Some
of the theoretical mo els are ruled out by observational data but some of them are
still confront tion, we will briefly
review the a%umﬂﬂmmm various experiments.
However, some of them are not iscluded heredut the referenges are provided for

s By ) D G B )3 Y T B rvew e

[4s). 9

2.4.1 Parametized-post Newtonian (PPN) parameters

In order to compare the result of sther theory with the Einstein's general relativ-
ity, it is convenient to study the model in the static-weak field limit. In this limit,
both sther and Einstein’s general relativity will reduce to the Newtonian theory.
There are ten parameters for characterizing the Newtonian corrections of general
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metric theory of gravity [46]. These ten parameters are the so-called parametized-
post Newtonian (PPN) parameters. Five of these parameters, &, &, &, & and ag,
characterize energy momentum conservation of the theory. Therefore, all these
five parameters automatically vanish in both sether model and Einstein’s general
relativity due to the consequence of the covariant action principle. The other
two of PPN parameters, the Eddington-Robertson-Schiff parameters, § and =,
characterize the nonlinearity and the spatial curvature produced by gravity re-
spectively. They are both unity for the Einstein’s general relativity and time-like
ather model but it has not beeny d for the space-like sether model. Next
one is the Whitehead parame es a peculiar sort of three-body
interaction. This parameferals instein’s general relativity and
time-like sether mode esii ated for the space-like sether
model. Finally, a; ands#, o ¢hara erize eferred frame effect, provide
the different value cow ' eral relativity. While a; and
a3 vanish in the Einstgifi e time-like sther model, these

parameters can be efpre

(2.31)
The current/ohsérvation ..,.._.._,..m..., » of these two parameters

, Radys to deal with this tiny
value. First, we find e pa.rﬂﬁters up to the order of the
observational mnstmiqtb In this way, 35 will encounter the fine tune problem.

Second, smne ﬁra T'ﬂ eliminate two of them
by setting oy q ay = ere remain on y pendent parameters.

) Wﬁ’%"ﬁi‘ﬂﬁﬁﬂ"ﬁ A1

= , (2.33)

8

B &%)

Ba

2.4.2 Newton’s constant

In this subsection, we will consider the modification of Newton’'s constant due to
the existence of an ther field. In order to examine the ssther models in Newtonian
limit, we need to take the static-weak field limit. The corresponding metric will be
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obtained by using the metric with scalar perturbations in the Longitudinal gauge.
This metric can be written as

ds* = —(1+2®)dt* + (1 — 2¥)dzr'dz,. (2.35)

The time-like @ther field corresponding to this metric with the constraint A*A, =
—v? takes the form

A = ((1 - ®),0,0,0). (2.36)

This solution satisfies the equatiay t.’cm (2.16). Note that the perturbation

®, the gravitational potentis ﬁ' 1 - n equation,
P = dme (2.37)

where Gy is the N Lhe 11188s density of the object we are

considering. Substitwfing shc R\\\ c"eorresponding @ther solution

(2.36) into the Einsie

(2.38)

for (0,0) component afd
; (2.39)
for (i,7) components. Wh ..{ % rton’s constant of the ather model.
From equation (2.39), we. catis ; L & and U vanish at the spatially
infinity. This lee dC g0 the que solution as =" Note that the energy

N
momentum of the eHnsic #e¢ term in the Einstein field
|I !

’ I
ring to the Polsson equation abic e, we obtain the effective

equation. By compd
Newton’s constant as ¢ &,

ﬂ”m%ﬂiﬂ%mm o
sy wq R SInﬁlfzﬁ“‘i@‘ty:;i%?:“@'T;'Eh«e m&ﬁcﬁu d(]?ﬁ:d\z: :::fﬂ

with choosing the proper metric in the cosmological description. The universe is
normally described by the spatially flat FRW metric

ds® = —dt*+ a(t)*dz'dz,. (2.41)

In the same manner with the calculation in the Newtonian limit, we will skip the
explicit calculations and the result turns out to be that the effective Newton's
constant in the cosmological model is

G.

= I  Bu+ B2

(2.42)
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The Newton's constant should be the same at all scales. The corrections of the
G, are limited by the observation of the primordial * He abundance at the nucle-
osynthesis period [50]. This constraint can be expressed as |G./Gy — 1] < 1/8.
This constraint is satisfied automatically by using the PPN constraints. In other
words, by setting a; = ap = 0, it turns out that G, = Gy.

This is one of the examples which show the consequences in the sther mod-
els. Most of other models satisfy the observational data when the PPN limits

Other tighter experimental sug .| D8 f‘ Popgs rain the parameters in the sether
models, for example, the gravitations /u/ kov_radiation [26, 51] and modified
power spectrum of CMBrradiation [52]). Moreexamples can be found in [45] and

references therein. /

We note that th affudonfal cons \i abiove have been investigated only

for the time-like sether wbdé! not for the space-like ther model. This may be
caused by the fact th ' spage-1Ke @ he Q?‘\ olates the rotational subgroup
of Lorentz group. Thgfing# gutin .\\ !\r\ pust be examined by the test
of rotational invariance fHofvevet: tiie tof ;\t nvariance is strongly confirmed

anisotropy of CMB radiation. The
s constructed in order to compare to

by many experiments, for #xa 4blG St
theoretical model of the space=fike :

the observational data from

ities as we have meationed in previous section. We-also/note that it is interesting

el

afortunately, it encounters instabil-

to investigate the Syhce
. .
this can avoid the ..,l tional invariance

b
sr-diimensional spacetime since
rée-di:ﬁmianal space.
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this period, the uni o YA phenomena can solve the hori-
zon and flatness probléms: | radiation contents are diluted
ach of the inflation can be pro-
ential. After end of the inflation,

he description of the infla-

and the universe is cooleg
vided by a scalar field slg
all elementary mateér aué
ton oscillation at thgfimij T'he universe in this period is
extremely hot and all 1, as\ he hot soup and then we call
this period as reheating geri: - THIVET a:i-': period is dominated by ra-
diation and then matter rg ecﬂ_ﬁ;gr e matter-dominated period, there
is a crucial event in whifh phetons are upled with electrons. At this time,
atoms are formed and phmmﬁ e freely. In others words, it is the

il of will observe these photons as

yliation that comes from tiohs in the sky. This radia-
tion is commonly cged smic e b gr@md (CMB) radiation. After

the matter-dominated penriod* the univew enters the accelerated expansion until
nowadays. i Hidg ] célerfitling expansion of the uni-
verse is «:a.llﬁcﬁﬁr;g:ti ﬁ;ﬂmmmnﬁk energy and then we

ﬁ the universe as
- i"ﬁ“ﬁ NFBFIIR L TR 1T lab- 11 Wiy

mﬂatm ary models and dark energy models.

3.1 Inflationary models

The Big Bang model of cosmology was successful to explain the non-static universe
which was observed by Hubble in 1929. However, it encounters some cosmological
problems such as horizon and flatness problems. The horizon problem comes from
nearly perfect uniform temperature of CMB radiation while the Big Bang model
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cannot naturally provide such uniform temperature. The flatness problem comes
from the observation that the universe nowadays is almost flat while we need to
unnaturally fine tune the initial conditions in order to get this flat universe. These
problems can be solved by using the interpretation that the universe accelerately
expanded at the very early time. In order to obtain how much the universe
needs to expand, we introduce the number of e-fold to characterize this expansion,
N = [ Hydt where H; is the Hubble parameter at the inflationary period defined
as H = a/a and a is the scale factor. From the observations, N needs to satisfy
i of Wfationary model is the providing of tiny

tions during inflationary period
7 ) ological scale and ultimately
make the structure olbie™\ligerse| we pbsérvesowadays. It is convenient to

wdiscussing this topic in detail.
common cosmological text books
the review articles [58, 59,

introduce the dvnamig
The review contents iu
53, 54, 55, 56, 57).

60, 61, 62, 63, 64].
iy
rred g
3.1.1 Dynamical n gﬁJ fanf
It < o

ovided by a single scalar field slowly

A simple dynamical model of iz
= scalar field for the inflationary

rolling on the flat_potenti
universe with FRW Shacetiiie-caii-t
Vi,
5= j[: T (3.1)

For the homogeneous afidsisotropic univegse, this scalar field depends only on time

=000 TPkl BN AR 3

b+ 3Hb+ 9,V =0. (3:2)

wamm IR 23 108 A e compooms

of the e ergy momentum tensor for the scalar field can be written as
— (12
TS = (2¢ +V(9)),
T = (36-V(9)5, (33)
B 9 1 ’

We interpret this scalar field as perfect fluid in the universe. This leads to the
energy density and the pressure

pe = FF+V(9) (3.4)

ps = %&*—vw}. (3.5)
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The Einstein field equation will provide the Friedmann and acceleration equation

respectively
G)z = 3;1@,#* 3M2( & +V(9)), (3.6)
; = "alwﬂfﬂﬁ'&m -z (9 V) (37)

From equation (3.7), it turns out that the condition for accelerating universe is
é’*’ V(¢)- (3.8)

This means that the kinetic fei \ 1 f / smaller than the potential term.
In other words, inflaton_field, e Tespofidiig scalar field which is responsible
for the inflation of the HIVEESE, nedtls taIHOVE"S! lowly. The constraint from the

observations can be wril ‘/F us| of L notential as
/ - '\\,h 1> 65. (3.9)

This condition tells 1
This is the reason wk
a scalar field slowly rollingfon & _
encounters some problénsgfor ghaing & Abe p otential is not natural to yield the
condition above, the mecharisrm’for en he inflation is not achieved for the
power law model, many of the > models canr ot provide the running spectral
indices. Many theotetical models . __,_,_m,__,_q__ﬂ provide the explanation of
observation such as K-inflation [67, 68], Hadion [65, 66], DBI inflation
(69, 70, 71], vector i@tiﬂﬂ “F(R)inflation |73, @] Although, the number of
e-fold alone is enough t,p'gldica.‘te how rm@ the universe expands during inflation,

::;:;es:ﬂ,ﬁmﬁ 42 mgummj;zm B
AN HREGBIENAY  ow

- Mﬂ(‘;ﬁ}) <1, (3.11)

where € and n are the slow-roll parameters. e characterizes the flatness of the

at at the inflationary period.
ationary models are provided by
owever, this simple model

potential and n characterizes how long of the flatness is.

3.1.2 Primordial power spectrum

In this subsection, we will show how can the structures in the universe such as
galaxies, clusters and stars form by using the inflation. In order to show that, we
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need to consider the perturbation of inflaton field in the quantum level. The fluc-
tuation modes of inflaton field will be strengthened by the accelerated expansion
of the universe during inflation period. This makes the transition from quantum
fluctuations to cosmological perturbations. In particular, inflation can provide the
primordial power spectra which is scale-invariant. Note that the scale-invariant
power spectra was assumed in order to get the proper initial conditions before

inflationary models were introduced.

Due to the coupling of gravity to the other contents in the universe, the

perturbation of inflaton field awill' g the metric. Therefore, we need to

include the metric perturbations | “Lotisideration. The general form of the
.-J

. (312)

dt = adr. This form of
e decomposition of the per-
turbation variables. ee parts; scalar, vector, and
tensor perturbation varis \ A orm is that the perturbation
modes are decoupled, # 3 to Al th @ power spectra separately. In
o te es of freedom due to the symmetry

where 7 is con
the metric perturbati

4-dimensional spacetime, "t
1, there are four degrees of freedom
t¥pe, there are two of three-
vectors, S; and F;. Vi elconstraints for each vector,
V,S* = 0, and v,F"g 0. These constraints come @m the fact that we have to
exclude the scalar degiws of freedum i e form of gradient of the scalar from

these vector Wﬁ fl m remaining degrees of
freedom of bati e fnur degr , each vector has two
il Mﬂﬁ” i

EE:)-E WM? mﬁﬁ ur constraints

from th transverse and traceless constraints,V'h;; = 0 and h} = 0. Thus the

of the metric tensor. In th
for the scalar type »

remaining degrees of freedom are two. Note that these tensor perturbations are
gauge invariant and correspond to the gravitational wave.

Considering scalar perturbations of the system, we have to include the per-
turbation of inflaton into this part,

¢ = ¢(7) + 6g(x, 7). (3.13)

Thus it is added up to five degrees of freedom. However, we have the gauge
constraints to eliminate some degrees of freedom. From the general coordinate



29

transformations in 4-dimensional spacetime, there are four gauge freedoms corre-
sponding to two scalar and two vector gauge freedoms. Therefore, the remaining
scalar and vector degrees of freedom of the system are reduced to three and two

respectively.

Some degrees of freedom are eliminated by using the constraints from Ein-
stein equations. There are two constraints for scalar and two constraints for vector.
Therefore, the scalar perturbations have only one degree of freedom and there are

no remaining degrees of freedom f'gtur perturbations. The vanishing of the

vector perturbations come fr \\\\ the universe with FRW metric is
A with two degrees of freedom for

the tensor perturbationsseerrespondifig to-two-pelarizations of gravitational wave

homogeneous and isotropie. Finally

and one scalar perturBation 1 ddpends on the Choices of the gauge we choose,
| loVINg gauge.
N

In order to gé : o find the equations of motion
of perturbation fieldg and s6lve \5\\\-' “them. Then power spectra
are obtained by using j ‘__ A -\\\\w of the fluctuation fields. We
will skip explicit calculafiofis: h WC Iy the step and important results of

calculations for brevity. THere sie two Weys to obtain the equations of motion at
the first order perturbati . one substitutes the perturbation
in (3.12) and (3. 13} into a eeps the second order terms in the

perturbed action. A ie equations of'metion)at linear level in Fourier
space can be obtainetl by using _ o ‘4- Fourier transformation.
For the second way, E«E finds the equations of motion first and then perturbs the

equations of motion and keeps only the first order perturbations. In this chapter,

ve oo o P HIRURFNENT
ﬁ"ﬁ"Tﬂ%ﬂﬂim NN Y

Fm' the tensor perturbations, each of degrees of freedom of h;; can be char-
acterized by one scalar, h. Thus one can find the equation of one scalar and then
add the factor 2 into the power spectrum in the final result. The action and the

equation of motion in Fourier space can be written as
M3 2 .
Sl:i} = 7”‘[&7&31‘% (h.'r‘z = 6,-!18'.’1), {3.14]

i+ (B = =) =0, (3.15)
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where pp = Myah; and hy is the amplitude of Fourier transformation. At the
small scale (k* > a"/a =~ 2/7%), p, behaves as the simple harmonic oscillator.
Thus, it implies the oscillation behavior of the gravitational wave at the small
scale. The solution of equation (3.15) can be expressed as

= %(1 - ;:;) (3.16)

The power spectrum of this fluctuation can be defined via the correlation of each
mode as

(k- k), (3.17)

0 the perturbation modes hy.
& ation will be written as

Ny

where, hy is the quan
Therefore, the power s

(3.18)
where H is approximdte stant s'f-,f inflation period and evaluated at the
horizon crossing. Note ghatfwé use the Jarge s imit solution, py ~ —%f; to

that the power spectrum decays in
® cross the horizon, they are constant

calculate this power specir
the inflation period until the t
a.tthesup-er—h i7on 808 T e R iant mowe Epmtmmaﬂmhﬂw
mentioned. [ Y

NEE— 2
e i e 1 0 s e e
ama‘mnﬁ[ﬁﬁﬁ”mﬁ”wﬂ’ﬁaa -

where v'= a(0¢+ §®) and z = a$. The equation of motion in Fourier modes can
be obtained,

vp + (K - f‘;}u,, = 0. (3.20)

We can defined the gauge invariant variable called co-moving curvature perturba-
tion as R = v/z. R is conserved in the super-horizon scale as long as adiabatic
conditions are hold. Thus this quantity is directly related to the adiabatic per-
turbation and some literatures use this perturbation as the adiabatic perturba-
tion. The non-adiabatic perturbation corresponding to the entropy perturbation
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is called iso-curvature perturbation. For the simple models, such as single field
inflation, the iso-curvature perturbation vanishes automatically. This is also com-
patible with the observational data which gives the nearly perfected adiabatic
initial perturbation. By comparing to the tensor case, the power spectrum of the
scalar perturbation can be written as

2aH H?
: Pl

- k“lt:'l = (3.21)

9eME’

To obtain this power spectrum, w
(3.10) and the relation of R

/the definition of slow-roll parameters in

; Berossing: (3.22)
The slow-roll condi i es that the.powe spectrum of the scalar
modes has bigger va h /I v \,\\\f\ tensor modes. This is also

B\
AN ntly, the ratio of the power

spectrum of the tens 15¢altr, the |

’\‘} \ ency relation, can be defined
(3.23)
3.2 Dark enc
V.
According to the ubﬁ'va found %t. the universe is expanding

accelerately. The ﬂrdingy matter a.nd radiation we know cannot explain this

NN (7 34 W ﬂm«m -J“uif;;‘“;“i‘;i?“i
m@m SFCHELTEIL fataX Ik Y (i

the universe. They also suggest that about 23% contributes to dark matter. Dark
matter is exotic matter that feels only the gravitational force. We will not discuss
this topic in this thesis for brevity. Therefore, it is only about 5 % contributing
to the matter and radiation that we have already known. There are many models
of dark energy but the popular and simple basic one is cosmological constant.

phenomena sifice

This model of dark energy properly fits to the observational data. However, it
encounters some problems. Therefore, the dynamical models of dark energy are
introduced in order to solve these problems. Not only the fluid models but also
the modified gravity models are introduced. In this section, we will review the
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important idea of dark energy models including cosmological constant, fluid dark
energy models and modified gravity models. The contents of this section are
collected from the review articles and the lecture notes on cosmology schools [78,
79, 80, 81, 82].

Before considering dark energy models, we will introduce the general idea to
obtain the accelerating universe. The homogeneous and isotropic universe in large
scale suggests us that the large scale matter in the universe intends to be perfect

fluid. Therefore, we begin the gens nsideration of the dark energy with the
Einstein Hilbert action including th fAuid.

), (3.24)

where L,, is the Lagrangifinfens luid which plays the role of
the dark energy. Varyiag Il/ ) \ ve to the metric, one gets the

(3.25)
where G, is the Einsteifl ts {ensor, R is the Ricci scalar and
T, is the energy momentiiin {# : t fluid. The general form of this
energy momentum tensor

(3.26)

e 0 B39 BN ST e 1.

Friedmann and'acceleration equation are

amaﬁnwumamﬂaﬂ -

= = M: (p+3p) =— M,ﬂ(1+3w) (3.28)

]

where w = E is the equation of state parameter. Thus the condition for acceler-
ating universe is

1
w < —E. (3-29)

The ordinary matter in cosmological scale can be interpreted as dust which has
the equation of state parameter, w = 0. Thus it cannot yield the accelerating
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universe. Radiation which has w = 1/3 cannot yield the accelerating universe.
This is the reason why ordinary matter and radiation cannot be dark energy.
Next subsection, we will show that cosmological constant can be the dark energy
and discuss the problems of the cosmological constant.

3.2.1 Cosmological constant

after discovery the expanding universe’“Néyertheless, it was reintroduced again
as a candidate for daiks ' ological constant drives the
accelerating expansion bert action with cosmological
constant term

(3.30)
where A is the cosmol nomentum tensor of cosmolog-
ical constant is

(3.31)

where py = M A. Ejr comp ;;W gy momentum tensor of the perfect

fluid in (3.26), the. a¢ cosmological constant is

—— X

sa

m ]B (3.32)

It is clear that cosmolggical constant sagisfies the condition for accelerating uni-

wese. CondBp AN H WY WG By oo oy sinen

is a constant Background energy that exists even when there are no matter and

I8~ A Db 1 iy b1

peri ~ 107Y7GeV* [77]. Dark energy contributes to this value about 72 %. Thus
we can estimate the vacuum energy density as py ~ 107%7GeV4. Theoretically,
this vacuum energy density can be calculated from the quantum field theory as

pﬂﬂvl’-':% Z: gl/ . ——Vk?+m k:‘u {3.33]

all particles [2 ]3 167

where g; = (—1)%(2j + 1) is the degeneracy factor for a particle of spin j. kmas is
the maximum energy scale that quantum field theory is expected to be viable. If
kmae is order of Planck scale, the vacuum energy density is order p,q. ~ 10GeV*,
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This extreme difference in order magnitude between the observational data and
the theoretical prediction is called cosmological constant problem. Note that the
problem still exists if the cut off scale is set as the QCD scale, pyo. ~ 1073GeV4,

The other problem of cosmological constant is called the cosmic coincidence
problem, which asks why dark energy began to dominate at this epoch. The
evolution of cosmological constant is very different from other components such
as matter. How is the energy density of cosmological constant comparable to the
or words, we need to fine-tune the initial
s of the universe in order to get the
fion of the universe began earlier,
existed.

energy of matter at this period? Iy

value of the energy density of ever:
present acceleration periog
the structures such as gais

These two probleg g ;‘;.' if cosmological constant is the
he idea of string theory land-
compactification predicts

dark energy unless we ygé

scape is one of the exauplg 'f__- A\ \i‘.

a large number of de'Siite —. o with the
appropriate value of cg8

“ \ r, using cosmological models
with extra dimensions mdy #lvethe cos \ nstant problem. Casimir dark

9 P2 i
energy model, which v ﬂ
the cosmic coincidence problé-

degail, is one of the examples. For

'ed D llﬂi'l].g the so-called tracker be-

havior, which may e:ust ) 5 dark energy models such as quintessence models

(83, 84]. The costhicibincidence pre '""'i of this thesis.
e )

3.2.2 Fluid d;k energy m

Inspired by ﬂtuﬁ mgm ﬁiw &ﬂmmndels are scalar field

models. The sﬂupleat scalar fieldymodels for ﬁxk energjr arqts,a.lled quintessence
mode : i e itiess tionary mod-
els is that quintessence models is no cunstrmned by the e-fo condition, (3.9).
Actually, they require the flat potential but does not need the long flatness. It is
possible to get the accelerating universe by putting a stationary scalar field at the
minimum of the potential. It looks easier than inflationary models because one
does not need to find an unusual potential. However, it is not easy since we have
to track the evolution of the universe. In other words, dark energy needs to sub-
dominate the matter and radiation during the matter- and radiation-dominated
period.

To see how the scalar field provides the accelerating universe, we will start
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with the inflaton action in (3.1) which gives us the energy density and pressure in

(3.4) and (3.5). Thus the equation of state parameter can be written as
w=£=w=-l+L. (3.34)

P 32+ V(0) @ + 2V ()

From this equation, the accelerating universe is provided by ¢* < V(¢). The
advantage of these models is their equation of state parameter and the dark energy
density can vary with time. This enables the possibility to solve the cosmological
Ib golve the coincidence problem, the value
g must be an attractor of dynamical
, atential in this model need to be
runaway-type. The simPle Siidpopulir romaWay Dotentials are V = M4~ and
V = Mie29/Mp,

constant and coincidence problems
of the dark energy density at'the
equations of dark energ

For the inverse | g~ | there are no the attrac-

tor solutions correspondifig
poe/pom ~ O(1).
can mitigate the fine §
stant. The cosmological'e

16 a;rk energy and dark matter,
ence problem. However, it
wirelative to the cosmological con-
, ovided in this potential. For
the exponential potential it gan provide the attractor solution
but encounters unameptale or, there is no matter-dominated pe-
riod. However, this beha introducing another scalar field or

assuming the coupl g between £hy fessence Batdiidd the dark matter.

ae guinis 4
The crucial p 1€ls cOines from the fact that effec-

tive mass of qumtmen{:e field need to be llght in order to drive the accelerating

e ﬂummmwmm

e_ff = "'—"'Vél',ﬁ) ~ lﬂ Mf::r‘l!!'[-"'2 (3 35)

w s QAR 32 @141%3:3 AR BBt i

constraihts from test of the equivalence principle and fifth force [85]. Generally,
the fifth force interaction is characterized by the Yukawa potential, V oc £2*
A is a parameter characterized the range of interaction. In order to 1llustra.te the
effect of the fifth force, one can roughly estimate that A is inversely proportional
to the mass of the scalar field, ) o m+” Since the mass of the quintessence is very
light, the interaction range is very long. Thus the fifth force must be observed

where

by experiments. Unfortunately, there are no evidences of this force in the recent
experiments. This is the main problem of the scalar field dark energy models.
This problem will be solved by using the chameleon mechanism (85, 86]. This
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mechanism provides the effective mass of the scalar fields which depends on the
energy density of environments. To see explicitly how this mechanism is, we begin
with the chameleon action,

S = / hﬁ(%ﬂ +Ly) - f 'z Lon(0, g0). (3.36)

¥ is the matter field and g5} is the metric related to the metric in Einstein’s
frame, g,., as

o G (3.37)

where f; is dimensionless eons ant. [ ﬁ"mg the equation of motion for

scalar field, ¢, one obtains-the-ef w mass
\\\H ~. p,ePi®/Mpt (3.38)

For the experiments o the s 1@, -.=-: square in the second term can be
estimated as m} = 1., f ~ppeciid Mg 9936 V* which dominates the effec-
or iidden for the terrestrial experi-

tive mass square, mj. :
periments, m; still dominates m3,

ments. Note that even i 3 sl
M} = Mipatazy ~ 10 GV 27 778
There are mauy , (hat e have not mentioned, for
example, chaplygingas a-i.-'a‘i field [89, 90], vector field
[93], k-essence [87, & I We do not consider them h¢ I 2 for brevity. However, the
readers can follow on these topics in theareview paper or the lecture notes of the

— AT e

Finally, ?ue to the light mass of the datk energy fields; they acquire the
oo} 5 ] T8 S e perrins
into ourlconsideration. This issue is very important because they can affect the
structure formation. Moreover, some models are ruled out by their instability. We
also skip this issue in this thesis since it is not our main probe.

3.2.3 Gravitational dark energy

While the fluid dark energy models correspond to a modification of the energy
momentum tensor on the right hand side of Einstein field equation, the gravi-
tational dark energy models correspond to a modification of Einstein tensor on
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the left hand side of the Einstein field equation. The simple and popular models
are f(R) gravity models. The idea of these models is to introduce an arbitrary
function of the Ricci scalar, f(R), instead of Ricei scalar R in the Einstein Hilbert
action. These models can be interpreted as the more general model of cosmological
constant while f(R) = R — 2A. For the inflationary models, The proper function
takes the form f(R) = R+aR?, where a is a positive constant. In this subsection,
we will discuss the late-time accelerating universe from f(R) gravity models by
following [94, 95, 96].

There are two approachies \ . vity models. First, it is the standard
fm‘m&t]iﬁm which uses th ,_.:“ : y,u..-,.- i g on the affine connection, I‘g_r
In this approach, we derivesthe eqtitionof*metion by varying the action with
respect to the metric. e i \\ jormalism. In this formalism, the
metric and the affine€ony ” e \\1 cpendent dynamical variable
and we have to th & f‘* ::\-\Eu\.
order to obtain the egila 7 10t10] #1‘\ vapproaches provide identical
equations of motion in jghe £: Letn H i\x-\: tion. However, they provide
the different results wher 4 inchide 181G -linder term of R into the action. We
' is thesis. For Palatini formalism,

ne metric and connection in

will consider only the
one can follow reference __,_' , Crem

The idea of f(R) gravifs i ;
inflation because e fieed the me n-to end thelinflation but does not need
;*K‘ for inflation guarantees
i

nd since infation enforees

tenergy is different from ones for the

for dark energy models
that the a.cceleratm
to solve the flatness pﬁﬂem. Hence, R2 term will vanish at the end of inflation

and the amﬂrwq R b Tehpid ’}:ﬂ@ dark energy models,

the additional®erms must be dommated when the universe is enforced to be flat.

AT AT

uf da:rk energy and inflation will be investigated by including both two terms,
f(R)=R+aR* — agR™™ [97].

the flat universe in order

For the f(R) dark energy models, the action with matter can be expressed

M?
S= —Z-Efd‘zﬁftﬂ) = [d"zﬁfn(f.ﬂ',gpul {34{]]

By varying this action with respect to the metric, the equation of motion can be
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S = F(R) Ry — 3 [ (g + (98— V,V,)F(R) = %ﬂ'f"“’ (3.41)

mﬂ 1
where F(R) = 8f/8R, T{}" is the energy momentum tensor of matter and
1
OF = ——8,(v/=3¢"**8,F). 3.42
It is useful to consider the trace of this equation of motion,

30F(R) +F(R)E /20 F'ﬂml. (3.43)

For Einstein’s general
to M4ZR = —T™ as'the

sbtain F(R) = 1. This leads

OF(R) = 0. For the f(R)

""'x
gravity, OF(R) does"fio Q}::\\\\ opagating scalar degree of
freedom, ¢ = F(R ll 0 -_ ¥ \ quation of state parameter

of these dark energy wbdgls & = . 1} as

(3.44)
where
% Mp’:(f H‘ : S WY+ (1~ F)Ry). (3.45)
In the FRW me &ﬂ caabta et sauationeo] B s
i (349
¢

AUEFIMERTRERnE oo
AT T

of gravi fational dark energy as
pa = M} (E(FR ~ f) = 3HF + (A~ F)3H?), (3.48)
Pa = M,i( - %{FR ~f)+2HF + F - (A—- F)(3H* - 25'), (3.49)

where A is a constant. Thus the equation of state parameter for dark energy can
be expressed as

M2(2AH +3AH?) + Y. pi L ey
SAHIMZ -3, p; 1 (F/A)Q,

. (3.50)
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where Qn, = pm/(3M3H?) is the density parameter of the matter and w.;; =
~1—2H/(3H?) is effective equation of state parameter. The last approximation
comes from the negligence of the all contents of the universe except the matter.
The universe which is filled with the cosmological constant, the so-called de-Sitter
universe, is reproduced by taking H ~ constant and {1,, ~ 0 and then it turns out
that wy = —1. To recover the standard evolution of the universe, A must be unity.
This equation of state parameter provides the possibility to reach the phantom
phase naturally. In other words, it provides the state that wy < —1 while there

are no the ghost fields in the theory y that the recent observations suggest
that wy will slightly less tham <! @,14 [98].

rovides dark energy description.

However, it encounters
not easy to satisfy
f(R) dark energy

of tlie-pertitBations [99, 100, 101] and it is
AN % 1t is found that the viable
mAs

st \.f\“"\ ts [100, 103]:

(3.51)
(3.52)

The first and the seco it 1.1 : he requirements for avoiding the exis-
tence of ghost and tachyon rédpact :
on f(R) dark energy modeis. %

al gravity constraint. We do not
discuss this topic inthis the: '

2 )

In addition to o1 of Einstein-Hilbert action can
be written in terms of Ricci tensor, R,,,, and Riemailfi tensor, R,,0. The specific
choice whichm‘ iant-inddimens ime is Gauss-Bonnet
term, G = R » W y of this term is that
it does not co?tltribute to the equation of mogion when we vapy the action with
el LR BBy o e
field in @rder to modify the Friedmann equation. It is possible to construct f(G)
dark energy models. However, they suffer the instability during the matter and

radiation dominated period. The progress of these models are active now. We leave
the references [94, 104, 105, 106] and references therein for interested readers.

2 are many observational constraints




Chapter IV

EFFECTS OF TIME-LIKE ATHER FIELD ON
COSMOLOGICAL MODELS

[Ether theory is h§‘ . The effects of the sther field

a.rerelemntmthep i suppressed by factor (M/My)?,
.4. theary. 1]

that can encode quan pileets | \’\n ation since quantum fluctuations
at re,it.isusefult-uinwatigate
wdels. It was first investigated by
doth tensor and scalar modes are
‘ from the standard inflationary
i ure perturbation is not generated and
ant to the cosmological scale. Note

where M is the me > most powerful mechanism

are strengthen to cosmeltg
the effects of the =
Lim [28]. In this wouk, t&
calculated and the results
models. It is also found that

VT ¢ field including 84 term are
investigated in [114 '|‘ | 3 calculated in alternative
way by using mmna.nt and gauge mmnant (CGI} ormalism. The results in this
investigation g different from the
results in [ﬁwgm mmmlﬂe ime-like sether field in
the late-time evolution of the universe are alsgsinvestigated [bl4, 119].

%ﬂm’lﬁ,\% Bhdgich] ¥l VL ELLBLEL spectum anc

power spectrum are slightly modified. The constraints of sether param-
eters with observational data are also examined in [116]. In this work, by taking
into account the constraints sther parameters from PPN, Cerenkov radiation and
stability, the numerical constraints from CMB and Large Scale Structure data are
performed by using modified CMBEASY code with Monte-Carlo Markov Chain
method. We also note that the generalized sther model, in which the kinetic
terms are generalized as K — f(K), is used for these investigations. Recently, the
results of the perturbations in the inflationary models with the time-like @ther

nﬂ
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field are carefully calculated in [113]. These results are different from the previ-
ous investigations. The isocurvature perturbation and the vector modes of the
perturbation are generated. The investigation of [113] also connects to the recent
development of gravity theory named Horava gravity theory [122, 123]. The Ho-
rava gravity theory provides the time-like Lorentz violation in the same fashion
with the time-like sther model [127]. In this chapter, we review and discuss the
results of this article.

: time-like aether field are also investigated
mther field and the scalar inflaton
be performed by introducing the
#8 = B(¢). In [115], the sther
(¢ and the simple potential is V =
2. calt'be properly obtained in both

The inflationary models witl

in the context of the coupling
field [115, 117, 118]. Thesee pl
sther parameters depend:
parameters are set as
m?¢?. It is found that
with and without iud
are calculated and thg
potentials and coup m

ctra of tensor perturbations
len-coupling case. The various

\:\\- in [117] by using the first-
order formalism. Thé cafip! s f'-_J ) be phtained by interpreting the degree
of freedom of the sthepheld HS&:I cal, expangion 0 defined as @ = V,A® where
6 relates to the Hubble by @ =3H. Then the coupling term takes
the form 8¢ = -A“?“q# + t tive.-'he consequent effect of this term in
the equation of motjon i ‘is an opee. The various constraints
including stability, Cerernke ov, positive ene i@ PPN ronditions are derived and

summarized in [118] 7 m
Recently, the gegeglized ether nE;lel is investigated in order to play the

role of dark m W ? ﬂﬁr it is proposed to be
the sources of ghe structure formation. However, it does not fit with observational

nipk ks3] e
vith mdﬁﬁiﬁfﬁﬂ ik

4.1 Inflationary model with the sether field

In this section, we review the inflationary model which is driven by scalar inflaton
field and contains the @ther field by following [113]. We begin this section with
adding sether field action into inflaton field action. This action is expressed as

2
5= [ dey=g(FAR+ L) - 300,006 - V(#)). (41)
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We set the norm of the time-like sether as unity, A,A” = —1. Thus the Lagrangian
of the time-like sether field can be written as

La = —Bi(VuA)(VFA") — Bao(V,A")? — B3(V,A,) (V¥ A¥)
—By A AY (VA (VL AP) + A(AAY + 1). (4.2)
It is convenient for us to evaluate the calculations by using conformal time since

most of the cosmological perturbations are calculated by using the conformal time.
FRW metric with the conformal tin

: be written as
) @ (4.3)

The ether field is hi -eity and isotropy. One of the
allowed choices is A* = [ Ljaf )): By s form of the sther field and
the energy momen @ns gfined in Chapte equation (2.19), the energy
density and the pressiire of (he 41 * :
HI‘
=) (4.4)
where H = a'/a, a4 = A" t-ea the derivative with respect
to the conformal time :-- be written as
(4.5)
By substituting t aton field into Einstein field
equation, Friedmaim
=3
ﬂ pl 2 4
NINARS
= -MQEHEJQI'I#EJ 3 ﬂ) ﬁﬂifl + 3wy )ps. (4.7)

o mammﬂw UG 0D51 5 e o e i

the modification is to rescale of the Planck mass M — (1 + a./2)M3. We note
that the equation of motion for inflation field in (3.2] is not modified by the sether
field. By using this rescaling, the slow-roll parameter will be obtained
H  Mi(1+a4/2) (V'(¢)\2
C=TET 2 (V{¢] ) : @8)
It is important to note that the factor 1 + a4/2 need to be positive in order to
avoid the negative gravity. This condition leads to

as > -2 (4.9)



43

The qualitative analysis of this slow-roll parameter is very useful in order to char-
acterize the dynamics of the inflation modified by the sther field. If a4 + 2 is
small enough, the potential of inflaton field does not need to be flat. For conve-
nient calculations with the cosmological perturbations, we choose the potential of
the inflaton as the exponential potential. This potential leads to the power law
inflation, a o 79, Thus the slow-roll parameter can be expressed in terms of the
equation of state parameter, ¢ = 3(1 + wy)/2. To see explicitly how the sther
field affects inflation dynamics, we consider the number of e-fold,

o * V(¢)
N = Hdt = —=d¢ 2 65. 4.10
From this condition, we will'see that wﬂes not need to be flat in order

to solve horizon and §

4.2 Cosmolog ith aether fields

The goal of this sectiof is/f ey A ial power spectra and compare the
results to the standard gfaldr: l ‘the same strategy as we done in
Chapter III. In the first s ik rturbations from the sether field
into the perturbation of the --"‘"—' % A the inflaton field (3.13). The @ther
field with its perturbations an e wiribt

) (4.11)
This form of the pﬂ@'ba ons gives legrees ﬁ&eedum from scalar pertur-

bations A%, C' and twu'd éreee of freedonb from the transverse vector perturbation
Vi. Notice th ansverse, cﬁu 5 g6 if tjiuwever, one degree of
freedom for i'- ons will be ‘elimins m fixed norm constraint.

ur cunstramt tmn one o §A° = —&/a.
S QERERTARID il ik y SR

separst.e the calm.llatmns and dlscusmons for each mode of perturbations.

4.2,1 Tensor perturbations

Substituting the sether field, the metric and the inflaton field with their pertur-
bations into the action (4.1) and expanding up to the second order in h;;, one
obtains the action for the tensor perturbations as

2 2
S = % [ drd“z%([l = Bia)h? - aiha‘h) (4.12)
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From this action, we see that the sther field effect is only in the first term. On
the sub-horizon scale, the gravitational wave will propagate at the sound speed

square,

1
— : 4.1

To avoid the classical instability, one obtains the condition

1—Bis>0. (4.14)

Note that this condition also yieli ‘tiuna with no instability from ghost
field since the kinetic termds not wronisige” _Bhis result agrees with the result in
the references [27, 113,.1 Mrem:ee in the expression from

various references co \ hey use. By using the same
strategy in Chapter gl spectra fromthe tensor modes is

(4.15)

It is important to consi hét Tecen development of the gravity theory which
is renormalizable named Horaea gravity #heory [122, 123] since it provides the
Lorentz violation like sethef ticory [127]1 E ar, Horava gravity encounters the
' » extensions of the Horava
ns [125, 126]. This extension
version is related w1 the sether theory and named ﬂ BPSH theories [127]. From
point of view of the om for the sether field
can be intMﬁjﬁ:ﬁfmghﬁlﬁ? through the identity
(125, 126

AANTUYBIINGNEY

T can be interpreted as a time variable since the gradient of 7 is time-like ev-
erywhere. Analogous to BPSH theories, the surface of constant 7 will define a
foliation of the space-like surface [113]. Consequently, the perturbation of this
scalar field is related to the sther scalar perturbation C

T
7=

From this new degree of freedom, the curvature perturbation on the surface of

instabilities and stros
gravity are investig

—(B+0). (4.17)

constant inflaton field ¢ can be decomposed into two new gauge invariant variables



G = U—-HB+C), (4.18)
SN = gﬁqﬁ +H(B +C). (4.19)

Geometrically, (, is the curvature perturbation on the surface of constant sther
field and N can be interpreted as the isocurvature perturbation since it cor-
responds to the velocity of the sther relative to the inflaton field. 4N is also
interpreted as the differential e-fo

ing Eumber between the surface of constant

2.

ok’ ) + ..., (4.20)

5 A5, o _ (2 Bu)Buss?
ZN-.EE[1+aA,.12} r @ B %= 2t anbu (4.21)

In order to avoid the instabilities; o ‘ the conditions

Y} (4.22)

From this Lagrangias, one can find the equations Emuﬁi{m and their solutions.
We summarize that tHer@sare two modé/of the solutions, inflaton perturbation

mode and s pestofiafioh i A Fpafitly expressd as

i 1/2

AR IRy
ca—}%jm, SN — 0. (4.24)

Consequently, the power spectra associated to dV and ¢ can be written respec-
tively as

By =Zn (E)ﬂ, {425]

kv 2
FPe=Fe, + Fsn= (Z + ZN] (E) . (4.26)

e Super-horizon limit
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For the long wavelength limit, {, and N are coupled. However, Lagrangian can
be decomposed into other two independent variables as { and dN. The leading
terms in the Lagrangian of ( and d N can be expressed respectively as

.
Lo= (E +ﬂmsf) VAF 2aM2a?C?, (4.27)
2 2
o Mpia® (k1) 2, Ko
Lon = Bu(1 + 3wy —2— (6372 + 0N ). (4.28)
where
(4.29)
The corresponding indef dent. ugi Be classified into two classes and
four modes. The first gle m« ssponding 10 ddiabs t:perturbatmns contains two
modes which d N = 0 ane ‘\ ""‘" iding to isocurvature perturba-

tions contains two mog

" .H . a\\\\\\ diabatic perturbations, there

are the constant and defa - muda yields the anisotropic

stress as

(4.30)
During inflationary period, wg = _, henileads to (¥ — ®)/® ~ By3. To obtain
the small contribution from ‘TJ i) ‘1 stress, the sether parameters must be
restricted, | 513 < v Forthe z mode tgare (o =0,V = & o Ha™2.
In order to 4'{;"_-- “mnitial condition "u tions at the matter and
radiation domina -"‘"‘3 : les are the constant modes since

the decaying modes™will vanish before pérturbatin reenter the horizon. The

o ““““Fﬁ“ﬂ?j“? NEyr e

~ el + a2 L, O(Bimec))- (4.31)

The lmmmmmu AAD VL EL v e s

(1+ a4/2)~". For the isocurvature modes, the solutions are

ON o (—7)™, (4.32)
where
__l 5+3w¢ 5+3‘H.F¢ 2
t =3 1+3w,) 2 \/(2(1 +3w,}) T (438)

The behavior of these two solutions are characterized by a parameter x. The ob-
servational data suggests that the primordial power spectra are almost adiabatic.
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Thus the isocurvature modes should be sub-dominated relative to the adiabatic
modes. This argument suggests us to eliminate the growing mode of the isocur-
vature modes. Then this suggestion leads to the constraints on a x and ather

parameters as
k<0, ajg<—Pu (4.34)

The most interesting case is k = 0 =+ a4 = —f,4 where it gives the constant pri-

mordial power spectrum. Moreover, this constraint also satisfies the PPN coditions

There are three transyrsg perty “ an, Vi, E and S;. We have two con-
straints from the equati®n o i Gﬂmpﬂnentﬂ (i 7) of Einstein
field equation. Thus this [€ayes f yuamical transverse vector field in which
its quadratic Lagrangian j

£,= 22 (Buge’s 'E e’ - Buso&de'), (4:35)
where & = aV i =
X J
(4.36)

| WW‘W %’W ﬁ“\'ﬁt’?ﬂ e
AR AT ANy o

The cortesponding equation of motion for the above Lagrangian can be written in
the term of original variable, V; = € /a, as

V! + 21V, + 2KV, + ((1 +an/Bu)H+ (1 - a,‘m“)u') Vi  (4.38)

It is shown explicitly in [113] that this equation is the same expression with the
equation of the longitudinal vector, C'. Thus the transverse vector is proportional
to the sther velocity perturbation since v; = ¢;?8;C at the supper-horizon scale.
The evolution of the transverse vector will behave like the @ther velocity pertur-
bation and its amplitude relates to N as V o v o< %6N = £6N. Considering
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the case ey = — 14 where N is constant at the supper-horizon scale, we observe
that V' will decay since a’ increases during inflationary period. For the de-Sitter
space, the vector perturbation will decay exponentially. This argument leads to
the vanishing of the vector perturbations as suggested in [28]. However, after in-
flation, the universe decelerates and the vector perturbations grow consequently.
Due to the strong relation between 4N and v, the estimated amplitude of the
vector perturbations at the time of horizon reentry can roughly written as

(4.39)

where amplitude of the dN at horizon crossing during
t will affect the angular power

1 [113], the estimated value

inflation. If B4 is smal
spectrum of CMB aniSotrc
of the CMB power sp

(4.40)

From the observationalfdagh [98], the' ) f the vector perturbations to
the temperature anisotrgpy fimst be s '
turbations. Thus this req

comparing to the scalar per-
aint on the sether parameters,

(4.41)

Notice that this veertise
the temperature anisotre rf"" ing for further investiga-

1

tions. In the last of this chapter, we will end with the ‘! mmary of the constraints

e BT ﬁﬁﬁﬁwﬁw e e
ammmm um'mma ¢l

yri-affect the polarization on
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Condition Constraint
Solution of gy > —2
Stability of bz <1
Stability of Scala N N0<Bu<2 0<Pis
Stability of Vector, A | 26:(1+ Bis) 2 -5
Anisotropic stress Pss1
Non-mvnns scalar is as < —Pu
Subdom - | o Bis < €l

Table IV.1: Summ
purametersafmther \ eOT1ES

ﬂ‘lJEl’JVIEWIﬁWEI']ﬂ‘i
wwmﬂimum'mmaa

er';-'-‘ logical conditions on the



Chapter V

EFFECTS OF SPACE-LIKE ATHER FIELD
ON COSMOLOGICAL MODELS

f

osmological models with stan-
tropy of the three-dimensional

The presence of s

dard (3+1)-dimensionaks 7‘ w

space, i.e, breaks SO _ aup of Lorentz symmetry. Ro-
tational invariance is g ’\ ow-energy physics. Violations
of this symmetry must . However, they could have

been much larger in#€arliér £nochs; for n g the inflationary era. In
order to investigate tl ng of rotational invariance
from the early universe ne the existence of a space-like
eether field that picks out . ' ‘ng inflation period. They also
study the effect of such breaks: #nisotropies. From the observational

point of view, there is a phernc o called the Azis of Evil, an apparent align-

ere 1s no clear &x¥planation of this large-scale

significance is hard tefuantify anc

anumal:,r in terms of Lorentz violati

on e GpdEL A JL ANLIADT oo e e

with compact extra-space dimensions is less problematic. Ong can assume that
o R S TV IR g ) b i s i
isometrygroup SO(1,3) of the non-compact dimensions unbroken and rotational
invariance of low-energy physics is well preserved. Moreover, the sther field has
unexpected behavior that can help to stabilize the extra-dimensional space. This
behavior was first pointed out in [108] for 5-dimensional spacetime. There is a
suggestion that the interplay between the @ether field and the dynamical moduli
field, describing size of extra dimensions may shed some light on the deep and
previously unknown connection between the dimensionality of spacetime and the
violation of Lorentz symmetry. Perhaps nature allows us to observe only the large
three-dimensional space that preserves Lorentz symmetry but conceals the Lorentz
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violating directions in the compact space.

In this chapter, we will follow the discussion in [108] by consider five-
dimensional cosmological model with one compact extra dimension. Casimir en-
ergy from various field fluctuations in compact extra dimensions could play a
crucial role of dark energy (a cosmological constant) and the potential for stabi-
lizing the size of the extra dimensions. In the first part of this chapter, we review
the Casimir dark energy model [107]. Then we go on to consider the effects of

adel. Note that, although the mechanism that
tial from the Casimir energy, the

the space-like sther field on this

we consider in this chapter involve
behavior of the sther fieldvis total
sether stabilization med

from the potential. Hence, this

.-J
wes of potential.

5.1 Casimi

Casimir effect was origi in 1948 [130]. He considered

electromegnetic vacu . In quantum field theory,
vacuum states contain ( » in a continuous state of fluc-
tuations. Casimir realized®hat the boun comdition is imposed to the system

mentum of the virtual particles to be
- e wave between conducting

by the conducting plates.
discrete. Only th.‘ I par
plates are a.liowed. Tergy-density of t ifictuation decreases as the
plates are moved cl . all attractive force between
the two plates. Th:almlr force was first measuredﬁ 1958 by Sparnaay but with

e BT g e e
m@mwmm‘m B

from various field fluctuations in the compact directions can play the role of dark
energy [107]. Moreover, it provides a mechanism to stabilize the extra dimension
[109].

5.1.1 Casimir energy with an extra dimension

We begin with considering the Casimir energy of bosonic degrees of freedom. It
is convenient to consider a massive scalar field since the other bosonic degrees of
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freedom give rise the same expression [110, 111]. It is instructive to consider the
model with one extra dimension compactified on a circle, S'. In this 5-dimensional
spacetime, the metric can be written as

ds® = —dt? + a*(t)dz'd2? §;; + b*(t)dy?, (5.1)

where a(t) is the scale factor, b(t) characterizes the radius of the extra dimension

and the coordinates on S* are 0 < y < 2r. Note that we allow the time-dependence

of the radius for generality and compatibility with FRW metric. For a massive
'I "

scalar field, the equation of motion i (lgin-Gordon equation,
(5.2)
The Latin indices, a ¢ five | spacetime indices running as {0,1,2,3,4}.
O AN R, oot
The scalar field is s i !‘-' anddry condition in the compact
direction, ¢(y = 0). i ersion relation in the sub-

UNNE

horizon limit can be v ah As _’\\\
=4 2+'-

. \
\

S (5.3)
where, n € Z is the mofer ffabetis he comipact direction. Then the total
vacuum energy contributifig t5Casim @y cén be written as

; 2
3 0.4
e B2’ ( }
‘(_.
. By using the identity

e Vi L th?;a;tl , ol
= n/2 n-1 .
ff(k}d"k 2m ;T néwk f[k)dk,‘w;e obtain

LUNBRINTE
AN TRYRIIELANE) " oo

where we define s = —(3 + 1)/2. Let us consider the massless case, m = 0. By
using the zeta function regularization procedure, the Casimir energy density per

one bosonic degree of freedom for massless scalar field can be written as

massless Eﬂ“ . r(_23+ 1)

A e T PPN B ), (5.7)

where ¢ denotes the zeta function and we take 27b to be the volume of compact
dimension. For the massive case, we apply the Chowla-Selberg zeta function [111]
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in our regularization procedure and obtain the Casimir energy density per one
degree of freedom for the massive scalar field:

pmassive — _9(2mb)**~} (mb)1 22y " n@N2K o, n(2mbmn),  (5.8)

n=1
where K,(z) is the modified Bessel function. The energy density of these two
types of the scalar field depends only on the dynamical variable, b(t). The pre-
factor and the summation of the modified Bessel function indicate that the energy

density of the bosonic part is negatiyé dn order to get the positive finite minimum

value of the total Casimir energy, one / d the positive contributions into
the system. It is found that the fe mi m&f freedom will contribute to the
total Casimir energy dé h tHeE n except for an extra minus
sign. Thus the total can be written

S Ermli::* (5'9)

bosonic (fermionic) degrees of

freedom for massless : ieldairespe %, The qualitative nature of the
total Casimir energy dengity/opauds om the rela ma.gnitudeofm, Ny, N, and

N,
Phennmenulnglcally, bers of all degrees of freedom as, Ny =
5N¢.-BN;—B ic degrees of freedom come
from the massless gieviton in {1 4 "_""”’""‘r*“:.‘-- e, N = (d—2)(d+1)/2.
38 the 8 massive scalar fields.

omagnetic vector field can

Os0

The massive boson _
The contribution frou

be ignored by i FQ ngmﬂ notioh that they do not obey the boundary

conditions muwﬂ%tg number of degrees of

freedom is chdben in order to gep the puﬁltlve minimum of the Casimir energy

s AMONIRLS URANYIA Y

THe positive minimum value of the Casimir energy density is obtained from
not only by choosing the number of degrees of freedom but also from by choosing
the mass ratio A = my/m, where m, is the scalar mass and m is the Dirac fermion
mass. It is found that the mass ratio must satisfy the condition A > 0.516. In
Figure 5.1, we show the plot of the Casimir energy density as a function of b.

the other bosons such as elee

By setting A = 0.516, the positive minimum of the energy density is obtained.
This minimum of the energy density allows the possibility to stabilize the extra
dimension. The stabilized radius of the extra dimension corresponds to the radius
at the minimum of the potential, b = bpin. bmin also relates to the mass of the
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ontributions from fermions.
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e next subsection. Note that there
of degrees of freedom, for example,

L " # L
fermion and we will calcilatefihis munse
are no unique choices for chossing

; e
the choice in referenge’

7 = X

e

5.1.2 Dynnm.igl of Casimir da.rk eneﬂy
o o8 RS TN e e

momentum teribor contributed fm? the Ga.sumr effect into t.he Einstein field equa-

o] Dl 3 b} zmm'ﬂmﬂ o

-PCM
0 p. 0 0 u
T‘:if{:‘u] = 0 0 Pa 0 0 1 (5.1“)
0 0 0 p. 0
\ 0 0 0 0 p )
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where p, and p, are the Casimir pressure in the non-compacted and compacted
dimension respectively. These pressures can be defined as

Pa=— afz (poasta). (5.11)
p =55 (ourts), (5.12)

where V, < a® ™ and V} o b". Here, d is the numbers of all spatial dimensions and
n is the numbers of the extra dimensions and d = 4,n = 1 for this model. These
definitions automatically yield e Coe n nlogical constant behavior in 4-dimensional
spacetime while p, = —pc. "--.._:;: 11'I! 4. #bpcas. The conservation equation
of the energy momenturitensor reads ....-ﬂ'_

i ] ) .‘"-i, - D
I [ha r,_‘ TINE the

p) =0, (5.13)

jergy momentum tensor into

the Einstein field equag e Jobtning \\\

(5.14)
Pb)s (5.15)
3% o HE = 4 as + 2Py — 3p,). (5.16)

Thebehavinraft SCt 2 extra dimension are shown in
Figure 5.2. From thisfigre; we wil intlimension can be stabilized
and the universe accgleratel Sinir Energy can be interpreted as
the dark energy and alsc ‘grmfideﬁ the mechanism to stabilize extra dimension.

Figure 5.2: This figure shows the behavior of the radius of the extra dimension
(left panel) and the scale factor (right panel).



5.1.3 Dynamics in the radion picture

Since the observed universe is in 4-dimensional spacetime, we have to investigate
this model by using the 4-dimensional effective field theory. The 4-dimensional
action will be obtained by using the KK-dimensional reduction. Since we have
the energy momentum tensor for the Casimir energy source, the corresponding
Lagrangian density for the Casimir source must be formulated. Since the energy
density and pressure of the Casimir source depend only on b, it is useful to write

down the Lagrangian density of b. In the spirit of KK-dimensional
reduction, the degree of fr codgh ; f the fifth direction will correspond
to a scalar field, the so-called rad: imensional spacetime. Therefore,

it is convenient to write dowm-the Lagrangas.density as 5-dimensional potential

(5.17)
V(b) = pcas denotes thg'ptenitial/ ten i \» enisional spacetime. To obtain
the 4-dimensional actign, I Lwith KIS dimensional reduction of the above

tign in the canonical form, we ap-

ply Weyl rescaling g,..e =#g Bt == IL . 3)'and define the new time variable
dtg = QV2dt, ag(tp) = it b ;M;:; Note that M, is the Planck
mass in 5-dimensional space iriie defined: ation M,ﬁ = (2mbymin) M. Thus

=1 at b = b,,;, ¥ Phceffective action ""'"‘-"""E'

i
@-ﬂm U(w)), (5.18)
where U(7) ﬂl m ential. Here we define
the radion ﬁ ?_‘m’ﬂm ? m tion for a scalar field
with specifi putentlal As we hafe mentionedsin the ter, the accel-
AL Ko PR EAT £ UK I Tt T X TEA K] A

its poteﬂl’.la.l. The radion field corresponding to radius of the extra dimension may
oscillate around the minimum of the potential during matter and radiation domi-
nated period and settle at the minimum of the potential, then the universe reaches
the accelerating phase at the present time. By varying the above 4-dimensional

action with respect to the metric, we obtain

dv
T
He = 3M* (vewy+ 2(&4:3) ), (519)
d* v d¥ ﬂU
l'ﬂi +3HEth = —ﬁ, (5+20J
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where Hp is the Hubble parameter in the Einstein frame defined as Hg = %—‘

Equation (5.19) is the constraint equation and equation (5.20) is the real dyuamlca.l
equation of motion which acts as the simple harmonic equation with friction term.
The gradient of the potential on the right-hand side represents the force acting
on the radion. In other words, it is the slope of the potential characterizing the
oscillation behavior of the redion.

From the Equntinn (5.8), the energy density behaves as p o< m® while b
,i- to the pﬂlm as

N 4

P ~ (2.3 x 1072 eV)* Sl DRl — 27 0.0146 x 23.4(%) , (5.21)

min |
where 23.4 is the minimun yadwne he petential t b = 0.0146 and the number

40 comes from the setting6t m 7 40 in \ cal simulation. This relation
_then leads to the radius of
=1 = 1.5x% 10"°* m. This
imensional spacetime M, =

m~ !, Thus the fermion mass is rela

gives the fermion mass g,
the extra dimension™b,,
value corresponds to
(MZ,/2bin) 7 ~ 1.4
the model suggest us th _ ;\ for dark energy candidates.
" - We will discuss in the next

; raviors and the quantities in

However, there are soifie
subsection.

5.1.4 Pmbl Ths-ei-the-C D E-mogels

The crucial pmblem-m CDE models 1s the destabilization of the extra dimension
when matter is_taken ihtesaccount. In thé ﬂ us subsection, we assume that

the universe ﬂ%ﬂd Eﬁvﬂ&%ﬁ S Vi ey i

pret as dark e gy and provides ahe mechanmm to stabilize t& extra dimension.

when matter is taken into au:munt‘ To see this behamor, we start with adding the
matter content into the model,

S =S+ f 2/ =G Lmatier (5.22)
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By varying this action with respect to the metric, the equations of motion can be
written as

SHE +3H,Hy, = M:H(PCM + Pm), (5*23}
334 ~3HoHy, = —M*(pcas+ pm+ m)- (5.24)
3% +OHH, = M (p,;.,. + P + 2pp — 3;:.,). (5.25)

ativistic matter in 5-dimensional spacetime.
fand dark matter. Since this matter repre-

Pm is the energy density of the non-re
This matter includes baryon, g ec

0.7

h{ﬂ'

Figure 5.3: This figure Shofvs the Le | radius of the extra dimension
(left panel) and the scale fact ;,_t % when the non-relativistic matter is
taken into account. '

sents dust in the 5-gi
the present time, the
density of the dark emergy as pno = peas02.8/7.2. "d sing a = (1+ 2)~}, pmm can

"TURUGANENERUIAT e
i} L R LU a1 e

figure s]:?ows explicitly that the extra dimension cannot be stabilized and the scale

factor is not accelerated. In order to get more insight for this problem, we need
to go to the radion picture in 4-dimensional spacetime. We use the conservation

—ﬁ?-_—-,_—:_ as pm O 1!(632.‘5) At
Fy 'i;j*h be related to the energy

of the energy-momentum tensor in four and five dimensions to demonstrate that
the radion field will be driven toward the minimum of the 4-dimensional effective
potential as

Ma (4) 2
Uﬂ.f.f = Ugas + ﬂ_ﬂ;me = Ugas + %‘ (bn:“) ' (5'2”
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where Ugas = 2m(b2,;,/b)pcas- The matter density in 4-dimensional spacetime
PR = pm(27b) = 28pin (27bmin) (1 + 2)? is a function of (1 + z)* and does not
depend on the radius of the extra dimension b.

Uere(W)

Figure 5.4: This is thgflof of the ellecive potentiali.,,(¥) at red shift z = 0.0,
7.0, 9.0, 11.0, 13.0 in th 4 ne \ 0.516. The local minimum of
Uess(¥) no longer exists

The effective potentiil & ﬂ“' ; 'thu ous red-shift is illustrated in Figure
54. At z = 0, the presence.Of i - ic matter will lift up the minimum
of Uy slightly. HoMevér, at early hifif the 1/17-term in equation
(5.27) becomes dofAant and ¢ ol the minimum. This effect
mummammtﬁm oca mj.ﬁrmmtodaymnnethemdmn
field ¥ has already rolLed pass the mlmﬂl;um and cannot get back to the stable

g 4121 1120 3 1120 € i
“{RIAAIUPMAZNINRY

There us no dimension reduction in the matter term but the conformal transfor-
mation rescale the matter energy density as plhy' /02, Thus, the total effective
potential is the same as in equation (5.27).

into t.he 5-dimensional

5.2 CDE models with the sether field

In this section, we propose the way to solve the destabilization of the extra di-
mension in the CDE model by taking into account the simple form of @ther fields
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[108]. In the first part, the interactions of ether field with other fields are discussed
by following references [36, 35]. The simple interactions will modify the disper-
sion relation of the ordinary particles and lead to the modification of the Casimir
energy. However, the main contribution of the sther effects is the modification
of the dynamical evolution. We demonstrate these effects in both numerical and
qualitative analysis in the later part of this section.

interactions

5.2.1 The ather field =

The interactions between ‘she wther _e other fields are considered in
this subsection. It is found-that-onl nw gravitational interaction can
directly affect the d ' i . The other interactions
affect only on the Ca# lly, we can assume that the
ather field does no ‘t. graviton field. For this
assumption, the stabilight : sle due to the minor effect of
the modification. Howeyér. fh; ';:.r ! PR R ions will be investigated in
this section for generality "

We begin an investigafion M-'Z ng the simple form of the @ther field. It
is instructive to consider d l}"" (HE N ke

e kinetic term of the ather field due
to the non-complicated calculiativii ihe¢ subshorizon scale, corresponding to the
Minkowsky spacetisg, this type of the sther fiel ld-ead-avoid the instability issue
[39]. However, it e endonnters i .’: crossing scale [40, 41].

Fnrthepm'tmlemter ions, 1V 15 conventent

o B R T L
’&lﬂ“’l/&iﬁﬁ%” [T day ¢

where V,;, = VA, — VA,. The terms in the summation of equation (5.29), L,,
represent various interaction terms of the sether field with other fields that we will

only in sub-horizon scale.

discuss later. If we neglect the interaction terms for the moment, the equation of
motion for the ssther field can be written as

VoV 407244 .V, V4 = 0. (5.30)

Any solutions with 1, = 0 will solve the equation of motion (5.30). In order
to preserve Lorentz invariance in the 4-dimensional non-compact spacetime, we
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choose the background solution such that the sether is a space-like vector field
which has non-vanishing components along the extra fifth dimension,

= (0,0,0,0,v). (5.31)

We now consider the effect of the interaction terms £, in (5.29) which can
include the terms corresponding to the @ther field coupled to scalars, vectors,
fermions and gravity. Let us begin with the interaction effect of the &ther with a
real massive scalar field ¢. By imposing Z, symmetry, A* = — A%, the Lagrangian

Ly= (5.32)
where aj is the dime *.r‘uu-“,\\:"\' acterized the strength of the
scalar interaction. We i i:g' ) \\:Tf\ . term to normalize the sether
field. In order to provigt 2 \t \ ncludmg eether fields, scalar
fields and their interd€tiof, | P \' = coupling constant should
be order of unity. The

Or e alm ,, a.h ‘:\ ion for the scalar field takes

the form 24
..M.—"‘ |
aﬂ i .:rJf tﬁ-' : A bab¢] (5.33}
TN T :
Expanding the scalg Fourier'm we'**"__one obtains the modified
dispersion ralat.mn.. Y

e

Note that th ,Ei:m st ode
imposed. H i this.sy

also vanish by using the integratieh by part [36],

bl R ke debt i NANE ey, i

Lagra.ngmn for a fermionic field with the leading interaction term can be written

(5.34)

en the Z, symmetry is
¢ the leading term will

as

a gb

g, ATAY _
Ly = ihy*0ath — mPpyp — iad —— 7 (Ve SUR (5.35)

where a is the dimensionless coupling constant of the fermions. By using the
same manner with the scalar field case, the corresponding modification of the
dispersion relation for the fermionic case can be written as

—k k= m? + (1 + o )%k3, (5.36)
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The form of this equation is different from the analogous equation in the bosonic
case: i.e. the second term on the right-hand side increases by the factor (1+ad)?.
However, if we do not impose the Z; symmetry, it is found that the leading terms

are expressed as

A"y, (5.37)
oGy, (5.38)

tions for each term are

= (5.39)
éuﬁwz. (5.40)
——

For the vector fi sousiden an Abelia e field B,, with the strength
tensor F, = V. B, — H : g interaction term is

and the corresponding dispersion r

(5.41)

By varying this Lagray + field B, one obtains two indepen-
dent equations correspoy : nonents. After we choose gauge
choice as Bﬁ =0, these v HABONSC) e exXpressed as

0, (5.42)
0, (5.43)
where ¢* is the lt’* ,:-i%‘l fis can be decomposed into
two modes. The firs I node corresponding tuks 0 -L-Jr ides us the usual result for
the photons. The othef corres ﬁonﬂ: ﬂ &lds the dispersion relation

(5.44)

Qmﬁ %’Mtﬁ ﬂﬂ*’%%"'l\%l&'}ﬁnﬂw to gravity.

This canl be described by the action
3
3= f d"z-.,f_—g(M' ; A*’A‘R,,,), (5.45)

where &, is the dimensionless graviton coupling constant and M, is the Planck
mass in 5 dimensional spacetime. By varying this action with respect to the metric
tensor, we obtain the equation of motion Ga = M 3Ty with

Tate) = Gy (RaAA%G0 + VeVa(AbAS) + ViVe( AuA)
— V.Va(A°AY)gas — vcvﬂ{,q,a.,)), (5.46)



Let us consider a small fluctuation of the metric

Jab = Tap + Rap. (5.47)

Following the explanation in the gauge field case, we have freedom to choose the
gauge choice. Here the gauge h,; = 0 is chosen [36]. The metric perturbations
can be decomposed into

where #**h,, = 0, h,, presents the propagating modes of the gravitational wave,
p : ud"U is a component associated with
the radion field describi: made of thes tension, By setting® = 0=V,
; Whe gravitational equation of motion

2,819 eq

becomes
(5.49)

This equation gives i€
(5.50)

where a? = 2%‘_;1.

5.2.2 ll_ﬂ_-; z

Casimir energy can e ; interactions of the sether
field with various fie ‘_through the dwpemon relations. In the previous section,

we have shown{the m elds. In cosmological
fra di on written as

9 ‘m AINTUHRIAINGIGY o

Thus t.he dispersion relation for scalar field in equation (5.3) will be modified as

2
—k'k, =m? + (14 a2) == (5.52)

°
Then the Casimir energy in (5.4) and (5.5) is also modified as

1/L\? 2
By = E(E) fd’k?ﬁ‘+m’+{l+a§)%,

1(L\° 2n%? 2
- E(E) YEp) k’dk;\/ﬁcﬂ+mﬂ+(1+a3]%. (5.53)
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It is just replacing % with (1 + a3) . In order to regularize the Casimir energy
in usual way, we rescale k and m as k? = (14 a})k” and m? = (1+a3)m”. Thus
the Casimir energy will be rewritten as

Q@ +a::ﬁ,]2 s 2732 .
Basled) = =5 (52) a7y | ¥ Z\/“”+“"’+— o

Since the integrand of k' is the same as the usual one, we can evaluate in the
same manner and it leaves the difference only in the pre-factor. Thus we can
immediately write down the Casimir euergy density per one bosonic degree of
freedom with the sther coupling

e (ag) = et

(5.55)

: 2rbmn
pmu-lﬂu:(a ] = Wege, .
boson L] (1 ‘1!}:'2( \/]Ta:)
(5.56)

for the contributions fields respectively. We can

see that the mther effeq asimir energy and scalar mass
by factors (1 + a3)? and 1 the other bosonic particles,
we can evaluate in the same ‘an he same modification of dispersion
relations. We just mpl ce thie e o mt_and their mass into the above

expression and v -‘=-:' 3

For the fermmﬂlt ‘thredases depending on how the
modified dispersion relations are. It. is not easy to regularize the energy when Z,
symmetry is i -,:‘-1:"'“4;---!-: e,the-massm and the wave number
k in the usual wa "i! -:!‘-‘ ‘field ‘case. ' this investigation in

further works. In this model, we #ill focus ongthe modificatiew of the dynamical
et 00 ) TR Ve b o v
can leave the complicated regularization by imposing that the sether field does not
interact with other fields except graviton which always minimally interacts with
all fields. Thus the Casimir energy will be the same in this case. Furthermore,
we can compactify the extra dimension by imposing the Z; symmetry on the fifth
direction. In this case, the regularization of Casimir energy can be evaluated in
the same manner with the scalar field case by inserting minus sign and replacing
my — my, (1+a3) —= (1+ af)?. Therefore, the Casimir energy densities per one
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degree of freedom of massless and massive fermion can be written respectively as

r[—z.-; +1) 2%"—1“3’—

massless = 2o —25+1), 5.57
_2(2mb)* !t mgh \(-29)2 (25-1)/2 2mbmyn
pTl:'mm(uﬂ:') - (1 +I‘13}}2' (1+C!3,,) Eﬂ K“ 2":"“( 1+G'3, )*

(5.58)

LT
.
—

and @ther field can affect the
atio A = 0.516. The Casimir
iits of (my/40)®. The solid, long
ir energy density when the coupling

Figure 5.5: Interactions
Casimir energy. In thi§
energy density p is presente
dashed and short dashed ling e the
constants are (ag, ad)= (0.0,0.0), (1.0,0.644), and¥(1{5,0.897) respectively. The
value of by,;, and ol ' i"“-—‘r the coupling constants.
The shape of the pugl ial well gets shallower as thielcoupling increases. We set
= ay for simplicity. ¢

AUIINYNITNYING

The t{}t&%a&mr energy dgnsity can be&ewntten as

- ABADIDIBANIINI W e

where the numbers of degrees of freedom can be chosen in order to get the existence
of the local minimum as we have done in the usual case. Note that the energy
densities for each field depend on the coupling constant. Thus we have to specify
this coupling by hand or neglect all of them for non-interacting case. In order
to obtain how the interactions affect the Casimir energy density, we plot the

energy density with various coupling constants as shown in Figure 5.5. As we have
mentioned, the energy density of scalar fields modify as peasessy = (1+ a:]zpc...
This modification yields the result that p,, increases when the coupling constant
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increases. In the same strategy, mass of scalar field will be modified as myss) =
(14+a2)~"/2m,. Thus the mass will be decreased as increasing the coupling constant
and yields increasing of b,,;,, as shown in Figure 5.5.

5.2.3 Dynamics of CDE with aether fields

The dynamical behavior of the universe is analyzed by using the Einstein field

equation. In order to take into acce the effects of the sether field, we add the

*}%ﬂ' e+ Tobim)- (5.60)

h Maxwell-kinetic term can

be expressed as
Tana) f 2 ,_ ; 1,4 AV 4V, (5.61)
For the metric in equationf(5. L1 ¥he ’ on of the sether field can be written as
o). (5.62)
Substituting this &0 ﬁ 1"r ins the non-zero compo-

nents of the @ther e

ﬂﬁﬁ?m’fﬁ*ﬁ”ﬁrﬂ ‘ﬁﬁ‘” e

From t expression, one can see that thgmermr denam&gf the ether field is

e R S R Y R R e

it slows down the radion field before the local minimum of the potential will exist.
By adding all contents, the dynamical equations in (5.23)-(5.25) can be rewritten
as

3HZ +3H,Hy = M:(pcus + pm + 502 H), (5.64)
33 ~3H,Hy = ~M:*(pcas + pm + 1o = (1= 20,)0°D), (5.65)

]
37 +9HaHy = M:*(pcas+ pm+ 29— 3pa — 2(1 — 22,)1D)  (5.66)
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includes non-relativi rif ield in the extra dimension.

Left: The scale fac [upper) and the Hubble constant for the non-compact di-
R 69000 ¥ (V13 [k 1114w e
period of th m ﬁ value when the uni-
verse enters a ?e Sitter phase. Right: The scale factor b (upper) and the Hubble
oot 554 AT U644 3 A el o e

illate8 between positive and negative region before settles down to zero. The
extra dimension is stabilized although non-relativistic matter is present.

..':1'.5- of the universe which




where D = (! + 3H,H,).

We will follow the same step to characterize the evolution of the universe.
The numerical simulation of the above coupling equations is illustrated in Figure
5.6. From this simulation, it is found that the extra dimension can be stabilized
while the scale factor is accelerated. The Hubble parameters of both extra di-
rection, Hj, and non-compact directions, H,, are also shown in this figure. Note
that we ignore all interactions in this simulation. In order to figure out the role
of the ether field explicitly, we alsq simulate the evolution of the radius, b, with
various values of the sether ia,'\‘\;ﬁ : yior is shown in Figure 5.7. Note that
ent in this to show the role of the sther
field explicitly. From this*figure, it is _ : fe contribution from the sether
field can slow down the rageotifield

\ -

LUl

v=10

[] 1 Y by W, . ' 3 3 1 ] N
r

4 ‘
_ ¢ o v/
P S 48 ) T b o oo
of time with different values of parameter v. In the absence of sther field v = 0,

b(t) shows oscillation behavior around its critical value by, before stabilizing at
this value. Non-vanish value of v reduces the influence of Casimir force. As
the value of v increases, the oscillation frequency and amplitude decrease. If the

vev of the sther field is large enough, for example v = 100, oscillation behavior
disappears. The extra dimension evolves smoothly to its stable fixed point. The
time variable { is presented in the unit of Hubble time ¢5. The time for stabilization
to occur is around ~ 6ty. The condition for stabilization of b is § < 107"
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In the qualitative analysis, we consider the dynamics of the system by using
the 4-dimensional effective field theory. For this proposal, we will investigate the
system in the radion picture by considering the 5-dimensional action with the
sther fields,

- f dﬁz\f— R = -vﬁvﬂ -V(b)). (5.67)

To see the role of the ther field explicitly, we omit the Lagrange multiplier,

matter and gravity coupling t.er S is consideration. Following in the same

step, the 4-dimensional actios ing the KK-dimensional reduction
Therefore, the 4-dimensign?

Sip = / d'z/ raiFetg: V, vV, v — U{W}}, (5.68)
where we define the ¥ =54z~ This action gives rise to
the following set of \

2
S (5)) 6o
\ .
L , a0, ol
Y d ks (5.70)

The ether factor lj(l + a? _ nd side of equation (5.70) reduces
the influence of thelp nt —d ) bther words, it reduces the
force acting on the Ghcillator. As a conse vill/slow down the oscillation
frequency of ¥ aroufd the I potential U(¥). If this factor is big

enough, ¥ will move dqwn the potential at gt,very slow speed since the friction term

yoponnbly 171800 N T e
R A A N8t v e

of the universe. The age of the universe in our model is

1996 is3t6ts,  (571)
Hao

B 1 f b dz
Howo Jo v/ QCasimir + Omz
where we set Qcagsimir = 0.72 and Q,, = 0.28. From Figure 5.6, the stabilization
time fyq =~ 6ty. Then, ty. = 3.90t,, is greater than the age of the universe.
The constancy of the 4-dimensional gravitational constant up to very early epoch
of the universe will post strong constraint on the size of the extra dimension.
The oscillation behavior of the moduli field may contradict with astronomical
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observations. In order to construct a more realistic cosmological model of this
scenario, the extra dimension should reach its stable fixed point before the present
time, i.e, tsyab S tage Which require fine tuning of many parameters. The new
possible solution is that we assume very high value of v so that the oscillation
of b has a very long period. The moduli will evolve smoothly with no oscillating
behavior. We can choose the value of v such that the size of the extra dimension
changes so slowly and it cannot alter the results of the standard evolution of the
universe [108].

s and isotropic distribution of non-
hutions might perturb the radion
1) catastrophic expansion of the

In this analysis we assu e
relativistic matter. Howev «-:_‘%
and knock it over the m
fifth dimension. In [107Y; _
is generally not deep-#flough i fif évept \;\ atum tunneling of the radion. At
this stage, it is not cléfir whoflfy these twa difficultiés can be solved by the new
mechanism. These asy india 1 resence of the ether are still open
questions.

inimum of the potential well

We note that this i e restrict our attention on 5

dimensional spacetime. ‘Tt 1§ useful £ o ext th - ideration to the 6-dimensional
spacetime because it is posd St sol hierarchy problem. Moreover, in

M“"“x'l"spacetlme, there ;S";, inimum in the shape moduli direc-
tion and the usual local nal spacetime becomes the

30
-

saddle point [112]. 'l";- X

2
ﬂ‘lJEl’J“lelﬁWEl']ﬂ‘i

ammmm UANINYAY



Chapter VI e

DISCUSSIONS AND SUMMARIES

_ I/ eories of Lorentz violation by fol-

tic and dynamical approaches.
: interesting models in Lorentz
elation, doubly special relativity,

In this thesis, we briefl;
lowing [3]. Such theories

violation theories, inc d| dis _
standard model extefiSiognd #ilier & \\ scussed. The sther models are
examined in detail sifie ey afd directl \ ._ he cosmological models, In
order to realize the mffiegfbdels, LIe, cor } \ the theoretical model and
the constraints from thé B ¢ ons sidered. It is found that the
time-like sether model§ aré v itag’ e eether parameters [45). For
the space-like sether mgtlel§ it is%aot fatensi
argument is only that th r'f"

stable [40, 41]. For the uther
the instability issuéthave

to be investigated i

mtigat.ﬂd and the conclusive
Maxwell-like kinetic term are not
angian, the conclusive arguments for
ty, VHis issue is very interesting

=
X
The cosmologi¢dl models are also teviewed i.n'mliﬂ thesis in order to be the
basic knowledge for invegtigating the cogmological effects of the mther field. Ac-

cording to ahﬁt%lg ol o HExied, Thaq & two periods that the

universe acceléthtely expands, the very early a.nd the present eras. The success-

TR e
ea.rly er imple ationary mod-

els is prmnded by the slow-rolling of a scalar field on the flat potential. The
crucial characteristic of the inflationary models is that the scale-invariant primor-

dial power spectra are obtained naturally. These power spectra correspond to
the constant amplitude of the perturbations. These perturbations are the initial
cosmological perturbations to seed of the structure we observe nowadays. Since
inflationary models take place at the very early time, they intend to encode the
signal of the quantum gravity theories. It is useful to consider the mther effects
in these models and we discuss this topic in Chapter IV.
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The late-time acceleration of the universe is also reviewed in this thesis. Dark
energy is adopted as an explanation for the late-time acceleration. We discuss the
simple and useful models of dark energy in both fluid and gravitational approach.
Although dark energy models share the same behavior with inflationary models,
providing the accelerating universe, the crucial characteristics are different. In the
inflationary models, it needs to end the accelerating expansion of the universe but
it does not need for the late-time acceleration. Moreover, the dark energy must
track the standard evolution of the universe in which there are the matter and

radiation dominant periods befg ent time. It is not easy to naturally
obtain this behavior in d ergy madulE #The very simple and useful model of
dark energy is cosmologitaleoiis tm:'mu diel properly fits to the observational

data but it encounters il LD COIEts oblem and coincidence prob-
lem. The simple singlgs¢® J flark energy medels called quintessence models

eration come from dified grivity approachs, However, the viable theoretical
models do not providg™ il desgription of the local gravity. Phenomeno-

logically, it is interestin cther field into the dark energy
models.

In Chapter IV, the eﬂ' = ke ether field on inflationary mod-
els are discussed. 315'% time-like vector field are
intensively investigat@ddiie to the fact tha ons suggest the isotropic

and homogeneous se it ms. The effects of the eether field
on inflationary mo are investigated m two approaches: interacting and non-
interacting a ﬁ ‘ﬂ of the interacting ap-
proach by fo ﬂﬂl w mﬂmmm field can affect
the dynamics uf the inflaton field. The inflagen potential isypot necessarily flat
o o 55 DV R VIRV A kon e s
even without inflaton potentials. We consider the non-interacting approach in de-
tails by following [28, 114, 116, 113]. The results of all investigations are slightly
different. The main content of that chapter follows the careful interpretations
and analysis in [113]. It is found that the background evolution of the universe
is modified in such a way that the slow-roll parameters can be controlled by the
ather parameters. The primordial power spectra of the adiabatic scalar modes
and tensor modes are slightly modified. The significant effects of the ather field
are placed on the existence of the isocurvature perturbations and the vector modes
of the perturbations. The phenomenological constraints on the sther parameters
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are obtained in order to suppress and exclude the effects that the observation data
does not suggest. The constraints of sether parameters are summarized in Table

IV.1.

The effects of the space-like acther field are not intensively investigated due
to the violation of rotational invariance. However, it is investigated as a toy
model in order to figure out the signals of the statistical anisotropy in CMB power
spectrum [38]. The kinetic term of this model contains only the Maxwell term

- by the cosmological constant. However,

ﬂ theoretical inconsistency such as
é

In order to avoid thesetational symmetcy violation in three spatial dimen-
sions, one can introducg.ih / : ’ru ey {Qn sets the norm of the sther field

and the accelerating universe is dui
the mther field in this model e i'
instabilities [31, 39, 40, 41 N

in such extra dimensions ./r.: orie§ of thie extra dimensions are motivated from

gravity’ theories stuch as string theory. Thus it
is convenient to conaitie giie re i the \ deld in the theoretical models
with extra dimensions JOu€ ¢ tﬁ nodels with the extra dimensions
is the Casimir dark eneggy fadels 2 T'he aceelerating universe is driven by
is i ”ﬂ dhas Oasimi energy. The Casimir energy
“dslery it » extra dimensions are compactified
with some haundar_v condiiie ferpretation of these models can solve
the cosmological ¢enst problem antomatieally. Mérgover, it also provides the
mechanism to ste "V : B iie oxtra dimensions will

be destabilized wh e non-refativ it @en into account.

i i’*:ﬁ:uﬁ ?ﬂﬂﬁmﬂﬁ s g

is found that tHe wther field cangplay the rolg of the friction,and slow down the

Q4G ER WP G B v
dimension can be stabiliz e into account the effects of the

eether field. In this investigation, we consider only the Casimir dark energy model
in 5-dimensional spacetime. It is more useful if the 6-dimensional spacetime are
examined since it is possible to solve the hierarchy problem. The observational
constraints of the sther parameters on this model is very interesting since it lacks
of investigations. We leave these interesting topics to further works.

one of the candidatés ol ’

cosmological constant Wwhi
naturally emerges from this®
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