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CHAPTER I
INTRODUCTION

1.1  Introduction

A retaining wall may be referred to a vertical structure that can hold soil
movement. It was designed and constructed to resist the lateral soil pressure. For
some special cases, a retaining wall is built for supporting vertical loads and for river
bank protection system. Generally, retaining walls have been constructed with the
plain or reinforced concrete. The study in this research is concerned with reinforced
concrete cantilever retaining wall.

Geotechnical stability constraints of wall failures play an important role in
controlling wall dimensions in the analysis. Thus, foundations and retaining walls are
designed to satisfy adequate safety against failure. The practical problems lead to the
minimization problem in finding a set of decision variables that optimize the objective
function and satisfy a set of predefined design restrictions. Since the problems are
complicated, they require systematic and rational approaches of solution. Due to
advantages of numerical method approach, most practical optimization problems are

usually solved using computer methods.

1.2  Statement of problem

In design of retaining wall, designers usually assume some dimensions and
then check the trial sections against stability conditions. Once, results of stability
analysis turn out to be undesirable, these trial sections must be revised until they meet
all stability criteria. This conventional design consumes more times and is not
efficient. In case that revised structural dimensions lead to safe design, the cost of
structures may not be optimal and highly depends on the experience of designers. As
a result, designers should analyze the structures to find out the optimal dimensions
that satisfy all modes of failures and give the minimum cost of whole structures.

Researches of optimal design of cantilever retaining wall has been studied in
the past, namely, Saribas and Erbatur (1996), Ceranic et al. (2001), Castillo et al.
(2004), Ypes et al. (2008), Babu and Basha (2008), and Khajehzadeh et al. (2010).

These studies have proposed different design constraints and optimization solvers to



find the optimal solution of nonlinear programming problem arising from
geotechnical and structural constraints. However, none of them have considered
geotechnical constraint of slope stability due to difficulties and complexities in
mathematically deriving constraint of slope stability.

This is contrast to three basic geotechnical wall failures, namely, overturning,
sliding, and bearing capacity, whose constraints are generally and explicitly presented
in most foundation textbooks. Similarly, structural constraints of shear and bending
moment resistances are easily available in textbooks of reinforced concrete structure.
Because those previous researches ignore one of possible wall failures (slope
stability) in the analysis, they may not present the most optimal design of cantilever

retaining wall.

1.3  Objective of study

The objective of this research is to develop an efficient technique for optimal
design of conventional reinforced concrete cantilever retaining wall including
geotechnical considerations, namely, overturning, sliding, bearing capacity, and slope
stability, as well as structural requirements. The second objective is to extend
capability of the developed method in the first objective for optimal design of integral

bridge abutment retaining wall.

1.4 Scope of study
Scopes of this study are covered as outlines below:
1. Two-dimensional plane strain analysis
2. Retaining structures with backfill and surcharge loading
3. Neglect effect of water table
4. Soil below base of foundation assumes to be homogenous
5. Conventional retaining wall resist lateral earth pressure without axial load
6. Special retaining wall terms as integral bridge abutment retaining wall

resists lateral earth pressure with axial load from bridge



1.5  Research benefits
The benefits of this research are expected as follow:
1. This research makes important contribution to the research of retaining
wall, namely, reinforced cantilever wall, and integral bridge abutment wall
2. A new formulation of optimal design of integral bridge abutment is

proposed
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2.1 Introduction

A retaining wall may be referred to a vertical structure that can hold soil

movement. It was designed and constructed to resist the lateral soil pressure.
Retaining walls may be classified in many various types as shown in Figure

2.1 such as gravity walls, cantilever retaining walls, counterfort retaining walls,

buttressed retaining walls, bridge abutments, box culverts, semi-gravity walls and

basement walls.
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Figure 2.1 Types of retaining structures (Wang, 1992)



A conventional reinforced concrete cantilever retaining walls are constructed
from reinforced concrete. Basically, it does not resist to any vertical loads. The typical
components of conventional retaining wall composes a thin stem (can be a tapered
front face), a toe slab, and a heel slab. Figure 2.2 displays the wall components of
reinforced concrete cantilever retaining wall. Another special case of retaining
structures is termed as integral bridge abutment. According to Hassoun (2005), bridge

abutments are retaining walls that are supported vertical load from bridge deck.
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Figure 2.2 Terms used in conventional reinforced concrete cantilever retaining wall

There are two steps in designing of a cantilever retaining wall. First, once
calculations of lateral pressures are made, the whole structure is checked for stability.
These include check for possible overturning, sliding, eccentricity, and bearing
capacity failures. Second, each component of the structure is analyzed for adequate
shear and moment strengths, thus steel reinforcement of each component is
determined.

Most of practical problems, designers usually select initial dimensions by
using approximate proportions of various wall components as shown in Figure 2.3.
Once, results of stability analysis turn out to be undesirable, these trial sections must

be revised until they meet all stability criteria.



Figure 2.3 presents the approximate proportion in conventional design. Two
important parameters are total height of wall (H) and soil embedment (D).
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Figure 2.3 Proportions in conventional design of retaining wall (Das, 2007)

2.2 Research literature review

Several researches have been carried out in the past. Thus, some
methodologies for analysis and optimal design of retaining structures are developed
by many researchers. Saribas and Erbatur (1996) presented a detail study on optimum
design of reinforced concrete cantilever retaining walls with seven geometrical and
reinforcement design variables. They applied a constrained nonlinear programming to
optimum design which was solved by a specially prepared program. Ten modes of
wall failure including overturning, sliding, eccentricity, bearing capacity, shear and
bending moment of toe slab, heel slab and stem of wall were considered.

Ceranic et al. (2001) studied application of simulated annealing algorithm to a
problem with only geometrical design variables. Babu and Basha (2008) presented an
approach for reliability-based design optimization of reinforced concrete cantilever
retaining wall. Wall failure criteria were considered similarly as Saribas and Erbatur.
The analysis was performed by treating input parameters as random variables.
Khajehzadeh et al. (2010) presented an effectiveness of particle swarm optimization
with passive congregation algorithm to economic design of retaining wall. The
problem consisted of eight geometrical and reinforcement design variables. The



constraints were the same as Babu and Basha (2008). The optimization algorithm was
coded in MATLAB. Table 2.1 summarizes significances and contributions of those

researches to the field of optimization of retaining wall.

Table 2.1 Summary of past researches

Researchers Objective Result Remarks
Saribas and Erbatur Optimum design Optimal design and No slope
(1996) (first researchers) sensitivity studies constraint
Optimum design

Cernical et al. (2001) using 5|m_ulated Successfully applied No slope
annealing constraint

algorithm

Add safety factors
Castillo et al. (2004) and probat_nllty Optlmgl _deS|gn gnd No slope
based optimal sensitivity studies constraint
design
Economic Design a parametric
optimization of study for different No slope
Ypes etal. (2007) retaining wall for backfill and bearing constraint
road construction conditions
Babu and Basha Efficient and Design charts for wall No slope
(2008) economic design proportions constraint
Khajehzadeh et al. Optlmym dssigrBy. Optimal design and No slope
particle swarm . )

(2010) : more economical constraint

algorithm

2.3 Geotechnical considerations

2.3.1 Application of lateral earth pressure theory in retaining wall
Figure 2.4a shows a frictionless retaining wall with a granular backfill (¢’ = 0)
whose slope makes an angle a with respect to the horizontal. Based on Rankine’s

theory, the active earth pressure coefficient may be expressed as:

C0S 0. —/c0s? oL — c0s? §'

Kk, =cosa. (2.1)

COS 0. +4/C08? 0. — COS? ¢’
where ¢'= internal friction angle of backfill

a = backfill angle with respect to the horizontal

At any depth z, the Rankine active pressure maybe expressed as:

c, = 71,2k, (2.2)



The Rankine active force per unit length of the wall is calculated as:

Pa =%Y1HI2 Ka (23)

where vy, = unit weight of backfill
H’ = depth of active soil pressure on wall

Ka = Rankine active earth pressure coefficient

As shown in Figure 2.4a, the resultant force, P,, is inclined at an angle a.to the

horizontal and acts at distance H'/3 from the base of the wall.

A A
(@) ' (b)
Figure 2.4 Assumption for the determination of lateral earth pressure: (a) cantilever

wall (b) gravity wall (Das, 2007)

Figure 2.4b illustrates the application of Coulomb’s active earth pressure
theory. In Coulomb’s theory, Coulomb’s active force is function of wall friction
angle, &', which depends on types of backfill material.

According to Das (2007), effects of water table and hydrostatic pressure in the
retained soil should not be encountered in retaining wall design. It is important to

provide the drainage facilities for retained soils.

2.3.2 Stability of retaining walls
A retaining wall may fail in any of the following geotechnical modes as shown
in Figure 2.5.

» It may overturning about its toe (see Figure 2.5a)



» It may sliding along its base (see Figure 2.5b)

» It may fail due to the loss of bearing capacity of the underlying soil below
the base (see Figure 2.5¢)

» It may fail as slope mechanism of deep-seated shear failure (see Figure
2.5d)

» It may fail due to excessive settlement of the base
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Figure 2.5 Geotechnical failure modes of retaining wall (Das, 2007)

2.3.3 Overturning stability

Figure 2.6 illustrates a cantilever wall with a sloping backfill (o) as well as all
forces acting on the wall. Based on the assumption that the Rankine active pressure is
valid where:

P, = active earth pressure acting at a height H’/3 from the base on section AB

P, =P, cosa = horizontal active earth pressure
P, =P, sinoa = vertical active earth pressure

Pp = Rankine passive earth pressure at the toe side of the wall



10

W; W, = weight of retained soil

W3 W, W5 = weight of concrete stem and base

Jtoe = Omax = mMaximum upward soil pressure at left corner of toe slab
Qheel = Jmin = Minimum upward soil pressure at right corner of heel slab

]

Figure 2.6 Overturning stability assuming that Rankine pressure is valid (Das, 2007)

Rankine passive pressure at the toe side of the wall can be calculated as:
P, =(1/2)K,y,D*+2¢", /K D (2.4)
where v, = unit weight of soil in front of the heel and under the base slab

Ky = Rankine passive earth pressure coefficient
D = depth of soil embedment

c',,¢',= cohesion and effective angle of internal friction of soil base,

respectively

Rankine passive earth pressure coefficient can be expressed as:

K, =tan® (45+¢,'/2) (2.5)
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The factor of safety against overturning about the toe (point C) as shown in

Figure 2.6 can be expressed as:

M
I:S(over’[urning) = % (26)

where Z M, = sum of the moment of forces tending to overturn about point C
Z M, = sum of the moment of forces tending to resist overturning about C
Das (2007) reported that passive force (Pp) in front of toe may be neglected in

calculation of resisting moment (Mg). He also recommended using minimum

desirable value of the factor of safety against overturning ranged from 2 to 3.

2.3.4 Sliding stability along the base
Figure 2.7 shows the free body diagram for sliding stability calculation.

B ‘;1| b5
Figure 2.7 Checking for sliding along the base (Das, 2007)

From Figure 2.7, the factor of safety against sliding may be expressed as:

F
FS(inding) = z : (2.7)

2F
where ZFR = sum of the horizontal resisting forces

ZFd = sum of the horizontal driving forces
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Sum of the horizontal resistance forces ZFR is calculated as below:

YF, =X(V)tand'+BxC',+P, (2.8)
where >V = sum of the vertical forces

&' = angle of friction between the soil and the base slab

B = length of the base slab

C’,= adhesion between the soil and the base slab
Pp = Rankine passive pressure at the back of wall

In many cases, the passive force Pp is ignored in calculating the factor of
safety against sliding. In general, the interface shear resistance for friction and base
adhesion can be calculated as:

8=k, (2.9)
C. =k,C, (2.10)

In most cases, coefficient k; and k, are in the range from 1/2 to 2/3 (Das,

2007).
A minimum factor of safety of 1.5 against sliding is generally required (Das,
2007). NAVFAC (1986) recommended using factor of safety equal to 2.0 and 1.5 for

with and without passive force consideration, respectively.

2.3.5 Bearing capacity stability

Figure 2.8 shows the distribution of vertical pressures transmitted from the
base slab to the underlying soil. The vertical pressure under the base slab should be
checked against the ultimate bearing capacity of the soil.

The maximum and minimum pressures below the base can be calculated based
on Figure 2.8 as:

V 6e
= B i i 2.11
qmax qtoe B ( + Bj ( )
E Vv 6e
L =Q == |1-— 2.12
qmm qheel B [ B) ( )

where ZV = sum of vertical forces

e = eccentricity of the resultant R



13
B = length of base slab

When the value of the eccentricity, e, is greater or equal than B/6, the sign of
Omin becomes negative. This means that tensile stress may develop at the end of the
heel section. This kind of stress is not desirable because most soils cannot resist
tension. If the result of analysis turns out that e is greater than B/6, the design should

be revised again in order to avoid tensile stress along the wall base.

e
e

Y1
&
c;=0

P“ e PI‘, COS

le—— B/2 . B/2 —»]

Vo€ e

Figure 2.8 Checking bearing capacity and eccentricity under base slab (Das, 2007)

Ultimate bearing capacity of a shallow foundation can be calculated based on
the general ultimate bearing capacity equation as follows:

2'cs' cd’ ci gs' qd” qi ys' yd® yi

. . 1 .
0, = CoFFuaFuNe + 0" FFFyNg + - 1B FRGRN, (2.13)

where c,’ = cohesion of soil below foundation
q’ = effective stress at the level of the bottom of the foundation

v, = unit weight of soil below foundation

B’ = effective width of foundation



14

F.,F.,F = shape factors

cs?igs? ' ys

F.,F., F,=depth factors

cd? qd?’ yd

F,,F.,F. = inclination factors

ciriqgi vy

N, N,, N, = bearing capacity factors

Effective width of foundation (B’) and effective stress at the level of the

bottom of the foundation (q’) can be calculated based on Figure 2.8 as:

where

q'=v,D (2.14)
B'=B-2e (2.15)
v, = unit weight of soil below foundation

D = depth of soil embedment
e = eccentricity
B = length of base slab

Bearing Capacity Factors

The value of N, N,,and N, for a given soil friction angle can be calculated as:

N, =e™** tan? (45° +¢'/2) (2.16)
N, =(N, -1)cot¢’ (2.17)
N, =2(N, +1)tan ¢’ (2.18)

N. from Equation (2.17) was derived by Prandtl (1921) and Ny from Equation

(2.16) was presented by Reissner (1924). N, from Equation (2.18) was given by

Caquot and Kerisel (1953) and Vesic (1973).

For total stress analysis where internal friction angle equals to zero, bearing

capacity factor values are taken respectively as N¢ = 5.14, Nq = 1.0, and Ny = 0.0.

Once the ultimate bearing capacity of the soil has been calculated by using

Equation (2.13), the factor of safety against bearing capacity failure can be calculated

as:

Fs,, = (2.19)

bearing
q max
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where @, = ultimate bearing capacity of a shallow foundation

Qmax = Mmaximum upward soil ressure below the base

Das (2007) recommends to use factor of safety for bearing capacity equal to 3.
2.3.6 Slope stability

A. Definition of factor of safety in slope stability
Factor of safety in slope stability defined as the ratio of available unit shear
stress, t,, to required unit shear stress or mobilized shear stress, t,,. The required
shear stress is analyzed by slope calculations. Available shear strength depends on the
properties of soil which are measured from laboratory or field test (Chowdhury et al.,
2010).
The expression of safety factor can be written as:

FS= (2.20)

Tm

where FS = factor of safety
T, = available shear stress of soil
1., = mobilized shear stress required for equilibrium along the potential failure

surface

Based on Mohr-Coulomb equation, shear stress in term of effective stress can
be determined as:

T, =C'+c' tan¢’ (2.21)
T,=C' +c'tand’ (2.22)
where c',¢'= available shear strength parameters

c'.,0' = required or mobilized shear strength parameters

Substituting Equation (2.21) to Equation (2.20), mobilized shear stress t,, can

be written as:

T, C' . tano'
Th = —+C nf
FS FS FS

(2.23)
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Comparing Equation (2.22) with Equation (2.23), mobilized shear strength
parameters can be written as:

CI
c'. =— 2.24
n = Fs (2.24)
tan¢'

tang' =—— 2.25
O == (2.25)

From Equation (2.24) and (2.25), FS can be defined in the formulae as:
FS=c'/c', =tan¢'/tand’, (2.26)

The assumption in Equation (2.26) implies that the factor of safety with
respect to the cohesion parameter is the same as that with respect to the friction
parameter (Chowdhury et al., 2010).

However, several formulas of factor of safety may be defined by various

definitions. Figure 2.9 illustrates the definition of factor of safety with different
assumption of potential failure surface.

FOS T ( Total Stress )
A Trequired

1

LIMIT EQUILIBRIUM Fos = &% a'tang’ ( Effective Stress )
frequired
)
G
F\‘\' S f ting fi
' ummation of resisting force
FORCES FOS = .

Summation of mobilized force

Circular
Slip plane

Resistingmoment R [ suas

FOS

L[]

Overturning moment W x
MOMENTS

Figure 2.9 Definition of factor of safety with various failure
surface (Abramson et al., 2002)
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B. Method of Analysis
Slope stability can be analyzed using several methods, namely:
1. Limit equilibrium method (LEM)
2. Limit analysis
3. Finite difference method (FDM)
4. Finite element method (FEM)

C. Limit Equilibrium Method: method of slices

The conventional limit equilibrium methods aim to investigate the equilibrium
of the soil mass tending to slide down under the influence of gravity. Limit
equilibrium methods for slope stability is analyzed by dividing soil mass of the failure
slope into a number of vertical slices and treating each individual slice as a unique
sliding block as shown in Figure 2.10. In Figure 2.10, the 14 smaller slices are divided
above the slip surface. The groundwater table is presented and surface load acts on
inclined slope.

Importantly, since computer programs will aid in slope calculation, method of
slices can be applied to the complex problem such as:

1. complex slope geometries

2. complex variable soil conditions

3. complex external boundary loads

/

Surface
Load
GWL
v
o N / soil unit 2
6
s
3 7/
— s0il unit 3
<1 /—// e
~ - .
- i <~ Failure surface

Figure 2.10 Division of soil mass into n vertical slices (Abramson et al., 2002)
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Figure 2.11 shows free body diagram of the forces acting on a typical slice
taking from Figure 2.10. The represented symbols in Figure 2.11 are summarized in
Table 2.2. Table 2.3 shows summary of unknowns and equations associated with

method of slices from general cases.
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Figure 2.11 Force acting on a typical slice (Abramson et al., 2002)

Table 2.2 Meaning of represented symbols in typical slices

F = factor of safety Z\ = left interslice force

S. = available strength = C+ N'tan¢ | Zg = right interslice force

Sm = mobilized strength 0, = left interslice force angle
U_= pore water force 0, = right interslice force angle
U, = surface water force h. = height to force Z,

W = weight of slice hr = height to force Zg

N’ = effective normal force o = inclination of slice base
Q = external surcharge [ = inclination of slice top

Ky = vertical seismic coefficient d = inclination of surcharge
Kn = horizontal seismic coefficient b = width of slice

h = average height of slice h. = height to centroid of slice
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Note: In Table 2.3, assuming n is number of slices

Table 2.3 Summary of unknowns and equations associated with method of

slices

Number of unknowns Total Number
Factor of safety 1
Normal force at the base of a slice, N’ n
Location of base resultant n
Mobilized shear force n
Interslice force resultant, Z n-1
Interslice force orientation, 6 n-1
Interslice force location (line of thrust) n-1

Total number of unknowns 6n-2
Number of equations Total Number
Horizontal force equilibrium n
Vertical force equilibrium n
Mohr-Coulomb failure criterion n
Moment equilibrium n

Total number of equations 4n

Based on Table 2.3, slope problem is statically indeterminate because number
of unknowns is greater than the number of available equations. Thus, several
assumptions are made in some methods which can be called as non-rigorous solutions
such as Ordinary Method of Slices and Bishop’s Simplified. However, in rigorous
solutions, all equilibrium equations are completely considered such as Spencer,

Morgenstern-Price and Janbu’s rigorous method (Abramson et al., 2002).

D. Application of Ordinary Method of Slices (OMS) in slope stability analysis
Ordinary Method of Slices (OMS) is one of the simplest procedures based on
method of slices to estimate the stability of a slope (Abramson et al., 2002). It is
considered as the earliest methods that derived factor of safety directly without doing
any complicated numerical iterations.
OMS assumes that the interslice force resultants for all slices are parallel to the

base of the slice. All interslice forces are neglected in this method. From Figure 2.11
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for simple case without seismic coefficient (K,=Kn=0), the procedure for deriving
factor of safety in this method is described as below:

[1] The normal force (N’) is calculated from summation of slice forces
perpendicular to the base of the slices (see Figure 2.11).

> F,=N+U,-Wcosa—Ucos(B-a)-Qcos(5—o)=0 (2.27)

N’ from Equation (2.27) can be determined as:

N'=-U, +Wcosa+U,cos(B—a)+Qcos(8—a) (2.28)

[2] The overall moment equilibrium of the forces about center of the circular

arc failure surface for each slice is equal to zero.

n

> M, =Y"[W-+Uj,cosB+Qcosd |xRsina
i=1

(2.29)

n

_g[uﬁsin[3+Qsin5](Rcosa—h)—z[sm]xR:0

i=1

where R =radius of the circular failure surface

h = average height of the slice

[3] Mohr-Coulomb mobilized shear strength (Sp) along the base of each
slice is computed by:

_C+N'tan¢

S
FS

(2.30)

where C = cohesion of the soil

N "tan ¢ = frictional shear strength components of the soil
Substituting Equation (2.30) into (2.29), the following equation can be written:

Zn:[W+ U, cosB+Qcosd |xRsina

i=1

_Zn:[UBsinB+Qsin8}(R cosa—h)_i{%

i=1 i=1

(2.31)
}x R=0

If FS is assumed to be the same for all slices, thus FS in Equation (2.31) can

be computed by:
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Zn: C+N' tan¢
i=1

FS= (2.32)

Zn:[W+ UBcosB+QcosB}Rsina—Z[UBsin B+Qsind|(Rcoso—h)

i=1

Where N'=-U_ +W-cosa+U;cos(B—a)+Qcos(8—a)

The general formulation in Equation (2.32) is usually used to calculate factor

of safety according to the assumptions of OMS.

E. Minimum factor of safety associated with a critical slip surface

In summary, many potential slip surfaces of whatever shape can be analyzed
by Limit Equilibrium Methods. Each of these slip surfaces corresponds to different
factor of safety FS that can be found by trial and error. In addition to the conventional
method based on repeated trials, optimization techniques can be used to search for
minimum factor of safety corresponding to critical failure surface and location
(Chowdhury et al., 2010). Due to complexities of optimization approaches, minimum
of factor of safety is usually solved by computer programs.

In the practical design, Teng (1962) recommended to use factor of safety equal

to 3.0 for the cohesive resistance and 2.0 for the friction resistance.

2.4  Structural design of reinforced cantilever retaining wall

Structural design of reinforced concrete cantilever retaining wall is concerned
with computing reinforcing steel to provide adequate shear and moment strengths for
any applied loads on each wall components. Figure 2.12 illustrates the pressure
distribution come from external loads and soil pressures which acts on component
parts of the wall.

Based on Figure 2.12, the stem will bend as cantilever, so that tensile
reinforcing steel will be placed towards the backfill. Heel slab will bend as cantilever
which has tensile face upwards due to net downwards pressure from surcharge, soil
weight and self-weight of concrete acting on it. Thus, reinforcing steel in placed at
upward. Anyway, for toe slab, since the net pressure will act upwards, reinforcing
steel must be placed at the bottom face. The thickness of stem, heel, and toe slab must
design to provide sufficient compressive stress for resisting any applied shear stress.

Generally, shear force and bending moment generated from acting loads should not be
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allowed to exceed nominal strength from concrete and steel reinforcement. Otherwise,

it will develop large crack at critical section of wall as shown in Figure 2.12.
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Figure 2.12 Bending and shear failure of reinforced concrete retaining wall
2.4.1 Design load factor based on ACI Code 318-05

When lateral earth pressure H acts with dead load (DL) and live load (LL),

ACI Code (2005) specifies that the required strength U be evaluated using the
following load factors:

U=12D+16L+1.6H

(2.33)
From ACI Code (section 9.2.1) in situation where dead load (DL) and live

load (LL) reduce the effect of earth pressure (H), the live load is neglect and a factor

load of 0.90 is used for the dead load, thus the required strength U can be evaluated
as:

U=0.9D + 1.6H (2.34)

For any combination of dead load (DL), live load (LL), and earth pressure (H),
the required strength U is not to be less than:

U=12D+1.6L

(2.35)
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2.4.2 Design of toe slab

The toe slab is treated as a cantilever beam 1 meter in width fixed at the front
face of the wall, with the critical section for the moment at the front face of the wall
and the critical section for shear (inclined cracking at a distance d from the front face
of the wall (one-way action). In designing of retaining wall, shear force usually
controls the adequate thickness of toe. Load factor of 1.60 on soil pressure
distribution below base, and 0.90 on the weight of the concrete are used for design
load since it reduces the effect of the horizontal earth pressure as recommended by the
ACI Code (Section 9.2.1). Weight of soil cover on toe is neglected for conservative

design. Detailed expressions of toe slab design are given in appendix A.

2.4.3 Design of heel slab

The applied loads used in computing design moments are the weight of
backfill soil, surcharge, and concrete acting downward, along with soil bearing
pressure acting upward. The heel slab is treated as a cantilever beam 1 meter in width
fixed at the rear face of the wall. Effects of upward pressure under the heel are
neglected as recommended by ACI Code (2005). Load factor of 1.20 on the weight of
soil and concrete and 1.60 on the weight of any surcharges are used for design loads.

Detail expressions of heel slab design are given in appendix A.

2.4.4 Design of stem wall

In stem design, both small axial forces by self-weight of wall and any
downward friction (applied by the soil on the back face) are neglected. The stem is
assumed to be a cantilever beam 1 meter in width fixed at the top of the footing. Load
factor of 1.60 on lateral soil pressures is used for design loads. Normally, the
thickness of stem is controlled by the bending moment. Detailed expressions of stem
slab design are given in appendix A.

2.5  Design of reinforced concrete beam for flexure (ultimate strength design)

A. Stress distribution and design assumptions
Figure 2.13 illustrates a cross section of a beam with width (b), effective depth

(d), and tensile steel (As) placed in tension zone at the bottom.
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Figure 2.13 Actual and equivalent stress distributions at failure (Ricketts et al. 2003)
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Figure 2.13 shows the actual and equivalent stress distributions for tension
steel design. In balanced conditions, the concrete reaches its maximum strain of 0.003
while tension steel reaches it yield strength (fs = f,). The concrete stress of 0.85f¢ is
assumed to be uniformly distributed over a depth a.

Based on Figure 2.13, the depth of the equivalent rectangular stress block, a,
can be calculated by:

a=p.C (2.36)

where c¢ = distance between the top of the compressive section and the neutral axis

The factor B, can be calculated following the concrete strength as:

0.85 f' <30 MPa
B, =41.09-0.008f", if 30 MPa<f' <55 MPa (2.37)
0.65 f' >55 MPa

B. Compute tensile steel area for bending moment only
The calculated factored moment, M,, must not be allowed to exceed nominal

flexure strength of a member, M, , which is stated in Equation (2.38).

oM, > M, (2.38)

For force equilibrium conditions referred to Figure 2.13, it can be written as:
0.85f ' ab=Af, (2.39)
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Af,  pfd

a= - (2.40)
0.85f' b 0.85f"

A .
Where p= b_é = percentage of tensile steel

Nominal flexure strength provided by reinforcing steel can be computed as:

M = T(d —ij “Af, (d —ij (2.41)
2 2

The allowable nominal flexural strength is calculated as:

oM, = A f, (d —%) (2.42)

oM. =oAfdl1- P (2.43)
" °Y 1.7, '

oM. = opfbd?[1- P (2.44)
" Y 1.7 :

where ¢ =0.90 = for tension controlled section, ¢, > 0.05
p=A,/bd = percentage of tensile steel
b,d = width of beam, and effective depth
fy = yield strength of steel reinforcement
f’c = compressive strength of concrete
If b and d are known, thus the required reinforcement ratio, p, can be

determined by equation below:

o= 0.85f ', 1- ho 4M, 2 (2.45)
f, 1.7¢f ' bd

Letting R, = ¢I\SJZ (2.46)

p:0.85f el1- 2R, (2.47)
f, 0.85f ',

A required reinforcing area for design can be calculated as:
A, =pxbxd (2.48)
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C. Reinforcing limitations in flexure members
According to ACI Equation 10.3, the minimum amount of tensile
reinforcement for preventing a compression failure is computed as:
Pmin =L4/T, (2.49)

where f, = yield strength of steel reinforcement (MPa)

The reinforcement ratio, p, , for balanced condition is determined as:

o, P _ 0.858,f". [ 600 (2:50)
bd f 600+f,

y

where B, = rectangular stress block coefficient depends on concrete strength

f’c = compressive strength of concrete (MPa)

fy = yield strength of steel reinforcement (MPa)

To ensure concrete beam failing in a ductile manner, ACI Code section 10.3.3
stipulates that the maximum amount of tensile reinforcement, Asmax, Must not exceed
0.75 of balanced steel area Ap.

Thus, the maximum reinforcement ratio, p,.,, , can be computed as:

3
max SZpb (251)

2.6 Design of reinforced concrete beam for flexure (working stress design)
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Figure 2.14 Rectangular concrete beam with tension steel only (Ricketts et al. 2003)
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Generally, stress distribution in a reinforced concrete beam under service
loads is different from that at ultimate strength. The simple procedures of working
stress design are presented in the following equations.

Let n = E_/E_ = nearest integer (2.52)

where E, =200000 MPa = Modulus elasticity of steel

E, =4700,/f ', MPa = Modulus elasticity of concrete

For the assumption that stress varies across a beam section with the distance
kxd from neutral axis, value k can be calculated as:

1

K=s—F— 2.53
1+f,/nf, (2:53)

For Equation (2.53), f. and fs can be calculated in the following equations.
f, =0.45f ", (2.54)

f, = 0.50f, (2.55)

where f’c = compressive strength of the concrete (MPa)
f. = allowable compressive stress in extreme surface of concrete (MPa)
fs = allowable stress in steel (MPa)
fy = yield strength of steel reinforcement (MPa)
fy, = 140 MPa = allowable stress in steel reinforcement for grade 40, 50
fy, = 170 MPa = allowable stress in steel reinforcement for grade 60

Distance jxd between the centroid of compression and the centroid of tension

can be computed by Equation (2.56) as:
j=1-k/3 (2.56)

The allowable moment resistance of the steel reinforcement in working stress
design can be expressed as:
M, =Txjxd=A xf xjxd (2.57)

where A = cross section area of tensile steel
fs = allowable stress in steel

jxd = distance between the centroid of compression and tension
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2.7  Design of beam for shear (ultimate strength design)

In safety criterion based on ACI Code, the calculated factored shear force, V,,

must be less than or equal to nominal shear strength of a member, ¢V, .

oV, 2V, (2.58)
where V, = shear force due to the factored loads

¢ = strength reduction factor, taken equal to 0.75 (ACI 318-05 section 9.2)

V, = nominal shear resistance of a member

From Equation (2.58), nominal shear strength at the considered section is
computed by:

V.=V, +V, (2.59)
where V. = nominal shear strength provide by concrete

Vs = nominal shear strength provided by stirrups

In most structural design books, stirrups are not used in either the wall or the
footing. Whether the shear capacity carried by concrete is adequate or not, it is

necessary to increases the thickness members rather than using stirrups (Leet, 1989).

= Application of shear design in RC cantilever retaining walls

In previous literature reviews on cantilever retaining wall design, both stem
and footing members (toe, heel) are designed as a cantilever beam with strip 1 meter
as width. Since stirrups are not usually provided in shear design, shear force generated
from factored loads should not be allowed to exceed nominal shear strength of
concrete. Equation (2.60) shows the basic safety design criterion as:

oV, >V,  (interm of shear force) (2.60)

Equation (2.60) can be expressed in term of shear stresses, v, as:

ov, 2 v, (2.61)
where ¢ = strength reduction factor, taken equal to 0.75 (ACI 318-05)

v, =V, /b, d = ultimate shear stress on the cross section (kN/m?)

v, =V, /b, d=nominal shear stress provided by concrete (kN/m?)

bw = web width
d = effective depth for shear calculations
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Shear strength carried by concrete is generally calculated as:

V, =(1/6)f".b,d (2.62)
where V. = shear strength of concrete (kN)

f’. = compressive strength of concrete (kN/m?)

bw = web width

d = effective depth for shear calculations

2.8 Design of beam for shear (working stress design)

According to ACI (1963), the shear stress applied in reinforced concrete
members can be calculated by Equation (2.63) while allowable shear stress of
concrete can be calculated by Equation (2.64).

v, =V,/bd (2.63)

v, =0.09,/f ", (2.64)
where v, = shear stress produced by service loads (KN/m?)

v, = allowable shear stress of concrete (kN/m?)

Vs = shear force produced by service loads (KN)
b = web width
d = effective depth for shear calculations

f’. = compressive strength of concrete (kN/m?)

= Application of shear design in RC cantilever retaining walls

In previous literature reviews on cantilever retaining wall design, both stem
and footing members (toe, heel) are designed as a cantilever beam with strip 1 meter
as width. Stirrups are not usually provided for shear design. Thus, shear stress
produced by service loads must not less than or equal to the nominal shear stress of
concrete. Equation (2.65) shows the basic safety design criterion as:

V2V, (2.65)

where v, = shear stress produced by service loads (kN/m?)

v, = allowable shear stress of concrete (kN/m?)
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2.9  Design of reinforced concrete column by ACI Code

2.9.1 Introduction

A column is the reinforced concrete member which subjected to axial
compression with or without bending (McGregor, 2002). These forces are produced
by external loads such as dead loads, live loads and wind loads.

Figure 2.15 shows a cross section of column which subjected to combined

bending and axial load in column.
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(a) Cross section,
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(c) Axial load and moment.

Figure 2.15 Combined bending and axial load in column (McGregor, 2002)

Figure 2.15a shows a cross section of reinforced column in which subjected to
axial compression force P and moment M. When axial compression P applies on the
cross section, there maybe have a misalignment of this load on the column as shown
in Figure 2.15b. Similarly, when moment applies on the cross section, there may be
produced a portion of the unbalanced moment at the end of the beams where column
acts as support. The ratio of the moment to the axial force is usually referred as the
eccentricity of the load. In Figure 2.15b, the eccentric load P can be replaced by a
center load P acting in the centroidal axis plus a moment M = Pxe about the
centroid. The applied load P and moment M are obtained from structural analysis and
they are normally referred to the acting load in the centroidal axis.

According to Nilson (2004), the typical failures modes of a column depend on

the value of eccentricity e.
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The principle analysis and design of reinforced concrete column are based on
the stress equilibrium, compatibility condition, and uniaxial constitutive laws of
materials (Hsu, 2010).

Interaction diagram for concrete column

A strength interaction diagram is a better approach for practical design of
reinforced concrete column (Nilson, 2004). In the interaction diagram, nominal
bending moment, M,, and nominal axial compression, P, are plotted as a unique pair
for any given eccentricity. The failure axial loads and failure moments for a column is
defined by eccentricity range from zero to infinity. The unique pair of values M-P is

plotted on a graph as shown in Figure 2.16.
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Figure 2.16 Load-moment strength interaction diagram (Hassoun, 2005)

This interaction curve is divided into compression failure region and a tension
failure region.
Point A-B represents the compression failure mode which corresponds to

small eccentricities. In this region, the concrete will reach its limit strain (e,) before

the tension steel starts yielding. Compression steel may be yielding.
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Point B represents the balanced condition. The balanced failure mode
corresponds to balanced eccentricity (ep) with the balanced nominal load (Py,) and

bending moment (My). The concrete strain reaches its limitation (e,). At the same

time, tensile steel of the column reaches yield strain (e, ).

Point B-My represents the tension failure mode which corresponds to large

eccentricity. In this region, the concrete reaches its ultimate strain (e,). The tensile
steel of the column reaches yield strain (e, ) while the compression steel may or may

not have yielded.

The theoretical case assuming that a large axial load Py is acting at the plastic
centroid where e = 0 and M,, = 0. However, ACI Sections 10.3.6.1 and 10.3.6.2 permit
to use maximum axial load capacity of a column equaled to 0.85 times of that from

centroid Pq for tied-columns.
0P, g = 0.80¢[o.85f A AL+ (A, )] (2.66)

where ¢ = strength reduction factor
Pnmax) = the maximum nominal strength of the column cross section
Ag = gross area of column
A = cross section area of longitudinal steel reinforcement

f’c = compressive strength of concrete

2.9.2 Strength design method for columns

For column design according to the ACI Code, the nominal strengths
multiplying with reduction factors must be greater than or equal to the design strength
calculated by load factors. Equation (2.67) and (2.68) shows the basic safety design

criterion as:
oP, > P, (2.67)
oM, >M, (2.68)

where P,, M, = factored load and moment applied to the column, computed from a
structural analysis
Pn, My = nominal strength of the column cross section

¢ = strength reduction factor
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2.9.3 Investigation of column strength in compression-controlled region
In compression controlled region, compression strength P, exceeds the
balanced strength Py, or when the eccentricity e is less than the balanced value ey,
Figure 2.17 shows compression failure in a column section. In this region, the

concrete strain (g,) reaches its maximum value of 0.003, while the strain in tensile
steel (&) is less than maximum yield strain (¢, ). Since the strain in compressive steel
(¢',) reaches the maximum yield strain, yield strength of compressive can be taken

the same as the maximum yield strength (f', =f,).

¢ €u 0.85f,
T @ ® —,—* =k / 7 e A'gf
R I 1= o _T_ v o biced 5
Ay [ 17 s>y N, y
L e T % <
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o-0-0|— -V o 4 BENRRNL AR, > Asls
¥ e =
—b |
(a) CROSS SECTION (b) STRAIN DIAG. (¢) APPLIED LOAD AND STRESS DIAG.

Figure 2.17 Compression controlled failure in column section (Hsu, 2010)

Based on Figure 2.17, three types of forces are normally taken into account,
namely, compressive force carried out by concrete (C), compressive steel (Cs) (top),
and tensile steel (Ts) (bottom). The expressions of these forces can be written as:

1. Compressive force carried by concrete

C. =(0.85f 'c)(B,c)(ha) (2.69)
2. The force carried by the top steel

C,=(A")(f's—0.85fc) (2.70)

3. The force carried by the bottom steel

S

Use equilibrium condition, P, can be calculated as:

I:)n = Cc + Cs _Ts (272)
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By taking moment on neutral axis based on free body diagram in Figure 2.17

Pn><e=Cc(ﬂ—i}rc{ﬂ—d'}ﬁs(d—h) (279

2 2 2 2

or Mn:pnxe:cc(ﬂ_3]+cs(ﬂ_d-j+Ts(d-ﬂj (274)
2 2 2 2

Thus, nominal axial compression P, and bending moment M, can be
calculated based on Equation (2.73) and (2.74), respectively.

However, yielding strength of compression steel and tensile steel can be
computed by strain compatibility equation as their values is varied from compression

controlled region to tensile controlled region.

Table 2.4 List of strain limit table in column design

Section Condition Concrete Strain Steel Strain If f, = 420 MPa
Compression

P 0.003 g, <fy/E, g, <0.002
controlled
Tension controlled 0.003 g, >20.005 g, >20.005
Transition controlled 0.003 fy/E,<¢,<0.005 0.002<¢, <0.005
Balanced strain 0.003 e, =fy/E, g, =0.002
Transition region

: 0.003 0.004<¢,<0.005 0.004<¢g, <0.005

(flexure)

Table 2.4 presents the strain limitation in column design if yielding strength
420 MPa is used. Based on this table, yielding strength of compression steel and
tensile steel can be determined for each failure condition.

Nilson (2004) stated that it is sometimes more convenient to compute the

nominal moment capacity in function of ratio c/d rather than the net tensile strain.
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Figure 2.18 Net tensile strain in column section (Nilson, 2004)

Figure 2.18 shows the ratio of c/d; which corresponds to the three regions of

reinforced concrete column members.
More details of iterative procedure for analysis are given in appendix B.

2.9.4 Strength reduction factors
The ACI Code (2005) provides basic reduction factors for members subjected

to axial compression as:
= 0.65 for compression controlled region. A value of 0.70 may be used if
members are spiral section
= (.90 for tension controlled region (both spiral and other section)
= Varies linearly between 0.65 (or 0.70) and 0.90 for transition region using
Equation (2.75) and (2.76).
¢ =0.567 +66.7¢, (spiral section) (2.75)

¢ =0.483+83.3¢, (other section) (2.76)

Figure 2.19 presents the variation of strength reduction factor in compression,

transition, and tension controlled regions.

2.9.5 Reinforcement ratio permitted in column design
ACI Code recommended that longitudinal reinforcement area, Ay in tied
column should not less than 0.01 times and not more than 0.08 times the gross area

Aq. The expression of reinforcement ratio is given as:
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P, = Ast/Ag (2.77)
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Figure 2.19 Variation of strength reduction factor with net
tensile strain (Nilson, 2004)

McGregor (2002) stated that reinforcement ratio of most economical tied-
column section generally ranged from 1 to 2 percent.

In a rectangular column, minimum number of bars is limited to four according
to the ACI Section 10.9.2. In simple practice, it is generally to use an even number of
bars. Particularly, all bars have the same size (McGregor, 2002).

2.9.6 Slenderness ratio

A slender column deflects laterally under any applied load. This load will
increases the moments in the column and hence weakens the column (MacGregor,
2002). In that case, column is designed as slender column which takes into account of
slenderness ratio.

According to ACI Section 10.12.2, a slenderness ratio in braced frames is
neglected if the expression in Equation (2.78) is satisfied.

kfu <34-12(MYM2) (2.78)

where k = effective length factor

¢,= unsupported height of column from top of floor to the bottom of the

beams or slab in the floor above
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r = the radius of gyration, equal to 0.3 and 0.25 times the overall depth of
rectangular and circular columns, respectively

M1/M2 = the ratio of the moments at the two ends of the column

The range of effective length factor, k, for different columns and frames is

illustrated in Figure 2.20.
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Figure 2.20 Effective lengths of columns and length factor k (Hassoun, 2005)

2.9.7 Shear force in columns
According to ACI Code section 11.3.1.2, the shear force carried by the

concrete for a member subjected to axial compression is expressed as:

v, =| 14 No i b,,d (2.79)
14A, )| 6

where V. = shear forced carried by concrete (kN)

N, = the factored axial force (kN)

Aq = gross area of column

f*. = compressive strength of concrete (kN/m?)
bw = web width

d = effective depth of column
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ACI Sections 7.10.5.1, 7.10.5.2, and 7.10.5.3 specify that the maximum tie
size is No. 10M bar for longitudinal bars up to No. 32 and a No. 13M bar for larger
longitudinal bars or for bundled bars. The vertical spacing of ties shall less than or
equal to 16 times of longitudinal bar diameters, and shall not exceed 48 tie diameters.
The maximum spacing is also limited to the least dimension of the column. In seismic
regions, much closer spacings are required as mention in ACI section 21.4.4.

e For ties design without providing additional shear reinforcement, ACI Code
recommended that applied factored shearing forces, V,, should not greater
than ¢V, /2.

o If the shear V, exceeds¢V., /2, shear reinforcement are additionally provided.
e |If the shear V, is greater than 0.5¢V, and smaller than ¢V,

(0.50V, <V, <¢V,), it would be necessary to satisfy ACI Sections 7.10.5,
11.5.4.1, and 11.5.5.3.

2.10 Optimization theory

2.10.1 Introduction

In general, optimization is the process of finding something that is as effective
as possible or is the act of creating the best result under a prescribed set of conditions
(Rao, 2009). From a mathematical perspective, optimization deals with finding the
maxima or minima of a function with one or more variables. The minima and maxima

in mathematical definition are shown in Figure 2.21.
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Figure 2.21 Minimum of f(x) and maximum of —f(x) at point x*
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In application of optimization into engineering problems, optimization can be
applied to solve civil engineering structures such as frames, foundations, bridges,

towers, chimneys, and dams for minimum cost (Rao, 2009).

2.10.2 Problem statement of an optimization

An optimization or a mathematical programming problem can be stated as:

Xl

Find X = Xz which minimizes f(X) (2.80)
"

Subject to the constraints gi(X) =0, i=1,2,...m (2.81)

Li(X) =0, =1.2,...p (2.82)
where X = an n-dimensional vector called the design variable vector
f(X) = term of objective function
gi(X), Lj(X) = inequality and equality constraints, respectively

The problem in Equation (2.80) can be called as a constrained optimization
problem because there are equality constraints L(X) and inequality constraints g(X).
Some optimizations that do not have any constraint as in Equation (2.81) and (2.82)
can be called as unconstrained optimization problems.

Three major components of an optimization problem are design variables, design

constraints, and objective function.

A. Design variables
In any engineering system, a set of quantities which are usually fixed in design
process are called as preassigned parameters while other certain quantities which
treat as variables are called as design or decision variables. Thus, the design variables
can be represented as one set of design vectors referred to programming problem
definition in Equation (2.80).

B. Design constraints
In many practical problems, the design variables are chosen if they satisfy
certain specified functional and other requirements. Thus, those requirements that

make the design variables satisfy in order to produce an acceptable result are called as
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design constraints. In this sense, constraints that impose physical limitations on
design variables such as availability, fabricability, and transportability can be defined

as geometric or side constraints.

C. Objective function
An objective function is the main criterion which was taken to minimize or
maximize. Its expression is function of the design variables.
Rao (2009) reported that in civil engineering structural design, the main aim of

optimization is to minimize the cost.

D. Constraint surface

This section will present the boundary of constraint surface in two
dimensional design spaces and its shape.

Consider an optimization problem with only inequality constraints which
represent as gj(X)<0. The design variables X that satisfy the equality constraints
[9;(X)=0] forms a boundary surface in the design space called as constraint surface.
The constraint surface divides the design space into two regions. The feasible region
where constraints are satisfied is referred to g;(X) <0, and the infeasible region where
constraints are violated is referred to g;(X) > 0.

Behavior constraint g,= 0
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Figure 2.22 Boundary points of optimization (Rao, 2010)
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Figure 2.22 shows a two-dimensional design space where the infeasible region
is sketched by hatched lines. In case that the constraints are linear such as gz and gs,
they are plotted as straight lines as shown in figure. However, when constraints are
nonlinear such as gi, g2, and g4, they are constructed as curve following that case. A
design point that lies on one or more than one constraint surface is called as bound
points, and the associated constraint is called as an active constraint. Free points are

defined as those that lie in feasible region and do not lie on any constraint surface.

2.10.3 Classic optimization approaches

The classical methods of optimization becomes useful in calculating the
optimum solution if the function to be optimized are continuous or differentiable.
These methods are based on technique of differential calculus in finding the optimum

point.

A. Theorem 1: necessary condition

In calculus, the first derivative test uses the first derivative of a function to
determine whether a given critical point of a function is a local maximum, a local
minimum, or neither.

Consider a function f(X) is continuous or differentiable with n-variables. The
necessary condition stated that if the first partial derivatives of f(X") equal to zero,
then f(X) has a either relative minimum or maximum at X=X_.

The theorem can be expressed as:

of [y Of (o« of 1 u»

a—Xl(x )=6—X2(x )=...=a(x )=0 (2.83)

In general, a point X satisfies Equation (2.83) is called stationary point. This

point can be a minimum or maximum.

B. Theorem 2: sufficient condition
The sufficient condition for the minimum or maximum value of the function
f(X) at X=X can be stated by evaluating the matrix of the second partial derivatives

(Hessian matrix) at X=X
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The Hessian matrix of the second partial derivatives can be written in

quadratic form as:

13 o't
H= h.h. 2.84
Zz ! Jaxiéxj ( 8 )

i=1 j=1

(i)  If the Hessian is positive definite, then X is a relative minimum point
(i)  If the Hessian is negative definite, then X is a relative maximum point
(i) If the Hessian have both positive and negative, then X is a saddle point

(iv) I the Hessian is equal to zero, then X is inclusive

2.11 Cost optimization of concrete structures

Adeli (2006) reported that optimization of concrete structures usually deal
with cost minimization since different materials are used. Concrete structures could
include reinforced concrete, prestressed concrete, and fiber-reinforced concrete
structures. In concrete structure at least three different cost items, namely, cost of
concrete, steel, and formwork should be considered in optimization.

The general cost function for beam structures (including reinforced, fiber, or
prestressed beam) can be written as:

Costy, = Costep, + Costg, + Costyp, + Costiy, + Costspy + COstsip (2.85)
where Costn, = the total cost of material in beam

Costgp, = the total cost of concrete

Costg, = the total cost of steel reinforcement

Costyp, = the total cost of prestressing steel

Costs, = the total cost of the formwork

Costspy = the total cost of shear steel

Costsip = the total cost of fiber in concrete

In simplified way, Equation (2.85) can be expressed as:

COStm =0 Lbeam (Aconb _Astb _A‘shb _Apreb ) Ucon + (DstLbeam (Aconb + A'stb ) Ust

(2.86)
A

+o L

pre —heam

Upre + Lbeam pforbU + COStsbv + COStfib

preb for
where Cost,, = the total cost of material in beam

Lpeam = length of the beam
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o » O, O = UNit weights of concrete, reinforcing steel, and prestressing

con?
steel respectively

Ao Ao A sty Aprep = €TSS sectional areas of concrete, reinforcing steel,

compression reinforcing steel, and prestressing steel, in beam structures
respectively

Ucon, Ust, Upre, Usor = unit cost of concrete, reinforcing steel, prestressing steel,
and formwork, respectively

Prorb = Cross sectional perimeter of the beam form

The general cost function for column structures (including reinforced or

prestressed column) can be expressed as:

where

where

Costioral = Costee + Costge + Costye + Costre + Costye (2.87)
Costy, = the total cost of material in column

Costec = the total cost of concrete

Costs = the total cost of reinforcing steel

Costpc = the total cost of prestressing steel

Costs. = the total cost of formwork

Costy. = the total cost of lateral stirrups

Equation (2.87) can be written in simplified way as:

CC)Stm = mcon Hcolumn (Aconc - Astc = Aprec ) Ucon e (Dst HcolumnAstc Ust (2 88)
+ mpre H columnAprec U pre + H column pforc Ufor + Vstirrupc Ust

Costy, = the total cost of material in column

Hcolumn = height of the column

Aconc, Aste, Aprec = Cross sectional areas of concrete, reinforcing steel, and
prestressing steel, in column structures respectively

Ucon, Ust, Upre, Usor = unit cost of concrete, reinforcing steel, prestressing steel,
and formwork, respectively

Prorb = Cross sectional perimeter of the column form

Vstirupe = Volume of the lateral stirrups
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2.12  Optimization problem solving techniques

As optimization techniques choose the best solution from a set of many
acceptable design variables, the best solution of design variables must satisfy only the
functional and other constrained restrictions.

Although optimization techniques can sometimes be calculated analytically,
most practical optimization problems require computer methods as primarily solving
tools (Rao, 2000). In this sense, some solver algorithms in optimization problems
have been developed in commercial software packages. In this thesis, build-in
function solvers, namely, MAPLE, MATLAB, ISML FORTRAN, and KNITRO will

be used to find minimum of an objective function.

2.12.1 Mathwork’s MATLAB
MATLAB'’s build-in “fmincon” command solves a minimum of constrained
nonlinear multivariable function. It uses sequential quadratic programming (SQP)
optimization algorithm as the optimization searching technique (Mathwork, 2010).
The characteristics of fmincon command are defined by Equation (2.89) as
below:
Find a minimum of a constrained nonlinear multivariable function, f(x)
c(x)<0
ceq(x) =0
minf (x) subjectto { A.x<b (2.89)
Aeq.x = beq
Ib<x<ub

Where X, b, beq, Ib, ub = vectors,
A, Aeq = matrices,
c(x), ceq(x) = functions that return vectors
f(x) = function that returns a scalar

f(x), c(x), ceq(x) = nonlinear functions.

Syntax
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
where fun= the function to be minimized

X0 = initial point for x
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A = matrix for linear inequality constraints

b = vector for linear inequality constraints

Aeq = matrix for linear equality constraints

beq = vector for linear equality constraints

Ib,ub = vector of lower bounds and upper bounds
nonlcon = nonlinear constraint function

options = options structure

2.12.2 Maplesoft MAPLE

The NLPSolve command solves a nonlinear constrained optimization, which
computes a real-value objective function. Constrained optimization problems can be
solvable in case that the objective function and the constraints is twice continuously
differentiation. Even though these conditions are not met, NLPSolve sometimes still
finding to solutions.

The characteristic of NLPSolve command is detailed as:

Optimization [NLPSolve] = solve a nonlinear program

Calling sequence
NLPSolve (obj, constr, bd, opts)
NLPSolve (opfobj, ineqcon, eqcon, opfbd, opts)

Parameters

obj algebraic; objective function

constr (optional) set(relation) or list(relation); constraints
(optional) sequence of name = range; bounds for one or more

d variables

opfobj  procedure; objective function

ineqcon  (optional) set(procedure) or list(procedure); inequality constraints

eqgcon (optional) set(procedure) or list(procedure); equality constraints

opfbd (optional) sequence of ranges; bounds for all variables

opts (optional) equation(s) of the form option = value where option is
one of assume, feasibilitytolerance, infinitebound, initialpoint,
iterationlimit, maximize, method, optimalitytolerance, or output;

specify options for the NLPSolve command.



46

2.12.3 IMSL FORTRAN

The routine DNCONF solves a nonlinear programming problem using the
successive quadratic programming algorithm (SQP). This routine was developed by
Schittkowski (1986). The following description presents the usage and arguments of
this routine in FORTRAN which can be found in IMSL Math/Library (1997).

The problem is defined as follow:

min f(x)

xeR"
gj(x):O for j=1,....,m
subject to 9;(x)=0 for j=m_,+1,....,m (2.90)

X, SX<X,

where all problem functions are assumed to be continuously differentiable

Usage
CALL DNCONF (FCN, M, ME, N, XGUESS, IBTYPE, XLB, XUB,
XSCALE, IPRINT, MAXITN, X, FVALE)

Arguments
FCN User-supplied SUBROUTINE to evaluate the functions at a given point
The usage is CALL FCN (M, ME, N, X, ACTIVE, F, G)
where M = Total number of constraints (Input)
ME = Number of equality constraints (Input)
N = Number of variables (Input)
X = The point at which the functions are evaluated (Input)
X should not be changed by FCN
ACTIVE = Logical vector of length MMAX indicating the active constraints
(input)
MMAX = MAX (1, M)
F = The computed function value at the point X (Output)
G = Vector of length MMAX containing the values of constraints at point X
(Output)
FCN must be declared EXTERNAL in the calling program.
M Total number of constraints (Input)
ME  Number of equality constraints (Input)
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N Number of variables (Input)
XGUESS Vector of length N containing an initial guess of the computed solution
(Input)
IBTYPE Scalar indicating the types of bounds on variables (Input)
IBTYPE Action

0 User will supply all the bounds

1 All variables are nonnegative

2 All variables are nonpositive

3 User supplies only the bounds on 1st variable; all other

variables will have the same bounds
XLB Vector of length N containing the lower bounds on variables (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)
If there is no lower bound for a variable, then the corresponding XLB value
should be set to -1.0E®6.
XUB Vector of length N containing the upper bounds on variables (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)
If there is no upper bound for a variable, then the corresponding XLB value
should be set to 1.0E6.
XSCALE Vector of length N containing the diagonal scaling matrix for the
variables (Input)
All values of XSCALE must be greater than zero. In the absence of other

information, set all entries to 1.0.

IPRINT Parameter indicating the desired output level (Input)
IPRINT Action
0 No output printed
1 Only a final convergence analysis is given
2 One line of intermediate results are printed in each iteration
3 Detailed information is printed in each iteration

MAXITN Maximum number of iterations allowed (Input)
X Vector of length N containing the computed solution (Output)
FVALUE Scalar containing the value of the objective function at the computed

solution (Output)
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2.12.4 Ziena’s Optimization KNITRO

KNITRO is a software package for solving large scale mathematical
optimization problems (from http://www.ziena.com). It is specialized in solving the
nonlinear problems powerfully. KNITRO optimization solvers can be written in C,
C++, FORTRAN, or Java as a software routine to solve the problem.

KNITRO stands for "Nonlinear Interior point Trust Region Optimization"
while the "K" is silent.

The characteristic of KNITRO command is defined as:

minf (x)
g;(x)=>0 iel

subject to h.(x)=0 ieE (2.91)
I <x <u, i=12,..n

where |, E = finite non negative integers subsets
f, gi, hi = objective function assumed to be twice differentiable



CHAPTER IlI
RESEARCH METHODOLOGY

3.1  Design variables

Figure 3.1 shows problem definition and design variables related to geometry

of wall dimensions and cross section of main bars area.

¥
x4
1

B kaﬁﬂ«xz

=t
>
w

Figure 3.1 Cross section of the RC cantilever retaining wall used for optimum design

Nine design variables are taken into consideration. These include the

following:

1)
2)
3)
4)
5)
6)
7)
8)
9)

X, total width of toe (m)

X stem thickness at bottom (m)

X3 total width of heel (m)

X4 thickness of base slab (m)

Xs soil cover (m)

X stem thickness at top (m)

X5 horizontal reinforcing area of the toe per unit length of wall (mm?m)
Xg horizontal reinforcing area of the heel per unit length of wall (mm?*m)

Xo vertical reinforcing area of the stem per unit length of wall (mm?/m)
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3.2  Objective function of reinforced retaining wall

Obijective function for the analysis is the total cost of material in retaining wall
which includes total cost of concrete, steel reinforcement and formwork. The total
cost of retaining wall is defined as:

f(X) = Ceon*Veon + CstXWyt + CryX St (3.1)

where Ceon = cost of concrete per 1 cubic meter (8/m?)

Veon = volume of concrete (m®)

Cst = cost of steel per 1 kilogram (/kg)

W = weight of steel (kg)

Crw = cost of formwork per 1 square meter (3/m?)

Srw = area of formwork (m?)

3.2.1 Concrete volume and steel weight calculation
Figure 3.2a shows a cross section of reinforced concrete beam with length, L,
width, b, and height, h. As denotes tensile steel area placing along the beam length as

shown in Figure 3.2b.

@ 9 A,
L C
X / (b)
A
o< L
o}

Figure 3.2 (a) Shape of a reinforced concrete beam (b) steel bar cross section

Volume of concrete can be calculated as:
V,,, =bxhxL (3.2)
Where b = width of reinforced concrete beam

h = height of concrete beam

L = length of beam
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Weight of steel is calculated by:
V, =A,xL
(3.3)
Wst = Vst XY g
where Vg = volume of steel

A = tensile steel area

v, =Uunit weight of steel= 7850 kg/m®

3.2.2 Formwork area calculation
Area of formwork can be calculated per 1 meter of wall length based on
Figure 3.3 as follow:

Formwork

Figure 3.3 Formwork calculation

Sy = Ht X, + £ = Hot X (X, =X )+ (H=X, ) (34

where H = height of retaining wall
¢ = length of inclined front face of stem
X1 = length of toe slab
X3 = bottom stem thickness
X3 = length of heel slab
X4 = thickness of footing

Xe = top stem thickness

It should be noted that the cost of formwork should be calculated at two
vertical area of the base and at inclined and vertical surface of the stem. The bottom
area of the base, the top area of the base, and the top area of the stem are not included
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in calculation of the total cost since formworks in those areas are not required during
construction.

By applying expressions from Equation (3.2) until Equation (3.4) for retaining
wall, the general expression of objective function (with main bars only) can be written
as:

Fz%(H_th)(Xz +Xg )+ (X, +X, +X3)(X4)+(X7 *10_6)(X1+X2 %) (¥a)

+(x8 *10“3)(x1 +X, + x3)(yst)+(x9 *10“6)(H)(yst) (3.5)

FH+X, (X, =X ) +(H=X, )

where Xy, Xg, Xo = reinforcing area in square millimeter (mm?)

3.3  Cost of material in Thailand

Table 3.1 and 3.2 list the unit price of concrete, steel reinforcement of type
SD40 in Thailand according to Bureau of Trade and Economics indices Ministry of
Commerce Thailand (http://www.price.moc.go.th). The cost of formwork is taken as
150 B per square meter based on the average cost from contractors in Thailand while

it is not reported by the Bureau of Trade and Economics.

Table 3.1 Unit price index of concrete

Strength of Unit cost (s/m°)

concrete 2005 2006 2007 2008 2009 2010 2011
17 MPa 23375 | 2470 2470 2470 2470 2470 2470
21 MPa 23775 | 2510 2510 2510 2510 2510 2510
25 MPa 24175 | 2550 2550 2550 2550 2550 2550
28 MPa 24975 | 2630 2630 2630 2630 2630 2630
31 MPa 25475 | 2680 2680 2680 2680 2680 2680
32 MPa 2607 2740 2740 2740 2740 2740 2740
35 MPa 2677 2810 2810 2810 2810 2810 2810

The unit price of concrete depends on its strength ranging from 19 MPa to 35
MPa.
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Table 3.2 Unit price index of steel reinforcement SD40

Diameter of Unit cost (s/kg)

reinforcement | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 2011
12 mm 17.62 | 1958 | 23.28 | 18.92 | 19.10 | 20.56 | 22.56
16 mm 1742 | 19.38 | 23.08 | 18.70 | 18.90 | 20.37 | 22.40
20 mm 17.42 | 19.38 | 23.08 | 18.70 | 18.90 | 20.37 | 22.40
25 mm 17.42 | 19.38 | 23.08 | 18.70 | 18.90 | 20.37 | 22.40
28 mm 17.42 | 19.38 | 23.08 | 18.70 | 18.90 | 20.37 | 22.40

The unit price of steel reinforcement also depends on its diameters ranging

from 12 mm to 28 mm.
3.4  Formulation of design constraints for retaining wall

3.4.1 Overturning stability constraint

Factor of safety against overturning can be written as the ratio of the sum of
the resisting moment (Mg) about point B to that of the driving moment (Mp) about
point B in Figure 3.1.

FSy =D Mg /DM, (3.6)

3.4.2 Sliding stability constraints

Factor of safety against sliding failure can be expressed as the ratio of the sum
of horizontal resisting forces (Fr) to that of the horizontal driving forces (Fp). There
are two options of horizontal resisting forces. The first option considers passive force

(Pp) at toe side of the wall and the other neglects this passive force.
FSy =2 F: /D> Fy  (Frwith Pp) (3.7)

FSy, =Y Fa/D_Fy (Frwithout Pp) (3.8)

3.4.3 Bearing stability constraints
Bearing capacity failure gives two constraints, namely eccentricity failure and

factor of safety against bearing failure of underlying soils as:

X = ZZM\;“ _2 MRZ_\%: Mov (3.9)
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(Y3)B<x<(2/3)B (3.10)

where x = distance from left corner of toe slab to resultant force R
B = X1 + X, + X3 = base width of the wall
Mg = sum of the moment of forces tending to resist overturning

Mov = sum of the moment of forces tending overturn

Bearing failure is defined as the maximum contact pressure at the interface

between the wall structures to the ultimate bearing capacity of the foundation soil:
FSbearing = qmax /qu (311)

In general bearing capacity equation, it is to enforce the condition of Hansen’s
depth factor, where the ratio of depth soil cover to the base length is smaller or equal
to 1.

£X4+X5js1 (3.12)
B-2e

3.4.4 Slope stability constraints

A. Shape of circular arc failure surfaces

If the base soil consists of medium to soft clay, a circular slip surface failure
may develop as shown in Figure 3.4a. In the proposed optimization problem, the
circular arc failure surface is assumed to pass right at the corner of the wall base and
does not intersect the concrete base. This critical mechanism is also obtained by
extensive studies using AutoSLOPE (2004) for different geometries of cantilever
retaining wall.

The studies showed that the circular arc failure surfaces which do not pass
right at the corner of the wall base and penetrate more deeper are always not critical
and their factor of safety is not the least as shown in Figure 3.4b. This important result
is logical and valid provided that the soil underlying the wall base has the constant
shear strength properties and there is no presence of the weak soil layer below the

base of the wall.
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@ AN

Arc failure surface

Figure 3.4 (a) Conventional circular arc failure surface (Murthy, 2002) and (b)
critical failure mechanism using AutoSLOPE (Ukritchon et al., 2004)

Because slope failure shape is arc circular, factor of safety can be written as
the ratio of the sum of the resisting moment to that of driving moment. Thus, factor of
safety based on Ordinary Method of Slices is derived analytically in terms of
unknown variables of wall dimensions and center of circular arc failure surface as
illustrated in Figure 3.5.

v 10 slices Vv 10 slices y 3 slices 10 slices y 20 slices y
1 1 T 7
0(xo,y0)wh 7{ a Fq
‘ ——— s R YA —
R -lp T
‘ 2 1
PointLl V;V 3

CEL

3 W7 h
NQL T ‘
P XPL

oo | s

Homogeneous soil

Figure 3.5 Ordinary Method of Slices in RC cantilever retaining wall
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Expression of safety factor of slope stability for reinforced concrete cantilever

retaining wall by Ordinary Method of Slices can be written as following:

Zn:[c'Li+(Ni—Ui)tan¢']
FS=— = (3.13)
D W,sin6,R +q(B/cosa)xa+Pxb

i=1

where N, =[W, +q, (B, /cosa)+P, |cos6,= total normal force

where

B.

Wi, = total weight of slices
gi = distribution line load
Bi = width of each slices
a = angle of slope backfill
Pi = point load

0, = angle of interslice force orientation (degree)

U; = pore water force at base

c’, ¢' = cohesion and internal friction angle of soil
L = base length

R = radius of circular arc

a, b = distance from center of arc to point, and line load, respectively

Finally, the factor of safety is derived analytically as function below:

FS =1 (Xq: Yo: X01 X0 Xg: X3 X5, Xg, H, ¥4, €1, 01,75, C5, 0,0, ) (3.14)
Xo,Yo = center of critical failure

X1, X2, X3, X4, X5, Xg = Wall parameters

H = total height of wall

Y.,C, 9.,7,,C,, 0, = soil properties (unit weight, cohesion, and friction angle
respectively)

g = surcharge loading

o = angle of slope backfill

Procedure to derive the additional constraints for slope stability

In literature review, minimum factor of safety corresponded to critical failure

surface are calculated by optimization methods.
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Thus, in order to obtain the critical center position of the circular failure
surface corresponding to the least of the factor of safety against slope failure, two
additional equalities are constrained using the optimal condition of a function. This
condition states that the first derivative of the function - the factor of safety - with
respect to the unknown variable (Xo,yo) must be zero:

OFS/oX, =0 (3.15)
OFS/oY, =0 (3.16)

Based on theory of optimization, the first derivative in the Equation (3.15) and
(3.16) can give only the stationary point of coordinate of critical center position
(Xo0,Y0p). The second partial derivative test is a method to determine if a critical
stationary point (Xo,Yo) of a function FS(Xo,Yo) is a minimum, maximum or saddle
point.

Thus, it should be mentioned that there is no need to apply such zero equality
constraints to other unknown variables (X;-Xg) since the analysis searches the critical
position of the circular arc failure surface and treat those unknown variables as the
constant terms.

Equation (3.17) and (3.18) present second partial derivative test and Hessian

Matrix to stipulate the maxima and minima function.

0°FS 0°FS
oXZ  OX,0Y,
| = (3.17)
Cov) | 9?FS  9%FS
2
0X,0Y, oY, X¥e)
The determinants of the square submatrices of H are:
2
=93 (3.18)
axo (Xo0.Yo)
oFSo%Fs ( o%Fs
H, = . = (3.19)
oX; dY; 0X,0Y,
(Xo0:Yo)

Thus, the sufficient condition for a minimum FS(Xo,Y) at point (Xo,Yo) exists

if the Hessian Matrix H; and H, evaluated at (Xo,Yo) is positive definite. As a result,
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all expressions in Equation (3.18) and Equation (3.19) must be positive or higher than

Zero.

C. Additional constraints for critical center position
Figure 3.6 shows the circular arc failure surface in reinforced concrete

cantilever retaining wall.

T S

Avoid this shape

X1+X2+X3

Figure 3.6 Arc failure surfaces correspond to their center positions

In this figure, arc OIA and PGBCD do not intersect the wall components since
its axis locates in search region QRST. In contrast, arc KFCE intersects the wall
component. The feasible center position of circular arc should stay at the left-hand
side from middle of base length.

Ordinates of center positions are constrained to lie vertically assuming
between lines (QR) and (TS) in order to avoid the intersection shape as shown in
small figure on the right. When this shape appears, using procedures for calculating
safety factor of slope stability are generally impractical.

Table 3.3 presents the lower side and upper side constraints which center of
circular arc failure surface does not intersect the wall components as shown in Figure
3.6.
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Table 3.3 Side constraints on critical center of circular arc failure surface

Description Lower side constraints Upper side constraints
Axis of critical center Xo 2 (Y2)(X, +X,+X;5) Xy <(3/2) (X, +X, +X5)
Ordinate of critical center Y, =212*H Y, <2*H

D. Verification of validation of FS slope expression in MAPLE
In order to verify validation of FSg ope expression derived from Ordinary
Method of Slice in MAPLE, a comparison of critical safety factor between MAPLE
and other slope programs have been made. Table 3.4 shows the results of minimum
factor of safety, FSmin, by AutoSLOPE and NLPSolve (MAPLE). The example for
comparison is taken from geotechnical textbook by Das (2007). In that example,
surcharge loading (q) is added as shown in Figure 3.7.

q =10 kN/m?

I H,; =0458 m

kN/m?

s=6m

107

b e, AR P,

Hy=07m

y>=19 kN/m?
¢'>=20°
¢’ =40 kN/m?

|« 07 m == 07m +=l=—26m —=I

Figure 3.7 Input of example for comparison of critical safety factor of slope

Table 3.4 FSnin and coordinate of critical center position (Xo,Yo)
Description MAPLE (NLPSolve) Maharak (2007) AutoSLOPE (2004)
FSmin 1.9957 1.9940 2.0140
Xo 1.200 1.390 1.171
Yo 9.322 9.456 9.863
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Based on Table 3.4, minimum safety factor, FSmin, by NLPSolve is slightly
smaller than that by Maharak (2007). Thus, the expression of safety factor of slope
derived by MAPLE is valid and suitable to use in optimization problem of reinforced

concrete cantilever retaining wall.

3.4.5 Additional side constraints

Bowles (1996) suggested using thickness of cantilever wall equal to 250 mm.
The practical minimum and maximum values of steel ratio in ACI code (2005) are
considered. Table 3.5 summarized additional constraints arising from certain
minimum criteria of thickness of stem and reinforcement ratio in each component of

retaining wall.

Table 3.5 Additional lower and upper side constraints

Description Lower side constraints Upper side constraints

Stem thickness at top (m) Xs20.25m

Horizontal steel area of the toe

2 X72pmin(x4_c—q)/2) X7Spmax(X4_C_cD/2)
X7 (mm?)

Horizontal steel area of the

XgZpi (X, —C—D/2) X;< X,—-c—-D/2
heel Xg (mmz) P pmm( 4 /) 8 pmax( 4 /)

Vertical steel area of the stem

Xy 2P (X, —C—D/2) X, < X,—-c—-D/2
Xg(mmz) 9 pmm( 2 /) 9 pmax( 2 /)

3.5  Proposed method for optimizing integral bridge abutment wall

3.5.1 Load considered into design

External loads apply in abutment support can be come from:
vertical loads from self weight of bridge slab
vertical load from live loading (Truck)
vertical load from self weight of abutment wall
horizontal loads from temperature, creep movements and wind
horizontal loads from braking and skidding effects of vehicles

horizontal pressure from exerted by the retained materials

@ mmo o w >

vertical loading from the weight of the fill acts on the footing
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H. surcharge loading on the rear of the wall

Appendix C gives detail on simply loads counted in bridge design and the
combination of strength design based on AASHTO specification (2007).

However, the structural design on abutment wall is respected to ACI Code
318-05 which defined quite different from AASHTO.

3.5.2 Design variables

Figure 3.8 shows problem definition and design variables of integral bridge
abutment walls related to geometry of wall dimensions and cross section of main bars
area. In that figure, vertical line load (P) is assumed to be acting on the center line of

abutment stem.

P q
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Figure 3.8 Design variables of integral bridge abutment wall

Nine design variables will be calculated. Assuming that top stem is equal
bottom stem (X,=Xs), the problem reduce to eight design variables. These include the
following:

1. X; = total width of toe (m)

2. Xz = total width of heel (m)

3. X4 = thickness of base slab (m)

4. Xs = soil cover (m)
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Xg = stem thickness at top (m)
X7 = horizontal reinforcing area of the toe per unit length of wall (mm?/m)

Xg = horizontal reinforcing area of the heel per unit length of wall(mm?/m)

N o O

Xg = vertical reinforcing area of the stem per unit length of wall (mm?m)

3.5.3 Objective function of integral bridge abutment wall

Objective function in integral bridge abutment wall is the total cost of
concrete, steel reinforcement, tied stirrups and formwork. The method to calculate
total cost of bridge abutment wall is reported the same to conventional retaining wall.
In integral bridge abutment wall, stirrups are necessary to place on stem wall in order
to resist shear force. The procedure to calculate total cost of stirrups is summarized in

the following equation.

@ transversal * BAML VR .
Ast
b=1m
X6
ot 7 “agmrtre %, 7 77, 7T
| | |
|
. . ry - 7 1 I
S: Spacmg,t,,, |} retained material |
I
@ longitudinal " H
Ast |1+ :
@ transversal | |
A— I
X9 |
!
5 ——3 I
I
jL — = x8
LJ L] L] L] LJ LJ
i(vf . 2 ] 1 2 ] ] '
Bl 1 —x2~ X3 jC

Figure 3.9 Reinforcing steel used in bridge abutment wall

The diameter of transversal bar is 10 mm with cross section denoted as As:.
Based on ACI Code (2005), vertical spacing (S) of stirrup is calculated as:

S= min (16¢Iongitudinal ! 48¢transversal ) (320)

where ¢ jongitudinal = diameters of longitudinal bars (mm)

O transversal = diameters of transversal bars (mm)

Numbers of stirrup (ns;) can be calculated as:

ng =(H-x,)/s (3.21)
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where H = total height of abutment wall
X4= thickness of footing

s = spacing from one tie to one tie

Volume of one stirrup can be calculated as:
V,, =Astx2(b+X6) (3.22)

where Ag = area of one stirrups
b = 1 meters (strip width)
Xe = width of stem wall

Total cost of tie (tcostsirrup) Can be calculated as:
Wst = Vst xYs
(H-x,) (3.23)

=W, xny xCq=Ayx2(b+X;)xy,x>—xCq
S

tcost

stirrup

where Ws; = weight of one tie
Vs = volume of one tie

vs = unit weight of reinforcing steel

Ns: = numbers of tie

Cs = unit cost of reinforcing steel (B/Kg)

3.5.4 Geotechnical design considerations

The concept of geotechnical designs of bridge abutment wall is the same to
conventional cantilever retaining wall. Three typical failure modes simply taken to
consider are namely, sliding failure, overturning failure, and bearing failure. Those
failure modes must be checked to satisfy required factor of safety. According to Chen
(2000), the required factor of safety against sliding should not be less than 1.50;
required factor of safety against overturning should not be less than 2.0, and factor of
safety against bearing failure should not be less than 3.0. These values are applied in
the abutment with spread footing under service load.

In this study, slope stability constraints are included in optimal design.

3.5.5 Slope stability analysis in bridge abutment wall
The procedure for calculating factor of safety against slope failure in bridge

abutment wall is the same to conventional retaining wall. However, in this case, safety
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factor of slope is also derived in function of line load, P, which acts vertically on stem

wall.

= Verification of validation of FS slope expression in MAPLE
In order to verify validation of safety factor of slope expression (FSsiope)
derived from Ordinary Method of Slice in MAPLE, a comparison of critical safety
factor between MAPLE and other slope programs have been made. Table 3.6 shows
the results of minimum factor of safety, FSmi,, by AutoSLOPE, and NLPSolve
(MAPLE).

P =500 kN/m P q
0504 [T L g 2
/ 7 =24 kN/m?
9 retained material !
1, =18 kN/m? + 6.70
a ¢, =30° :
c,=0 }

o “ 2 Rl
Bl-—0.90——~0.50- 2.60 |
y, =19 kN/m?, ¢, = 20°,c, = 40 kN/m?

Figure 3.10 Input of example for comparison of critical safety factor of slope

Table 3.6 FSnin and coordinate of critical center position (Xo,Yo)

Description ~ MAPLE (NLPSolve) Maharak (2007) AutoSLOPE (2004)

FSmin 2.078 2.060 2.060
Xo -1.534 -1.590 -1.519
Yo 6.710 6.840 6.799

Based on Table 3.6, FSmin by NLPSolve is slightly smaller than that by
Maharak with 1%. Thus, the expression of safety factor of slope derived by MAPLE
is valid and suitable to use in optimization problem of integral bridge abutment

retaining wall.
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3.5.6 Structural design requirements

A. Design assumptions

Due to the fact that the bridge abutment walls are subjected to axial loads and
moments from lateral earth pressure causing weak-axis bending, it can be designed as
bearing walls. McGregor (2005) defined bearing walls are the walls that are laterally
supported and braced by the rest of the structure, that resist primarily in-plane vertical
loads acting downward on the top of the wall. The vertical load may develop an
eccentricity on the wall, causing weak axis bending. Moreover, according to ACI
Section 14.4, it stated that the design of bearing wall is carried out by following
procedures as:

1. by using the one-way column design and slenderness requirements in ACI

Section 10.11, 10.12 and 10.13 or
2. by the empirical design method in ACI Section 14.5.

McCormac (2005) stated that reinforced concrete bearing wall can be design
either as columns or slender walls using an alternative procedure specified in ACI
Section 14.8.

In order to avoid complicated design when the wall is often classified as
slender column, constraints in enforcing design as short column should be related to

slenderness ratio computation.

B. Support modeling
Base of bridge abutment can be acted as fixed end support since there is no
movement and sliding on bottom wall. The bridge slab will be acted as roller support

as shown in Figure 3.11.



66

Ra A ‘
7

Figure 3.11 Support modeling of abutment wall

From modeling of acting force in Figure 3.11, maximum bending moment and

shear force can be calculated based on structural analysis. The reaction and moment at
end of support and zero shears are presented in Table 3.7.

Vs =
0.2w

i M= 006wWL
Mc '4 x= aua‘[ ‘
(a)

(b)

Figure 3.12 Moment and shear diagram (a) due to uniform load (b) due to triangular

load (Hassoun, 2005)
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Table 3.7 Reaction and moment at end of supports and zero shears

Uniform Load Triangular Load
Ra=Va 5W/8 4W/5
Re= Vs 3W/8 W/5
Ma (-) WL/8 2WL/15
Mg (+) 0 0
Mec (+) 9WL/128 3WL/50

C. Important constraints in optimal design of bridge abutment wall

i.  Constraints on stem shape

Stem shape constraints are used to limit design length of stem which must be
greater or equal to 0.25 meter and smaller than 1.0 meter as presented in Table 3.8.

ii. Constraints on reinforcement ratio in column

Based on ACI Code, reinforcement ratio in column should not less than 0.01

and not more than 0.08. Thus, these constraints are summarized in Table 3.8.

Table 3.8 Summary of side constraints in abutment wall

Description Lower bound Upper bound
Shape Xg (m) Xs20.25 X, <1.00
Steel ratio in column Peotumn = 0.01 Peotumn < 0.08

iii. Constraints enforcing design as short column according to ACI Code

The slenderness effects in column design are neglected if the following
equation is satisfied.
KL, 334—ﬂ (3.24)
r M,
where k = 0.70 (as in Figure 3.11: fixed support at bottom with rotation free and

translation fixed support at top)

¢,=H— X4 =unsupported length
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r = 0.3x Xg = radius of gyration (rectangular section)

M1/M2 =0 (moment at translation roller support at top is equal to zero based

on Figure 3.11)
iv. Constraints enforcing design in compression-controlled region

To enforce design in compression-controlled regions, proportion of value c/d

should be constrained in one interval whose values limit compression failures mode.

€, = 0.003 €, = 0.003 ¢ ¢=0.75 + (£,- 0.002)(50)
i 7 _\
N ’ N~
C / oy~
| ’ -
' -~
-~
// a; L./ Spiral ~ - -
prr -
7 | v 075 - TN =065 + (&, 0.
1 0.65
// / | Other

Vil ' (VA

€ = 0.004 €7 0007 Compression Transttion

c 0.003 0.429 c 0.003 06 controlled c

d; 0.003 + 0.004 T d; -~ 0.003 + 0.002 -

c £,=0.002 £,=0.005
(b) (c) —=1
Minimum net tensile Compression-controlled dy £ =0.600 £ =0375
strain for flexural member member d, d,

Figure 3.13 Net tensile strains and proportion of c/d (Nilson, 2004)

The strain compatibility gives rise to the following relationships:

c € €
—Su__ ™ 3.25
d-c ¢ f,/E (3.25)
c €
—=— 3.26
d f,/E +e, (3.26)

The conditions on compression controlled design can be expressed as:

¢ > 0.003E,d/(f, +0.003E, (3.27)

%sl.OO (3.28)

v. Constraints on strength design

According to ACI Code, the nominal strengths multiplied with reduction

factors must be greater than or equal to the design strength calculated by load factors.
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The resulting constraints are given by:

OP, = ¢(0.85f (Bc)b+A (f,—0.85F" ) - A, (ES){(O.OOB)(%—QD > P, s (3.29)

_0_85f " (B.c) b(g —(B_;C)j PA! (fy o085t 'c)(%_ d l)_

A (ES){(O.OOS)(%—lﬂ(d —g]

The maximum axial load capacity of a column multiplied with strength

oM, =¢ >M (3.30)

applied

reduction factor must exceed the applied axial factored compression as:

OPrnag = $*0.80] 0.85F " (A, = AL)+f, (A,) |2 Py (3.31)

vi. Constraints on shear force

The applied factored shearing forces (V) should not greater than one and half
of shearing force provided by concrete (V.). This condition ensures that stirrups
designed according ACI Section 7.10.5.1, 7.10.5.2, and 7.10.5.3 can resist the external

applied shear force and there is no requirement of additional shear reinforcing steel.
oV./2>V, (3.32)

3.6 Solvers for optimization problem

The optimization of retaining wall is formulated as a constrained nonlinear
programming (Saribas and Erbatur, 1996). Thus, various optimization algorithms can
be used depending on mathematical structure of the problem. Some available build-in
function of optimization in MAPLE, MATLAB, IMSL FORTRAN, and KNITRO can
be used to compute minimum or maximum of a real-value nonlinear objective

function and nonlinear constraints.

3.6.1 MAPLE and MATLAB

MAPLE is used mainly for deriving expressions of all constraints in
reinforced concrete cantilever retaining wall. Code generation command in MAPLE is
useful for generating analytical expressions from MAPLE to MATLAB. For
additional constraints in slope stability, both MAPLE and MATLAB can compute the
first and second partial derivative of expressions by command diff. MAPLE and
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MATLAB can generate equality constraints (gj(X) = 0) without causing computation
errors. Although expression of safety factor of slope and additional constraints are too
long (more than 1000 lines), MAPLE can evaluate their analytical expressions and

store analytical results in internal memory.

3.6.2 IMSL FORTRAN and KNITRO

Because FORTRAN and KNITRO only evaluate the first and second
derivative expressions numerically, it is impossible to use build differentiation
command for enforcing additional slope constraints. To resolve those problems, Finite
Difference Method (FDM) is applied to perform the approximation of derivatives by
central, forward or backward. Figure 3.14 presents the finite difference mesh in one

and two dimensions where u is function of x and y [u(x,y)].
u

a. FINITE DIFFERENCE MESH

5 o A T

2 iy i L 2 2 il i i Q2 =y
b. SECTION ALONG X AXES ¢. SECTION ALONG Y AXES

Figure 3.14 Finite difference approximations in one and two dimensions

=  First derivative
The simple formulas of central-difference approximation of u respected to x

and y can be written as:
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QU _ Upy =V _ U(X+AX,y)-u(x—-Ax,Yy) (3.33)
X 2AX 2AX '

U _ Ui —Uija u(x,y+Ay)—u(x,y—-Ay) (3.34)
oy 2Ay 2Ay '

= Second derivative
The simple formulas of central-difference approximation of u respected to x

and y can be written as:

%u Uiy —2u;+Up;;  U(X—=AXY)=2u(X,y)+Uu(x+AX,y)

= : = 3.35

o’ (Ax) (AxY (3:35)
o' Uy jy —2U; 5+ U g U(va_AY)_ZU(X’Y)"‘U(X’y"'AY)

2= 2 = 2 (3.36)
% (Ay) (Ay)
o°u _ Uisgjar — Ui ji —Uisgja t Ui
OX0y 4(Ax)(Ay) .
_u(x—Ax,y—Ay)—u(x—Ax,y+Ay)—u(x+Ax,y—Ay)+u(x+Ax,y+Ay)( 37

4(Ax)(Ay)

For numerical calculation of safety factor of slope, the first and second
derivative of safety factor of slope respected to X, and Y, from Equation (3.35) to
Equation (3.37) can be expressed as:

OFS  FS(X,+AX,Y,)=FS(X, -AX,Y,)

(3.38)

X, 2AX
OFS _ FS(X,, Y, +AY)=FS(X,, Y, —AY) (3.39)
oY, 2AY '
0°FS  FS(X,—AX,Y,)—2FS(X,,Y,)+FS(X, +AX,Y,) (3.40)
oX; (AX)* '
0°FS  FS(X,, Y, —AY)—2FS(X,, Y, )+FS(X,, Y, +AY)

> = > (3.41)
oY, (Ay)
O’FS  FS(X,—AX,Y,—AY)-FS(X,-AX, Y, +AY)
oX,Y, 4(AX)(AY

Y, (AX)(aY) 02

. —FS(X, +AX, Y, —AY)+FS(X, +AX, Y, +AY)
4(AX)(AY)
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For FORTRAN coding, the research uses tolerance of AXand AY equal to
10°,

To make central-difference approximation more accuracy, it is possible to use
the finite difference coefficient in central which are listed in Table 3.9.

Table 3.9 Central finite difference coefficient

Derivative Order -3 -2 -1 0 1 2 3
1 -1/2 0 1/2
1 2 1/12 | -2/3 0 2/3 1/12
3 -1/60 | 3/20 | -3/4 0 3/4 | -3/20 | 1/60
1 1 -2 1
2 2 -1/12 | 4/3 -5/2 4/3 | -1/12
3 1/90 | -3/20 | 3/2 | -49/18 | 3/2 | -3/20 | 1/90

For example, the second derivative with second-order of 5 coefficients of

accuracy is:

1 4 3 1 ;
ot 15 T (x=28X)+ 2 (X = AX) =S (x) + o F (x + AX) — - F (x+24X) (3.43)
ox’ ax:

This research uses second-order of 5 coefficients of accuracy.

3.7  Summary of all constraints and objective function

This section summarizes an objective function of total cost of construction
materials and all constraints in the optimal design of conventional and bridge
abutment retaining wall. The subscript, d and t, refers to design or requirements, and

total stress, respectively.

= Optimization problem of conventional retaining wall
Minimize total cost F

F:%(H_X4)(X2 +Xg )+ (X, +X, +X3)(X4)+(X7 *1076)(X1+X2 +%;)(1a)

+ (x8 *10‘6)(x1 +X, +X5) (v ) + (x9 *107° )(H)(ySt ) (3.44)

FH+X, + (X, =X ) +(H=X, )’
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Subjected to
gy =FSye —FS,, <0 (3.45)
9, = S,y — FSyp <0 (3.46)
9js = FSyg0 — FSyo <0 (3.47)
~(XMg=>'M,, /> V)<0 (3.48)
=(XMe -2 M, /3 V)-(2/3)B <0 (3.49)
936 = FSpearings — FSbearing < 0 (3.50)
9j7 = Tyoe — 97, <0 (3.51)
Jis = Tuheet — 97, <0 (3.52)
Ojo = Tusiem — 97, <0 (3.53)
00 =My —~MR,,, <0 (3.54)
01 = My — MRy <0 (3.55)
0 = Mygem —~ MRy, <0 (3.56)
03 = Poin (X4 —C—®/2) =X, <0 (3.57)
O30 = Prin (X4 —C—D/2) =X, <0 (3.58)
05 = Prin (X5 —C—D/2)~ X, <0 (3.59)
O = X; —Prnax (X, —C—D/2) <0 (3.60)
017 = Prax (X —C—@/2) =X <0 (3.61)
Oits = Prmax (X5 —C—D@/2) =X, <0 (3.62)
gy =0.25-%,<0 (3.63)
{22550
9i21 = FSyopeg — FSiope <O (3.65)
0 = (12)(X, + X, +X;) =X, <0 (3.66)
U2 = %o —(3/2) (X, + X, +X;) <0 (3.67)

0 =12xH-Y, <0 (3.68)
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Jjs = Yo —2xH<0 (3.69)
Uiz = —(0°FSyape /07X, ) < 0 (3.70)
Oj0r = (0°FS e /OX,Yy ) —(07FS e [ OX2 ) (7S, /0¥ ) <O (3.71)
L6 = OFS,p, /0X, =0 (3.72)
L2 = OF Sy /0Y, =0 (3.73)
L =X, +X;=D (3.74)
001 = FSugor — FSuor <0 (3.75)
0.2 = FSuap — FSyq <0 (3.76)
933 = FSqot = FSgor <0 (3.77)
Ojas = FSearingat — FSpearingt <0 (3.78)
Ojss = Tooe — T <0 (3.79)
G55 = Myoe =MR <0 (3.80)
07 = Topees = Te <0 (3.81)
005 = My ~MR .,y <O (3.82)
Jjzs = Tosem — T <0 (3.83)
0100 = Mygem = MRy <O (3.84)

Total design constraints in the optimal design of conventional and bridge

abutment retaining wall are summarized in Table 3.10, and Table 3.11, respectively.



Table 3.10 Summary of all design constraints in conventional retaining wall
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Constraints in

Constraints in

TSA ESA (WSD) TSA ESA (USD)
Design criteria
No With No With
Slope Slope Slope Slope
overturning 1 1 1 1
Two eccentricity 2 2 2 2
Two Sliding with and without P, (total
. 2 2 2 2
and effective separately)
Bearing (total and effective separately) 1 1 1 1
Shear and moment (WSD) 6 5 i i
Toe, Heel, and Stem
Shear and moment (USD) \ i 6 5
Toe, Heel, and Stem
Steel reinforcement ratio in beam (USD) - - 6 6
Top stem and Hansen’s depth factor 2 2 2 2
FS Slope - 1 - 1
Two lower bound and upper bond for . 4 i 4
critical center constraints in Xg and Y
Hessian Matrix elements - 2 - 2
Partial derivative FS (equality con-) - 2 - 2
Depth of embedment (equality con-) 1 1 1 1
Total Number of constraints 15 24 21 30
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Table 3.11 Summary of all design constraints in integral bridge abutment wall

Constraints in TSA ESA

Design criteria (USD)

No Slope With Slope
overturning 1 1
Two eccentricity 2 2
Two Sliding with and without P, (total and 2 9
effective separately)
Bearing (total and effective separately) 1 1
Shear and moment (USD) [Toe, Heel] 4 4
ateel reinforcement ratio in beam (USD) [Toe, 4 4
Top stem and Hansen’s depth factor 2 2
Shear in column wall 1 1
Reinforcement steel ratio in column 2 2
Slenderness ratio 1 1
Strength constraints on P, My, Prax 3 3
Compression controlled by neutral axis 2 2
FS Slope - 1
Two lower bo_und _and upper bond for critical ) 4
center constraints in X, and Yy
Hessian Matrix elements - 2
Partial derivative FS (equality con-) - 2
Depth of embedment (equality con-) 1 1
Total Number of constraints 25 34




CHAPTER IV
RESULTS AND DISCUSSIONS

4.1 General

This section presents two numerical examples of conventional retaining wall

and bridge abutment wall in order to demonstrate significant effect of slope stability

constraints to optimal design of cantilever retaining wall.

Table 4.1 lists input parameters for optimal design of two different examples.

The initial input must consist of:

Total height of wall

Angle of backfill and surcharge loading

Soil properties of backfill (unit weight, cohesion, internal friction angle)
Soil properties of base foundation ( unit weight, cohesion, internal friction
angle)

Interface shear resistance for friction angle and base adhesion

Factor of safety against overturning, sliding, bearing, and slope failure
Factor of safety against shear and moment failures

Concrete and reinforcing steel properties (strength, unit weight)

Structural design (initial diameter, concrete diameter)

Cost of materials (concrete, steel, formwork)

Unit price of concrete and reinforcing steel depend on its strength and

diameters, respectively as reported in Table 3.1 and Table 3.2. In this study, the unit

cost of concrete, steel, and formwork are given by 2,550.0 B/m?, 22.0 B/kg, and 150.0

B/m? respectively.
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Table 4.1 Initial input used in optimal design of conventional retaining wall

(Effective stress analysis)

Input parameters Symbol Unit Ex1 Ex2
Total Height H m 6.0 5.2
Depth of embedment D m 1.8 1.0
Yield strength of steel reinforcement f, MPa 400.0 400.0
Compressive strength of concrete f.' MPa 25.0 25.0
Unit weight of steel reinforcement Yst Kg/m? 7850.0 7850.0
Unit weight of concrete Yo kN/m? 24.0 24.0
Concrete cover c mm 70.0 70.0
Diameters of bar o Mm 20.0 16.0
Surcharge loading q kN/m? 10.0 10.0
Backfill of slope o Degree 5.0 0.0
Unit weight of backfill soil Y1 kN/m? 18.0 16.8
Cohesion of backfill soil C, kN/m? 0.0 0.0
Internal friction angle of backfill soil 0, degree 30.0 30.0
Unit weight of soil below foundation Y, kN/m? 19.0 17.6
Cohesion of soil below foundation C, kN/m? 40.0 30.0
Undrained shear strength of base soil Sy kN/m? 100.0 100.0
Internal friction angle of base soil d, degree 20.0 28.0
Interface shear resistance fo_r friction ke, ks ) 0.6667 0.6667
angle and base adhesion
FS for overturning stability FS,, - 2.0 2.0
FS for sliding stability (include Pp) FSup - 2.0 2.0
FS for sliding stability (exclude Pp) FSq0 - 1.5 15
FS for bearing stability FS,. - 3.0 3.0
FS for slope stability FSqi0pe - 2.5 2.5
Factor of safety a?a_inst shear and moment FS.FS,, i 10 10
ailures
Unit cost of concrete C. s/m° 2,550 2,550
Unit cost of steel Cqr B/kg 22.0 22.0
Unit cost of formwork C. B/m’ 150.0 150.0
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Table 4.2 Initial input used in optimal design of conventional retaining wall

(Total stress analysis)

Input parameters Symbol Unit Ex1 Ex2
Total Height H m 6.0 55
Depth of embedment D m 15 1.0
Yield strength of steel reinforcement f, MPa 400.0 400.0
Compressive strength of concrete f.' MPa 25.0 25.0
Unit weight of steel reinforcement Yst Kg/m? 7850.0 7850.0
Unit weight of concrete Yo kN/m? 24.0 24.0
Concrete cover c mm 70.0 70.0
Diameters of bar o Mm 20.0 16.0
Surcharge loading q kN/m? 10.0 10.0
Backfill of slope o Degree 5.0 0.0
Unit weight of backfill soil Y1 kN/m? 18.0 17.0
Cohesion of backfill soil C, kN/m? 0.0 0.0
Internal friction angle of backfill soil 0, degree 30.0 30.0
Unit weight of soil below foundation Y, kN/m® 19.0 18.0
Cohesion of soil below foundation C, kN/m? 110.0 110.0
Undrained shear strength of base soil Sy kN/m? 100.0 110.0
Internal friction angle of base soil d, degree 0.0 0.0
Interface shear resistance fo_r friction ke, ks ) 0.6667 0.6667
angle and base adhesion
FS for overturning stability FS,, - 2.0 2.0
FS for sliding stability (include Pp) FSup - 2.0 2.0
FS for sliding stability (exclude Pp) FSq0 - 1.5 15
FS for bearing stability FS,. - 3.0 3.0
FS for slope stability FSqi0pe - 2.5 2.5
Factor of safety a?a_inst shear and moment FS.FS,, i 10 10
ailures
Unit cost of concrete C. s/m° 2,550 2,550
Unit cost of steel Cqr B/kg 22.0 22.0
Unit cost of formwork C. B/m’ 150.0 150.0
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4.2 Trial solutions

This section will study the effect of variation of one wall dimension on factor
of safety of slope stability and total cost of materials. The study is carried out on the
second example (Ex2) in Table 4.1 before applying the proposed optimization

technique.

X6

retained material

——x9

T

—x8
- L 3 * " L] L] *

|a—D =]
e

[ ] [ ] ~ 2 [ ] - e _ e&_

8 ‘%xlf#xZ»#—ix(S;# c

Figure 4.1 Design variables Xp;

Figure 4.1 shows the design parameters of retaining wall. The study on trial
solutions is focused on changing Xi, X», and X3 since these three design variables act
as controlled variables in design. It can be noticed that unknown X, is designed by
shear. Design of unknown Xs depends on a given embedment depth (D) constant.
Design of unknown Xg is related to the minimum value recommended by Bowles
(1996). Reinforcing areas such as X7, Xg, and Xg are mainly depended on X; X, and
Xa.

A. Trial solutions by changing X;

The same input parameters in example 2 of Table 4.1 are considered into trial
solutions using ultimate strength design. The study maintains X, and X3 as constant
values while the value of X; is changed. X, is given as 0.60 meter since it was
calculated by conventional proportion and this thickness is sufficient for shear design.

The result in summarized in Table 4.3.



Table 4.3 Trial solutions by changing X;
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X Triall | Trail2 | Trial3 | Trial4 | Trial5 | Trial6 | Trial7 | Trial8
x1 (m) 030 | 040 | 1.00 | 1.80 250 | 280 | 3.00 | 4.00
X2 (M) 040 | 040 | 040 | 040 | 040 | 040 | 0.40 | 0.40
x3 (m) 220 | 220 | 220 | 2.20 220 | 220 | 220 | 2.20
x4 (m) 060 | 060 | 060 | 060 | 060 | 0.60 | 0.60 | 0.60
x5 (m) 040 | 040 | 040 | 040 | 040 | 040 | 040 | 0.40
X6 (M) 025 | 025 | 025 | 025 | 025 | 025 | 025 | 0.25
FSov 2415 | 2569 | 3.352 | 4.864 | 6.100 | 6.648 | 7.020 | 8.950
FSsdp 2945 | 2.975 | 3.150 | 3.384 | 3.589 | 3.677 | 3.736 | 4.029
FSsdo 1610 | 1.639 | 1.815 | 2.049 | 2254 | 2.342 | 2.401 | 2.693
FShe 4088 | 4.424 | 7.100 | 12.845 | 20.719 | 25.157 | 28.553 | 51.410
Ecentricity | not ok ok ok ok ok ok ok ok
FSstoe 3.820 | 3.170 | 2140 | 193 | 1.840 | 1.800 | 1.770 | 1.600
FSsheel 1180 | 1.180 | 1.180 | 1.180 | 1.180 | 1.180 | 1.180 | 1.180
FSsstem 1.920 | 1.920 | 1.920 | 1.920 | 1.920 | 1.920 | 1.920 | 1.920
(Frifr']‘;pe 2.455 | 2.456 | 2.466 | 2.483 | 2500 | 2510 | 2.520 | 2.550
;I-I;;)f;OOOO 1.3291 | 1.3547 | 1.4804 | 1.6533 | 1.8046 | 1.8694 | 1.9126 | 2.1287

Effects of X1 on tcost and FSslope

450 7

x1

FSslope

"

150 ]
1.00 1

0.50 1

0.00 1

[=3

FSslopeR
tcost

Triall

Trail2

Trial3

Trial4

Trial5 Trialé

X1(m) ; tcost*10000 (B)

—M—x1 —f£—tcost —A—FSslope —— FSslopeR

Trial7

Figure 4.2 Effect of X; on safety factor of slope and total cost

Trial8
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From Figure 4.2, when X; increases, total cost increases accordingly. In trial 1,
total base length does not satisfy eccentricity failures although this trial gives the
lowest total cost. All factors of safety against geotechnical and structural failures are
greater than those of requirements from trial 5, which correspond to X;=2.50 meters.
This can be concluded that the required safety factor of slope, FSslope, can be
achieved by mainly increasing value of X;. As a result, an optimum solution does

exist, where the value of FSslope can satisfy the required value of 2.50.

B. Trial solutions by changing X3
Based on Ex 2 in Table 4.1, the study maintains X; and X, as constant value
while the value X3 is changed. X, is given as 0.60 meter since it was calculated by
conventional proportion and this thickness is sufficient for shear design. The result is

summarized in Table 4.4.

Table 4.4 Trial solutions by changing X3

X Triall Trial2 Trial3 Trial4 Trial5 Trial6
x1 (m) 0.30 0.30 0.30 0.30 0.30 0.30
x2 (m) 0.55 0.55 0.55 0.55 0.55 0.55
x3 (m) 1.90 2.20 2.40 2.60 2.80 3.00
x4 (m) 0.60 0.60 0.60 0.60 0.60 0.60
x5 (m) 0.40 0.40 0.40 0.40 0.40 0.40
X6 (m) 0.25 0.25 0.25 0.25 0.25 0.25
FSov 2.164 2.666 3.029 3.416 3.825 4.258
FSsdp 2.840 3.015 3.132 3.249 3.366 3.483
FSsd0 1.505 1.680 1.797 1.914 2.031 2.148
FSbe 3.840 4.495 4,956 5.427 5.903 6.382
ecentricity not ok ok ok ok ok ok
FSstoe 3.710 4.150 441 4.660 4.890 5.100
FSsheel 1.360 1.180 1.080 1.000 0.920 0.860
FSsstem 3.000 3.000 3.000 3.000 3.000 3.000
Fsslope(min) 2.400 2.470 2.530 2.570 2.620 2.670
tcost (B)*10000 1.3680 1.4328 1.4859 1.5514 1.6217 1.6971

From Table 4.4, total cost increases as X increases. However, increasing Xs
does not have any effects in trial 5 and 6 because factor of safety against shear failure
is less than that of requirements. In trial 3 and trail 4, factor of safety against slope
failure is satisfied in case that lengths of heel slab X3 ranges from 2.40 meters to 2.60
meters. This can be concluded that X3 has significant influence on critical safety

factor of slope.
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C. Trial solutions by changing X2

Trial4

The effects of X, are presented in Table 4.5.

Table 4.5 Trial solutions by changing X;

tcost*1000 (B)

Trial5

Triale

X Triall Trial2 Trial3 Triald Trial5 Trial6
x1 (m) 0.30 0.30 0.30 0.30 0.30 0.30
x2 (m) 0.60 0.80 1.00 1.20 1.40 1.60
x3 (m) 2.00 2.00 2.00 2.00 2.00 2.00
x4 (m) 0.60 0.60 0.60 0.60 0.60 0.60
x5 (m) 0.40 0.40 0.40 0.40 0.40 0.40
X6 (m) 0.25 0.25 0.25 0.25 0.25 0.25
FSov 2.406 2.741 3.096 3.470 3.865 4.279
FSsdp 2.922 3.016 3.109 3.203 3.296 3.390
FSsd0 1.587 1.680 1.774 1.867 1.961 2.054
FSbe 4.184 4.757 5.394 6.092 6.849 7.667
ecentricity not ok ok ok ok ok ok
FSstoe 3.980 4.440 4.930 5.420 5.940 6.470
FSsheel 1.290 1.290 1.290 1.290 12.590 1.290
FSsstem 3.390 5.120 7.180 9.960 12.590 16.160
Fsslope(min) 2.437 2.469 2.501 2.534 2.570 2.600
tcost (B)*10000 | 1.4455 1.6691 1.8930 2.1169 2.3409 2.5651
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The solutions presented in Table 4.5 are calculated based on Ex 2 in Table 4.1.
The study maintains X; and X3 as constant value while X; is changed. X, is given as
0.60 meter since it was calculated by conventional proportion and this thickness is
sufficient for shear design.

From Table 4.5, total cost increases as X, increases. However, increasing X,
can make safety factor of slope, FSslope, satisfying with which of requirement,
FSslopereq. However, the case of X, greater than 1 meter can satisfy required safety
factor of slope of 2.50. This can be concluded that increasing X, is slightly

significant.
Effects of X2 on tcost and FSslope
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Figure 4.4 Effects of X, on safety factor of slope and total cost

D. Trial solutions by changing X1 and X3
The same input parameters in example 2 of Table 4.1 are taking into trial
design using ultimate strength design. Both X; and X are changed while X, are fixed.
X4 is given by 0.60 m since it is calculated by conventional proportion and its

thickness is controlled by shear design. The result is summarized in Table 4.6.
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X Triall Trial2 Trial3 Trial4 Trial5
x1 (m) 0.60 0.70 0.80 0.80 1.00
X2 (m) 0.50 0.50 0.50 0.50 0.50
x3 (m) 1.80 2.00 2.20 2.40 2.60
x4 (m) 0.60 0.60 0.60 0.60 0.60
X5 (m) 0.40 0.40 0.40 0.40 0.40
X6 (m) 0.25 0.25 0.25 0.25 0.25
FSov 2.346 2.842 3.387 3.802 4.617
FSsdp 2.846 2.992 3.138 3.255 3.431
FSsdO 1.511 1.657 1.803 1.920 2.095
FShe 4.445 5.389 6.469 7.108 8.997
ecentricity ok ok ok ok ok
FSstoe 2.380 2.380 2.380 2.480 2.360
FSsheel 1.440 1.290 1.180 1.080 1.000
FSsstem 2.620 2.620 2.620 2.620 2.620
Fsslope(min) 2.378 2.428 2.478 2.530 2.580
tcost (B)*10000 1.3553 1.4201 1.4849 1.5394 1.6529
Effects of x1, x3 on tcost and FSslope
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Figure 4.5 Effect of changing X; and X3 on factor of slope and total cost

From Figure 4.5, total cost increases as X; and Xj increase. In trial 1, even

though factor of safety against sliding is slightly greater than that of requirement, the

design is unsafe because critical safety factor of slope stability is not satisfied. It can
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be concluded that the total cost in this trial is not optimal. For trial 3 and 4 where toe
length (X;) is set constant, slightly increase of heel slab (X3) can increase critical
safety factor of slope (FSsLore reg). This is true as mentioned in trial solutions by

varying Xs section 4.2.2.

4.3  Optimization solutions from computer methods

This section presents optimization solutions from computer methods. Four
optimization solver algorithms are used in the optimal design, namely, NLPSolve
(MAPLE), fimincon (MATLAB), DNCONF (IMSL FORTRAN), and KNITRO.

A. Optimization solutions without including slope constraints
Example 2 in Table 4.1 is solved with all algorithms presented above. Table
4.7 shows results from computer calculations without including any slope constraints.

Ultimate strength design (USD) is used in structural design.

Table 4.7 Optimal solutions with different optimization solvers

Optimal solutions NLPSolve fmincon DNCONF KNITRO
Xy (m) 1.208 1.208 1.208 1.208
X, (m) 0.443 0.443 0.443 0.443
X3 (M) 1.549 1.549 1.550 1.550
X, (M) 0.386 0.386 0.386 0.386
Xs (M) 0.614 0.614 0.614 0.614
Xg (M) 0.250 0.250 0.250 0.250
X; (mm?) 1077.51 1077.51 1077.50 1077.50
Xg (Mm?) 1405.57 1405.57 1405.57 1405.57
Xo (Mm?) 1822.26 1822.26 1822.26 1822.26
Total cost (s) 11975.83 11975.83 11975.83 11975.83

It can be noticed that all optimal solutions are the same in all algorithms.
NLPSolve produces the same solutions in comparing with fimincon, DNCONF and
KNITRO although those used different initial search points. It can be concluded that
the optimal solution by computer methods is the global minimum. These results are

valid and reasonable.



87

B. Optimization solutions with slope constraints
This section presents the optimization solutions from example 2 in Table 4.1
which is solved by the same algorithms presented above. Ultimate strength design
(USD) as well as its constraints are included in computation. The solutions are

summarized in Table 4.8.

Table 4.8 Optimal solutions with different optimization solvers in case of

including slope constraints

Optimal solutions NLPSolve fmincon DNCONF KNITRO
X1 (M) 0.246 N/A N/A 0.246
Xz (M) 0.435 N/A N/A 0.435
X3 (M) 2367 N/A N/A 2.367
X, (m) 0.554 N/A N/A 0.554
Xs (M) 0.446 N/A N/A 0.446
Xs () 0.250 N/A N/A 0.250
X7 (mm°) 1665.495 N/A N/A 1665.495
Xg (mm?) 2146.310 N/A N/A 2146.310
Xy (Mm?) 1689.484 N/A N/A 1689.484
FSsiore™ 2,500 N/A N/A 2.500
Total cost () 13447.091 N/A N/A 13447.091
Running time (s) 180.34 s N/A N/A 18.68 s

Note: N/A stands for “Not Available”.

According to Table 4.8, NLPSolve and KNITRO can determine optimal design
with including slope constraints. These two methods give the same results. The others
such as fmincon, and IMSL DNCONF cannot determine the optimal solution.

However, it is not always that MAPLE and KNITRO can find the optimal
solution due to several reasons such as:

1. algorithm may not rigorous

2. input values does not satisfy requirement constraints in slope stability with

safety factor equal to 2.50
3. Square root terms are appeared in FS slope expression



88

It can be concluded that slope constraints is very nonlinear and complex,
namely, first and second derivative of safety factor of slope with respect to center of
critical circular arc failure surface (oFS/0X,, oFS/dY, ) and all elements of Hessian

0°FS 0°FS  0°FS

matrix (—— =5
oX%, oY, 0X,0Y,

) for sufficiency of the optimal condition.

4.4  Comparison between conventional and optimal design of RC cantilever
retaining wall
The conventional method for designing reinforced concrete cantilever
retaining wall has been presented already in literature review by using approximate
proportions of wall components. A comparison between the conventional and optimal

design is made in order to demonstrate the efficiency of optimization technique.

Table 4.9 Conventional design of RC cantilever retaining wall

Design Hle- dime-nsion Con Con Con Con
variables andreqaired design 1 design 2 design 3 design 4
safety factor
X1 (M) 0.1xH 0.55 0.55 0.55 0.55
Xz (M) 0.1xH 0.55 0.55 0.55 0.55
Xz (M) 0.3xHto 0.5xH 2.00 2.20 2.30 2.40
X4 (M) 0.1xH 0.60 0.60 0.60 0.60
Xs (M) D-0.1xH 0.40 0.40 0.40 0.40
Xg (M) 0.250 0.25 0.25 0.25 0.25
X7 (mm?) - 1827.00 1827.00 | 1827.00 | 1827.00
Xg (mm?) - 1827.00 1827.00 1834.36 1834.36
Xo (mm?) - 1652.00 1652.00 1652.00 1652.00
FSov 2.00 2.701 3.070 3.263 3.462
FSspp 2.00 2.972 3.089 3.147 3.205
FSspo 1.50 1.637 1.753 1.812 1.870
FSge 3.00 4.942 5.482 5.757 6.032
FSsiLore reQ 2.50 2.433 2481 2.505 2.529
Total cost (s) - 14436.27 | 14868.48 | 15088.91 | 15407
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Table 4.9 shows total cost and factor of safety of slope stability from
conventional design. USD is used in structural design of stem, heel, and toe slab. The
input of the conventional design is reported the same as example 2 in Table 4.1. Two
important parameters taken into trial selection are total height (H=5.20 m) and soil
embedment (D=1.0 m).

The different percentage with respect to total cost of conventional method can
be calculated as:

tcost(con) — tcost(opt)
tcost(con)

Different percentage (%) = x100% 4.2)

Since critical safety factor of slope from Con design 3 is equal to required,
value, the solutions in that column will be used to compare with optimal design. Thus
from Equation (4.1), it can be concluded that the total cost of whole structure

decreases about 10.88% when optimization technique is applied.

45  Results and discussion on two examples

Two examples are presented in this section. In each example, the optimal
design is focused on effective stress analysis (ESA) with structural design based on
USD and WSD. Table 4.10 presents both USD and WSD without and with slope
constraints. Optimal solutions are obtained by running KNITRO solver algorithm.

All symbols of wall design variables are defined as:

X1, Xz, X3 (m) = total width of toe, stem thickness at bottom, and total width

of heel, respectively

X4 (m) = thickness of footing slab

Xs (m) = depth of soil cover above slab footing

Xe (M) = stem thickness at top

X7 (mm?) = horizontal reinforcing area of toe per unit length of wall

Xg (mm?) = horizontal reinforcing area of heel per unit length of wall

Xy (Mm?) = horizontal reinforcing area of stem per unit length of wall
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4.5.1 Optimization with effective stress analysis (ESA)

A. Optimal solutions of example 1 (ESA)
Table 4.10 presents optimal solutions of example 1 analyzed by effective
stress condition. The optimal solution by working stress and ultimate strength design

including slope constraints are also reported in that table.

Table 4.10 Optimization solutions of example 1 (ESA)

Exercise 1 (WSD) Exercise 1 (USD)
Design Variables | Without slope With slope | Without slope | With slope
Optimum Optimum Optimum Optimum
values values values values
X1 (M) 1.518 0.879 1.838 0.896
Xz (m) 0.626 0.619 0.549 0.553
X3 (m) 2.077 2.522 1.917 2.551
X4 (M) 0.487 0.536 0.544 0.705
Xs(m) 1.313 1.264 1.255 1.095
X6 (M) 0.250 0.250 0.250 0.250
X7 (mm?) 1494.744 652.462 1625.079 2188.110
Xg (Mm?) 2922.433 3871.956 1731.317 2306.400
X (mm?) 2702.530 2672.498 2112.667 1922.707
MinFSsiope 2.453 2.50 2.432 2.500
Optimal Cost () 19229.907 19263.569 18020.115 19509.764

In example 1, depth of soil embedment is considered as an important input. If
designers use shallow depth, solvers cannot find optimal solutions which give
minimum safety factor of slope equal to 2.50. Generally, the width of heel (Xs3) and
thickness of base slab (X4) of the optimal solution with slope stability is higher than
that without slope constraints. The larger values will satisfy required safety factor of
slope failure, wall sliding failure along the base without passive force, and shear heel
failure. In addition, main reinforcement areas in each section are higher.

The results also show that even though the optimal solution without slope
stability constraints gives lower cost of material, such design is not adequate and

unsafe because the minimum safety factor of slope failure is violated with the
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required FSs ope. On the other hand, the optimal solution with including slope
stability constraints give higher total cost of material, but the design is safe and valid
because the minimum FSg ope is equal to the required value.

This result means that slope constraint is active and its safety factor is the
controlled value for the optimal solution. Other active constraints are wall sliding

failure along the base without passive force and shear heel failure.

B. Optimal solutions of example 2 (ESA)
Table 4.11 presents optimal solutions of example 2 analyzed by effective

stress condition. The similar discussion can be applied to example 1.

Table 4.11 Optimization solutions of example 2 (ESA)

Example 2 (WSD) Example 2 (USD)
Design Variables | Without slope With slope | Without slope | With slope
Optimum Optimum Optimum Optimum
values values values values
X1 (m) 0.606 0.228 1.208 0.246
X5 (M) 0.496 0.491 0.443 0.435
X3 (m) 1.809 2.337 1.550 2.367
X, (M) 0.376 0.422 0.386 0.554
Xs (M) 0.624 0.578 0.614 0.446
Xg (M) 0.250 0.250 0.250 0.250
X7 (mm?) 554.627 82.869 1077.506 1665.495
Xg (MM?) 2459.913 3569.290 1405.567 2146.310
X (Mmm?) 2307.069 2272.199 1822.260 1689.484
minFS 2.375 2.500 2.3111 2.500
Optimal Cost (&) 12528.285 13338.788 11975.826 13447.091

The result indicates that slope constraint is active as well as shear and
eccentricity. Safety factor of shear in heel is the controlled value for the optimal
solution since heel slab resists directly to surcharge on surface and soil weight of
backfill.
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From results in both two examples, it can be concluded that constraints of
slope failure mechanism, shear in heel, wall sliding failure along the base without
passive force, and eccentricity failure have significant effects on the optimal

dimensions and reinforcements of cantilever retaining wall.
4.5.2 Optimization with total stress analysis (TSA)

A. Optimal solution of example 1 (TSA)
Table 4.12 presents optimal solutions of example 1 analyzed by total stress
condition. The optimal solution by working stress and ultimate strength design

including slope constraints can be determined by solvers.

Table 4.12 Optimization solutions of example 1 (TSA)

Example 1 (WSD) Example 1 (USD)
Design Variables | Without slope With slope | Without slope | With slope
Optimum Optimum Optimum Optimum
values values values values
X1 (M) 2.144 0.623 1.705 0.707
X5 (M) 0.612 0.621 0.541 0.544
X3 (m) 1.15 3.809 1.715 3.743
X4 (M) 0.431 0.780 0.506 1.015
Xs (M) 1.069 1.119 1.994 0.485
Xg (M) 0.250 0.250 0.250 0.250
X5 (mm?) 2860.766 205.625 1616.320 3280.5838
Xg (MM?) 1029.775 5861.907 1496.815 3388.981
X (Mmm?) 2842.349 2341.086 2189.600 1643.685
minFS 3.679 3.423 3.689 3.407
Optimal Cost (&) 17801.903 25371.675 16847.842 27231.442

Generally, the width of heel (Xs) thickness of base slab (X4) of the optimal
solution with slope stability is higher than that without slope constraints. The higher
values can satisfy required safety factor of slope failure, and bearing capacity failures.

In addition, main reinforcement areas in each section are higher. This result shows
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that bearing capacity constraint and shear in heel constraint are active and its safety

factor is the controlled value for the optimal solution.

B. Optimal solutions of example 2 (TSA)
Table 4.13 presents optimal solutions of exercise 2 analyzed by total stress
condition. The optimal solutions by working stress and ultimate strength design

including slope constraints can be determined by solvers

Table 4.13 Optimization solutions of example 2 (TSA)

Example 2 (WSD) Example 2 (USD)
Design Variables | Without slope With slope | Without slope | With slope
Optimum Optimum Optimum Optimum
values values values values
X1 (M) 1.586 0.457 1.403 0.513
X, (M) 0.532 0.534 0.470 0.469
X3 (m) 1.179 2.885 1.431 2.867
Xq (M) 0.380 0.532 0.411 0.693
Xs (M) 0.620 0.468 0.589 0.307
Xg (M) 0.250 0.250 0.250 0.250
X5 (mm?) 2151.073 191.574 1363.522 2151.777
Xg (Mm?) 1096.259 4405.265 1164.444 2591.615
Xg (MM?) 2521.805 2311.379 1996.451 1698.917
minFS 4.014 3.679 3.996 3.686
Optimal Cost () 14194.153 17147.983 13123.023 17627.117

Generally, the width of heel (X3) thickness of base slab (X;) of the optimal
solution with slope stability is higher than that without slope constraints. The higher
values can satisfy required safety factor of slope failure, and bearing capacity failures.
In addition, main reinforcement areas in each section are higher.

This result shows that bearing capacity constraint and shear in heel constraint

are active and its safety factor is the controlled value for the optimal solution.
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Results on integral bridge abutment
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The first part of input parameters to find maximum shear in abutment support

is described in Table 4.14 (for more details on analysis formulation, see appendix C).

Table 4.14 Input parameters for finding maximum shear force

Name Symbol Value Unit
Length of bridge span L 6.50 m
Width of barrier wb 0.20 m
Width of bitumen laying wi 7.40 m
Total width wit 7.80 m
Thickness of bitumen Th 0.05 m
Thickness of bridge slab N3 0.40 m
Thickness of barrier Th 0.60 m
Width of sidewalk WSW 0.00 m
Thickness of sidewalk tsw 0.00 m

Pedestrian Load PL 3.60 kN/m?
Thickness of stem beam The 0.60 m
Width of stem beam whbeam 0.40 m
Width from stem beam to end slab side whbe 0.90 m
Number of stem beam nbeam 0 -

Unit weight of concrete Ye 24.00 kN/m?

Unit weight of bitumen Vi 22.50 kN/m®
Design Truck (AASHTO) LL HS20* -
Width design lane wlane 3.60 m

Design lane load Lane 9.30 kN/m
Dynamic allowance factor IM 33 %

The line load distributed per 1 meter can be expressed as:
P =V, /wt 4.2)

where P; = axial compression force from external load per unit length of wall

HS20 = Truck 20 tons according to AASHTO (2007)

Vmax = maximum reaction of applied load on bridge (kN)

wt = total width of bridge (m)
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Input parameters Symbol Unit Ex1 Ex2
Point Load Py kN/m 180.0 180.0
Total Height H m 6.0 5.8
Depth of embedment D m 1.0 1.0
Yield strength of reinforcing steel fy MPa 400.0 400.0
Compressive strength of concrete f.' MPa 25.0 25.0
Unit weight of steel Vs Kg/m® | 7850.0 7850.0
Unit weight of concrete Y, kN/m? 24.0 24.0
Concrete cover cover mm 70.0 70.0
Diameters of bar Diong mm 25 25
Diameter of stirrups D, mm 10 10
Surcharge loading q kN/m? 20.0 20.0
Backfill of slope o Degree 0.0 0.0
Unit weight of backfill soil Y1 kN/m?® 18.0 16.8
Cohesion of backfill soil C, kN/m? 0.0 0.0
Internal friction angle of backfill soil o, degree 30.0 30.0
Unit weight of base soil i kN/m® 19.0 18.0
Cohesion of base soil G kN/m? 40.0 20.0
Undrained shear strength of base soil Su kN/m? 80.0 80.0
Internal friction angle of base soil d, degree 20.0 30.0
FS for overturning stability FS,, - 2.0 2.0
FS for sliding stability (include Pp) FSsdp - 2.0 2.0
FS for sliding stability (exclude Pp) FS.0 - 1.5 15
FS for bearing stability FS,. - 3.0 3.0
FS for slope stability FSqiope - 2.2 2.2
Factor of safety a?qinst shear and moment FS.FS,, i 10 10
ailures
Unit cost of concrete C. s/m’ 2,550 2,550
Unit cost of steel Cqsr s/kg 22.0 22.0
Unit cost of formwork C. B/m’ 150.0 150.0
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From structural analysis, maximum shear force (Vmax) equals to 1403 kN.
From Equation 4.2, the axial compression force per unit length of wall (P;) equal to
180 KN/m.

The total axial load (P) including self-weight of stem wall is calculated as:

P=P +y.X(H-X,) (4.3)
where P; = axial compression force from external load per unit length of wall

v. = unit weight of concrete

Xe = width of stem wall

H, x4 = total height, and slab footing thickness, respectively

The optimization problem of bridge abutment wall is solved in MAPLE
program with Ultimate Strength Design in ACI Code 318-05. The results of these two
examples by Total Stress Analysis and Effective Stress Analysis are presented in
Table 4.16 and Table 4.17.

Table 4.16 Optimal dimension and reinforcement of example 1

Example 1 (USD)(TSA) Example 1 (USD)(ESA)
Design Variables | Without slope With slope | Without slope | With slope
Optimum Optimum Optimum Optimum
values values values values
X1 (M) 2.916 2.474 1.84 1.456
X5 (M) 0.526 0.524 0.520 0.511
X3 (m) 0.720 1.944 1.260 2.922
X4 (M) 0.765 0.780 0.808 0.867
Xs (M) 0.235 0.220 0.192 0.133
Xg (M) 0.526 0.524 0.520 0.511
X7 (mm?) 2387.78 2439.03 2541.22 2746.74
Xg (MM?) 2387.78 2439.03 2541.22 2746.74
X (Mmm?) 5261.48 5239.94 5197.14 5111.68
minFS 2.10 2.296 2.15 2.200
Optimal Cost (1) 26309.23 28673.30 25183.23 29709.59
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From Table 4.16, although analysis without slope case give lower cost than
analysis with slope case, the design is not safe because factor of safety of slope in the
former case does not satisfy slope requirement.

Generally, for both total stress and effective stress analysis, the width of toe

(Xy) is smaller while the width of heel is higher.

Table 4.17 Optimal dimension and reinforcement of example 2

Example 2 (USD)(TSA) Example 2 (USD)(ESA)
Design Variables | Without slope With slope | Without slope | With slope
Optimum Optimum Optimum Optimum
values values values values
X1 (m) 2.661 2.348 1.386 0.662
X5 (m) 0.482 0.480 0.471 0.471
X3 (m) 0.593 1.785 0.913 2.917
X, (M) 0.726 0.740 0.810 0.810
Xs (M) 0.273 0.260 0.190 0.190
Xg (M) 0.482 0.480 0.471 0.471
X7 (mm?) 2253.95 2299.23 2525.27 2427.20
Xg (MM?) 2253.95 2299.23 2525.27 2621.00
X (Mmm?) 4818.35 4800.88 4706.62 4705.88
minFS 2.201 2.425 1.783 2.20
Optimal Cost (1) 23085.96 25561.35 21039.91 24866.58
Times (S) 13.572 13.572 45.693 45.693

From Table 4.17, the total cost of without slope case is always lower than that
of with slope case. The design in slope case is safe because factor of slope is satisfied
with requirement.

Generally, for both total stress and effective stress, the width of toe (Xj) is

smaller while the width of heel is higher.



CHAPTER V
PARAMETRIC STUDY

51 Introduction

The parametric study considers the effect of input (design) parameters on the
final design values. In this study, two previous examples are used and each input
parameter is changed following the actual field problems, then its effect is

investigated using optimization technique.

5.2  Analysis process

Example 2 of Table 4.1 is used in this section. Table 5.1 lists the input
parameters and investigated values on sensitivity study. In order to investigate the
effect of each design parameter on the design variables, one parameter is varied while
other parameters remain constant. This numerical analysis is solved using computer
code written in KNITRO and MAPLE.

Table 5.1 Input parameters used in the analysis

0 Input Z Reference )
N Symbol | Unit Investigated Value
Parameter Value

Compressive

1 strength of f' MPa 25.0 17,21, 25, 28, 31, 32
concrete

Yield strength of

2 o f MPa | 400.0 300, 400
reinforcing steel y

Internal friction
3 | angle of backfill ¢, | degree 30.0 22, 24,26, 28, 30, 32, 34, 36
soil

4 Cohesion.lof base c, KN/m? 30.0 30, 40, 50, 60, 70, 80
Soi

5 | Internal friction | degree | 28.0 26, 28, 30, 32, 34, 36, 38, 40
angle of base soil 2 '

5.3  Sensitivity study on concrete strength
Concrete strength ranging from 17 MPa to 35 MPa is usually used in practical

design. In this sensitivity study, the unit price of concrete per one cubic meter in



100

Thailand is mentioned already in methodology. Table 5.2 shows the optimal solution

with different value of concrete strength.

Table 5.2 Effect of concrete strength on optimal solution (ESA-USD)

F. (MPa) 17 21 25 28 31 33
X1 (M) 0.233 0.241 0.246 0.250 0.254 0.256
X, (M) 0.452 0.442 0.435 0.427 0.422 0.418
X3 (M) 2.354 2.362 2.367 2.372 2.376 2.378
X4 (M) 0.656 0.590 0.554 0.527 0.505 0.499
Xs (M) 0.344 0.402 0.446 0.472 0.494 0.501
Xs (M) 0.250 0.250 0.250 0.250 0.250 0.250
X, (mmZ) 2022.740 1818.720 | 1665.490 | 1574.340 | 1496.120 | 1473.540
Xg (mmz) 2022.740 1962.570 | 2146.300 | 2276.560 | 2399.130 | 2440.280
Xo (mmz) 1535.190 1624900 | 1689.480 | 1748.030 | 1791.690 | 1820.300
Optimal
Cost (x) 13931.930 | 13571.370 | 13447.090 | 13555.000 | 13587.110 | 13735.860
14000
13900 b
4
13800 r///// ////A
13700 A
E 13600
3 \k\\\\\\ r——”/”/”’/4y
13500 \\\\\
13400
13300
13200
17 21 25 28 31 32 35
f'c(MPa)

Figure 5.1 Effect of concrete strength on total cost

According to Figure 5.1, compressive strength of concrete equal to 25 MPa

gives minimum total cost since its unit price depends on its strength.
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Figure 5.2 Effect of concrete strength on optimal dimensions

In Figure 5.2, when various strength of concrete is used, several design
dimensions slightly changes. The most significant change is thickness of footing slab
which it depends on concrete strength since its thickness is controlled by shear design.
Higher concrete strength can reduce footing thickness.

For economical saving, it is highly recommended to use compressive strength

of concrete equal to 25 MPa

5.4  Sensitivity study on yield strength of reinforcing steel

Two typical yield strength of reinforcing steel used in practical design are
SD30 (300 MPa) and SD40 (400 MPa). In this sensitivity study, unit price of
reinforcing steel per one kilogram in Thailand is mentioned already in the
methodology section. Table 5.3 shows the optimal solutions with different value of

yielding strength.



Table 5.3 Effect of yielding strength on optimal solution (ESA-USD)

14800

14600

14400

14200

14000

13800

total cost (B)

13600

13400

13200

13000

12800

fy (MPa) 300 400
X, (m) 0.233 0.246
X, (m) 0.490 0.434
X (M) 2.335 2.367
X, (M) 0.547 0.554
Xs(m) 0.453 0.446
Xs (M) 0.250 0.250
X7 (mm?) 2188.780 1665.490
Xg (Mm?) 2822.050 2146.310
Xo (Mm?) 1934.760 1689.480
Optimal Cost (&) 14578.980 13447.090
AN
300 400
fy (MPa)

Figure 5.3 Effect of steel yield strength on total cost
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According to Figure 5.3, yield strength of reinforcing steel equal to 400 MPa

gives minimum total cost due to its high strength.

In Figure 5.4, when various yield strengths of steel are used, several design

dimensions slightly increase except X,. Optimal solution of type SD30 or SD40 are

quite the same.
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Figure 5.4 Effect of concrete strength on optimal dimensions

Thus for economical saving, it is highly recommended to use yield strength of

reinforcing steel equal to 400 MPa.

5.5  Sensitivity study on internal friction angle of backfill soil
Internal friction angle of backfill is varied following the actual field problems.

Its effect on optimal dimensions and cost are summarized in Table 5.4.



Table 5.4 Effect of internal friction angle on optimal solution (ESA-USD)

¢, (degree) 22 24 26 28 30 32 34 36
Xy (M) 0.149 0.165 0.185 0.212 0.246 0.291 0.351 0.434
X, (M) 0.498 0.481 0.465 0.450 0.435 0.420 0.406 0.393
X3 (M) 2.970 2.829 2.683 2.530 2.367 2.191 1.998 1.779
X, (M) 0.680 0.650 0.620 0.587 0.554 0.517 0.477 0.432
Xs (M) 0.319 0.349 0.380 0.412 0.446 0.482 0.522 0.567
Xe (M) 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250
X7 (mm?) 2107.410 | 2003.620 | 1896.360 | 1784.210 | 1665.490 | 1537.900 | 1398.110 | 1241.02
Xg (mm?) 2691.340 | 2564.220 | 2432.270 | 2293.700 | 2146.300 | 1987.090 | 1811.690 | 1613.37
Xg (Mm?) 1810.920 | 1780.510 | 1719.780 | 1748.030 | 1689.480 | 1659.780 | 1631.140 | 1604.31
Optimal Cost () 16768.260 | 15908.900 | 15071.640 | 14252.390 | 13447.090 | 12651.420 | 11860.700 | 11069.51

v0T
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Figure 5.5 Effect of internal friction angle of backfill soil on total cost

According to Figure 5.5, internal friction angle have significant effects on total

cost and optimal dimensions. Total cost decreases when angle of internal friction is

quite large.
—2—X%x1 9 x2 —H-x3 & x4 —*—x6
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Figure 5.6 Effect of internal friction angle of backfill soil on optimal dimensions

In Figure 5.6, the higher angle of internal friction decreases bottom stem

thickness, heel length, and thickness of footing. However, toe length increases as heel
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length decreases. It is highly recommended to use higher angle of internal friction

angle for economizing total cost of construction.

5.6  Sensitivity study on cohesion of base soil
Internal friction angle of backfill is varied following the actual field problems.

Its effect on optimal dimensions and cost are reported in table 5.5.

Table 5.5 Effect of cohesion of base soil on optimal solution (ESA-USD)

c
’ 30 35 40 50 60 70 80

(kN/m?)

X1 (M) 0.246 0.748 1.085 0.966 0.769 0.606 0.468
Xz (M) 0.435 0.439 0.438 0.442 0.439 0.437 0.436
X3 (M) 2.367 1.699 1.355 1.466 1.675 1.868 2.047
X4 (M) 0.554 0.416 0.379 0.369 0.411 0.451 0.487
Xs (M) 0.446 0.584 0.620 0.631 0.589 0.549 0.512
Xs (M) 0.250 0.250 0.250 0.250 0.250 0.250 0.250
i(r;mz) 1665.49 | 1184.06 | 1053.53 | 1018.57 | 1166.50 | 1304.74 | 1434.01
éﬁmz) 2146.30 | 1541.15 | 1089.56 | 1330.33 | 1518.84 | 1693.96 | 1856.84
i(rrimz) 1689.48 | 1812.04 | 1856.20 | 1846.63 | 1814.15 | 1782.78 | 1752.85
Optimal

Cost (s) 13447.09 | 11814.21 | 11309.60 | 11355.13 | 11763.47 | 12181.40 | 12605.02

According to Figure 5.7, cohesion of base soil has more effects on total cost
and optimal dimensions. Total cost decreases when angle of internal friction
increases. However, the total cost is the most economical when cohesion of base soil
equal 40 kN/m? is used.

In Figure 5.8 both X; and X; are increased and decreased at the same time.
Thickness of footing becomes the smallest when cohesion of base soil cohesion equal
40 kN/m? is used. It is important to investigate the cohesion of soil base since it

affects on both total cost and dimensions.
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Figure 5.7 Effect of cohesion of base soil on total cost
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Figure 5.8 Effect of cohesion of base soil on optimal dimensions

5.7  Sensitivity study on internal friction angle of base soil
Internal friction angle of backfill is varied following the actual field problems.
Its effect on optimal dimensions and cost are reported in Table 5.6.

Figure 5.9 shows the effects of internal friction of base soil on total cost.



Table 5.6 Effect of internal friction angle of base soil on optimization solutions (ESA-USD)

¢, (degree) 26 28 30 32 34 36 38 40
X1 (M) 0.100 0.246 0.460 0.672 0.883 1.086 1.086 1.086
X, (M) 0.434 0.435 0.437 0.438 0.441 0.438 0.438 0.438
X3 (M) 2.730 2.367 2.056 1.787 1.552 1.355 1.355 1.355
X, (M) 0.630 0.554 0.490 0.434 0.386 0.379 0.379 0.379
Xs (M) 0.370 0.446 0.510 0.565 0.614 0.620 0.620 0.620
Xg (M) 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250
X5 (mm?) 1930.13 | 1665.490 | 1440.43 | 1247.26 | 1078.89 | 1053.53 | 1053.53 | 1053.53
Xg (Mm?) 2473.88 | 2146.30 | 1864.90 | 1621.27 | 1407.34 | 1089.56 | 1089.56 | 1089.56
X (MM?) 1616.82 | 1689.48 | 1744.84 | 1796.80 | 1836.98 | 1856.20 | 1856.20 | 1856.20
Optimal Cost (i) 14539.06 | 13447.09 | 12628.63 | 12003.08 | 11516.22 | 11309.60 | 11309.60 | 11309.60

80T
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Figure 5.9 Effect of angle of internal friction of base soil on total cost

According to Figure 5.9, cohesion of base soil has more effects on total cost
and optimal dimensions. Total cost decreases when angle of internal friction
increases.
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Figure 5.10 Effect of angle of internal friction of base soil on design dimensions

In Figure 5.10, angle of internal friction of base soil has significant effects on

decreases heel length and thickness of footing. However, as toe length increases, heel
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length decreases until it becomes constant for higher internal friction angle. It is
highly recommended to use higher angle of internal friction angle for economizing
total cost of construction. On the other hand, higher angle can lead to a constant total

cost and dimensions.



CHAPTER VI
CONCLUSION AND RECOMMENDATIONS

6.1  Conclusion

This thesis presented the application of the optimization techniques to optimal
design of reinforced concrete cantilever retaining wall. Two numerical examples were
mainly solved by optimization solvers in MAPLE and KNITRO. Comparisons
between conventional and optimal design have been reported. A parametric study for
optimization technique has also been investigated.

We can conclude that this study provides a complete optimal design method of
cantilever retaining wall satisfying all geotechnical constraints where past researches
in this field were unable to achieve. The result obtained in this study is the most
optimal, and thus there is no need to further analyze slope stability, because it is
already include in the analysis. On the other hand, optimal results obtained from
previous researches were still required to check sufficiency of factor of safety against
slope stability because it lacks of in the analysis. Furthermore, their results may not be
the most optimal.

This research is successful in developing the optimal design that satisfies all
imposed restrictions. The capabilities of both proposed methods are demonstrated
through their applications in varieties of general retaining wall problems.

According to parametric study, compressive strength of concrete has the effect
on thickness of footing since the shear design does not require shear reinforcing. The
internal friction angle of backfill has significantly effects on total cost, bottom of
stem, footing thickness, and heel length. The internal friction angle of soil base also
has the same effect similar to that of backfill.

6.2  Recommendations for future work
After having completed this research, several recommendations for future
works can be summarized below:
» Further study on slope stability constraints in case that slope failure is
non-circular shape (wedge failure surface)
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> Apply other methods of slices to derive expression of safety factor and
make a comparison on these methods in optimal solutions

» Construct design charts for reinforced concrete cantilever retaining wall

» Optimization reinforced concrete cantilever retaining wall subjected to
seismic loading. This will be more advantageous since some regions in

Thailand are in earthquake zone.
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APPENDIX A
Formulation for Designing Reinforced Concrete

Cantilever Retaining Wall
Ultimate Strength and Working

Stress Design
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Reinforced Concrete Cantilever Retaining Wall

l
X7 W5 | soil below foundation
¥2,C5.9,,5,

Figure A.1 Typical section of RC cantilever retaining wall

Calculate H’
H'=H+H,
H, =X,tana
H'=H+X;tana

Rankine’s active earth pressure and passive earth pressure

2 2
c0s a—/c0s? o —€0S
K, =cosa b

cos o+ \/cosz o —Cos” ¢,
K, :tan2(45+ﬁj
2

Ky =1 (Total stress analysis)



Table A.1 Important input parameters

120

N° Input parameters (1) Unit (2) Symbol (3)
1 Total height of wall m H
2 Depth embedment m Deover
3 Point Load P kN/m P
4 Yield strength of reinforcing steel MPa fy
5 Compressive strength of concrete MPa fc'
6 Unit weight of concrete kN/m? Ye
7 Unit weight of steel Kg/m? Ys
8 Concrete cover mm c
9 Diameters of bars mm ()
10 Surcharge load kN q
11 Backfill slope Degree a
12 Unit weight of backfill soil kN/m? Yy
13 Cohesion of backfill soil KPa C,
14 Internal friction angle of backfill soil Degree o,
15 Unit weight of base soil kN/m? Y,
16 Cohesion of base soil KPa C,
17 Internal friction angle of base soil Degree d,
18 Undrained shear strength of base soil kN/m? Su
19 Cost of steel s/kg C,
20 Cost of concrete s/m’ C,
21 Cost of formwork B/m’ C,
22 Dead Load factor - DL
23 Live Load factor - LL

Effective stress analysis (ESA)
P, =(1/2)K,y,H 2

Rankine’s active force and passive force per unit length of wall

P, =P,sina=(1/2)K,y;H?sina =(1/2)K,y,(H+x,tana) sina

P, =P, cosa =(/2)K,y,H?cosa = (1/2)K,y, (H+x, tana)’ cos o

P, =(1/2)K,v,(x, +x5)2 +2c2\/K7p(x4 +Xs)
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= Total stress analysis

P =(1/2)y,(x, +x5)2 +2S, (X, +Xs)
Surcharge force per unit length of wall
P.=K,gH'=K,q(H+Xx,tana)

P, =K,qH'sina =K, q(H+Xx;tana)sina
P, =K,qH'coso = K,q(H +Xx, tana)cos o
Surcharge force acting downward

- [In case surcharge g is present only]

P, =q(x,/cosa)

- [In case surcharge g = 0]

P, =0



1. Factor of safety against overturning failure

Table A.2 Summation of resisting moment acting on retaining wall

Area s S Moment arm from C Moment about B
N° length of wall
(m?) (KN/m) (m) (kN.m/m)
1 Al=x;(H-x,) W, =1,A a1:X1+X2+(1/2)X3 M1=W,xa
2 A2=(1/2)x3(x3tana) W, =v,A, a, :X1+X2+(2/3)X3 M2 =W, x &y
3 A3=x,(H-x,) W, =y A, a; =X, +X, —(1/2) X, M3 = Ws x as
1
4 A4:E(X2_X6)(H_X“) W, =7.A, a, =X, +— (X, —Xg) M4 =W, x &
5 A5 = (X, +X, +X5)X, W, =v A, 35—5(X1+X2+X3) M5 = W5 x as
6 Ab = X X; W, =1,Aq ag = (]/2) Xy M6 = W; x ag
X
7 Surcharge Loading P,=0—2 a; =X, + X, +X;/2 Py x &
cosa

8 Inclined surcharge P, =P.sina g =X, + X, +X, P.sinaxa

9 Inclined earth pressure P, =P,sina Ay =X, +X, +X, P sinaxa,
10 Point Load P P ap =X, +X, =X /2 Pxa,

6
ZVZZ\Ni+ ZMRZZ\Niai
i
Fa P +Py P +(P, +P,)sinaxa, +P, xa, +Pxa,

¢cl



Note: 1)

(Das, 2007)
2) In working stress design (WSD), section 6 is included

Section 6 is usually ignored by designers because of erosion condition

3) Ppis neglected in calculating moment for overturning stability

Table A.3 Summation of driving moment acting on retaining wall

Force Moment arm from C Moment about C
description
(KN/m) (m) (KN.m/m)
1
Surcharge | P, =P,cosa | a, = E(H +X; tan o) M = Pq, x &
Earth- i
pressure Fon =Py c0Sa| 3, = E(H +X;tana) Ma= Panx 2a
ZH:PSCOS(X ZMOV:PSCOSO(,X&S
+F, cosor +P, cosaxa,

Factor of safety against overturning:

A. Total overturning

6
LM, Zl:V\/iai+Pq><a7+(PS+Pa)sinocxa8+P><aP
FS!, = _E

OV_ZMOV -

B. Partial overturning

2 ZMR _
FSOV B ZMOV _zMeanh \ I:PS COSOL(HI/Z)+Pa COSOL(HI/B)J_[(PS +Pa)sina><a8]

P, coso(H'/2)+P, cosa(H!/3)

6
ZV\/iai +Pq><a7+P><aP
i1

2. Factor of safety against sliding failure

= Effective stress analysis
Maximum resisting force derived from the soil per unit length of the wall

along the bottom the base slab
R'=(> V)tans'+BC’,
where V = summation of vertical forces (kN)

&' = angle of friction between soil and the base slab (degree)

C’, = cohesion between soil and the base slab (kN/m?)



where

where
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B = length of base slab (m)

Summation of horizontal resisting force Fg

D R =Y Vxtand'+BxC',+P,

If assuming Pp = Pymobiy = mobilized passive forces by designer’s preferences.

1
PP(mobi) = H PP

n = input variable factor for passive mobilized n=1,2,3...
Interface between concrete base and soil base can be calculated as:
3'=k,0,

C,'=k,C,

ki = 1/2 to 2/3 (Das, 2007)

k, = 1/3 to 2/3 (Das, 2007)

k = input parameters

D> R =Y Vxtan(k,)+Bx(k,C,)+P,

Factor of safety against sliding:
A. Consider Pp

e 2R 2 Vxtand+BC+P,
(sliding) Z = [(]/2) K,y,H 2y K qH .:' coS oL

D Vxtan(k,0,)+Bx(k,C,)+P,
 [(W2)K,yH?+ K gH Jcosa

B. If PP(mobiIized) is used:

SR SVxtan(kp,) +B(kC,)+ (1n)P,
sliding th [(]7/2) KaYlHIZ‘*‘ KaQH '}COSOL
C. If Pp =0

Fe SF D Vxtan(kd,)+B(k,C,)
sliding — - 2 .
2R [(12)KH 2+ K gH' cosa

FS?

Total stress analysis
In this case, C,=Sy and ¢, =0
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Factor of safety against sliding in total stress analysis:
A. Consider Pp

et ZF Bx(kZSu)+ P
(sliding) — Z Fh [(1/2) KngH '2+ KaqH '] CoSa

B. If PP(mobiIized) is used:
FS20 :ZFR: (kS ) ( )Pp
YR [(W2)K,yH?+K gH [cosa
C. If Pp =0

re 2 B(k;S,)

N [(1/2)KaylH 21K, qH ] cosa

3. Factor of safety against bearing failure

»  Eccentricity below foundation

soil below foundation
X3 |
te)

- M

Figure A.2 Checking for eccentricity and bearing capacity failure

Taking moment about the toe of the base at B, the resultant vertical force at
the base is located at x , where B/3< x < 2B/3 (Budhu, 2008).

2o 2 M _ 2 M2 M,,
2.V 2.V
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L2 Me -2 M,
ZV

e = eccentricity of the resistance force R (m)

E_ z MR - z Mov

2 pRY

g

;(x +X, +X,) 3(x +X, +Xy)

e=

qmax = qtoe - B
\ 6e
qmin = qheel Z:B [1_Ej

if e<(B/6) , then q,,, >0, pressure distribution is trapezoidal
if e>(B/6) , then g, <0, avoid this case !!!!
» General ultimate bearing capacity equation
General bearing capacity equation:
= Effective stress analysis
0y =CN N NN +aN N NN, +(1/2)7,B'N (NN N,
= Total stress analysis
qy =SNG N NN +aN N NN, +(1/2)y,B'N N ;N N,
» Bearing capacity factors

= Effective stress analysis

N _=e™"% tgn? (45o +¢—22]

q

N, =(N, -1)cot¢,

N, =2(N, +1)tan¢,

q:YZD:YZ(X4+X5)
B'=B-2xe
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= Total stress analysis

=5.14
=1
=0

N

N

N

»  Shape factor (DeBeer)
Ng =1+(N, /N, )(BY/L")
N, =1+(BY/L")tan ¢,
N, =1-0.4(BYL")

Wall footing is infinite length (L=), thus N =N =N =1

S

» Depth factor (Hansen)

= Effective stress analysis
In case (D, /B')<1
N, =1+0.4(D,/B")
N =1+2tan, (1-sin¢,)’ (D, /B’)
N, =1
= Total stress analysis (¢, =0)
N, =1+0.4(D,/B")
Ny =1
N, =1

» Inclination factor (Meyerhof)

= Effective stress analysis

v @ inclined angle
v =tan” (3R, /3 V)
Na =N :(1_W0/900)2
N, = (1_\V0/¢20 )2
= Total stress analysis (¢, =0)

i = Nqi =(1_\V0/900)2
=0

NC
NY
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Factor of safety of bearing capacity can be calculated as:
= Effective stress analysis

FSbe = qu/qmax

= Total stress analysis

FSE)G = qu/qmax

STRUCTURAL DESIGN (ACI CODE)
Typical formulas used in Working Stress Design (WSD) for designing beams

with tension reinforcement only

1. Compressive strength of concrete f_ = 0.45f ', (MPa)
2. Strength of steel in WSD f,, =0.50f, (MPa)
3. Design strength of steel f, = min(f,,,170) (MPa)
4. Modulus elasticity of steel E. =200000 (MPa)
5. Modulus elasticity of concrete  E, = 4700\/ﬁ (MPa)

n=E,/E, = the nearest integer

1

K=tr———
1+f,/nf,
j=1-k/3
. M
6. Required steel area A =—
f.jd
7. Shear force of concrete V, =0.09,/f', xbd
8. Shear stress of concrete v, =0.09,/f ', x1000

Typical formulas used in Ultimate Strength Design for designing beams with
tension reinforcement only
1. Equivalent rectangular stress block a=pc

0.85 f'. <30 MPa

2. The factor B, : B, =41.09-0.008f', if 30 MPa<f' <55 MPa
0.65 f'. >55 MPa



3.  Minimum steel ratio

4. Steel ratio in balanced condition

5.  Maximum steel ratio

6. Reinforcing steel ratio design

If letting R, = <|>'\tj|(;2

7. The usable flexural strength

129

Omin =1.4/fy

A, 085pf( 600
" hd T f, | 600+,
P max SZpb

Cosst(, [ am,
P 1.7¢f ", bd?

_osst ([ 2R,

f, 0.85f

pf
M =¢Afdl1-—X
M, =9 oY ( 1.7f'cj

pf
oM, =¢pfybd2(l——y]

1.7F "
8. Required steel area A, =phd
9. Shear force of concrete V. =¢(1/6)/f", xbd
10. Shear stress of concrete v, =0(1/6)f",
Code DL LL Shear ¢ Moment ¢
ACI 318-99 1.4 1.7 0.85 0.9
ACI 318-05 1.2 1.6 0.75 0.9
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4. Factor of safety against toe shear and moment failure mode

x4 : a . i ’
e X2z
A
e
1
(Jmax g1 02

Figure A.3 Pressure distribution under footing

X, +X

0y = (Umax = Armin ) —————+ Uy
1 ( max mln)X1+X2+X3 min

X
qz = (qmax _qmin )—‘i__+qmin

X, + X, +X;
d
Qo = (qmax _ql)[;(—]"'ql (USD)
1
q3 :(qmax _ql)(iJ_'—ql (WSD)
2X,
d T <1
- .
!Velgﬁht frsm sToN cToverT L7 — . . - B
Y Y VY YYOY | R .7 | shrinkage and
wei ner a « . , | temperature steel
sﬁu’;ghtco cete¢ ¢ ¢ ¢ ¢ ¢ . .

cover (c)J

TOE DESIGN

Mq critical section for shear design

— X1 =—

|
l
| .

*4 ‘ ., AAV qu“ AVA "__} ’
X ISR o - T LTS
L -2 9 1!4 [ ] !’ !.i

|
|
|

(max

Figure A.4 Pressure distribution for toe design
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Force accounting in toe design:

1. Upward soil pressure for shear (WSD) W,,, =0, +(1/2)(0pex —05)

sup

2. Upward soil pressure for shear (USD)  W,,, =0, +(1/2)(0. — o)

3. Upward soil pressure for moment W, =0, +(1/2) (e — 1)
4. Self-weight of concrete W, =X,7.
5. Weight of soil covers W, = XY,

» WSD (Working Stress Design)
Effective depth for design d=x,-c-®/2

Critical section for shear in working stress design ~ d/2=(1/2)(x, —c—®/2)

= Toe shear force

Ws,toe = Wsup - Wsc 7 Wssc

Vs,toe = I:qs + (]/2)(qmax A qs):l(xl . d/Z) \ X4Yc (Xl —d/Z) - XSYZ (Xl - d/Z)
Service shear stress Voo = Vs tce / (bxd) (kN/m?)
Resisting shear stress Vooe = (1 6)\/ﬁ %1000 (kN/m?)

= Toe bending moment

X 1 2 X X
M toe = {qlxl (_zij + 2 (qmax - ql) Xy [5 Xl}j| - {Y0X4X1 (?lj TY2XsXy (?lj}

Compute reinforcing area X;°
X? = Ms,toe (fsjd)

Resisting moment of toe in WSD
M, . = X5, jd

sr,toe

= Factor of safety against toe shear failure mode

FSss,toe = Vs,toe /Vsr,toe

= Factor of safety against bending moment failure mode

FS = Msr,toe/M

sm,toe s,toe
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» USD (Ultimate Strength Design)
+ ACI-99 Load factor DL=1.4, LL=1.7, DLw=0.9
+ ACI-02 Load factor DL=1.2, LL=1.6, DLw=0.9

Combination load factor for shear design U = LL x Wpwara — DLWx W,
0 The critical section for shear design is located at a distance d from the

front face of the stem which d=x, —c—®/2

o0 Limbrunner and Aghayere (2007) do not consider critical section for

shear. 111
= Toe shear force (when consider critical section d)

Ve = LLX[ 0y +(1/2) (0 = ) | (X, =d) = DLW xy.X, (X, —d)

= Toe shear force (when do not consider critical section)

Vu,toe =LLx I:ql + (1/2)(qmax - ql):|(xl) —DLw x YCX4 (Xl)
Ultimate shear stress Tyt = Voo /(D xd) (kN/m?)
Resisting shear stress Ty e = 0(1/6)4/F ', x2000  (KN/m?)
+  ACI-99 ¢=0.85
+ ACI-02 $=0.75

= Toe bending moment

X 1 2 X
Mu,toe =LLx |:q1X1 (?1] + E(qmax - ql ) Xl (5 Xl)} —DLw x YCX4X1 (?lj
Compute reinforcing area X5

where p:0'85f <l1- 1—L“2
f 1.7¢f ', bd

y

$=0.90
b =1 m (strip 1m for analysis)

Iflet R, = M, p:% 1- [1- 2R,
¢bd f 0.85f"

y

c
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. . . . preq 2 pmin

Required reinforcing steel ratio
preq < pmax
Thus, X, =pxbxd (m?)
Resisting moment of toe slab
pf
M, .. =opf bd*|1-—~
ur,toe d)p y [ 17fcj

A, X : e
p=—=—-=reinforcement ratio in toe slab

bd bd

x. f
M. =dxfdl1l-—C—-~
ur,toe d) 7'y { 1.7bd fcj

= Factor of safety against toe shear failure mode

Fsus,toe = Tur,toe/Tu,toe

= Factor of safety against bending moment failure mode

FS = Mur,toe/M

um,toe u,toe

5. Factor of safety against heel shear and moment failure mode

"l’ﬂ/ lﬂﬂ overburden pressure
X8 —
¢ ¢ ¢ surcharge loading
‘ + self-weight concrete
3 - - : Mu heel
cover (¢)— .~ =Ld Lt . N e T, -1 x4
VA AL
shrinkage and temperature steel ! ! ! ! : ! o !
: 3 : : ‘//;//L’i/quiﬂ
Lol ward pyesS\J‘e

HEEL DESIGN |
q2

Figure A.5 Pressure distribution for heel design

Force accounting in heel design

1. Overburden pressures W, =7, (H-x,)+(1/2)x;tana |
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2. Surcharge loading W, =q/cosa

3. Self-weight of concrete W, =X,y

4. Upward soil pressure W, =0, +(1/2)(q, =)
» WSD (Working Stress Design)

Cernica (1966) reported that moment and shear for the case of zero foundation

pressure shall multiply the by 2/3 for conservative design.

= Heel shear force
Vs,heel = (2/3)(Wov +W +Wc)

sur

V, et = (2/3)[y1[(H —X4)+(1/2)x; tan o |x, +(q/cosa) X, +(ycx4)x3}

Service shear stress Ve el = Vs peel / (bxd) (kN/m?)
Resisting shear stress Vg heet = 0.094/f ', 1000 (kN/m?)

= Heel bending moment

M et =(2/3) (Mg, + M, + M)

s,heel —
2 1 1 2
M eel :(gjyl[(H —x4)x3§x3 +[§jx3 tancxxxsgxg}

J{EJ( g jx 1x +(7:%, )X 1x
3 cosa ) 3273 LY 3573

Compute reinforcing area Xg°
X; = Ms,heel/(fsjd)

Resisting moment of heel in WSD

M Xgf,jd

sr,heel

= Factor of safety against toe heel failure mode

l:Sss,heel = vsr,heel/vs,heel

= Factor of safety against moment
I:Ssm,heel = Msr,heel/Ms,heel
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> USD (Ultimate Strength Design)

+ ACI-99 Load factor DL=14,LL=17

+ ACI-02 Load factor DL=1.2,LL=1.6

+ Combination load factor U=DLxW,; + DLXWqyer + LLXWq,

d = effective height given by d =x,—c—®/2

= Heel shear force

Vpeet = DLx 7, [ (H=%, ) +(1/2) X, tan o | x, + LLx(/cos o) X; + DL x (7,X, ) X,
Ultimate shear stress Ty heot = Va heel / (bxd) (kN/m?)
Resisting shear stress Tur e = 0(1/6)/F ', 1000 (KN/m?)

+  ACI-99 ¢ =0.85
+ ACI-02 ¢=0.75

= Heel bending moment (conservative design)
Conservative design in ultimate strength neglects effect of upward pressure

below heel (ACI Code). 1!

M peer = DLXYl[(H—X4)X3%X3+(1/2)X3tanaxx3§)(3}

q 1 1
+LLx X, =X, +DLx(y.X, )X, =X
(COSOL) 3573 (Yc 4) 3573

Compute reinforcing area Xs
Method to calculate reinforcement ratio in heel slab is reported the same as in

design of toe slab. Thus, requirement top steel area in heel slab is expressed as:

X, =pxbxd (m%
Resisting moment of heel slab

pf
f bd?|1-—L-
ur heel — (I)p ( 17fc j

p :i _Xe Reinforcement ratio in heel slab
bd bd

f,
f d 1—— x107°
urheel (I)X [ l7bdf j
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$=0.90

= Factor of safety against toe heel failure mode

FSus,heeI = Tur,heel/Tu,heel

= Factor of safety against moment
I:Sum,heel = Ivlur,heel/lvlu,heel

6. Factor of safety against stem shear failure mode

» oS |

Mu,stem

X9

H shrinkage and temperature
steel

critical section
for shear design

Figure A.6 Force distribution on stem

1. Lateral force applied to the stem

P, =(Y2)K,y,(H-x,)’ Inclination alpha
P, =(Y2)K,7,(H-x,) cosa Horizontal direction
+ Arm A, =(1/3)(H-x,)

2. Surcharge force applied to the stem

P, =K,q(H-x,) Inclination alpha o

P, =K,q(H-x,)cosa Horizontal direction
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+ Arm A, =(1/2)(H-x,)

» WSD (Working stress design)

= Stem shear force

Vs,stem = (1/2) Kayl(H =X, )2 cosa + Kaq (H —X4)COSOL

Service shear stress Vesem = Vasiem /(0xd) (kN/m?)
Resisting shear stress Vg heet = 0.094/f ', x1000 (kN/m?)

= Stem bending moment

Ms,stem :(1/2) KaYl(H_X4)2 COSGX%(H_X4)+Kaq(H _X4)COSO‘X%(H_X4)

Compute reinforcing area Xg°
X; = Ms,stem /(fsjd)

Resisting moment of stem in WSD

M = X,f, jd

sr,stem
= Factor of safety against stem failure mode
FSss,stem = Vsr,stem/vs,stem

= Factor of safety against moment

FSsm,stem = Msr,stem/Ms,stem

» USD (Ultimate strength design)

+ ACI-99 Load factor DL=1.4, LL=1.7
+ ACI-02 Load factor DL=1.2,LL=1.6
+ Combination load factor U=LLXPgactive + LLXPsyrcharge

The critical section for shear is located at a distance ds out of the stem height

d, =x,-c-®/2

=  Stem shear force

V, o = LL><[(1/2)Kay1(H—x4 ~d,) cosa+K,q(H-x, —dS)COS(x:|

u,stem
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Ultimate shear stress Ty gem = Vasem /(D% ;) (kN/m?)
Resisting shear stress Ty om = 00.17,[F. 1000 (kN/m?)
+  ACI-99 $=0.85
+  ACI-02 $=0.75

= Stem bending moment

M :LLx(Paan+PSxAS)

u,stem

M, sem = '—'—XK%)KaYl(H—M)Z COSax%(H —x4)+Kaq(H—x4)005ax%(H—x4)}

M, gem = LLx[(1/6)Kay1(H ~x,) cosa+(1/2)K,q(H-x,)’ COSOLJ

Compute reinforcing area Xo

Method to calculate reinforcement ratio in heel slab is reported the same as in
design of toe slab. Thus, requirement top steel area in heel slab is expressed as:

X, =pxbxd (m?)

Resisting moment of stem

pf
M =dpf bd?| 1-——L
ur,stem (I)p y [ 171:0 ]

A. X \ i
p=—=—"reinforcement ratio in stem
bd b

x. f
M = pxf d| 1-—2-YX [x10°
ur,stem (I) 9%y [ 17bd fCJX

¢=0.90

= Factor of safety against stem failure mode

FSss,stem = Tur,stem /Tu,stem

= Factor of safety against moment
FSum,stem = M ur,stem/M u,stem



Stem face steel

p, =0.0025 = horizontal reinforcement ratio

p, =0.0015 = vertical reinforcement ratio

Aq = shrinkage and temperature A, =p,xbxh,,
hay = average depth

A = Horizontal front face Ag rom = (2/3)x A

A = Horizontal back face Ad ok = (1/3)x Ay

As = Vertical front face A, o = Py x0xh,

139
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APPENDIX B
Typical Formulas in Analyses of

Reinforced Concrete Column Section



As

Design Assumptions in the ACI Code
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£.~=0.003
e e eoe | id l?&’s ,B1Cl
o] &
d
e ® @ @ | Eg ———=
) b : Strain

(a) (b)

fe = (’._].85-1"C
fo- -y C,
=3 pic [+ C.
h 2
2 M
. p _é
—_— fs ________ '—"Ts
Stress Free body
diagram
(c) (d)

Figure B.1 Strain and stress diagrams for ultimate strength design (Lee, 2009)

Summary of acting force based on Figure B.1.

1.
C. =(0.85f 'c)(B,c) (b)

2. The force carried by the
C, =(A')(f's-0.85f ‘c)

S

Compressive force carried by concrete

top steel

Based on strain compatibility

(Es){(0.003)(1—%ﬂ

3. The force carried by the bottom steel

T_

=(f)(A)

Based on strain compatibility

(Es)[(0.003

(&)

if 0<e', <fy/E,

if ', >fy/E,

if 0<e, <fy/E,

if &, >fy/E,
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¢ ¢ =0.75 + (&,- 0.002)(50) —\

0.50
-
— -
- -
— -
Spiral P
0B =TT N ¢=0.65 +(£,-0.002)(250/3)
0.65
Other
Compression Transition - Tension
controlled controlled
€, =0.002 £,=0.005
£ =0.600 £ =0.375
d, d,
Interpolati = Spiral @=0.75 015[] 5]
- =075+0.15) 5 - 7
nerpolation on d.r pira: C"/dr 3

15
Other ¢=0.65+0.25 [EE - T]
1

Figure B.2 Variation of ¢ with net tensile strain ¢, and c/d for Grade 60

reinforcement steel (Hassoun, 2005)

Since variation of term c/d establishes the compression-controlled, transition
zone, and tension-controlled based on figure B.2, four domains of column analysis are
represented explicitly in term of c/d (Lee, 2009).

Four domains are considered:

i. Domain 1 : compression-controlled region

0.003E,d/(f, +0.003E, )< c<d
In this domain ¢ = 0.65and top reinforcement is yielding
ii. Domain 2 : Transition zone
0.003E,d'/(0.003E, —f, ) < c < 0.003E,d/(f, +0.003E, )
In this domain ¢ =0.233+0.25d/c and both the top and bottom reinforcement
is yielding
iii. Domain 3 : Transition zone

3d/8 < ¢ <0.003E,d'/(0.003E, - f, )

In this domain ¢ =0.233+0.25d/c and bottom reinforcement is yielding
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iv. Domain 4 : Tension-controlled region
d'/B, <c<3d/8

In this domain ¢ = 0.90 and bottom reinforcement is yielding
Note: The domain with ¢ <d'/B, and the domain with ¢ > d are excluded in the study.

Compression-controlled region

Force equilibrium based on free body diagram in Figure B.1
P=C,+C,-T,

P, =0.85f" ab+A" (f,~0.85f" )-Af

$°S

P, =0.85f ' (Bc)b+A" (f ~0.85f' )-A, (Es)[(0.003)(9—1ﬂ

C

Taking moment on neutral axis based on free body diagram in Figure B.1.

Pn><e:CC(D—EJ+CS(D—d'j+TS(d—Ej

2 2 2 2

(t-08st)( §-a'fras[a-3)
2 2

i
o -
=t

M =P xe=0.85f" ab[--i
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APPENDIX C
Typical Formulas in Analyses of External

Design Load for the Bridge



Determine Maximum Bending Moment and

Maximum Shear Force

Figure C.1 Assuming cross section of bridge slab on simply supported span L

Table C.1 Input parameters

Name Symbol

Length of bridge span L

Width of barrier wb

Width of bitumen laying wi

Total width wt
Thickness of bitumen tb
Thickness of bridge slab T
Thickness of barrier Th

Width of sidewalk WSW
Thickness of sidewalk tsw
Pedestrian Load PL
Thickness of stem beam The

Width of stem beam whbeam
Width from stem beam to end slab side whe

Number of stem beam

nbeam

145
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Table C.1 Input parameters

Unit weight of concrete Ye
Unit weight of bitumen Yo
Design Truck (AASHTO) HS20*
Width design lane wlane
Design lane load Lane

&) Design truck HS20 characteristics

110 110 kN
1.2

|
35000N 145000N 145 000N Tandem Load
| 4300mm 4300 to 9000 mm |

Truck Load
_’
600 mm General > 1800mm
300mm Deck Overhang

Design Lane 3600 mm

For simply supported beam as shown in Figure C.1, maximum shear and

bending moment can be calculated as:

k wi
- - 7 g i T .. [ = —2'-
wi e
TTLL T LTIy 113N eINAa 8. =w{5,x}
1 I z
o |—< 1K/ ddm n (atcentes) g8 2 = FY-C2 BT - we
T Fiy N 3
Vv * 9 ) E(me)
* Shear gy 22 CoRSREREDIRAEIRNN 5
' A, (atcenter) . . . ... .. = Swe
384 EI
Ay w6 o0s v % % & 5 G 9 B3 o SHX (€' =2€x% + x?)
24 El

Moment

Figure C.2 Shear and bending moment due to uniformly distribution load
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1) Shear and moment due to future wearing surface (DW)
Laying width wl =wt —2xwb —2xwsw

Total weight DW =y, xtbxwl =1y, xthx(wt—2xwh—-2xwsw)

MDW,max =DWx L2/8
VDW'max =DW x L/2

2) Shear and moment due to structure component and attachment (DC)
= Weight of barrier
Wb =whxThxy, x2
= Weight of sidewalk concrete
Wesw = (Wsw ) x (tsw) x v, x 2
= Weight of concrete slab
We=wtxTxy,
= Weight of stem beam (if presents)
Whe = wheam x The x y, x nbeam
Total weight of component and attachment

DC = Wb+ Wc + Wesw +Whe = whx Thx y, x 2+ (wsw ) x (tsw) x v, x 2
+WtxTxy, +wbeamxTbexy_xnbeam

MDC,max = DC %S L2/8
Voe max = DCxL/2

3) Shear and moment due to Pedestrian load
If pedestrian load is present on sidewalk,
PL=3.60 kN/m* (AASHTO s3.6.1.6)
DPL = PL xwsw

MDPL,max = DPL x L2/8
V = DPL x L/2

DPL,max

4) Shear and moment due to lane load
Clear road way width CW = Wt — 2x Wh — 2x wsw

Number of design lane  dlane =cw/wlane  (nearest integer)

Llane = 9.30 KN/m (AASTHO s3.6.1.2.4)
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= Lanex?/8
=LanexL/2

M
V,

1Lane,max

1Lane,max

5) Shear and moment due to tandem load

= Maximum shear force

Ltan lwtan »| Ltan

N L

R,L=(Ltan)xL+(Ltan)x(L—wtan)

v _(Ltan)xL+(Ltan)><(L—Wtan)

1Tandem,max L

=  Maximum bending moment for span

Position of the resultant
force of tandem

Ltan Ltan
wtan

x+(wtan/2)+x =L
x=(1/2)[ L-(wtan/2)]

R,L =(Ltan)x(L—x)+(Ltan)x(L—x—wtan)
_ (Ltan)x(L—x)+(Ltan)x(L—x—wtan)
! L
(Ltan)x(L—x)+(Ltan)x(L—x—wtan)
L

M =R X=X

1Tandem,max



6) Shear and moment due to truck load

= Maximum shear force

Ltr3 Ltr2 Ltrl
wtr wtr

R,L =(Ltr3)x L+ (Ltr2)x(L—wtr2)+(Ltrl)x (L —wtrl—wtr2)

v (Ltr3)x L+ (Ltr2)x (L —wtr2)+(Ltrl)x (L —wtrl—wtr2)

1Truck,max = L

=  Maximum bending moment for span

Ltr3  R|Ltr2 Ltrl

PRANN

wtr2 witrl

|
|

R(y)=(Ltr2)xwtr2+(Ltrl)x(wtrl+wtr2)

(Ltr2)xwtr2+ (Ltrl)x (wtrl+wtr2)
Ltrl+ Ltr2 + Ltr3

y:

R
Ltr3 l

’ wtr2 l wirl

Ltrl

N
—
=
N

149



R, +R, =Ltrl+Ltr2+Ltr3
Rl (L3) 5oy Sumrz-y) |1 (Lr2) S+ mrz-y)
2 2 2 2
L 1
+(Ltr1)x(5+5(wtr2—y)+Wtrlj

. (Ltr3)(%—Ly—lé(wtrZ—y))+(Ltr2)(%+%(wtr2—y)j
+(Ltr1)><(E +E(wtr2 -y)+ vvtrlj

M

1Truck,max

=(Ltrl+Ltr2+Ltr3—R, )| —+—(wtr2—y) |—(Ltr3)(wtr2
)zt

Vehicle design load (ASSHTO) include IM

Dynamic Load Allowance (IM = 33% : all other limit state), thus
M_ = (L+IM/100) maX (M g0 Mg ) + M
V, = L+ IM/100) max (Ve Veanger ) + V,

Tandem Lane

Lane

Load combinations in design strength
+«» Strength |

1.25 1.50 1.75
M, =n DC+n DW +n (LL+IM)
' '10.90 210.65 *10.00

% Strength 11

[ fras) o, [180) (135 s
1= 0.90 27065 10,00
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In load combinations taken into account of multiple present of Live Load

factor m, the combination becomes:

i. Case 1 Lane Load and pedestrian Load: m1=1.20 for vehicular live load

m2=1.0 for pedestrian load

ii. Case 2 Lane Load : m1=1.20, m2=0.0

iii. Case 2 Lane Load and pedestrian Load : m1=m2=0.85

iv. Case greater Lane Load and pedestrian Load: m1=m2=1.0
v. Case 3 Lane Load : m1=0.85, m2=0.0

vi. Case greater Lane Load : m1=0.65, m2=0.0
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» Bending Moment
Case 1 Lane Load: [dlane =1]

Msrr =1.25Mpe +1.5Mp,, +1.75[ (M| xml)x1+ M, xm2]

Case 2 Lane Loads: [dlane = 2]

Mgy =1.25Mpc +1.5Mp,, +1.75[(ML xM1)x 2+ M, x m2:|
» Shear

Case 1 Lane Load: [dlane = 1]

Msrry =1.25Mpe +1.5Mpy, +1.75] (M xml)x1+ M, xm2]

Case 2 Lane Loads: [dlane = 2]
Msrriy =1.25Mpe +1.5My,, +1.75[ (M xml)x2+ M, xm2]
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APPENDIX D
Detail of optimal calculations



Detail of Optimal Calculation

* retained material

2V
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Figure D.1 Pressure distribution on conventional retaining wall

Detail of optimal calculations on conventional retaining wall Ex1 (EAS-USD)

Term Value Unit
H’ 6.223 m
Ka 0.3372 -
K, 2.0396 :
Kot 1.000 -
Pa 117.537 kN/m*/m
Ps 20.985 kN/m?/m
Overturning Unit Mg Optimal FS | Required FS
Criterion kN.m/m 1003.504 307.447 3.258 2.000
Sliding
criterion Unit Fr Py Optimal FS | Required FS
With Pp kN/m 206.992 | 268.432 137.995 3.445 2.000
without Pp kN/m 206.992 - 137.995 1.500 1.500
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) ) Optimal Required
Bearing Unit Omax Qmin Qu FS FsS
criterion .
KN/m“/m | 162.48 49.18 627.85 3.86 3.000
Eccentricity | unit | (1/3)B (2/3)B (1/6)B e Result X | Resulte
criterion X m 1.333 2.666 | 0.667 | 0.357 Ok Ok
) Optimal | Required
Slope Unit MR MD MDq R (m)
FS FS
criterion
kN.m/m | 6070.61 | 2107.82 | 320.42 8.04 2.5000 2.5000
Shear criteria Unit Vy VR Optimal FS | Required FS
Toe KN/m 201.168 390.944 1.943 1.000
Heel KN/m 390.944 390.944 1.000 1.000
Stem kN/m 138.475 295.512 2.134 1.000
Moment criteria Unit My Mg Optimal FS | Required FS
Toe KN.m/m 92.862 476.753 5.134 1.000
Heel KN.m/m 501.637 501.637 1.000 1.000
Stem KN.m/m 314.957 314.957 1.000 1.000

Detail of optimal calculations on conventional retaining wall Ex1 (ESA-WSD)

Term Value Unit
H’ 6.221 m
Ka 0.3372 -
K, 2.0396 -
Kot 1.000 -
Pa 117.537 kN/m?/m
Ps 20.976 kN/m*/m
Overturning Unit Mg Mp Optimal FS | Required FS
Criterion kN.m/m 1004.40 307.596 3.265 2.000
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Sliding ) ) )
o Unit Fr Py Fo Optimal FS | Required FS
criterion
With Pp kKN/m | 206.836 | 268.432 | 137.890 3.447 2.000
without P, | kKN/m | 206.836 - 137.890 1.500 1.500
] ) Optimal Required
Bearing Unit Omax Qmin Qu FS FS
criterion
kN/m?m | 159.53 49.54 624.87 3.92 3.000

Eccentricity | unit | (1/3)B | (2/3)B | (1/6)B e Result X | Resulte

criterion X m 1.340 2.680 0.670 | 0.353 Ok Ok

Optimal | Required
FS FS
kN.m/m | 6054.50 | 2101.40 | 320.40 8.04 2.5000 2.5000

Slope Unit MR MD MDq R (m)

criterion

Shear criteria Unit Vy VR Optimal FS | Required FS
Toe kN/m 74.093 207.343 2.798 1.000
Heel KN/m 207.343 207.343 1.000 1.000
Stem kN/m 108.681 245.217 2.256 1.000
Moment criteria Unit My Mg Optimal FS | Required FS
Toe kN.m/m 44.332 44.332 1.000 1.000
Heel KN.m/m 263.056 263.056 1.000 1.000
Stem kKN.m/m 214,737 214.737 1.000 1.000

Detail of optimal calculations on conventional retaining wall Ex2 (ESA-USD)

Term Value Unit
H’ 5.20 m
Ka 0.3333 -
K, 2.7698 -
Kot 1.000 -
Pa 75.7120 kN/m°/m
Ps 17.3333 kN/m*/m




156

Overturning Unit Mg Mp Optimal FS | Required FS
Criterion kN.m/m 470.109 176.300 2.666 2.000
Sliding ] ] ]
o Unit Fr Po Fo Optimal FS | Required FS
criterion
With Pp kN/m 158.646 | 124.231 93.045 3.040 2.000
without Pp kN/m 158.646 - 93.045 1.705 1.500
] ) Optimal Required
Bearing Unit Omax Omin Qu FS FsS
criterion .
kKN/m“/m | 189.667 0.000 826.014 4.355 3.000
Eccentricity | unit | (1/3)B (2/3)B (1/6)B e Result X | Resulte
criterion X m 1.016 2.032 0.508 | 0.508 Ok Ok
] Optimal | Required
Slope Unit Mg Mp Mpq R (m)
FS FS
criterion
kN.m/m | 3376.44 | 1145.87 | 204.70 6.439 2.5000 2.5000
Shear criteria Unit Vy Vg Optimal FS | Required FS
Toe KN/m 68.777 297.410 4,324 1.000
Heel kN/m 297.410 297.410 1.000 1.000
Stem KN/m 105.302 222.998 2.117 1.000
Moment criteria Unit My Mg Optimal FS | Required FS
Toe kN.m/m 8.593 275.914 32.106 1.000
Heel kN.m/m 352.072 352.072 1.000 1.000
Stem kN.m/m 207.337 207.337 1.000 1.000




157

Detail of optimal calculations on conventional retaining wall Ex1 (TSA-USD)

Term Value Unit
H’ 6.327 m
Ka 0.3372 -
K, 1.000 -
Kot 1.000 -
Pa 121503 kN/m*/m
Ps 21.336 kN/m°/m
Overturning Unit Mg Mp Optimal FS | Required FS
Criterion kN.m/m 1625.198 322.539 5.038 2.000
Sliding ] ] ]
criterion Unit Fr Pp Fo Optimal FS | Required FS
With Pp kN/m 332.933 | 321.375 | 142.295 4.598 2.000
without Pp kN/m 332.933 - 142.295 2.339 1.500
Bearing Unit a — 0 Optimal Required
o FS FS
criterion kN/m%m | 145.22 84.08 435.68 3.000 3.000

Eccentricity | unit | (1/3)B (2/3)B (1/6)B e Result X | Resulte
criterion X m 1.664 3.329 0.832 0.222 Ok Ok

Optimal | Required
FS FS
kN.m/m | 10537.57 | 2682.62 | 410.50 | 9.374 3.406 2.5000

Slope Unit Mg Mp Moy R (m)
criterion
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Shear criteria Unit Vu VR Optimal FS | Required FS
Toe kN/m 143.909 585.818 4.070 1.000
Heel kN/m 585.818 585.818 1.000 1.000
Stem kN/m 123.063 291.127 2.365 1.000
Moment criteria Unit My Mg Optimal FS | Required FS
Toe kN.m/m 51.459 1070.507 20.802 1.000
Heel KN.m/m | 1104.634 1104.634 1.000 1.000
Stem KN.m/m 266.475 266.475 1.000 1.000

Detail of optimal calculations on conventional retaining wall Ex2 (TSA-USD)

Term Value Unit
H’ 5.50 m
Ka 0.3333 -
Ko 1.000 -
Kot 1.000 -
Pa 85.708 kN/m?/m
Ps 18.333 kN/m?/m
Overturning Unit Mg Mp Optimal FS | Required FS
Criterion kN.m/m 792.381 207.548 3.817 2.000
Sliding ] ] ]
criterion Unit Fr Pp Fo Optimal FS | Required FS
With Pp kKN/m | 282.306 229.00 104.042 4914 2.000
without Pp kN/m 282.306 - 104.042 2.713 1.500
Bearing Unit - - 0 Optimal Required
o FS FS
criterion kN/m?/m | 149.036 43.871 447.109 3.000 3.000

Eccentricity | unit | (1/3)B | (2/3)B | (/6)B e Result X | Resulte

criterion X [ m 1283 | 2566 | 0.642 | 0349 Ok Ok
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Optimal | Required
FS FS
kN.m/m | 6293.27 | 1327.71 | 247.31 | 7.250 3.995 2.5000

Slope Unit MR MD MDq R (m)

criterion

Shear criteria Unit Vu VR Optimal FS | Required FS
Toe kN/m 108.965 384.246 3.526 1.000
Heel kN/m 384.246 384.246 1.000 1.000
Stem kN/m 111.956 244513 2.184 1.000
Moment criteria Unit My Mg Optimal FS | Required FS
Toe KN.m/m 28.459 460.555 16.182 1.000
Heel kN.m/m 550.834 550.834 1.000 1.000
Stem kN.m/m 229.495 229.495 1.000 1.000
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