
 
 

การออกแบบประหยดัท่ีสุดของกาํแพงกนัดินแบบยืน่คอนกรีตเสริมเหลก็ 

 

 

 

 

 

 

 

 

 

 

 

นาย โซเพีย เช 

 

  

 

 

 

 

 

 

 

 

 

วิทยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวิศวกรรมศาสตรมหาบณัฑิต 

สาขาวิชาวิศวกรรมโยธา   ภาควิชาวิศวกรรมโยธา 

คณะวิศวกรรมศาสตร์   จุฬาลงกรณ์มหาวทิยาลยั 

ปีการศึกษา  2554 

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลยั 

บทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR) 

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั 

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR) 

are the thesis authors' files submitted through the Graduate School.



 
 

OPTIMAL DESIGN OF REINFORCED CONCRETE CANTILEVER 

RETAINING WALL 

 

 

 

 

 

 

 

 

 

 

Mr. Sophea Chea 

 

  

 

 

 

 

 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements 

for the Degree of Master of Engineering Program in Civil Engineering 

Department of Civil Engineering 

Faculty of Engineering 

Chulalongkorn University 

Academic Year 2011 

Copyright of Chulalongkorn University 



 
 
Thesis Title  OPTIMAL DESIGN OF REINFORCED CONCRETE   

   CANTILEVER RETAINING WALL 

By   Mr. Sophea Chea 

Field of Study  Civil Engineering 

Thesis Advisor Associate Professor Boonchai Ukritchon, Sc.D. 

 

 

Accepted by the Faculty of Engineering, Chulalongkorn University in 

Partial Fulfillment of the Requirements for the Master’s Degree 

 

  .......................................................... Dean of the Faculty of Engineering 

(Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)  

 

 

THESIS COMMITEE 

 

  ............................................................... Chairman 

(Associate Professor Tirawat Boonyatee, D.Eng.) 

 

  ............................................................... Thesis Advisor 

(Associate Professor Boonchai Ukritchon, Sc.D.) 

 

  ............................................................... Examiner 

(Associate Professor Suched Likitlersuang, D.Phil.) 

  

  ............................................................... External Examiner 

 (Assistant Professor Siam Yimsiri, Ph.D.)  

 

 

   

  



iv 
 

โซเพีย เช : การออกแบบประหยดัท่ีสุดของกาํแพงกนัดินแบบยืน่คอนกรีตเสริมเหลก็ 
(OPTIMAL DESIGN OF REINFORCED CONCRETE CANTILEVER RETAINING 
WALL), อ.ท่ีปรึกษาวิทยานิพนธ์หลกั: รศ.ดร.บุญชยั อุกฤษฏชน, 160 หนา้. 
 
งานวิจยัจาํนวนมากเร่ืองการหาค่าดีท่ีสุดของกาํแพงกนัดินแบบยืน่ถูกนาํเสนอข้ึนในอดีตท่ี

ผา่นมา ยงัไม่มีงานวิจยัใดพิจารณาขอ้กาํหนดดา้นธรณีเทคนิคของเสถียรภาพลาดชนัในปัญหาการ

หาค่าดีท่ีสุด วตัถุประสงคข์องการวิจยัน้ีคือ 1) เพื่อพฒันาเทคนิคท่ีมีประสิทธิภาพสาํหรับการออก 

แบบท่ีประหยดัท่ีสุดของกาํแพงกนัดินคอนกรีตเสริมเหล็กแบบยื่นทัว่ไปซ่ึงรวมถึงการพิจารณา

ขอ้กาํหนดทั้งหมดดา้นธรณีเทคนิคคือ การพลิกควํ่า การเล่ือนไถล กาํลงักดและเสถียรภาพของ

ลาดชันรวมทั้ งข้อกําหนดด้านโครงสร้าง 2) เพื่อเพิ่มความสามารถของวิธีท่ีพัฒนาข้ึนใน

วตัถุประสงค์ขอ้ แรกสําหรับการออกแบบท่ีประหยดัท่ีสุดของกาํแพงกันดินแบบร่วมกบัการ

รองรับสะพาน ในการศึกษาน้ี ตวัแปรการออกแบบของวิธีท่ีเสนอคือขนาดของกาํแพงและเสริม

เหลก็ในแต่ละส่วนของกาํแพง   ฟังกช์นัวตัถุประสงค ์ขอ้กาํหนดพื้นฐานดา้นธรณีเทคนิคสามขอ้

ของการวิบติักาํแพง (การพลิกควํ่า การเล่ือนไถล กาํลงักด) รวมทั้งปริมาณเหลก็เสริมเป็นไปตาม

วิธีเดียวกนักบัปัญหาการหาค่าดีท่ีสุดในอดีตท่ีผ่านมา เพื่อพิจารณาเสถียรภาพความลาดชนัใน

ปัญหาการหาค่าดีท่ีสุด ค่าสดัส่วนความปลอดภยัจากวิธีแบ่งช้ินดินสามญัถูกพิสูจน์เชิงวิเคราะห์ใน

รูปของตัวแปรไม่ทราบของขนาดกําแพงและจุดศูนย์กลางของพื้นผิววิบัติส่วนโค้งวงกลม  

สาํหรับกาํแพงกนัดินแบบร่วมกบัการรองรับสะพาน ขอ้กาํหนดเพิ่มของการรับแรงอดัแนวแกน

ร่วมกับโมเมนต์ดัดถูกนาํเขา้ไปในระบบสมการไม่เชิงเส้นของการหาค่าดีท่ีสุดกาํแพงกนัดิน  

ความสามารถของสองวิธีท่ีนาํเสนอถูกแสดงผา่นการใชง้านกบัปัญหากาํแพงกนัดินทัว่ไปจาํนวน

มาก  

 

  
 
 

ภาควิชา ................................................... ลายมือช่ือนิสิต  ...............................................................  
สาขาวิชา  ................................................ ลายมือช่ือ อ.ท่ีปรึกษาวิทยานิพนธ์หลกั ..........................  
ปีการศึกษา ..............................................            

วิศวกรรมโยธา 
วิศวกรรมโยธา 
2554 



v 
 

##5270849621: MAJOR CIVIL ENGINEERING 

KEYWORDS: OPTIMAL DESIGN / REINFORCED CONCRETE/ CANTILEVER 

RETAINING WALL 

 SOPHEA CHEA: OPTIMAL DESIGN OF REINFORCED CONCRETE  

CANTILEVER RETAINING WALL. ADVISOR: ASSOC. PROF. 

BOONCHAI UKRITCHON, Sc.D., 160 pp. 

 

Various researches in optimization of cantilever retaining wall were proposed 

in the past, none of them considered geotechnical requirement of slope stability in 

the optimization problem. The objectives of this research are: 1) to develop an 

efficient technique for optimal design of conventional reinforced concrete cantilever 

retaining wall including complete geotechnical considerations, namely, overturning, 

sliding, bearing capacity, and slope stability as well as structural requirements; and 

2) to extend capability of the developed method in the first objective for optimal 

design of integral bridge abutment retaining wall.  

In this study, the design variables of the proposed method are dimensions of 

the wall and steel reinforcements in each wall component. The objective function, 

three basic geotechnical constraints of wall failures (overturning, sliding, and 

bearing) as well as required structural reinforcements followed the same method of 

the optimization problem presented in the past. To take into account of slope 

stability in the optimization problem, the factor of safety based on the Ordinary 

Method of Slice is derived analytically in terms of unknown variables of wall 

dimensions and the center of circular arc failure surface. For integral bridge 

abutment, additional constraints for combined axial compression load and bending 

moment are included in the system of nonlinear constraints of the retaining wall 

optimization. The capabilities of both proposed methods are demonstrated through 

their applications in varieties of general retaining wall problems.  

 

 

Department: ........................................... Student’s Signature .......................................  

Field of Study: ....................................... Advisor’s Signature ......................................  

Academic Year: .....................................   

Civil Engineering 

Civil Engineering 

2011 



vi 
 

ACKNOWLEDGEMENTS 

 

I would like to express my deep sense of gratitude to my thesis supervisor, 

Associate Professor Boonchai Ukritchon, for his helpful guidance, constructive 

suggestions, positive encouragement, and excellent advice throughout my research 

project. It has been a valuable experience working with him. I would like to give 

special thanks to Professor Hiroyuki Tanaka, Hokkaido University, for serving as co-

investigator of this research.   

My great respect and appreciation goes to my thesis committee members: 

Associate Professor Tirawat Boonyatee, Associate Professor Suched Likitlersuang 

and Assistant Professor Siam Yimsiri for their time, constructive criticism and 

suggestions. Moreover, I would like to thank all lecturers in Chulalonkorn University 

for their explicit instructions and useful advice.             

 My sincere thanks go to all officers in International School of Engineering 

(ISE) and AUN/SEED-NET staff for their kindness, helpfulness during my study.  

I am grateful to AUN/SEED-NET scholarship (JICA) for financially 

supporting my study. Without their help, this research would not have been possible.     

    My grateful appreciation goes to all lecturers in Department of Rural 

Engineering at Institute of Technology of Cambodia (I.T.C.). They supported me to 

attain master study at Chulalongkorn University.   

Finally, I would like thank my devoted parents and family members for their 

emotional support, encouragement, concern and motivation. Special thanks to my 

elder brother, Sophal chea, for his concern on my analyses.        

Many thanks are due to many friends in Geotech lab and in Ploy apartment for 

helpful discussions and close friendship. My senior advice is also appreciated. 

 

 

 

 

 

 



vii 
 

CONTENTS 

Page 

ABSTRACT (THAI) .................................................................................................... iv 

ABSTRACT (ENGLISH) .............................................................................................. v 

CONTENTS ................................................................................................................ vii 

ACKNOWLEDGEMENTS .......................................................................................... vi 

LIST OF TABLES ........................................................................................................ xi 

LIST OF FIGURES .................................................................................................... xiii 

CHAPTER I INTRODUCTION .................................................................................... 1 

1.1  Introduction ...................................................................................................... 1 

1.2  Statement of problem ....................................................................................... 1 

1.3  Objective of study ............................................................................................ 2 

1.4  Scope of study .................................................................................................. 2 

1.5  Research benefits ............................................................................................. 3 

CHAPTER II LITERATURE REVIEW ....................................................................... 4 

2.1  Introduction ...................................................................................................... 4 

2.2  Research literature review ............................................................................... 6 

2.3  Geotechnical considerations ............................................................................ 7 

2.3.1  Application of lateral earth pressure theory in retaining wall .................. 7 

2.3.2  Stability of retaining walls ....................................................................... 8 

2.3.3  Overturning stability ................................................................................ 9 

2.3.4  Sliding stability along the base .............................................................. 11 

2.3.5  Bearing capacity stability ....................................................................... 12 

2.3.6  Slope stability......................................................................................... 15 

2.4  Structural design of reinforced cantilever retaining wall .............................. 21 

2.4.1  Design load factor based on ACI Code 318-05 ..................................... 22 

2.4.2  Design of toe slab................................................................................... 23 

2.4.3  Design of heel slab ................................................................................. 23 

2.4.4  Design of stem wall ............................................................................... 23 

2.5  Design of reinforced concrete beam for flexure                                    

(ultimate strength design) .............................................................................. 23 

 



viii 
 

2.6  Design of reinforced concrete beam for flexure (working stress design) ...... 26 

2.7  Design of beam for shear (ultimate strength design) ..................................... 28 

2.8  Design of beam for shear (working stress design) ......................................... 29 

2.9  Design of reinforced concrete column by ACI Code .................................... 30 

2.9.1  Introduction ............................................................................................ 30 

2.9.2  Strength design method for columns ..................................................... 32 

2.9.3  Investigation of column strength in compression-controlled region ..... 33 

2.9.4  Strength reduction factors ...................................................................... 35 

2.9.5  Reinforcement ratio permitted in column design ................................... 35 

2.9.6  Slenderness ratio .................................................................................... 36 

2.9.7  Shear force in columns........................................................................... 37 

2.10  Optimization theory ....................................................................................... 38 

2.10.1  Introduction ............................................................................................ 38 

2.10.2  Problem statement of an optimization ................................................... 39 

2.10.3  Classic optimization approaches ............................................................ 41 

2.11  Cost optimization of concrete structures ....................................................... 42 

2.12  Optimization problem solving techniques ..................................................... 44 

2.12.1  Mathwork’s MATLAB .......................................................................... 44 

2.12.2  Maplesoft MAPLE ................................................................................. 45 

2.12.3  IMSL FORTRAN .................................................................................. 46 

2.12.4  Ziena’s Optimization KNITRO ............................................................. 48 

CHAPTER III RESEARCH METHODOLOGY ........................................................ 49 

3.1  Design variables ............................................................................................. 49 

3.2  Objective function of reinforced retaining wall ............................................. 50 

3.2.1  Concrete volume and steel weight calculation ....................................... 50 

3.2.2  Formwork area calculation .................................................................... 51 

3.3  Cost of material in Thailand .......................................................................... 52 

3.4  Formulation of design constraints for retaining wall ..................................... 53 

3.4.1  Overturning stability constraint ............................................................. 53 

3.4.2  Sliding stability constraints .................................................................... 53 

3.4.3  Bearing stability constraints ................................................................... 53 

3.4.4  Slope stability constraints ...................................................................... 54 

Page 



ix 
 

3.4.5  Additional side constraints ..................................................................... 60 

3.5  Proposed method for optimizing integral bridge abutment wall ................... 60 

3.5.1  Load considered into design .................................................................. 60 

3.5.2  Design variables ..................................................................................... 61 

3.5.3  Objective function of integral bridge abutment wall ............................. 62 

3.5.4  Geotechnical design considerations ....................................................... 63 

3.5.5  Slope stability analysis in bridge abutment wall .................................... 63 

3.5.6  Structural design requirements .............................................................. 65 

3.6  Solvers for optimization problem .................................................................. 69 

3.6.1  MAPLE and MATLAB ......................................................................... 69 

3.6.2  IMSL FORTRAN and KNITRO ........................................................... 70 

3.7  Summary of all constraints and objective function ....................................... 72 

CHAPTER IV RESULTS AND DISCUSSIONS ....................................................... 77 

4.1  General ........................................................................................................... 77 

4.2  Trial solutions ................................................................................................ 80 

4.3  Optimization solutions from computer methods ........................................... 86 

4.4  Comparison between conventional and optimal design of RC           

cantilever retaining wall ................................................................................ 88 

4.5  Results and discussion on two examples ....................................................... 89 

4.5.1  Optimization with effective stress analysis (ESA) ................................ 91 

4.5.2  Optimization with total stress analysis (TSA) ....................................... 93 

4.6  Results on integral bridge abutment .............................................................. 95 

CHAPTER V PARAMETRIC STUDY ...................................................................... 99 

5.1  Introduction .................................................................................................... 99 

5.2  Analysis process ............................................................................................ 99 

5.3  Sensitivity study on concrete strength ........................................................... 99 

5.4  Sensitivity study on yield strength of reinforcing steel ............................... 101 

5.5  Sensitivity study on internal friction angle of backfill soil .......................... 103 

5.6  Sensitivity study on cohesion of base soil ................................................... 106 

5.7  Sensitivity study on internal friction angle of base soil ............................... 107 

Page 



x 
 

CHAPTER VI CONCLUSION AND RECOMMENDATIONS .............................. 111 

6.1  Conclusion ................................................................................................... 111 

6.2  Recommendations for future work .............................................................. 111 

REFERENCES .......................................................................................................... 113 

APPENDICES ........................................................................................................... 117 

 APPENDIX A ....................................................................................................... 118 

 APPENDIX B ....................................................................................................... 140 

 APPENDIX C ....................................................................................................... 144 

 APPENDIX D ....................................................................................................... 152 

BIBIOGRAPHY ........................................................................................................ 160 

 

Page 



xi 
 

LIST OF TABLES 

Page 

Table 2.1 Summary of past researches .......................................................................... 7 

Table 2.2 Meaning of represented symbols in typical slices ....................................... 18 

Table 2.3 Summary of unknowns and equations associated with method                     

of slices ........................................................................................................ 19 

Table 2.4 List of strain limit table in column design ................................................... 34 

Table 3.1 Unit price index of concrete ......................................................................... 52 

Table 3.2 Unit price index of steel reinforcement SD40 ............................................. 53 

Table 3.3 Side constraints on critical center of circular arc failure surface ................. 59 

Table 3.4 FSmin and coordinate of critical center position (x0,y0) ................................ 59 

Table 3.5 Additional lower and upper side constraints................................................ 60 

Table 3.6 FSmin and coordinate of critical center position (x0,y0) ................................ 64 

Table 3.7 Reaction and moment at end of supports and zero shears ........................... 67 

Table 3.8 Summary of side constraints in abutment wall ............................................ 67 

Table 3.9 Central finite difference coefficient ............................................................. 72 

Table 3.10 Summary of all design constraints in conventional retaining wall ............ 75 

Table 3.11 Summary of all design constraints in integral bridge abutment wall ........ 76 

Table 4.1 Initial input used in optimal design of conventional retaining wall  

(Effective stress analysis) ............................................................................ 78 

Table 4.2 Initial input used in optimal design of conventional retaining wall        

(Total stress analysis) .................................................................................. 79 

Table 4.3 Trial solutions by changing X1 .................................................................... 81 

Table 4.4 Trial solutions by changing X3 .................................................................... 82 

Table 4.5 Trial solutions by changing X2 .................................................................... 83 

Table 4.6 Trial solutions by changing X1 and X3 ....................................................... 85 

Table 4.7 Optimal solutions with different optimization solvers ................................ 86 

Table 4.8 Optimal solutions with different optimization solvers in case of       

including slope constraints .......................................................................... 87 

Table 4.9 Conventional design of RC cantilever retaining wall .................................. 88 

Table 4.10 Optimization solutions of example 1 (ESA) .............................................. 91 

Table 4.11 Optimization solutions of example 2 (ESA) .............................................. 92 



xii 
 

Table 4.12 Optimization solutions of example 1 (TSA) .............................................. 93 

Table 4.13 Optimization solutions of example 2 (TSA) .............................................. 94 

Table 4.14 Input parameters for finding maximum shear force .................................. 95 

Table 4.15 Input parameters for optimal design of bridge abutment wall ................... 96 

Table 4.16 Optimal dimension and reinforcement of example 1 ................................. 97 

Table 4.17 Optimal dimension and reinforcement of example 2 ................................. 98 

Table 5.1 Input parameters used in the analysis .......................................................... 99 

Table 5.2 Effect of concrete strength on optimal solution (ESA-USD) .................... 100 

Table 5.3 Effect of yielding strength on optimal solution (ESA-USD) ..................... 102 

Table 5.4 Effect of internal friction angle on optimal solution (ESA-USD) ............. 104 

Table 5.5 Effect of cohesion of base soil on optimal solution (ESA-USD) .............. 106 

Table 5.6 Effect of internal friction angle of base soil on optimization             

solutions (ESA-USD) ................................................................................ 108 

Table A.1 Important input parameters ....................................................................... 120 

Table A.2 Summation of resisting moment acting on retaining wall ........................ 122 

Table A.3 Summation of driving moment acting on retaining wall .......................... 123 

Table C.1 Input parameters ........................................................................................ 145 

Page 



xiii 
 

LIST OF FIGURES 

Page 

Figure 2.1 Types of retaining structures (Wang, 1992) ................................................. 4 

Figure 2.2 Terms used in conventional reinforced concrete cantilever              

retaining wall ................................................................................................. 5 

Figure 2.3 Proportions in conventional design of retaining wall (Das, 2007) ............... 6 

Figure 2.4 Assumption for the determination of lateral earth pressure:                       

(a) cantilever wall (b) gravity wall (Das, 2007) ............................................ 8 

Figure 2.5 Geotechnical failure modes of retaining wall (Das, 2007) ........................... 9 

Figure 2.6 Overturning stability assuming that Rankine pressure is valid               

(Das, 2007) .................................................................................................. 10 

Figure 2.7 Checking for sliding along the base (Das, 2007) ....................................... 11 

Figure 2.8 Checking bearing capacity and eccentricity under base slab                  

(Das, 2007) .................................................................................................. 13 

Figure 2.9 Definition of factor of safety with various failure surface             

(Abramson et al., 2002) ............................................................................... 16 

Figure 2.10 Division of soil mass into n vertical slices (Abramson et al., 2002) ........ 17 

Figure 2.11 Force acting on a typical slice (Abramson et al., 2002) ........................... 18 

Figure 2.12 Bending and shear failure of reinforced concrete retaining wall ............. 22 

Figure 2.13 Actual and equivalent stress distributions at failure                        

(Ricketts et al. 2003) ................................................................................... 24 

Figure 2.14 Rectangular concrete beam with tension steel only                        

(Ricketts et al. 2003) ................................................................................... 26 

Figure 2.15 Combined bending and axial load in column (McGregor, 2002) ............. 30 

Figure 2.16 Load-moment strength interaction diagram (Hassoun, 2005) .................. 31 

Figure 2.17 Compression controlled failure in column section (Hsu, 2010) ............... 33 

Figure 2.18 Net tensile strain in column section (Nilson, 2004) ................................. 35 

Figure 2.19 Variation of strength reduction factor with net tensile strain           

(Nilson, 2004) .............................................................................................. 36 

Figure 2.20 Effective lengths of columns and length factor k (Hassoun, 2005) ......... 37 

Figure 2.21 Minimum of f(x) and maximum of –f(x) at point x* ............................... 38 

Figure 2.22 Boundary points of optimization (Rao, 2010) .......................................... 40 



xiv 
 

Figure 3.1 Cross section of the RC cantilever retaining wall used for               

optimum design ........................................................................................... 49 

Figure 3.2 (a) Shape of a reinforced concrete beam (b) steel bar cross section .......... 50 

Figure 3.3 Formwork calculation ................................................................................. 51 

Figure 3.4 (a) Conventional circular arc failure surface (Murthy, 2002) and (b)  

critical failure mechanism using AutoSLOPE (Ukritchon et al., 2004) ...... 55 

Figure 3.5 Ordinary Method of Slices in RC cantilever retaining wall ....................... 55 

Figure 3.6 Arc failure surfaces correspond to their center positions ........................... 58 

Figure 3.7 Input of example for comparison of critical safety factor of slope ............ 59 

Figure 3.8 Design variables of integral bridge abutment wall ..................................... 61 

Figure 3.9 Reinforcing steel used in bridge abutment wall ......................................... 62 

Figure 3.10 Input of example for comparison of critical safety factor of slope .......... 64 

Figure 3.11 Support modeling of abutment wall ......................................................... 66 

Figure 3.12 Moment and shear diagram (a) due to uniform load (b) due to      

triangular load (Hassoun, 2005) .................................................................. 66 

Figure 3.13 Net tensile strains and proportion of c/d (Nilson, 2004) .......................... 68 

Figure 3.14 Finite difference approximations in one and two dimensions .................. 70 

Figure 4.1 Design variables X[i] ................................................................................... 80 

Figure 4.2 Effect of X1 on safety factor of slope and total cost ................................... 81 

Figure 4.3 Effects of X3 on safety factor of slope and total cost ................................. 83 

Figure 4.4 Effects of X2 on safety factor of slope and total cost ................................. 84 

Figure 4.5 Effect of changing X1 and X3 on factor of slope and total cost .................. 85 

Figure 5.1 Effect of concrete strength on total cost ................................................... 100 

Figure 5.2 Effect of concrete strength on optimal dimensions .................................. 101 

Figure 5.3 Effect of steel yield strength on total cost ................................................ 102 

Figure 5.4 Effect of concrete strength on optimal dimensions .................................. 103 

Figure 5.5 Effect of internal friction angle of backfill soil on total cost ................... 105 

Figure 5.6 Effect of internal friction angle of backfill soil on optimal           

dimensions ................................................................................................. 105 

Figure 5.7 Effect of cohesion of base soil on total cost ............................................. 107 

Figure 5.8 Effect of cohesion of base soil on optimal dimensions ............................ 107 

Figure 5.9 Effect of angle of internal friction of base soil on total cost .................... 109 

Page 



xv 
 

Figure 5.10 Effect of angle of internal friction of base soil on design dimensions ... 109 

Figure A.1 Typical section of RC cantilever retaining wall ...................................... 119 

Figure A.2 Checking for eccentricity and bearing capacity failure ........................... 125 

Figure A.3 Pressure distribution under footing.......................................................... 130 

Figure A.4 Pressure distribution for toe design ......................................................... 130 

Figure A.5 Pressure distribution for heel design ....................................................... 133 

Figure A.6 Force distribution on stem ....................................................................... 136 

Figure B.1 Strain and stress diagrams for ultimate strength design (Lee, 2009) ....... 141 

Figure B.2 Variation of with net tensile strain t and c d for Grade 60 

reinforcement steel (Hassoun, 2005) ......................................................... 142 

Figure C.1 Assuming cross section of bridge slab on simply supported span L ....... 145 

Figure C.2 Shear and bending moment due to uniformly distribution load .............. 146 

Figure D.1 Pressure distribution on conventional retaining wall .............................. 153 

 

 

Page 



1 
 

CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

A retaining wall may be referred to a vertical structure that can hold soil 

movement. It was designed and constructed to resist the lateral soil pressure. For 

some special cases, a retaining wall is built for supporting vertical loads and for river 

bank protection system. Generally, retaining walls have been constructed with the 

plain or reinforced concrete. The study in this research is concerned with reinforced 

concrete cantilever retaining wall.  

Geotechnical stability constraints of wall failures play an important role in 

controlling wall dimensions in the analysis. Thus, foundations and retaining walls are 

designed to satisfy adequate safety against failure. The practical problems lead to the 

minimization problem in finding a set of decision variables that optimize the objective 

function and satisfy a set of predefined design restrictions. Since the problems are 

complicated, they require systematic and rational approaches of solution. Due to 

advantages of numerical method approach, most practical optimization problems are 

usually solved using computer methods. 

1.2 Statement of problem  

In design of retaining wall, designers usually assume some dimensions and 

then check the trial sections against stability conditions. Once, results of stability 

analysis turn out to be undesirable, these trial sections must be revised until they meet 

all stability criteria. This conventional design consumes more times and is not 

efficient. In case that revised structural dimensions lead to safe design, the cost of 

structures may not be optimal and highly depends on the experience of designers. As 

a result, designers should analyze the structures to find out the optimal dimensions 

that satisfy all modes of failures and give the minimum cost of whole structures.  

Researches of optimal design of cantilever retaining wall has been studied in 

the past, namely, Saribas and Erbatur (1996), Ceranic et al. (2001), Castillo et al. 

(2004), Ypes et al. (2008), Babu and Basha (2008), and Khajehzadeh et al. (2010). 

These studies have proposed different design constraints and optimization solvers to 
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find the optimal solution of nonlinear programming problem arising from 

geotechnical and structural constraints. However, none of them have considered 

geotechnical constraint of slope stability due to difficulties and complexities in 

mathematically deriving constraint of slope stability.  

This is contrast to three basic geotechnical wall failures, namely, overturning, 

sliding, and bearing capacity, whose constraints are generally and explicitly presented 

in most foundation textbooks. Similarly, structural constraints of shear and bending 

moment resistances are easily available in textbooks of reinforced concrete structure. 

Because those previous researches ignore one of possible wall failures (slope 

stability) in the analysis, they may not present the most optimal design of cantilever 

retaining wall.  

1.3 Objective of study 

The objective of this research is to develop an efficient technique for optimal 

design of conventional reinforced concrete cantilever retaining wall including 

geotechnical considerations, namely, overturning, sliding, bearing capacity, and slope 

stability, as well as structural requirements. The second objective is to extend 

capability of the developed method in the first objective for optimal design of integral 

bridge abutment retaining wall.  

1.4 Scope of study 

Scopes of this study are covered as outlines below: 

1. Two-dimensional plane strain analysis 

2. Retaining structures with backfill and surcharge loading 

3. Neglect effect of water table 

4. Soil below base of foundation assumes to be homogenous 

5. Conventional retaining wall resist lateral earth pressure without axial load 

6. Special retaining wall terms as integral bridge abutment retaining wall 

resists lateral earth pressure with axial load from bridge 

 

 



3 
 
1.5 Research benefits 

 The benefits of this research are expected as follow: 

1. This research makes important contribution to the research of retaining 

wall, namely, reinforced cantilever wall, and integral bridge abutment wall 

2. A new formulation of optimal design of integral bridge abutment is 

proposed 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Introduction 

 A retaining wall may be referred to a vertical structure that can hold soil 

movement. It was designed and constructed to resist the lateral soil pressure.  

Retaining walls may be classified in many various types as shown in Figure 

2.1 such as gravity walls, cantilever retaining walls, counterfort retaining walls, 

buttressed retaining walls, bridge abutments, box culverts, semi-gravity walls and 

basement walls.   

 

Figure 2.1 Types of retaining structures (Wang, 1992) 
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A conventional reinforced concrete cantilever retaining walls are constructed 

from reinforced concrete. Basically, it does not resist to any vertical loads. The typical 

components of conventional retaining wall composes a thin stem (can be a tapered 

front face), a toe slab, and a heel slab. Figure 2.2 displays the wall components of 

reinforced concrete cantilever retaining wall. Another special case of retaining 

structures is termed as integral bridge abutment. According to Hassoun (2005), bridge 

abutments are retaining walls that are supported vertical load from bridge deck.  

Soil below foundation

Backfilll

Front face Back face

Footing key

Toe Heel

Top stem

Bottom stem

Footing cover

Footing

Stem

Construction joint

Depth of embedment

Stem main reinforcement

Heel main reinforcement

Toe main reinforcement
 

Figure 2.2 Terms used in conventional reinforced concrete cantilever retaining wall 

There are two steps in designing of a cantilever retaining wall. First, once 

calculations of lateral pressures are made, the whole structure is checked for stability. 

These include check for possible overturning, sliding, eccentricity, and bearing 

capacity failures. Second, each component of the structure is analyzed for adequate 

shear and moment strengths, thus steel reinforcement of each component is 

determined. 

Most of practical problems, designers usually select initial dimensions by 

using approximate proportions of various wall components as shown in Figure 2.3. 

Once, results of stability analysis turn out to be undesirable, these trial sections must 

be revised until they meet all stability criteria. 
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Figure 2.3 presents the approximate proportion in conventional design. Two 

important parameters are total height of wall (H) and soil embedment (D). 

 

Figure 2.3 Proportions in conventional design of retaining wall (Das, 2007)  

2.2 Research literature review 

Several researches have been carried out in the past. Thus, some 

methodologies for analysis and optimal design of retaining structures are developed 

by many researchers.  Saribas and Erbatur (1996) presented a detail study on optimum 

design of reinforced concrete cantilever retaining walls with seven geometrical and 

reinforcement design variables. They applied a constrained nonlinear programming to 

optimum design which was solved by a specially prepared program. Ten modes of 

wall failure including overturning, sliding, eccentricity, bearing capacity, shear and 

bending moment of toe slab, heel slab and stem of wall were considered.  

Ceranic et al. (2001) studied application of simulated annealing algorithm to a 

problem with only geometrical design variables. Babu and Basha (2008) presented an 

approach for reliability-based design optimization of reinforced concrete cantilever 

retaining wall. Wall failure criteria were considered similarly as Saribas and Erbatur. 

The analysis was performed by treating input parameters as random variables. 

Khajehzadeh et al. (2010) presented an effectiveness of particle swarm optimization 

with passive congregation algorithm to economic design of retaining wall.  The 

problem consisted of eight geometrical and reinforcement design variables. The 
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constraints were the same as Babu and Basha (2008). The optimization algorithm was 

coded in MATLAB. Table 2.1 summarizes significances and contributions of those 

researches to the field of optimization of retaining wall. 

Table 2.1 Summary of past researches  

Researchers Objective Result Remarks 

Saribas and Erbatur 
(1996) 

Optimum design 
(first researchers) 

Optimal design and 
sensitivity studies 

No slope 
constraint 

Cernical et al. (2001) 

Optimum design 
using simulated 

annealing 
algorithm 

Successfully applied 
No slope 
constraint 

Castillo et al. (2004) 

Add safety factors 
and probability 
based optimal 

design 

Optimal design and 
sensitivity studies 

No slope 
constraint 

Ypes et al. (2007) 

Economic 
optimization of 

retaining wall for 
road construction 

Design a parametric 
study for different 

backfill and bearing 
conditions 

No slope 
constraint 

Babu and Basha 
(2008) 

Efficient and 
economic design 

Design charts for wall 
proportions 

No slope 
constraint 

Khajehzadeh et al. 
(2010) 

Optimum design by 
particle swarm 

algorithm 

Optimal design and 
more economical 

No slope 
constraint 

 

2.3 Geotechnical considerations 

2.3.1 Application of lateral earth pressure theory in retaining wall 

Figure 2.4a shows a frictionless retaining wall with a granular backfill (c’ = 0) 

whose slope makes an angle α with respect to the horizontal. Based on Rankine’s 

theory, the active earth pressure coefficient may be expressed as:   

2 2

a 2 2

cos cos cos '
k cos

cos cos cos '

    
 

    
 (2.1) 

where ' = internal friction angle of backfill 

 α = backfill angle with respect to the horizontal  

At any depth z, the Rankine active pressure maybe expressed as:  

'
a 1 azk      (2.2) 
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The Rankine active force per unit length of the wall is calculated as: 

2
a 1 a

1
P H ' K

2
   (2.3) 

where 1 = unit weight of backfill 

 H’ = depth of active soil pressure on wall 

 Ka = Rankine active earth pressure coefficient 

 As shown in Figure 2.4a, the resultant force, Pa, is inclined at an angle  to the 

horizontal and acts at distance H ' 3  from the base of the wall.       

 

Figure 2.4 Assumption for the determination of lateral earth pressure: (a) cantilever 

wall (b) gravity wall (Das, 2007) 

Figure 2.4b illustrates the application of Coulomb’s active earth pressure 

theory. In Coulomb’s theory, Coulomb’s active force is function of wall friction 

angle, ' , which depends on types of backfill material. 

According to Das (2007), effects of water table and hydrostatic pressure in the 

retained soil should not be encountered in retaining wall design. It is important to 

provide the drainage facilities for retained soils. 

2.3.2 Stability of retaining walls 

A retaining wall may fail in any of the following geotechnical modes as shown 

in Figure 2.5. 

 It may overturning about its toe (see Figure 2.5a) 

(a) (b) 
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 It may sliding along its base (see Figure 2.5b) 

 It may fail due to the loss of bearing capacity of the underlying soil below 

the base (see Figure 2.5c)  

 It may fail as slope mechanism of deep-seated shear failure (see Figure 

2.5d) 

 It may fail due to excessive settlement of the base 

 

Figure 2.5 Geotechnical failure modes of retaining wall (Das, 2007) 

2.3.3 Overturning stability 

Figure 2.6 illustrates a cantilever wall with a sloping backfill ( ) as well as all 

forces acting on the wall. Based on the assumption that the Rankine active pressure is 

valid where: 

Pa = active earth pressure acting at a height H’/3 from the base on section AB 

 h aP P cos  = horizontal active earth pressure 

 v aP P sin  = vertical active earth pressure 

PP = Rankine passive earth pressure at the toe side of the wall 

(a) (b) 

(c) (d) 

Overturning 
failure  

Sliding 
failure  

Bearing 
failure  

Deep-seated 
Shear failure  
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 W1, W2 = weight of retained soil 

 W3, W4, W5 = weight of concrete stem and base 

 qtoe = qmax = maximum upward soil pressure at left corner of toe slab 

 qheel = qmin = minimum upward soil pressure at right corner of heel slab 

 
Figure 2.6 Overturning stability assuming that Rankine pressure is valid (Das, 2007) 

Rankine passive pressure at the toe side of the wall can be calculated as: 

  2
P p 2 2 pP 1 2 K D 2c ' K D    (2.4)  

where 2 = unit weight of soil in front of the heel and under the base slab 

 Kp = Rankine passive earth pressure coefficient 

 D = depth of soil embedment   

2 2c ' , ' = cohesion and effective angle of internal friction of soil base, 

respectively 

 Rankine passive earth pressure coefficient can be expressed as:  

 2
p 2K tan 45 ' 2    (2.5) 



11 
 

The factor of safety against overturning about the toe (point C) as shown in 

Figure 2.6 can be expressed as: 

R
(overturning)

O

M
FS

M
 


  (2.6) 

where  OM = sum of the moment of forces tending to overturn about point C 

RM = sum of the moment of forces tending to resist overturning about C 

Das (2007) reported that passive force (PP) in front of toe may be neglected in 

calculation of resisting moment (MR). He also recommended using minimum 

desirable value of the factor of safety against overturning ranged from 2 to 3. 

2.3.4 Sliding stability along the base 

Figure 2.7 shows the free body diagram for sliding stability calculation.   

 

Figure 2.7 Checking for sliding along the base (Das, 2007) 

From Figure 2.7, the factor of safety against sliding may be expressed as: 

R
(sliding)

d

F
FS

F
 


  (2.7) 

where  RF = sum of the horizontal resisting forces 

dF = sum of the horizontal driving forces 
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Sum of the horizontal resistance forces RF is calculated as below: 

 R a PF V tan ' B C' P        (2.8)  

where V = sum of the vertical forces  

'  = angle of friction between the soil and the base slab 

B = length of the base slab 

C’a = adhesion between the soil and the base slab 

PP = Rankine passive pressure at the back of wall  

In many cases, the passive force PP is ignored in calculating the factor of 

safety against sliding. In general, the interface shear resistance for friction and base 

adhesion can be calculated as: 

1 1' k '    (2.9) 

' '
a 2 2C k c  (2.10) 

In most cases, coefficient k1 and k2 are in the range from 1 2  to 2 3  (Das, 

2007). 

A minimum factor of safety of 1.5 against sliding is generally required (Das, 

2007). NAVFAC (1986) recommended using factor of safety equal to 2.0 and 1.5 for 

with and without passive force consideration, respectively.    

2.3.5 Bearing capacity stability 

Figure 2.8 shows the distribution of vertical pressures transmitted from the 

base slab to the underlying soil. The vertical pressure under the base slab should be 

checked against the ultimate bearing capacity of the soil.  

The maximum and minimum pressures below the base can be calculated based 

on Figure 2.8 as: 

max toe

V 6e
q q 1

B B
    
 

              (2.11) 

min heel

V 6e
q q 1

B B
    
 

              (2.12)  

where 
 

V = sum of vertical forces  

e = eccentricity of the resultant R 
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B = length of base slab 

When the value of the eccentricity, e, is greater or equal than B 6 , the sign of 

qmin becomes negative. This means that tensile stress may develop at the end of the 

heel section. This kind of stress is not desirable because most soils cannot resist 

tension. If the result of analysis turns out that e is greater than B 6 , the design should 

be revised again in order to avoid tensile stress along the wall base.    

 

Figure 2.8 Checking bearing capacity and eccentricity under base slab (Das, 2007) 

Ultimate bearing capacity of a shallow foundation can be calculated based on 

the general ultimate bearing capacity equation as follows: 

'
u 2 cs cd ci c qs qd qi q 2 s d i

1
q c F F F N q 'F F F N B'F F F N

2         (2.13) 

where c2’ = cohesion of soil below foundation 

 q’ = effective stress at the level of the bottom of the foundation 

 2  = unit weight of soil below foundation 

 B’ = effective width of foundation 
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 cs qs sF ,F ,F = shape factors 

 cd qd dF ,F ,F = depth factors 

ci qi iF ,F ,F = inclination factors 

c qN , N , N = bearing capacity factors 

Effective width of foundation (B’) and effective stress at the level of the 

bottom of the foundation (q’) can be calculated based on Figure 2.8 as: 

2q ' D   (2.14) 

B ' B 2e   (2.15) 

where 2  = unit weight of soil below foundation 

D = depth of soil embedment 

 e = eccentricity 

 B = length of base slab  

Bearing Capacity Factors 

The value of c qN , N ,and N for a given soil friction angle can be calculated as:  

 tan ' 2 o
qN e tan 45 ' 2                  (2.16) 

  c qN N 1 cot '                 (2.17) 

  qN 2 N 1 tan '                  (2.18) 

 Nc from Equation (2.17) was derived by Prandtl (1921) and Nq from Equation 

(2.16) was presented by Reissner (1924). N  from Equation (2.18) was given by 

Caquot and Kerisel (1953) and Vesic (1973).     

For total stress analysis where internal friction angle equals to zero, bearing 

capacity factor values are taken respectively as Nc = 5.14, Nq = 1.0, and N  = 0.0.  

Once the ultimate bearing capacity of the soil has been calculated by using 

Equation (2.13), the factor of safety against bearing capacity failure can be calculated 

as:  

u
bearing

max

q
FS

q
  (2.19) 
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where qu = ultimate bearing capacity of a shallow foundation 

 qmax = maximum upward soil ressure below the base  

Das (2007) recommends to use factor of safety for bearing capacity equal to 3.  

2.3.6 Slope stability 

A. Definition of factor of safety in slope stability 

Factor of safety in slope stability defined as the ratio of available unit shear 

stress, f , to required unit shear stress or mobilized shear stress, m . The required 

shear stress is analyzed by slope calculations. Available shear strength depends on the 

properties of soil which are measured from laboratory or field test (Chowdhury et al., 

2010).  

The expression of safety factor can be written as: 

f

m

FS





 (2.20) 

where  FS =  factor of safety  

f = available shear stress of soil 

m = mobilized shear stress required for equilibrium along the potential failure 

surface 

 Based on Mohr-Coulomb equation, shear stress in term of effective stress can 

be determined as: 

f nfc ' ' tan '        (2.21) 

m m nf mc ' ' tan '      (2.22) 

where c ', ' = available shear strength parameters   

 m mc ' , ' = required or mobilized shear strength parameters    

 Substituting Equation (2.21) to Equation (2.20), mobilized shear stress m can 

be written as: 

f
m nf

c ' tan '
'

FS FS FS

 
      (2.23) 
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Comparing Equation (2.22) with Equation (2.23), mobilized shear strength 

parameters can be written as:    

m

c '
c '

FS
  (2.24) 

m

tan '
tan '

FS


   (2.25) 

 From Equation (2.24) and (2.25), FS can be defined in the formulae as: 

m mFS c ' c ' tan ' tan '     (2.26) 

The assumption in Equation (2.26) implies that the factor of safety with 

respect to the cohesion parameter is the same as that with respect to the friction 

parameter (Chowdhury et al., 2010). 

 However, several formulas of factor of safety may be defined by various 

definitions. Figure 2.9 illustrates the definition of factor of safety with different 

assumption of potential failure surface.  

 

Figure 2.9 Definition of factor of safety with various failure                               

surface (Abramson et al., 2002) 
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B. Method of Analysis 

Slope stability can be analyzed using several methods, namely: 

1. Limit equilibrium method (LEM) 

2. Limit analysis   

3. Finite difference method (FDM) 

4. Finite element method (FEM) 

C. Limit Equilibrium Method: method of slices 

The conventional limit equilibrium methods aim to investigate the equilibrium 

of the soil mass tending to slide down under the influence of gravity. Limit 

equilibrium methods for slope stability is analyzed by dividing soil mass of the failure 

slope into a number of vertical slices and treating each individual slice as a unique 

sliding block as shown in Figure 2.10. In Figure 2.10, the 14 smaller slices are divided 

above the slip surface. The groundwater table is presented and surface load acts on 

inclined slope.  

Importantly, since computer programs will aid in slope calculation, method of 

slices can be applied to the complex problem such as: 

1. complex slope geometries 

2. complex variable soil conditions 

3. complex external boundary loads 

soil unit 1

soil unit 2

soil unit 3

GWL

Surface
Load

Failure surface

1
3

6

8

10

 

 

Figure 2.10 Division of soil mass into n vertical slices (Abramson et al., 2002) 
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Figure 2.11 shows free body diagram of the forces acting on a typical slice 

taking from Figure 2.10. The represented symbols in Figure 2.11 are summarized in 

Table 2.2. Table 2.3 shows summary of unknowns and equations associated with 

method of slices from general cases. 

 

Figure 2.11 Force acting on a typical slice (Abramson et al., 2002) 

Table 2.2 Meaning of represented symbols in typical slices 

F = factor of safety ZL = left interslice force 

Sa = available strength = C N ' tan   ZR = right interslice force 

Sm = mobilized strength L = left interslice force angle 

U =  pore water force R = right interslice force angle 

U =  surface water force hL = height to force ZL  

W = weight of slice hR = height to force ZR 

N’ = effective normal force = inclination of slice base 

Q = external surcharge  = inclination of slice top 

Kv = vertical seismic coefficient  = inclination of surcharge 

Kh = horizontal seismic coefficient b = width of slice  

h = average height of slice  hc = height to centroid of slice 
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Note: In Table 2.3, assuming n is number of slices 

Table 2.3 Summary of unknowns and equations associated with method of 

slices 

Number of unknowns Total Number 

Factor of safety 1 

Normal force at the base of a slice, N’ n 

Location of base resultant n 

Mobilized shear force n 

Interslice force resultant, Z n-1 

Interslice force orientation,   n-1 

Interslice force location (line of thrust) n-1 

Total number of unknowns 6n-2 

Number of equations Total Number 

Horizontal force equilibrium n 

Vertical force equilibrium n 

Mohr-Coulomb failure criterion n 

Moment equilibrium n 

Total number of equations 4n 

 

Based on Table 2.3, slope problem is statically indeterminate because number 

of unknowns is greater than the number of available equations. Thus, several 

assumptions are made in some methods which can be called as non-rigorous solutions 

such as Ordinary Method of Slices and Bishop’s Simplified. However, in rigorous 

solutions, all equilibrium equations are completely considered such as Spencer, 

Morgenstern-Price and Janbu’s rigorous method (Abramson et al., 2002). 

D. Application of Ordinary Method of Slices (OMS) in slope stability analysis 

Ordinary Method of Slices (OMS) is one of the simplest procedures based on 

method of slices to estimate the stability of a slope (Abramson et al., 2002). It is 

considered as the earliest methods that derived factor of safety directly without doing 

any complicated numerical iterations.     

OMS assumes that the interslice force resultants for all slices are parallel to the 

base of the slice. All interslice forces are neglected in this method. From Figure 2.11 
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for simple case without seismic coefficient (Kv=Kh=0), the procedure for deriving 

factor of safety in this method is described as below: 

[1] The normal force (N’) is calculated from summation of slice forces 

perpendicular to the base of the slices (see Figure 2.11).        

   F N ' U W cos U cos Q cos 0             (2.27) 

N’ from Equation (2.27) can be determined as: 

   N ' U W cos U cos Q cos           (2.28) 

[2] The overall moment equilibrium of the forces about center of the circular 

arc failure surface for each slice is equal to zero. 

   

n

0
i 1

n n

m
i 1 i 1

M W U cos Qcos R sin

U sin Qsin R cos h S R 0





 

       

         

 

 
          (2.29)  

where R = radius of the circular failure surface 

 h = average height of the slice 

[3] Mohr-Coulomb mobilized shear strength (Sm) along the base of each 

slice is computed by: 

m

C N ' tan
S

FS

 
  (2.30) 

where C = cohesion of the soil 

 N ' tan = frictional shear strength components of the soil 

 Substituting Equation (2.30) into (2.29), the following equation can be written: 

 

n

i 1

n n

i 1 i 1

W U cos Qcos R sin

C N ' tan
U sin Qsin R cos h R 0

FS





 

      

              



 
 (2.31) 

If FS is assumed to be the same for all slices, thus FS in Equation (2.31) can 

be computed by: 
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 

 

n

i 1
n n

i 1 i 1

C N ' tan R
FS

W U cos Qcos R sin U sin Qsin R cos h



 
 

  


              



 
 (2.32) 

Where    N ' U W cos U cos Qcos           

 The general formulation in Equation (2.32) is usually used to calculate factor 

of safety according to the assumptions of OMS. 

E. Minimum factor of safety associated with a critical slip surface 

In summary, many potential slip surfaces of whatever shape can be analyzed 

by Limit Equilibrium Methods. Each of these slip surfaces corresponds to different 

factor of safety FS that can be found by trial and error. In addition to the conventional 

method based on repeated trials, optimization techniques can be used to search for 

minimum factor of safety corresponding to critical failure surface and location 

(Chowdhury et al., 2010). Due to complexities of optimization approaches, minimum 

of factor of safety is usually solved by computer programs.  

In the practical design, Teng (1962) recommended to use factor of safety equal 

to 3.0 for the cohesive resistance and 2.0 for the friction resistance.  

2.4 Structural design of reinforced cantilever retaining wall 

Structural design of reinforced concrete cantilever retaining wall is concerned 

with computing reinforcing steel to provide adequate shear and moment strengths for 

any applied loads on each wall components. Figure 2.12 illustrates the pressure 

distribution come from external loads and soil pressures which acts on component 

parts of the wall. 

 Based on Figure 2.12, the stem will bend as cantilever, so that tensile 

reinforcing steel will be placed towards the backfill. Heel slab will bend as cantilever 

which has tensile face upwards due to net downwards pressure from surcharge, soil 

weight and self-weight of concrete acting on it. Thus, reinforcing steel in placed at 

upward. Anyway, for toe slab, since the net pressure will act upwards, reinforcing 

steel must be placed at the bottom face. The thickness of stem, heel, and toe slab must 

design to provide sufficient compressive stress for resisting any applied shear stress. 

Generally, shear force and bending moment generated from acting loads should not be 
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allowed to exceed nominal strength from concrete and steel reinforcement. Otherwise, 

it will develop large crack at critical section of wall as shown in Figure 2.12.     

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2.12 Bending and shear failure of reinforced concrete retaining wall 

2.4.1 Design load factor based on ACI Code 318-05  

When lateral earth pressure H acts with dead load (DL) and live load (LL), 

ACI Code (2005) specifies that the required strength U be evaluated using the 

following load factors: 

U = 1.2D + 1.6L + 1.6H (2.33) 

From ACI Code (section 9.2.1) in situation where dead load (DL) and live 

load (LL) reduce the effect of earth pressure (H), the live load is neglect and a factor 

load of 0.90 is used for the dead load, thus the required strength U can be evaluated 

as:  

U = 0.9D + 1.6H (2.34) 

For any combination of dead load (DL), live load (LL), and earth pressure (H), 

the required strength U is not to be less than:   

U = 1.2D + 1.6L (2.35) 
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2.4.2 Design of toe slab 

The toe slab is treated as a cantilever beam 1 meter in width fixed at the front 

face of the wall, with the critical section for the moment at the front face of the wall 

and the critical section for shear (inclined cracking at a distance d from the front face 

of the wall (one-way action). In designing of retaining wall, shear force usually 

controls the adequate thickness of toe. Load factor of 1.60 on soil pressure 

distribution below base, and 0.90 on the weight of the concrete are used for design 

load since it reduces the effect of the horizontal earth pressure as recommended by the 

ACI Code (Section 9.2.1). Weight of soil cover on toe is neglected for conservative 

design. Detailed expressions of toe slab design are given in appendix A.  

2.4.3 Design of heel slab  

The applied loads used in computing design moments are the weight of 

backfill soil, surcharge, and concrete acting downward, along with soil bearing 

pressure acting upward. The heel slab is treated as a cantilever beam 1 meter in width 

fixed at the rear face of the wall. Effects of upward pressure under the heel are 

neglected as recommended by ACI Code (2005). Load factor of 1.20 on the weight of 

soil and concrete and 1.60 on the weight of any surcharges are used for design loads. 

Detail expressions of heel slab design are given in appendix A.   

2.4.4 Design of stem wall  

In stem design, both small axial forces by self-weight of wall and any 

downward friction (applied by the soil on the back face) are neglected. The stem is 

assumed to be a cantilever beam 1 meter in width fixed at the top of the footing. Load 

factor of 1.60 on lateral soil pressures is used for design loads. Normally, the 

thickness of stem is controlled by the bending moment. Detailed expressions of stem 

slab design are given in appendix A. 

2.5 Design of reinforced concrete beam for flexure (ultimate strength design) 

A. Stress distribution and design assumptions  

Figure 2.13 illustrates a cross section of a beam with width (b), effective depth 

(d), and tensile steel (As) placed in tension zone at the bottom.   



24 
 

 

Figure 2.13 Actual and equivalent stress distributions at failure (Ricketts et al. 2003) 

  Figure 2.13 shows the actual and equivalent stress distributions for tension 

steel design. In balanced conditions, the concrete reaches its maximum strain of 0.003 

while tension steel reaches it yield strength (fs = fy). The concrete stress of 0.85f’c is 

assumed to be uniformly distributed over a depth a.  

Based on Figure 2.13, the depth of the equivalent rectangular stress block, a, 

can be calculated by:  

1a c   (2.36) 

where c = distance between the top of the compressive section and the neutral axis 

The factor 1  can be calculated following the concrete strength as: 

1 c

0.85

1.09 0.008f '

0.65


  



if   
c

c

c

f ' 30 MPa

30 MPa f ' 55 MPa

f ' 55 MPa


 


           (2.37) 

B. Compute tensile steel area for bending moment only 

The calculated factored moment, Mu, must not be allowed to exceed nominal 

flexure strength of a member, nM , which is stated in Equation (2.38).  

n uM M   (2.38) 

For force equilibrium conditions referred to Figure 2.13, it can be written as:   

c s y0.85f ' ab A f  (2.39) 
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s y y

c c

A f f d
a

0.85f ' b 0.85f '


   (2.40) 

Where sA

bd
     percentage of tensile steel 

Nominal flexure strength provided by reinforcing steel can be computed as: 

n s y

a a
M T d A f d

2 2
         
   

 (2.41) 

The allowable nominal flexural strength is calculated as: 

n s y

a
M A f d

2
     
 

 (2.42) 

y
n s y

c

f
M A f d 1

1.7f '

 
    

 
 (2.43) 

y2
n y

c

f
M f bd 1

1.7f '

 
    

 
 (2.44) 

where  0.90  = for tension controlled section, t 0.05   

sA bd   = percentage of tensile steel 

b,d = width of beam, and effective depth  

fy = yield strength of  steel reinforcement  

f’c  = compressive strength of concrete   

If b and d are known, thus the required reinforcement ratio,  , can be 

determined by equation below: 

c u
2

y c

0.85f ' 4M
1 1

f 1.7 f ' bd

 
      

 (2.45) 

Letting u
u 2

M
R

bd



 (2.46) 

c u

y c

0.85f ' 2R
1 1

f 0.85f '

 
     

 
 (2.47) 

A required reinforcing area for design can be calculated as:  

sA b d    (2.48) 
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C. Reinforcing limitations in flexure members 

According to ACI Equation 10.3, the minimum amount of tensile 

reinforcement for preventing a compression failure is computed as: 

min y1.4 f   (2.49) 

where fy = yield strength of steel reinforcement (MPa)  

The reinforcement ratio, b , for balanced condition is determined as: 

sb 1 c
b

y y

A 0.85 f ' 600

bd f 600 f

 
      

 (2.50) 

where 1 = rectangular stress block coefficient depends on concrete strength  

f’c = compressive strength of concrete (MPa) 

fy = yield strength of steel reinforcement (MPa) 

To ensure concrete beam failing in a ductile manner, ACI Code section 10.3.3 

stipulates that the maximum amount of tensile reinforcement, As,max, must not exceed 

0.75 of balanced steel area Asb. 

Thus, the maximum reinforcement ratio, max , can be computed as: 

max b

3

4
    (2.51) 

2.6 Design of reinforced concrete beam for flexure (working stress design) 

 

Figure 2.14 Rectangular concrete beam with tension steel only (Ricketts et al. 2003) 
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Generally, stress distribution in a reinforced concrete beam under service 

loads is different from that at ultimate strength. The simple procedures of working 

stress design are presented in the following equations.  

Let s cn E E = nearest integer  (2.52) 

where sE 200000 MPa = Modulus elasticity of steel 

 s cE 4700 f ' MPa = Modulus elasticity of concrete 

For the assumption that stress varies across a beam section with the distance 

k d  from neutral axis, value k can be calculated as: 

s c

1
k

1 f nf



 (2.53) 

For Equation (2.53), fc and fs can be calculated in the following equations. 

c cf 0.45f '  (2.54) 

s yf 0.50f     (2.55) 

where f’c = compressive strength of the concrete (MPa) 

fc = allowable compressive stress in extreme surface of concrete (MPa)  

fs = allowable stress in steel (MPa) 

fy = yield strength of steel reinforcement (MPa)  

fy = 140 MPa = allowable stress in steel reinforcement for grade 40, 50  

fy = 170 MPa = allowable stress in steel reinforcement for grade 60    

Distance j d  between the centroid of compression and the centroid of tension 

can be computed by Equation (2.56) as:  

j 1 k 3   (2.56) 

 The allowable moment resistance of the steel reinforcement in working stress 

design can be expressed as:  

s s sM T j d A f j d        (2.57) 

where As =  cross section area of tensile steel 

 fs = allowable stress in steel 

 j d  = distance between the centroid of compression and tension  
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2.7 Design of beam for shear (ultimate strength design) 

In safety criterion based on ACI Code, the calculated factored shear force, Vu, 

must be less than or equal to nominal shear strength of a member, nV . 

n uV V   (2.58) 

where Vu = shear force due to the factored loads 

  = strength reduction factor, taken equal to 0.75 (ACI 318-05 section 9.2) 

Vn = nominal shear resistance of a member 

From Equation (2.58), nominal shear strength at the considered section is 

computed by: 

n c sV V V   (2.59) 

where Vc = nominal shear strength provide by concrete  

Vs = nominal shear strength provided by stirrups 

In most structural design books, stirrups are not used in either the wall or the 

footing. Whether the shear capacity carried by concrete is adequate or not, it is 

necessary to increases the thickness members rather than using stirrups (Leet, 1989). 

 Application of shear design in RC cantilever retaining walls 

In previous literature reviews on cantilever retaining wall design, both stem 

and footing members (toe, heel) are designed as a cantilever beam with strip 1 meter 

as width. Since stirrups are not usually provided in shear design, shear force generated 

from factored loads should not be allowed to exceed nominal shear strength of 

concrete. Equation (2.60) shows the basic safety design criterion as: 

c uV V        (in term of shear force) (2.60) 

Equation (2.60) can be expressed in term of shear stresses, , as: 

c u    (2.61) 

where   = strength reduction factor, taken equal to 0.75 (ACI 318-05) 

u u wV b d  = ultimate shear stress on the cross section (kN/m2) 

c c wV b d  = nominal shear stress provided by concrete (kN/m2) 

bw = web width 

d = effective depth for shear calculations 
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Shear strength carried by concrete is generally calculated as:  

 c c wV 1 6 f ' b d  (2.62) 

where Vc = shear strength of concrete (kN) 

f’c = compressive strength of concrete (kN/m2) 

bw = web width 

d = effective depth for shear calculations 

2.8 Design of beam for shear (working stress design) 

According to ACI (1963), the shear stress applied in reinforced concrete 

members can be calculated by Equation (2.63) while allowable shear stress of 

concrete can be calculated by Equation (2.64).  

s sV bd   (2.63) 

c c0.09 f '    (2.64) 

where s = shear stress produced by service loads (kN/m2) 

 c = allowable shear stress of concrete (kN/m2) 

Vs = shear force produced by service loads (kN) 

b = web width 

d = effective depth for shear calculations 

 f’c = compressive strength of concrete (kN/m2) 

 Application of shear design in RC cantilever retaining walls 

In previous literature reviews on cantilever retaining wall design, both stem 

and footing members (toe, heel) are designed as a cantilever beam with strip 1 meter 

as width. Stirrups are not usually provided for shear design. Thus, shear stress 

produced by service loads must not less than or equal to the nominal shear stress of 

concrete. Equation (2.65) shows the basic safety design criterion as:  

c s    (2.65) 

where s  = shear stress produced by service loads (kN/m2) 

c  = allowable shear stress of concrete (kN/m2) 
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2.9 Design of reinforced concrete column by ACI Code   

2.9.1 Introduction 

A column is the reinforced concrete member which subjected to axial 

compression with or without bending (McGregor, 2002). These forces are produced 

by external loads such as dead loads, live loads and wind loads.      

Figure 2.15 shows a cross section of column which subjected to combined 

bending and axial load in column. 

 

Figure 2.15 Combined bending and axial load in column (McGregor, 2002) 

Figure 2.15a shows a cross section of reinforced column in which subjected to 

axial compression force P and moment M. When axial compression P applies on the 

cross section, there maybe have a misalignment of this load on the column as shown 

in Figure 2.15b. Similarly, when moment applies on the cross section, there may be 

produced a portion of the unbalanced moment at the end of the beams where column 

acts as support. The ratio of the moment to the axial force is usually referred as the 

eccentricity of the load. In Figure 2.15b, the eccentric load P can be replaced by a 

center load P acting in the centroidal axis plus a moment M = P e  about the 

centroid. The applied load P and moment M are obtained from structural analysis and 

they are normally referred to the acting load in the centroidal axis.     

According to Nilson (2004), the typical failures modes of a column depend on 

the value of eccentricity e. 
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 The principle analysis and design of reinforced concrete column are based on 

the stress equilibrium, compatibility condition, and uniaxial constitutive laws of 

materials (Hsu, 2010).        

Interaction diagram for concrete column 

A strength interaction diagram is a better approach for practical design of 

reinforced concrete column (Nilson, 2004). In the interaction diagram, nominal 

bending moment, Mn, and nominal axial compression, Pn, are plotted as a unique pair 

for any given eccentricity. The failure axial loads and failure moments for a column is 

defined by eccentricity range from zero to infinity. The unique pair of values M-P is 

plotted on a graph as shown in Figure 2.16.  

 

 Figure 2.16 Load-moment strength interaction diagram (Hassoun, 2005) 

This interaction curve is divided into compression failure region and a tension 

failure region.   

Point A-B represents the compression failure mode which corresponds to 

small eccentricities. In this region, the concrete will reach its limit strain ( u ) before 

the tension steel starts yielding. Compression steel may be yielding.      

A 

B 
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Point B represents the balanced condition. The balanced failure mode 

corresponds to balanced eccentricity (eb) with the balanced nominal load (Pb) and 

bending moment (Mb). The concrete strain reaches its limitation ( u ). At the same 

time, tensile steel of the column reaches yield strain ( st ). 

Point B-M0 represents the tension failure mode which corresponds to large 

eccentricity. In this region, the concrete reaches its ultimate strain ( u ). The tensile 

steel of the column reaches yield strain ( st ) while the compression steel may or may 

not have yielded. 

The theoretical case assuming that a large axial load P0 is acting at the plastic 

centroid where e = 0 and Mn = 0. However, ACI Sections 10.3.6.1 and 10.3.6.2 permit 

to use maximum axial load capacity of a column equaled to 0.85 times of that from 

centroid P0 for tied-columns.  

   n(max) c g st y stP 0.80 0.85f ' A A f A        (2.66) 

where    = strength reduction factor 

Pn(max) = the maximum nominal strength of the column cross section 

Ag  = gross area of column  

Ast  = cross section area of longitudinal steel reinforcement 

f’c = compressive strength of concrete 

2.9.2 Strength design method for columns  

For column design according to the ACI Code, the nominal strengths 

multiplying with reduction factors must be greater than or equal to the design strength 

calculated by load factors. Equation (2.67) and (2.68) shows the basic safety design 

criterion as: 

n uP P   (2.67) 

n uM M   (2.68) 

where  Pu, Mu = factored load and moment applied to the column, computed from a 

structural analysis 

Pn, Mn = nominal strength of the column cross section 

 = strength reduction factor 
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2.9.3 Investigation of column strength in compression-controlled region 

In compression controlled region, compression strength Pn exceeds the 

balanced strength Pb or when the eccentricity e is less than the balanced value eb.  

Figure 2.17 shows compression failure in a column section. In this region, the 

concrete strain ( u ) reaches its maximum value of 0.003, while the strain in tensile 

steel ( s ) is less than maximum yield strain ( y ). Since the strain in compressive steel 

( s' ) reaches the maximum yield strain, yield strength of compressive can be taken 

the same as the maximum yield strength ( s yf ' f ).             

 

Figure 2.17 Compression controlled failure in column section (Hsu, 2010) 

Based on Figure 2.17, three types of forces are normally taken into account, 

namely, compressive force carried out by concrete (Cc), compressive steel (Cs) (top), 

and tensile steel (Ts) (bottom). The expressions of these forces can be written as:    

1. Compressive force carried by concrete 

   c 1C 0.85f 'c c ba   (2.69) 

2. The force carried by the top steel 

  s sC A ' f 's 0.85f 'c   (2.70) 

3. The force carried by the bottom steel 

  s s sT f A   (2.71) 

Use equilibrium condition, Pn can be calculated as: 

n c s sP C C T      (2.72) 
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By taking moment on neutral axis based on free body diagram in Figure 2.17 

n c s s

h a h h
P e C C d ' T d

2 2 2 2
                
     

 (2.73) 

 Or  n n c s s

h a h h
M P e C C d ' T d

2 2 2 2
                 
     

 (2.74) 

Thus, nominal axial compression Pn and bending moment Mn can be 

calculated based on Equation (2.73) and (2.74), respectively. 

However, yielding strength of compression steel and tensile steel can be 

computed by strain compatibility equation as their values is varied from compression 

controlled region to tensile controlled region.   

Table 2.4 List of strain limit table in column design 

Section Condition Concrete Strain  Steel Strain  If fy = 420 MPa 

Compression 

controlled 
0.003 t sfy E   t 0.002   

Tension controlled 0.003 t 0.005   t 0.005   

Transition controlled 0.003 s tfy E 0.005    t0.002 0.005    

Balanced strain 0.003 s sfy E   s 0.002   

Transition region 

(flexure) 
0.003 t0.004 0.005    t0.004 0.005    

 
Table 2.4 presents the strain limitation in column design if yielding strength 

420 MPa is used. Based on this table, yielding strength of compression steel and 

tensile steel can be determined for each failure condition. 

Nilson (2004) stated that it is sometimes more convenient to compute the 

nominal moment capacity in function of ratio c/d rather than the net tensile strain.  
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Figure 2.18 Net tensile strain in column section (Nilson, 2004) 

Figure 2.18 shows the ratio of c/dt which corresponds to the three regions of 

reinforced concrete column members.   

More details of iterative procedure for analysis are given in appendix B. 

2.9.4 Strength reduction factors 

The ACI Code (2005) provides basic reduction factors for members subjected 

to axial compression as: 

 0.65 for compression controlled region. A value of 0.70 may be used if 

members are spiral section  

 0.90 for tension controlled region (both spiral and other section) 

 Varies linearly between 0.65 (or 0.70) and 0.90 for transition region using 

Equation (2.75) and (2.76). 

t0.567 66.7 (spiral section)      (2.75) 

t0.483 83.3 (other section)     (2.76) 

 Figure 2.19 presents the variation of strength reduction factor in compression, 

transition, and tension controlled regions. 

2.9.5 Reinforcement ratio permitted in column design 

ACI Code recommended that longitudinal reinforcement area, Ast, in tied 

column should not less than 0.01 times and not more than 0.08 times the gross area 

Ag. The expression of reinforcement ratio is given as:   
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t st gA A   (2.77) 

 

Figure 2.19 Variation of strength reduction factor with net                                  

tensile strain (Nilson, 2004) 

McGregor (2002) stated that reinforcement ratio of most economical tied-

column section generally ranged from 1 to 2 percent. 

In a rectangular column, minimum number of bars is limited to four according 

to the ACI Section 10.9.2. In simple practice, it is generally to use an even number of 

bars. Particularly, all bars have the same size (McGregor, 2002).   

2.9.6 Slenderness ratio 

A slender column deflects laterally under any applied load. This load will 

increases the moments in the column and hence weakens the column (MacGregor, 

2002). In that case, column is designed as slender column which takes into account of 

slenderness ratio. 

According to ACI Section 10.12.2, a slenderness ratio in braced frames is 

neglected if the expression in Equation (2.78) is satisfied. 

 uk
34 12 M1 M2

r
 


 (2.78) 

where  k = effective length factor 

u = unsupported height of column from top of floor to the bottom of the 

beams or slab in the floor above 
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r = the radius of gyration, equal to 0.3 and 0.25 times the overall depth of 

rectangular and circular columns, respectively 

M1 M2  = the ratio of the moments at the two ends of the column 

 The range of effective length factor, k, for different columns and frames is 

illustrated in Figure 2.20.  

 

Figure 2.20 Effective lengths of columns and length factor k (Hassoun, 2005) 

2.9.7 Shear force in columns 

According to ACI Code section 11.3.1.2, the shear force carried by the 

concrete for a member subjected to axial compression is expressed as: 

cu
c w

g

f 'N
V 1 b d

14A 6

  
        

 (2.79) 

where  Vc = shear forced carried by concrete (kN)  

Nu = the factored axial force (kN) 

Ag = gross area of column 

f’c = compressive strength of concrete (kN/m2) 

bw = web width 

d = effective depth of column 
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ACI Sections 7.10.5.1, 7.10.5.2, and 7.10.5.3 specify that the maximum tie 

size is No. 10M bar for longitudinal bars up to No. 32 and a No. 13M bar for larger 

longitudinal bars or for bundled bars. The vertical spacing of ties shall less than or 

equal to 16 times of longitudinal bar diameters, and shall not exceed 48 tie diameters. 

The maximum spacing is also limited to the least dimension of the column. In seismic 

regions, much closer spacings are required as mention in ACI section 21.4.4.  

 For ties design without providing additional shear reinforcement, ACI Code 

recommended that applied factored shearing forces, Vu, should not greater 

than cV 2 .  

 If the shear Vu exceeds cV 2 , shear reinforcement are additionally provided. 

 If the shear Vu is greater than c0.5 V  and smaller than cV  

( c u c0.5 V V V    ), it would be necessary to satisfy ACI Sections 7.10.5, 

11.5.4.1, and 11.5.5.3. 

2.10 Optimization theory 

2.10.1 Introduction 

In general, optimization is the process of finding something that is as effective 

as possible or is the act of creating the best result under a prescribed set of conditions 

(Rao, 2009). From a mathematical perspective, optimization deals with finding the 

maxima or minima of a function with one or more variables. The minima and maxima 

in mathematical definition are shown in Figure 2.21.  

 

Figure 2.21 Minimum of f(x) and maximum of –f(x) at point x* 
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In application of optimization into engineering problems, optimization can be 

applied to solve civil engineering structures such as frames, foundations, bridges, 

towers, chimneys, and dams for minimum cost (Rao, 2009). 

2.10.2 Problem statement of an optimization 

An optimization or a mathematical programming problem can be stated as: 

Find 

1

2

n

x

x
X

...

x

 
 
   
 
  

 

which minimizes f(X)  (2.80) 

Subject to the constraints  gi(X)   0, i=1,2,…m          (2.81) 

     Lj(X) = 0, j=1,2,…p          (2.82) 

where  X = an n-dimensional vector called the design variable vector 

f(X) = term of objective function 

gi(X), Lj(X) = inequality and equality constraints, respectively 

The problem in Equation (2.80) can be called as a constrained optimization 

problem because there are equality constraints L(X) and inequality constraints g(X). 

Some optimizations that do not have any constraint as in Equation (2.81) and (2.82) 

can be called as unconstrained optimization problems. 

Three major components of an optimization problem are design variables, design 

constraints, and objective function.   

A. Design variables 

In any engineering system, a set of quantities which are usually fixed in design 

process are called as preassigned parameters while other certain quantities which 

treat as variables are called as design or decision variables. Thus, the design variables 

can be represented as one set of design vectors referred to programming problem 

definition in Equation (2.80).  

B. Design constraints 

In many practical problems, the design variables are chosen if they satisfy 

certain specified functional and other requirements. Thus, those requirements that 

make the design variables satisfy in order to produce an acceptable result are called as 



40 
 
design constraints. In this sense, constraints that impose physical limitations on 

design variables such as availability, fabricability, and transportability can be defined 

as geometric or side constraints.    

C. Objective function 

An objective function is the main criterion which was taken to minimize or 

maximize. Its expression is function of the design variables.  

Rao (2009) reported that in civil engineering structural design, the main aim of 

optimization is to minimize the cost. 

D. Constraint surface 

This section will present the boundary of constraint surface in two 

dimensional design spaces and its shape.  

Consider an optimization problem with only inequality constraints which 

represent as gj(X)0. The design variables X that satisfy the equality constraints 

[gj(X)=0] forms a boundary surface in the design space called as constraint surface. 

The constraint surface divides the design space into two regions. The feasible region 

where constraints are satisfied is referred to gj(X)0, and the infeasible region where 

constraints are violated is referred to gj(X)0.   

 

Figure 2.22 Boundary points of optimization (Rao, 2010) 
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Figure 2.22 shows a two-dimensional design space where the infeasible region 

is sketched by hatched lines. In case that the constraints are linear such as g3 and g5, 

they are plotted as straight lines as shown in figure. However, when constraints are 

nonlinear such as g1, g2, and g4, they are constructed as curve following that case. A 

design point that lies on one or more than one constraint surface is called as bound 

points, and the associated constraint is called as an active constraint. Free points are 

defined as those that lie in feasible region and do not lie on any constraint surface.   

2.10.3 Classic optimization approaches 

The classical methods of optimization becomes useful in calculating the 

optimum solution if the function to be optimized are continuous or differentiable. 

These methods are based on technique of differential calculus in finding the optimum 

point.  

A. Theorem 1: necessary condition 

In calculus, the first derivative test uses the first derivative of a function to 

determine whether a given critical point of a function is a local maximum, a local 

minimum, or neither. 

Consider a function f(X) is continuous or differentiable with n-variables. The 

necessary condition stated that if the first partial derivatives of f(X*) equal to zero, 

then f(X) has a either relative minimum or maximum at X=X*. 

The theorem can be expressed as:    

     * * *

1 2 n

f f f
X X ... X 0

x x x

  
   

  
 (2.83) 

In general, a point X* satisfies Equation (2.83) is called stationary point. This 

point can be a minimum or maximum.  

B. Theorem 2: sufficient condition 

The sufficient condition for the minimum or maximum value of the function 

f(X) at X=X* can be stated by evaluating the matrix of the second partial derivatives 

(Hessian matrix) at X=X*. 
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The Hessian matrix of the second partial derivatives can be written in 

quadratic form as: 

2n n

i j
i 1 j 1 i j

f
H h h

X X 




   (2.84)  

(i) If the Hessian is positive definite, then X* is a relative minimum point 

(ii) If the Hessian is negative definite, then X* is a relative maximum point 

(iii) If the Hessian have both positive and negative, then X* is a saddle point 

(iv) If the Hessian is equal to zero, then X* is inclusive 

2.11 Cost optimization of concrete structures 

Adeli (2006) reported that optimization of concrete structures usually deal 

with cost minimization since different materials are used. Concrete structures could 

include reinforced concrete, prestressed concrete, and fiber-reinforced concrete 

structures. In concrete structure at least three different cost items, namely, cost of 

concrete, steel, and formwork should be considered in optimization. 

The general cost function for beam structures (including reinforced, fiber, or 

prestressed beam) can be written as: 

Costm = Costcb + Costsb + Costpb + Costfb + Costsbv + Costfib  (2.85) 

where Costm = the total cost of material in beam 

 Costcb = the total cost of concrete 

 Costsb = the total cost of steel reinforcement 

 Costpb = the total cost of prestressing steel  

 Costfb = the total cost of the formwork  

 Costsbv = the total cost of shear steel 

Costfib = the total cost of fiber in concrete 

In simplified way, Equation (2.85) can be expressed as: 

   ' '
m con beam conb stb shb preb con st beam conb stb st

pre beam preb pre beam forb for sbv fib

Cost L A A A A U L A A U

L A U L p U Cost Cost

      

   
  (2.86) 

where Costm = the total cost of material in beam 

Lbeam = length of the beam 
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con st pre, ,   = unit weights of concrete, reinforcing steel, and prestressing 

steel respectively 

conb stb stb prebA , A , A ' , A = cross sectional areas of concrete, reinforcing steel, 

compression reinforcing steel, and prestressing steel, in beam structures 

respectively 

Ucon, Ust, Upre, Ufor = unit cost of concrete, reinforcing steel, prestressing steel, 

and formwork, respectively 

pforb = cross sectional perimeter of the beam form 

The general cost function for column structures (including reinforced or 

prestressed column) can be expressed as: 

Costtotal = Costcc + Costsc + Costpc + Costfc + Costtc  (2.87) 

where Costm = the total cost of material in column 

Costcc = the total cost of concrete 

 Costsc = the total cost of reinforcing steel 

 Costpc = the total cost of prestressing steel 

 Costfc = the total cost of formwork 

Costtc = the total cost of lateral stirrups 

Equation (2.87) can be written in simplified way as:

 
 m con column conc stc prec con st column stc st

pre column prec pre column forc for stirrupc st

Cost H A A A U H A U

H A U H p U V U

    

  
        (2.88) 

where Costm = the total cost of material in column 

Hcolumn = height of the column 

Aconc, Astc, Aprec = cross sectional areas of concrete, reinforcing steel, and 

prestressing steel, in column structures respectively 

Ucon, Ust, Upre, Ufor = unit cost of concrete, reinforcing steel, prestressing steel, 

and formwork, respectively 

pforb = cross sectional perimeter of the column form 

Vstirrupc = volume of the lateral stirrups  
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2.12 Optimization problem solving techniques  

As optimization techniques choose the best solution from a set of many 

acceptable design variables, the best solution of design variables must satisfy only the 

functional and other constrained restrictions.  

Although optimization techniques can sometimes be calculated analytically, 

most practical optimization problems require computer methods as primarily solving 

tools (Rao, 2000). In this sense, some solver algorithms in optimization problems 

have been developed in commercial software packages. In this thesis, build-in 

function solvers, namely, MAPLE, MATLAB, ISML FORTRAN, and KNITRO will 

be used to find minimum of an objective function.     

2.12.1 Mathwork’s MATLAB 

MATLAB’s build-in “fmincon” command solves a minimum of constrained 

nonlinear multivariable function. It uses sequential quadratic programming (SQP) 

optimization algorithm as the optimization searching technique (Mathwork, 2010). 

The characteristics of fmincon command are defined by Equation (2.89) as 

below: 

Find a minimum of a constrained nonlinear multivariable function,  f(x) 

 
x

min f x

 

subject to 

c(x) 0

ceq(x) 0

A.x b

Aeq.x beq

lb x ub


  
 

 

 (2.89)

 

Where x, b, beq, lb, ub = vectors,  

A, Aeq = matrices,  

c(x), ceq(x) = functions that return vectors 

f(x)  = function that returns a scalar  

f(x), c(x), ceq(x) = nonlinear functions. 

Syntax 

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) 

where fun= the function to be minimized 

x0 = initial point for x   
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A = matrix for linear inequality constraints   

b = vector for linear inequality constraints   

Aeq = matrix for linear equality constraints   

beq = vector for linear equality constraints   

lb,ub = vector of lower bounds and upper bounds   

nonlcon = nonlinear constraint function    

options = options structure 

2.12.2 Maplesoft MAPLE 

The NLPSolve command solves a nonlinear constrained optimization, which 

computes a real-value objective function. Constrained optimization problems can be 

solvable in case that the objective function and the constraints is twice continuously 

differentiation. Even though these conditions are not met, NLPSolve sometimes still 

finding to solutions.         

The characteristic of NLPSolve command is detailed as: 

Optimization [NLPSolve] = solve a nonlinear program 

Calling sequence 

NLPSolve (obj, constr, bd, opts)  

NLPSolve (opfobj, ineqcon, eqcon, opfbd, opts) 

Parameters 

obj algebraic; objective function 

constr (optional) set(relation) or list(relation); constraints 

bd 
(optional) sequence of name = range; bounds for one or more 

variables      

opfobj procedure; objective function 

ineqcon (optional) set(procedure) or list(procedure); inequality constraints 

eqcon (optional) set(procedure) or list(procedure); equality constraints 

opfbd (optional) sequence of ranges; bounds for all variables 

opts (optional) equation(s) of the form option = value where option is 

one of assume, feasibilitytolerance, infinitebound, initialpoint, 

iterationlimit, maximize, method, optimalitytolerance, or output; 

specify options for the NLPSolve command. 
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2.12.3 IMSL FORTRAN 

The routine DNCONF solves a nonlinear programming problem using the 

successive quadratic programming algorithm (SQP). This routine was developed by 

Schittkowski (1986). The following description presents the usage and arguments of 

this routine in FORTRAN which can be found in IMSL Math/Library (1997). 

The problem is defined as follow: 

 
nx R

min f x


 

 

subject to        

j

j e

l u

g (x) 0 for j 1,....,m

g (x) 0 for j m 1,....,m

x x x

 


  
  

 (2.90) 

where all problem functions are assumed to be continuously differentiable    

Usage 

CALL DNCONF (FCN, M, ME, N, XGUESS, IBTYPE, XLB, XUB, 

XSCALE, IPRINT, MAXITN, X, FVALE) 

Arguments 

FCN  User-supplied SUBROUTINE to evaluate the functions at a given point 

The usage is CALL FCN (M, ME, N, X, ACTIVE, F, G) 

where M = Total number of constraints (Input) 

ME = Number of equality constraints (Input) 

N = Number of variables (Input) 

X = The point at which the functions are evaluated (Input) 

X should not be changed by FCN 

ACTIVE = Logical vector of length MMAX indicating the active constraints 

(input) 

MMAX = MAX (1, M) 

F = The computed function value at the point X (Output) 

G = Vector of length MMAX containing the values of constraints at point X 

(Output) 

FCN must be declared EXTERNAL in the calling program. 

M Total number of constraints (Input) 

ME Number of equality constraints (Input) 
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N  Number of variables (Input) 

XGUESS  Vector of length N containing an initial guess of the computed solution 

(Input) 

IBTYPE  Scalar indicating the types of bounds on variables (Input) 

IBTYPE  Action 

0   User will supply all the bounds 

1   All variables are nonnegative 

2   All variables are nonpositive 

3  User supplies only the bounds on 1st variable; all other 

variables will have the same bounds 

XLB  Vector of length N containing the lower bounds on variables (Input, if 

IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

If there is no lower bound for a variable, then the corresponding XLB value 

should be set to -1.0E6. 

XUB  Vector of length N containing the upper bounds on variables (Input, if 

IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

If there is no upper bound for a variable, then the corresponding XLB value 

should be set to 1.0E6. 

XSCALE  Vector of length N containing the diagonal scaling matrix for the 

variables (Input) 

All values of XSCALE must be greater than zero. In the absence of other 

information, set all entries to 1.0. 

IPRINT  Parameter indicating the desired output level (Input) 

IPRINT  Action 

0   No output printed 

1   Only a final convergence analysis is given 

2   One line of intermediate results are printed in each iteration 

3   Detailed information is printed in each iteration 

MAXITN  Maximum number of iterations allowed (Input) 

X  Vector of length N containing the computed solution (Output) 

FVALUE  Scalar containing the value of the objective function at the computed 

solution (Output) 



48 
 
2.12.4 Ziena’s Optimization KNITRO 

KNITRO is a software package for solving large scale mathematical 

optimization problems (from http://www.ziena.com). It is specialized in solving the 

nonlinear problems powerfully. KNITRO optimization solvers can be written in C, 

C++, FORTRAN, or Java as a software routine to solve the problem. 

KNITRO stands for "Nonlinear Interior point Trust Region Optimization" 

while the "K" is silent. 

The characteristic of KNITRO command is defined as: 

 
nx R

min f x


 

 

subject to        
i

i

i i i

g (x) 0 i I

h (x) 0 i E

l x u i 1, 2,....n

 
  
   

 (2.91) 

where I, E = finite non negative integers subsets 

f, gi, hi = objective function assumed to be twice differentiable  
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CHAPTER III  

RESEARCH METHODOLOGY 

 

3.1 Design variables 

Figure 3.1 shows problem definition and design variables related to geometry 

of wall dimensions and cross section of main bars area.  

x1 x2 x3

x4

x5

x6

q

retained material

x7

x8

x9

H1

H

B C

 

Figure 3.1 Cross section of the RC cantilever retaining wall used for optimum design 

Nine design variables are taken into consideration. These include the 

following: 

1) X1 total width of toe (m) 

2) X2 stem thickness at bottom (m) 

3) X3 total width of heel (m) 

4) X4 thickness of base slab (m) 

5) X5 soil cover (m) 

6) X6 stem thickness at top (m) 

7) X7 horizontal reinforcing area of the toe per unit length of wall (mm2/m) 

8) X8 horizontal reinforcing area of the heel per unit length of wall (mm2/m) 

9) X9 vertical reinforcing area of the stem per unit length of wall (mm2/m) 
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3.2 Objective function of reinforced retaining wall 

Objective function for the analysis is the total cost of material in retaining wall 

which includes total cost of concrete, steel reinforcement and formwork. The total 

cost of retaining wall is defined as: 

f(X) = Ccon×Vcon + Cst×Wst + Cfw×Sfw  (3.1) 

where Ccon = cost of concrete per 1 cubic meter (฿/m3) 

Vcon = volume of concrete (m3) 

Cst = cost of steel per 1 kilogram (฿/kg) 

Wst = weight of steel (kg) 
Cfw = cost of formwork per 1 square meter (฿/m2) 

 Sfw = area of formwork (m2) 

3.2.1 Concrete volume and steel weight calculation 

Figure 3.2a shows a cross section of reinforced concrete beam with length, L, 

width, b, and height, h. As denotes tensile steel area placing along the beam length as 

shown in Figure 3.2b. 

 

 

 

 

 

 

 

 

Figure 3.2 (a) Shape of a reinforced concrete beam (b) steel bar cross section             

Volume of concrete can be calculated as: 

conV b h L    (3.2)  

Where  b = width of reinforced concrete beam 

 h = height of concrete beam 

 L = length of beam 

(b) 

b 

As 

h 

L (a) 
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Weight of steel is calculated by:  

st st

st st st

V A L

W V

 
  

 (3.3) 

where Vst = volume of steel 

Ast = tensile steel area 

 3
st unit weight of steel 7850 kg m    

3.2.2 Formwork area calculation 

Area of formwork can be calculated per 1 meter of wall length based on 

Figure 3.3 as follow:  

 

 

Figure 3.3 Formwork calculation 

   2 2

f 4 4 2 6 4S H X H X X X H X          (3.4) 

where H = height of retaining wall 

   = length of inclined front face of stem  

 X1 = length of toe slab 

 X2 = bottom stem thickness 

 X3 = length of heel slab 

 X4 = thickness of footing 

X6 = top stem thickness 

 It should be noted that the cost of formwork should be calculated at two 

vertical area of the base and at inclined and vertical surface of the stem. The bottom 

area of the base, the top area of the base, and the top area of the stem are not included 

1 m 

Formwork 
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in calculation of the total cost since formworks in those areas are not required during 

construction. 

 By applying expressions from Equation (3.2) until Equation (3.4) for retaining 

wall, the general expression of objective function (with main bars only) can be written 

as: 

         

       

   

6
4 2 6 1 2 3 4 7 1 2 3 st

6 6
8 1 2 3 st 9 st

2 2

4 2 6 4

1
F H x x x x x x x x *10 x x x

2

x *10 x x x x *10 H

H X X X H X



 

         

     

     

 (3.5) 

where X7, X8, X9 = reinforcing area in square millimeter (mm2)  

3.3 Cost of material in Thailand 

Table 3.1 and 3.2 list the unit price of concrete, steel reinforcement of type 

SD40 in Thailand according to Bureau of Trade and Economics indices Ministry of 

Commerce Thailand (http://www.price.moc.go.th). The cost of formwork is taken as 

150 B per square meter based on the average cost from contractors in Thailand while 

it is not reported by the Bureau of Trade and Economics. 

Table 3.1 Unit price index of concrete   

Strength of  

concrete 

Unit cost (฿/m3)  

2005 2006 2007 2008 2009 2010 2011 

17 MPa 2337.5 2470 2470 2470 2470 2470 2470 

21 MPa 2377.5 2510 2510 2510 2510 2510 2510 

25 MPa 2417.5 2550 2550 2550 2550 2550 2550 

28 MPa 2497.5 2630 2630 2630 2630 2630 2630 

31 MPa 2547.5 2680 2680 2680 2680 2680 2680 

32 MPa 2607 2740 2740 2740 2740 2740 2740 

35 MPa 2677 2810 2810 2810 2810 2810 2810 

 
 The unit price of concrete depends on its strength ranging from 19 MPa to 35 

MPa. 
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Table 3.2 Unit price index of steel reinforcement SD40 

Diameter of   

reinforcement 

Unit cost (฿/kg)

2005 2006 2007 2008 2009 2010 2011 

12 mm 17.62 19.58 23.28 18.92 19.10 20.56 22.56 

16 mm 17.42 19.38 23.08 18.70 18.90 20.37 22.40 

20 mm 17.42 19.38 23.08 18.70 18.90 20.37 22.40 

25 mm 17.42 19.38 23.08 18.70 18.90 20.37 22.40 

28 mm 17.42 19.38 23.08 18.70 18.90 20.37 22.40 

 
The unit price of steel reinforcement also depends on its diameters ranging 

from 12 mm to 28 mm.      

3.4 Formulation of design constraints for retaining wall 

3.4.1 Overturning stability constraint 

Factor of safety against overturning can be written as the ratio of the sum of 

the resisting moment (MR) about point B to that of the driving moment (MD) about 

point B in Figure 3.1. 

ov R ovFS M M   (3.6) 

3.4.2 Sliding stability constraints 

Factor of safety against sliding failure can be expressed as the ratio of the sum 

of horizontal resisting forces (FR) to that of the horizontal driving forces (FD). There 

are two options of horizontal resisting forces. The first option considers passive force 

(PP) at toe side of the wall and the other neglects this passive force. 

sd1 R dFS F F     (FR with PP) (3.7) 

sd2 R dFS F F    (FR without PP) (3.8) 

3.4.3 Bearing stability constraints 

Bearing capacity failure gives two constraints, namely eccentricity failure and 

factor of safety against bearing failure of underlying soils as: 

net R OVM M M
x

V V


   
 

 (3.9) 
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   1 3 B x 2 3 B   (3.10) 

where  x = distance from left corner of toe slab to resultant force R 

B = x1 + x2 + x3 = base width of the wall 

 MR = sum of the moment of forces tending to resist overturning 

MOV = sum of the moment of forces tending overturn 

Bearing failure is defined as the maximum contact pressure at the interface 

between the wall structures to the ultimate bearing capacity of the foundation soil: 

bearing max uFS q q  (3.11) 

In general bearing capacity equation, it is to enforce the condition of Hansen’s 

depth factor, where the ratio of depth soil cover to the base length is smaller or equal 

to 1.  

4 5x x
1

B 2e

    
 (3.12) 

3.4.4 Slope stability constraints 

A. Shape of circular arc failure surfaces 

If the base soil consists of medium to soft clay, a circular slip surface failure 

may develop as shown in Figure 3.4a. In the proposed optimization problem, the 

circular arc failure surface is assumed to pass right at the corner of the wall base and 

does not intersect the concrete base. This critical mechanism is also obtained by 

extensive studies using AutoSLOPE (2004) for different geometries of cantilever 

retaining wall.  

The studies showed that the circular arc failure surfaces which do not pass 

right at the corner of the wall base and penetrate more deeper are always not critical 

and their factor of safety is not the least as shown in Figure 3.4b. This important result 

is logical and valid provided that the soil underlying the wall base has the constant 

shear strength properties and there is no presence of the weak soil layer below the 

base of the wall.  
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Figure 3.4 (a) Conventional circular arc failure surface (Murthy, 2002) and (b) 

critical failure mechanism using AutoSLOPE (Ukritchon et al., 2004) 

Because slope failure shape is arc circular, factor of safety can be written as 

the ratio of the sum of the resisting moment to that of driving moment. Thus, factor of 

safety based on Ordinary Method of Slices is derived analytically in terms of 

unknown variables of wall dimensions and center of circular arc failure surface as 

illustrated in Figure 3.5. 
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Figure 3.5 Ordinary Method of Slices in RC cantilever retaining wall   

 

(a) (b) 
Arc failure surface 
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Expression of safety factor of slope stability for reinforced concrete cantilever 

retaining wall by Ordinary Method of Slices can be written as following: 

 

 

n

i i i
i 1

n

i i
i 1

c 'L N U tan '
FS

W sin R q B cos a P b





    


     




 (3.13) 

where  i i i i i iN W q B cos P cos       = total normal force 

 Wi = total weight of slices  

qi = distribution line load  

Bi = width of each slices 

 = angle of slope backfill 

Pi = point load  

i = angle of interslice force orientation (degree) 

Ui = pore water force at base 

c’, '  = cohesion and internal friction angle of soil 

L = base length 

R = radius of circular arc 

a, b = distance from center of arc to point, and line load, respectively 

Finally, the factor of safety is derived analytically as function below:  

 0 0 1 2 3 4 5 6 1 1 1 2 2 2FS f x , y , x , x , x , x , x , x , H, ,c , , , c , ,q,       (3.14) 

where  x0,y0 = center of critical failure  

x1, x2, x3, x4, x5, x6 = wall parameters 

H = total height of wall 

1 1 1 2 2 2, c , , , c ,     = soil properties (unit weight, cohesion, and friction angle 

respectively) 

q = surcharge loading 

 = angle of slope backfill 

B. Procedure to derive the additional constraints for slope stability 

In literature review, minimum factor of safety corresponded to critical failure 

surface are calculated by optimization methods.  
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Thus, in order to obtain the critical center position of the circular failure 

surface corresponding to the least of the factor of safety against slope failure, two 

additional equalities are constrained using the optimal condition of a function. This 

condition states that the first derivative of the function - the factor of safety - with 

respect to the unknown variable (x0,y0) must be zero: 

0FS X 0    (3.15) 

0FS Y 0    (3.16) 

Based on theory of optimization, the first derivative in the Equation (3.15) and 

(3.16) can give only the stationary point of coordinate of critical center position 

(X0,Y0). The second partial derivative test is a method to determine if a critical 

stationary point (X0,Y0) of a function FS(X0,Y0) is a minimum, maximum or saddle 

point.  

Thus, it should be mentioned that there is no need to apply such zero equality 

constraints to other unknown variables (X1-X6) since the analysis searches the critical 

position of the circular arc failure surface and treat those unknown variables as the 

constant terms. 

Equation (3.17) and (3.18) present second partial derivative test and Hessian 

Matrix to stipulate the maxima and minima function. 

  

 

0 0

0 0

2 2

2
0 0 0

X ,Y 2 2
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0 0 0 X ,Y
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X X Y
H
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X Y Y

  
    
  
 
    

 (3.17) 

The determinants of the square submatrices of H are: 

 0 0

2

1 2
0 X ,Y

FS
H

X





 (3.18) 

 0 0

22 2 2

2 2 2
0 0 0 0

X ,Y

FS FS FS
H

X Y X Y

              
 (3.19) 

Thus, the sufficient condition for a minimum FS(X0,Y0) at point (X0,Y0) exists 

if the Hessian Matrix H1 and H2 evaluated at (X0,Y0) is positive definite. As a result, 
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all expressions in Equation (3.18) and Equation (3.19) must be positive or higher than 

zero.    

C. Additional constraints for critical center position 

Figure 3.6 shows the circular arc failure surface in reinforced concrete 

cantilever retaining wall. 

I

C(0,0)B

O(x0,y0)

X1+X2+X3

H

A

P(x0,y0) K(x0,y0)

G F

E
D

Q
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Figure 3.6 Arc failure surfaces correspond to their center positions 

 In this figure, arc OIA and PGBCD do not intersect the wall components since 

its axis locates in search region QRST. In contrast, arc KFCE intersects the wall 

component. The feasible center position of circular arc should stay at the left-hand 

side from middle of base length. 

Ordinates of center positions are constrained to lie vertically assuming 

between lines (QR) and (TS) in order to avoid the intersection shape as shown in 

small figure on the right. When this shape appears, using procedures for calculating 

safety factor of slope stability are generally impractical.     

Table 3.3 presents the lower side and upper side constraints which center of 

circular arc failure surface does not intersect the wall components as shown in Figure 

3.6. 

 

 

Avoid this shape 
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Table 3.3 Side constraints on critical center of circular arc failure surface 

Description Lower side constraints Upper side constraints 

Axis of critical center   0 1 2 3X 1 2 x x x    0 1 2 3X 3 2 (x x x )  

Ordinate of critical center 0Y 1.2*H  0Y 2*H  

D. Verification of validation of FS slope expression in MAPLE 

In order to verify validation of FSSLOPE expression derived from Ordinary 

Method of Slice in MAPLE, a comparison of critical safety factor between MAPLE 

and other slope programs have been made. Table 3.4 shows the results of minimum 

factor of safety, FSmin, by AutoSLOPE and NLPSolve (MAPLE). The example for 

comparison is taken from geotechnical textbook by Das (2007). In that example, 

surcharge loading (q) is added as shown in Figure 3.7. 

 
    

 
 

Figure 3.7 Input of example for comparison of critical safety factor of slope 

Table 3.4 FSmin and coordinate of critical center position (x0,y0)  

Description MAPLE (NLPSolve) Maharak (2007) AutoSLOPE (2004) 

FSmin 1.9957 1.9940 2.0140 

X0 1.200 1.390 1.171 

Y0 9.322 9.456 9.863 

 

2
c 23.58 kN m 

2q 10 kN m  
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Based on Table 3.4, minimum safety factor, FSmin, by NLPSolve is slightly 

smaller than that by Maharak (2007). Thus, the expression of safety factor of slope 

derived by MAPLE is valid and suitable to use in optimization problem of reinforced 

concrete cantilever retaining wall.       

3.4.5 Additional side constraints 

Bowles (1996) suggested using thickness of cantilever wall equal to 250 mm. 

The practical minimum and maximum values of steel ratio in ACI code (2005) are 

considered. Table 3.5 summarized additional constraints arising from certain 

minimum criteria of thickness of stem and reinforcement ratio in each component of 

retaining wall. 

Table 3.5 Additional lower and upper side constraints  

Description Lower side constraints Upper side constraints 

Stem thickness at top (m) 6X 0.25 m  ---- 

Horizontal steel area of the toe 

X7 (mm2) 
 7 min 4X X c 2      7 max 4X X c 2     

Horizontal steel area of the 

heel X8  (mm2) 
 8 min 4X X c 2      8 max 4X X c 2     

Vertical steel area of the stem 

X9 (mm2) 
 9 min 2X X c 2      9 max 2X X c 2     

 

3.5 Proposed method for optimizing integral bridge abutment wall  

3.5.1 Load considered into design 

External loads apply in abutment support can be come from: 

A. vertical loads from self weight of bridge slab 

B. vertical load from live loading (Truck) 

C. vertical load from self weight of abutment wall 

D. horizontal loads from temperature, creep movements and wind 

E. horizontal loads from braking and skidding effects of vehicles 

F. horizontal pressure from exerted by the retained materials  

G. vertical loading from the weight of the fill acts on the footing 
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H. surcharge loading on the rear of the wall 

Appendix C gives detail on simply loads counted in bridge design and the 

combination of strength design based on AASHTO specification (2007). 

However, the structural design on abutment wall is respected to ACI Code 

318-05 which defined quite different from AASHTO.  

3.5.2 Design variables 

Figure 3.8 shows problem definition and design variables of integral bridge 

abutment walls related to geometry of wall dimensions and cross section of main bars 

area. In that figure, vertical line load (P) is assumed to be acting on the center line of 

abutment stem.  

x1 x2 x3

x4

x5

x6

q

retained material

x7

x8

x9

H

B C

P

 
 

Figure 3.8 Design variables of integral bridge abutment wall 

Nine design variables will be calculated. Assuming that top stem is equal 

bottom stem (X2=X6), the problem reduce to eight design variables. These include the 

following: 

1. X1 = total width of toe (m) 

2. X3 = total width of heel (m) 

3. X4 = thickness of base slab (m) 

4. X5 = soil cover (m) 
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5. X6 = stem thickness at top (m) 

6. X7 = horizontal reinforcing area of the toe per unit length of wall (mm2/m) 

7. X8 = horizontal reinforcing area of the heel per unit length of wall(mm2/m) 

8. X9 = vertical reinforcing area of the stem per unit length of wall (mm2/m) 

3.5.3 Objective function of integral bridge abutment wall 

Objective function in integral bridge abutment wall is the total cost of 

concrete, steel reinforcement, tied stirrups and formwork. The method to calculate 

total cost of bridge abutment wall is reported the same to conventional retaining wall. 

In integral bridge abutment wall, stirrups are necessary to place on stem wall in order 

to resist shear force. The procedure to calculate total cost of stirrups is summarized in 

the following equation. 

x1 x2 x3

x4

x5

x6

retained material

x7

x8

x9

H

B C

Ast

S: spacing

Ø longitudinal

Ø transversal

b = 1 m
Ast

Ø transversal

 

Figure 3.9 Reinforcing steel used in bridge abutment wall 

The diameter of transversal bar is 10 mm with cross section denoted as Ast. 

Based on ACI Code (2005), vertical spacing (S) of stirrup is calculated as: 

 longitudinal transversals min 16 , 48    (3.20) 

where  longitudinal = diameters of longitudinal bars (mm) 

  transversal = diameters of transversal bars (mm)    

Numbers of stirrup (nst) can be calculated as: 

 st 4n H x s   (3.21) 
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where H = total height of abutment wall 

X4= thickness of footing 

 s = spacing from one tie to one tie 

 Volume of one stirrup can be calculated as:  

 st st 6V A 2 b X    (3.22) 

where Ast = area of one stirrups 

 b = 1 meters (strip width) 

 X6 = width of stem wall  

Total cost of tie (tcoststirrup) can be calculated as:  

   
st st s

4
stirrup st st S st 6 s S

W V

H x
tcost W n C A 2 b X C

s

  


         

 (3.23) 

where Wst = weight of one tie 

 Vst = volume of one tie 

  s = unit weight of reinforcing steel 

 nst = numbers of tie 

 CS = unit cost of reinforcing steel (B/Kg)   

3.5.4 Geotechnical design considerations 

The concept of geotechnical designs of bridge abutment wall is the same to 

conventional cantilever retaining wall. Three typical failure modes simply taken to 

consider are namely, sliding failure, overturning failure, and bearing failure. Those 

failure modes must be checked to satisfy required factor of safety. According to Chen 

(2000), the required factor of safety against sliding should not be less than 1.50; 

required factor of safety against overturning should not be less than 2.0, and factor of 

safety against bearing failure should not be less than 3.0. These values are applied in 

the abutment with spread footing under service load.  

In this study, slope stability constraints are included in optimal design. 

3.5.5 Slope stability analysis in bridge abutment wall  

The procedure for calculating factor of safety against slope failure in bridge 

abutment wall is the same to conventional retaining wall. However, in this case, safety 



64 
 
factor of slope is also derived in function of line load, P, which acts vertically on stem 

wall.      

 Verification of validation of FS slope expression in MAPLE  

In order to verify validation of safety factor of slope expression (FSSLOPE) 

derived from Ordinary Method of Slice in MAPLE, a comparison of critical safety 

factor between MAPLE and other slope programs have been made. Table 3.6 shows 

the results of minimum factor of safety, FSmin, by AutoSLOPE, and NLPSolve 

(MAPLE). 

0.90 0.50 2.60
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0.80

0.50

q

retained material

6.70

B C
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Figure 3.10 Input of example for comparison of critical safety factor of slope  

Table 3.6 FSmin and coordinate of critical center position (x0,y0)  

Description MAPLE (NLPSolve) Maharak (2007) AutoSLOPE (2004) 

FSmin 2.078 2.060 2.060 

X0 -1.534 -1.590 -1.519 

Y0 6.710 6.840 6.799 

 

Based on Table 3.6, FSmin by NLPSolve is slightly smaller than that by 

Maharak with 1%. Thus, the expression of safety factor of slope derived by MAPLE 

is valid and suitable to use in optimization problem of integral bridge abutment 

retaining wall.       

2
1

0
1

1

18 kN m

30

c 0

 

 


 

2 0 2
2 2 219 kN m , 20 ,c 40 kN m    

2
c 24 kN m   

2q 20 kN m  
P 500 kN m
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3.5.6 Structural design requirements  

A. Design assumptions 

Due to the fact that the bridge abutment walls are subjected to axial loads and 

moments from lateral earth pressure causing weak-axis bending, it can be designed as 

bearing walls. McGregor (2005) defined bearing walls are the walls that are laterally 

supported and braced by the rest of the structure, that resist primarily in-plane vertical 

loads acting downward on the top of the wall. The vertical load may develop an 

eccentricity on the wall, causing weak axis bending. Moreover, according to ACI 

Section 14.4, it stated that the design of bearing wall is carried out by following 

procedures as: 

1. by using the one-way column design and slenderness requirements in ACI 

Section 10.11, 10.12 and 10.13 or  

2. by the empirical design method in ACI Section 14.5. 

McCormac (2005) stated that reinforced concrete bearing wall can be design 

either as columns or slender walls using an alternative procedure specified in ACI 

Section 14.8.   

In order to avoid complicated design when the wall is often classified as 

slender column, constraints in enforcing design as short column should be related to 

slenderness ratio computation. 

B. Support modeling 

Base of bridge abutment can be acted as fixed end support since there is no 

movement and sliding on bottom wall. The bridge slab will be acted as roller support 

as shown in Figure 3.11. 
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Figure 3.11 Support modeling of abutment wall 

From modeling of acting force in Figure 3.11, maximum bending moment and 

shear force can be calculated based on structural analysis. The reaction and moment at 

end of support and zero shears are presented in Table 3.7. 

 

 

Figure 3.12 Moment and shear diagram (a) due to uniform load (b) due to triangular 

load (Hassoun, 2005) 

  

  

 

 

 

(a) (b) 
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Table 3.7 Reaction and moment at end of supports and zero shears  

 Uniform Load Triangular Load 

RA = VA 5W 8  4W 5  

RB = VB 3W 8  W 5  

MA (-) WL 8  2 WL 15  

MB (+) 0 0 

MC (+) 9 WL 128  3WL 50  

C. Important constraints in optimal design of bridge abutment wall 

i. Constraints on stem shape 

Stem shape constraints are used to limit design length of stem which must be 

greater or equal to 0.25 meter and smaller than 1.0 meter as presented in Table 3.8. 

ii. Constraints on reinforcement ratio in column 

Based on ACI Code, reinforcement ratio in column should not less than 0.01 

and not more than 0.08. Thus, these constraints are summarized in Table 3.8.   

Table 3.8 Summary of side constraints in abutment wall  

Description Lower bound Upper bound 

Shape X6 (m) 6X 0.25  6X 1.00  

Steel ratio in column column 0.01   column 0.08   

 

iii. Constraints enforcing design as short column according to ACI Code 

The slenderness effects in column design are neglected if the following 

equation is satisfied.  

u 1

2

k M
34

r M
 


 (3.24) 

where k = 0.70 (as in Figure 3.11: fixed support at bottom with rotation free and 

translation fixed support at top) 

u = H – X4 = unsupported length  
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r = 0.3X6 = radius of gyration (rectangular section) 

M1 M2  = 0 (moment at translation roller support at top is equal to zero based 

on Figure 3.11) 

iv. Constraints enforcing design in compression-controlled region  

To enforce design in compression-controlled regions, proportion of value c/d 

should be constrained in one interval whose values limit compression failures mode.  

 
 

Figure 3.13 Net tensile strains and proportion of c/d (Nilson, 2004) 

 

The strain compatibility gives rise to the following relationships: 

u u

t y s

c

d c f E

 
 

 
 (3.25) 

u

y s u

c

d f E




 
 (3.26)  

The conditions on compression controlled design can be expressed as:    

 s y sc 0.003E d f 0.003E   (3.27) 

c
1.00

d
  (3.28) 

v. Constraints on strength design 

According to ACI Code, the nominal strengths multiplied with reduction 

factors must be greater than or equal to the design strength calculated by load factors. 

 

 

t

c
1

d

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The resulting constraints are given by: 

       n c 1 s y c s s applied

d
P 0.85f ' c b A ' f 0.85f ' A E 0.003 1 P

c

                 
 (3.29) 

     

   

1
c 1 s y c

n applied

s s

ch h
0.85f ' c b A ' f 0.85f ' d '

2 2 2
M M

d h
A E 0.003 1 d

c 2

            
                         

 (3.30) 

The maximum axial load capacity of a column multiplied with strength 

reduction factor must exceed the applied axial factored compression as: 

   n(max) c g st y st appliedP *0.80 0.85f ' A A f A P         (3.31) 

vi. Constraints on shear force 

The applied factored shearing forces (Vu) should not greater than one and half 

of shearing force provided by concrete (Vc). This condition ensures that stirrups 

designed according ACI Section 7.10.5.1, 7.10.5.2, and 7.10.5.3 can resist the external 

applied shear force and there is no requirement of additional shear reinforcing steel.  

c uV 2 V   (3.32) 

3.6 Solvers for optimization problem 

The optimization of retaining wall is formulated as a constrained nonlinear 

programming (Saribas and Erbatur, 1996). Thus, various optimization algorithms can 

be used depending on mathematical structure of the problem. Some available build-in 

function of optimization in MAPLE, MATLAB, IMSL FORTRAN, and KNITRO can 

be used to compute minimum or maximum of a real-value nonlinear objective 

function and nonlinear constraints. 

3.6.1 MAPLE and MATLAB 

MAPLE is used mainly for deriving expressions of all constraints in 

reinforced concrete cantilever retaining wall. Code generation command in MAPLE is 

useful for generating analytical expressions from MAPLE to MATLAB. For 

additional constraints in slope stability, both MAPLE and MATLAB can compute the 

first and second partial derivative of expressions by command diff. MAPLE and 
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MATLAB can generate equality constraints (gj(X) = 0) without causing computation 

errors. Although expression of safety factor of slope and additional constraints are too 

long (more than 1000 lines), MAPLE can evaluate their analytical expressions and 

store analytical results in internal memory.  

3.6.2 IMSL FORTRAN and KNITRO   

Because FORTRAN and KNITRO only evaluate the first and second 

derivative expressions numerically, it is impossible to use build differentiation 

command for enforcing additional slope constraints. To resolve those problems, Finite 

Difference Method (FDM) is applied to perform the approximation of derivatives by 

central, forward or backward. Figure 3.14 presents the finite difference mesh in one 

and two dimensions where u is function of x and y [u(x,y)]. 
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Figure 3.14 Finite difference approximations in one and two dimensions 

 First derivative 

The simple formulas of central-difference approximation of u respected to x 

and y can be written as: 
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   i 1, j i 1, ju u u x x, y u x x, yu

x 2 x 2 x
     

 
  

 (3.33) 

   i, j 1 i, j 1u u u x, y y u x, y yu

y 2 y 2 y
     

 
  

 (3.34) 

 Second derivative 

The simple formulas of central-difference approximation of u respected to x 

and y can be written as: 

 
     

 

2
i 1, j i, j i 1, j

2 22

u 2u u u x x, y 2u x, y u x x, yu

x x x

        
 

  
  (3.35) 

 
     

 

2
i, j 1 i, j i, j 1

2 22

u 2u u u x, y y 2u x, y u x, y yu

y y y

        
 

  
 (3.36) 
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
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               


 

(3.37) 

For numerical calculation of safety factor of slope, the first and second 

derivative of safety factor of slope respected to X0 and Y0 from Equation (3.35) to 

Equation (3.37) can be expressed as: 

   0 0 0 0

0

FS X X,Y FS X X,YFS

X 2 X

   


 
   (3.38) 

   0 0 0 0
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FS X ,Y Y FS X ,Y YFS

Y 2 Y
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 
 (3.39) 

     
 

2
0 0 0 0 0 0

22
0

FS X X,Y 2FS X ,Y FS X X,YFS

X X

    


 
 (3.40) 

     
 

2
0 0 0 0 0 0

22
0

FS X ,Y Y 2FS X ,Y FS X ,Y YFS

Y Y

    


 
 (3.41) 

   
  

   
  

2
0 0 0 0

0 0

0 0 0 0

FS X X,Y Y FS X X,Y YFS

X Y 4 X Y

FS X X,Y Y FS X X,Y Y

4 X Y

     


  

        


 

 (3.42) 
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For FORTRAN coding, the research uses tolerance of X and Y equal to  

10-5. 

To make central-difference approximation more accuracy, it is possible to use 

the finite difference coefficient in central which are listed in Table 3.9. 

Table 3.9 Central finite difference coefficient 

Derivative Order -3 -2 -1 0 1 2 3 

1 

1   -1/2 0 1/2   

2  1/12 -2/3 0 2/3 1/12  

3 -1/60 3/20 -3/4 0 3/4 -3/20 1/60 

2 

1   1 -2 1   

2  -1/12 4/3 -5/2 4/3 -1/12  

3 1/90 -3/20 3/2 -49/18 3/2 -3/20 1/90 

     
For example, the second derivative with second-order of 5 coefficients of 

accuracy is: 

         2

2 2

1 4 5 4 1
f x 2 X f x X f x f x X f x 2 Xf 12 3 2 3 12

x X

            


 
 (3.43) 

This research uses second-order of 5 coefficients of accuracy. 

3.7 Summary of all constraints and objective function  

This section summarizes an objective function of total cost of construction 

materials and all constraints in the optimal design of conventional and bridge 

abutment retaining wall. The subscript, d and t, refers to design or requirements, and 

total stress, respectively.  

 Optimization problem of conventional retaining wall  

Minimize total cost F 

         

       

   

6
4 2 6 1 2 3 4 7 1 2 3 st

6 6
8 1 2 3 st 9 st

2 2

4 2 6 4

1
F H x x x x x x x x *10 x x x

2

x *10 x x x x *10 H

H X X X H X



 

         

     

     

      (3.44) 
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Subjected to    

j1 ovd ovg FS FS 0    (3.45) 

j2 sddp sdpg FS FS 0      (3.46) 

j3 sdd0 sd0g FS FS 0     (3.47) 

   j4 R ovg 1 2 B M M V 0        (3.48) 

   j5 R ovg M M V 2 3 B 0        (3.49) 

j6 bearingd bearingg FS FS 0                          (3.50) 

j7 utoe cg 0                 (3.51)  

j8 uheel cg 0                  (3.52) 

j9 ustem cg 0                  (3.53) 

j10 utoe toeg M MR 0               (3.54) 

j11 uheel heelg M MR 0               (3.55) 

 j12 ustem stemg M MR 0               (3.56)  

 j13 min 4 7g X c 2 X 0                 (3.57)  

 j14 min 4 8g X c 2 X 0                 (3.58)  

 j15 min 2 9g X c 2 X 0                 (3.59) 

 j16 7 max 4g X X c 2 0                (3.60) 

  j17 max 4 8g X c 2 X 0                 (3.61) 

 j18 max 2 9g X c 2 X 0                 (3.62) 

j19 6g 0.25 x 0                  (3.63) 

 4 5
j20

x x
g 1 0

B 2 e

      
                       (3.64) 

j21 sloped slopeg FS FS 0                           (3.65) 

  j22 1 2 3 0g 1 2 X X X X 0                (3.66) 

  j23 0 1 2 3g X 3 2 X X X 0        (3.67) 

j24 0g 1.2 H Y 0                      (3.68) 
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j25 0g Y 2 H 0                      (3.69) 

 

 2 2
j26 slope 0g FS X 0                 (3.70) 

    22 2 2 2 2
j27 slope 0 0 slope 0 slope 0g FS X Y FS X FS Y 0                (3.71) 

j28 slope 0L FS X 0                (3.72) 

j29 slope 0L FS Y 0                (3.73) 

j30 4 5L x x D                 (3.74) 

j31 sdd0t sd0tg FS FS 0                   (3.75) 

j32 sddpt sdptg FS FS 0                   (3.76) 

j33 sdd0t sd0tg FS FS 0                     (3.77) 

j34 bearingdt bearingtg FS FS 0                     (3.78) 

j35 stoe cg 0                 (3.79) 

j36 stoe stoeg M MR 0                      (3.80) 

j37 sheel cg 0                  (3.81) 

j38 sheel sheelg M MR 0               (3.82) 

j39 sstem cg 0                  (3.83) 

j40 sstem sstemg M MR 0               (3.84) 

Total design constraints in the optimal design of conventional and bridge 

abutment retaining wall are summarized in Table 3.10, and Table 3.11, respectively. 
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Table 3.10 Summary of all design constraints in conventional retaining wall 

Design criteria 

Constraints in 
TSA ESA (WSD) 

Constraints in 
TSA ESA (USD) 

No 
Slope 

With 
Slope 

No 
Slope 

With 
Slope 

overturning  1 1 1 1 

Two eccentricity  2 2 2 2 

Two Sliding with and without Pp (total 
and effective separately)  

2 2 2 2 

Bearing (total and effective separately) 1 1 1 1 

Shear and moment (WSD) 
Toe, Heel, and Stem  

6 6 - - 

Shear and moment (USD) 
Toe, Heel, and Stem  

- - 6 6 

Steel reinforcement ratio in beam (USD)  - - 6 6 

Top stem and Hansen’s depth factor  2 2 2 2 

FS Slope  - 1 - 1 

Two lower bound and upper bond for 
critical center constraints in X0 and Y0  

- 4 - 4 

Hessian Matrix elements  - 2 - 2 

Partial derivative FS (equality con-)  - 2 - 2 

Depth of embedment (equality con-)  1 1 1 1 

Total Number of constraints  15 24 21 30 
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Table 3.11 Summary of all design constraints in integral bridge abutment wall 

Design criteria 

Constraints in TSA ESA 
(USD) 

No Slope With Slope 

overturning  1 1 

Two eccentricity  2 2 

Two Sliding with and without Pp (total and 
effective separately)  

2 2 

Bearing (total and effective separately) 1 1 

Shear and moment (USD) [Toe, Heel] 4 4 

Steel reinforcement ratio in beam (USD) [Toe, 
H  

4 4 

Top stem and Hansen’s depth factor  2 2 

Shear in column wall 1 1 

Reinforcement steel ratio in column 2 2 

Slenderness ratio 1 1 

Strength constraints on Pn, Mn, Pmax 3 3 

Compression controlled by neutral axis 2 2 

FS Slope  - 1 

Two lower bound and upper bond for critical 
center constraints in X0 and Y0  

- 4 

Hessian Matrix elements  - 2 

Partial derivative FS (equality con-)  - 2 

Depth of embedment (equality con-)  1 1 

Total Number of constraints  25 34 
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CHAPTER IV 

RESULTS AND DISCUSSIONS 

  

4.1 General 

This section presents two numerical examples of conventional retaining wall 

and bridge abutment wall in order to demonstrate significant effect of slope stability 

constraints to optimal design of cantilever retaining wall.  

  Table 4.1 lists input parameters for optimal design of two different examples. 

The initial input must consist of: 

 Total height of wall 

 Angle of backfill and surcharge loading 

 Soil properties of backfill (unit weight, cohesion, internal friction angle) 

 Soil properties of base foundation ( unit weight, cohesion, internal friction 

angle) 

 Interface shear resistance for friction angle and base adhesion  

 Factor of safety against overturning, sliding, bearing, and slope failure 

 Factor of safety against shear and moment failures 

 Concrete and reinforcing steel properties (strength, unit weight) 

 Structural design (initial diameter, concrete diameter) 

 Cost of materials (concrete, steel, formwork) 

Unit price of concrete and reinforcing steel depend on its strength and 

diameters, respectively as reported in Table 3.1 and Table 3.2. In this study, the unit 

cost of concrete, steel, and formwork are given by 2,550.0 B/m3, 22.0 B/kg, and 150.0 

B/m2
, respectively.     
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Table 4.1 Initial input used in optimal design of conventional retaining wall 

(Effective stress analysis)  

Input parameters Symbol Unit Ex1 Ex2 

Total Height H  m 6.0 5.2 

Depth of embedment D m 1.8 1.0 

Yield strength of steel reinforcement yf  MPa 400.0 400.0 

Compressive strength of concrete cf '  MPa 25.0 25.0 

Unit weight of steel reinforcement st  Kg/m3 7850.0 7850.0 

Unit weight of concrete c  kN/m3 24.0 24.0 

Concrete cover c mm 70.0 70.0 

Diameters of bar   Mm 20.0 16.0 

Surcharge loading q  kN/m2 10.0 10.0 

Backfill of slope   Degree 5.0 0.0 

Unit weight of backfill soil 1  kN/m3 18.0 16.8 

Cohesion of backfill soil 1c  kN/m2 0.0 0.0 

Internal friction angle of backfill soil 1  degree 30.0 30.0 

Unit weight of soil below foundation 2  kN/m3 19.0 17.6 

Cohesion of soil below foundation 2c  kN/m2 40.0 30.0 

Undrained shear strength of base soil Su kN/m2 100.0 100.0 

Internal friction angle of base soil 2  degree 20.0 28.0 

Interface shear resistance for friction 
angle and base adhesion 

k1, k2 - 0.6667 0.6667 

FS for overturning stability ovFS  - 2.0 2.0 

FS for sliding stability (include PP) sdpFS  - 2.0 2.0 

FS for sliding stability (exclude PP) sd0FS  - 1.5 1.5 

FS for bearing stability  beFS  - 3.0 3.0 

FS for slope stability  slopeFS  - 2.5 2.5 

Factor of safety against shear and moment 
failures 

FSs,FSm - 1.0 1.0 

Unit cost of concrete 
CC  ฿/m3 2,550 2,550 

Unit cost of steel 
STC  ฿/kg 22.0 22.0 

Unit cost of formwork 
FC  ฿/m2 150.0 150.0 
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Table 4.2 Initial input used in optimal design of conventional retaining wall 

(Total stress analysis)  

Input parameters Symbol Unit Ex1 Ex2 

Total Height H  m 6.0 5.5 

Depth of embedment D m 1.5 1.0 

Yield strength of steel reinforcement yf  MPa 400.0 400.0 

Compressive strength of concrete cf '  MPa 25.0 25.0 

Unit weight of steel reinforcement st  Kg/m3 7850.0 7850.0 

Unit weight of concrete c  kN/m3 24.0 24.0 

Concrete cover c mm 70.0 70.0 

Diameters of bar   Mm 20.0 16.0 

Surcharge loading q  kN/m2 10.0 10.0 

Backfill of slope   Degree 5.0 0.0 

Unit weight of backfill soil 1  kN/m3 18.0 17.0 

Cohesion of backfill soil 1c  kN/m2 0.0 0.0 

Internal friction angle of backfill soil 1  degree 30.0 30.0 

Unit weight of soil below foundation 2  kN/m3 19.0 18.0 

Cohesion of soil below foundation 2c  kN/m2 110.0 110.0 

Undrained shear strength of base soil Su kN/m2 100.0 110.0 

Internal friction angle of base soil 2  degree 0.0 0.0 

Interface shear resistance for friction 
angle and base adhesion 

k1, k2 - 0.6667 0.6667 

FS for overturning stability ovFS  - 2.0 2.0 

FS for sliding stability (include PP) sdpFS  - 2.0 2.0 

FS for sliding stability (exclude PP) sd0FS  - 1.5 1.5 

FS for bearing stability  beFS  - 3.0 3.0 

FS for slope stability  slopeFS  - 2.5 2.5 

Factor of safety against shear and moment 
failures 

FSs,FSm - 1.0 1.0 

Unit cost of concrete 
CC  ฿/m3 2,550 2,550 

Unit cost of steel 
STC  ฿/kg 22.0 22.0 

Unit cost of formwork 
FC  ฿/m2 150.0 150.0 
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4.2 Trial solutions 

This section will study the effect of variation of one wall dimension on factor 

of safety of slope stability and total cost of materials. The study is carried out on the 

second example (Ex2) in Table 4.1 before applying the proposed optimization 

technique.  

x1 x2 x3

x4

x5

x6

q

retained material

x7

x8

x9

H1

H

B C

D

 

Figure 4.1 Design variables X[i] 

Figure 4.1 shows the design parameters of retaining wall. The study on trial 

solutions is focused on changing X1, X2, and X3 since these three design variables act 

as controlled variables in design. It can be noticed that unknown X4 is designed by 

shear. Design of unknown X5 depends on a given embedment depth (D) constant. 

Design of unknown X6 is related to the minimum value recommended by Bowles 

(1996). Reinforcing areas such as X7, X8, and X9 are mainly depended on X1, X2, and 

X3.          

A. Trial solutions by changing X1 

The same input parameters in example 2 of Table 4.1 are considered into trial 

solutions using ultimate strength design. The study maintains X2 and X3 as constant 

values while the value of X1 is changed. X4 is given as 0.60 meter since it was 

calculated by conventional proportion and this thickness is sufficient for shear design. 

The result in summarized in Table 4.3. 

 



81 
 

Table 4.3 Trial solutions by changing X1 

X Trial1 Trail2 Trial3 Trial4 Trial5 Trial6 Trial7 Trial8 

x1 (m) 0.30 0.40 1.00 1.80 2.50 2.80 3.00 4.00 

x2 (m) 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

x3 (m) 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 

x4 (m) 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

x5 (m) 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

x6 (m) 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

FSov 2.415 2.569 3.352 4.864 6.100 6.648 7.020 8.950 

FSsdp 2.945 2.975 3.150 3.384 3.589 3.677 3.736 4.029 

FSsd0 1.610 1.639 1.815 2.049 2.254 2.342 2.401 2.693 

FSbe 4.088 4.424 7.100 12.845 20.719 25.157 28.553 51.410 

Ecentricity not ok ok ok ok ok ok ok ok 

FSstoe 3.820 3.170 2.140 1.93 1.840 1.800 1.770 1.600 

FSsheel 1.180 1.180 1.180 1.180 1.180 1.180 1.180 1.180 

FSsstem 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 
FSslope 
(min) 

2.455 2.456 2.466 2.483 2.500 2.510 2.520 2.550 

Tcost 
(B)*10000 

1.3291 1.3547 1.4804 1.6533 1.8046 1.8694 1.9126 2.1287 

 

x1

tcost

FSslope

FSslopeR

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Trial1 Trail2 Trial3 Trial4 Trial5 Trial6 Trial7 Trial8

X1 (m)  ;   tcost*10000  (B)

Effects of X1 on tcost and FSslope

x1 tcost FSslope FSslopeR

 

Figure 4.2 Effect of X1 on safety factor of slope and total cost 
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From Figure 4.2, when X1 increases, total cost increases accordingly. In trial 1, 

total base length does not satisfy eccentricity failures although this trial gives the 

lowest total cost. All factors of safety against geotechnical and structural failures are 

greater than those of requirements from trial 5, which correspond to X1=2.50 meters. 

This can be concluded that the required safety factor of slope, FSslope, can be 

achieved by mainly increasing value of X1. As a result, an optimum solution does 

exist, where the value of FSslope can satisfy the required value of 2.50.    

B. Trial solutions by changing X3 

Based on Ex 2 in Table 4.1, the study maintains X1 and X2 as constant value 

while the value X3 is changed. X4 is given as 0.60 meter since it was calculated by 

conventional proportion and this thickness is sufficient for shear design. The result is 

summarized in Table 4.4. 

Table 4.4 Trial solutions by changing X3    

X Trial1 Trial2 Trial3 Trial4 Trial5 Trial6
x1 (m) 0.30 0.30 0.30 0.30 0.30 0.30
x2 (m) 0.55 0.55 0.55 0.55 0.55 0.55
x3 (m) 1.90 2.20 2.40 2.60 2.80 3.00
x4 (m) 0.60 0.60 0.60 0.60 0.60 0.60
x5 (m) 0.40 0.40 0.40 0.40 0.40 0.40
x6 (m) 0.25 0.25 0.25 0.25 0.25 0.25
FSov 2.164 2.666 3.029 3.416 3.825 4.258
FSsdp 2.840 3.015 3.132 3.249 3.366 3.483
FSsd0 1.505 1.680 1.797 1.914 2.031 2.148
FSbe 3.840 4.495 4.956 5.427 5.903 6.382
ecentricity not ok ok ok ok ok ok
FSstoe 3.710 4.150 4.41 4.660 4.890 5.100
FSsheel 1.360 1.180 1.080 1.000 0.920 0.860
FSsstem 3.000 3.000 3.000 3.000 3.000 3.000
Fsslope(min) 2.400 2.470 2.530 2.570 2.620 2.670
tcost (B)*10000 1.3680 1.4328 1.4859 1.5514 1.6217 1.6971  

 
From Table 4.4, total cost increases as X3 increases. However, increasing X3 

does not have any effects in trial 5 and 6 because factor of safety against shear failure 

is less than that of requirements. In trial 3 and trail 4, factor of safety against slope 

failure is satisfied in case that lengths of heel slab X3 ranges from 2.40 meters to 2.60 

meters. This can be concluded that X3 has significant influence on critical safety 

factor of slope.  
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x3
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Figure 4.3 Effects of X3 on safety factor of slope and total cost 

C. Trial solutions by changing X2 

The effects of X2 are presented in Table 4.5. 

Table 4.5 Trial solutions by changing X2    

X Trial1 Trial2 Trial3 Trial4 Trial5 Trial6
x1 (m) 0.30 0.30 0.30 0.30 0.30 0.30
x2 (m) 0.60 0.80 1.00 1.20 1.40 1.60
x3 (m) 2.00 2.00 2.00 2.00 2.00 2.00
x4 (m) 0.60 0.60 0.60 0.60 0.60 0.60
x5 (m) 0.40 0.40 0.40 0.40 0.40 0.40
x6 (m) 0.25 0.25 0.25 0.25 0.25 0.25
FSov 2.406 2.741 3.096 3.470 3.865 4.279
FSsdp 2.922 3.016 3.109 3.203 3.296 3.390
FSsd0 1.587 1.680 1.774 1.867 1.961 2.054
FSbe 4.184 4.757 5.394 6.092 6.849 7.667
ecentricity not ok ok ok ok ok ok
FSstoe 3.980 4.440 4.930 5.420 5.940 6.470
FSsheel 1.290 1.290 1.290 1.290 12.590 1.290
FSsstem 3.390 5.120 7.180 9.960 12.590 16.160
Fsslope(min) 2.437 2.469 2.501 2.534 2.570 2.600
tcost (B)*10000 1.4455 1.6691 1.8930 2.1169 2.3409 2.5651  
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The solutions presented in Table 4.5 are calculated based on Ex 2 in Table 4.1. 

The study maintains X1 and X3 as constant value while X2 is changed. X4 is given as 

0.60 meter since it was calculated by conventional proportion and this thickness is 

sufficient for shear design. 

From Table 4.5, total cost increases as X2 increases. However, increasing X2 

can make safety factor of slope, FSslope, satisfying with which of requirement, 

FSslopereq. However, the case of X2 greater than 1 meter can satisfy required safety 

factor of slope of 2.50. This can be concluded that increasing X2 is slightly 

significant.    

x2

tcost

FSslope

FSslopeR

0.0

0.5

1.0

1.5
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2.5

3.0

Trial1 Trial2 Trial3 Trial4 Trial5 Trial6

X2 (m)   ;   tcost*10000 (B)

Effects of X2 on tcost and FSslope

x2 tcost FSslope FSslopeR

 

Figure 4.4 Effects of X2 on safety factor of slope and total cost 

D. Trial solutions by changing X1 and X3  

The same input parameters in example 2 of Table 4.1 are taking into trial 

design using ultimate strength design. Both X1 and X2 are changed while X2 are fixed. 

X4 is given by 0.60 m since it is calculated by conventional proportion and its 

thickness is controlled by shear design. The result is summarized in Table 4.6. 
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Table 4.6 Trial solutions by changing X1 and X3 

X Trial1 Trial2 Trial3 Trial4 Trial5
x1 (m) 0.60 0.70 0.80 0.80 1.00
x2 (m) 0.50 0.50 0.50 0.50 0.50
x3 (m) 1.80 2.00 2.20 2.40 2.60
x4 (m) 0.60 0.60 0.60 0.60 0.60
x5 (m) 0.40 0.40 0.40 0.40 0.40
x6 (m) 0.25 0.25 0.25 0.25 0.25
FSov 2.346 2.842 3.387 3.802 4.617
FSsdp 2.846 2.992 3.138 3.255 3.431
FSsd0 1.511 1.657 1.803 1.920 2.095
FSbe 4.445 5.389 6.469 7.108 8.997
ecentricity ok ok ok ok ok
FSstoe 2.380 2.380 2.380 2.480 2.360
FSsheel 1.440 1.290 1.180 1.080 1.000
FSsstem 2.620 2.620 2.620 2.620 2.620
Fsslope(min) 2.378 2.428 2.478 2.530 2.580
tcost (B)*10000 1.3553 1.4201 1.4849 1.5394 1.6529  
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Figure 4.5 Effect of changing X1 and X3 on factor of slope and total cost 

From Figure 4.5, total cost increases as X1 and X3 increase. In trial 1, even 

though factor of safety against sliding is slightly greater than that of requirement, the 

design is unsafe because critical safety factor of slope stability is not satisfied. It can 
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be concluded that the total cost in this trial is not optimal. For trial 3 and 4 where toe 

length (X1) is set constant, slightly increase of heel slab (X3) can increase critical 

safety factor of slope (FSSLOPE REQ). This is true as mentioned in trial solutions by 

varying X3 section 4.2.2.         

4.3 Optimization solutions from computer methods 

This section presents optimization solutions from computer methods. Four 

optimization solver algorithms are used in the optimal design, namely, NLPSolve 

(MAPLE), fimincon (MATLAB), DNCONF (IMSL FORTRAN), and KNITRO. 

A. Optimization solutions without including slope constraints 

Example 2 in Table 4.1 is solved with all algorithms presented above. Table 

4.7 shows results from computer calculations without including any slope constraints. 

Ultimate strength design (USD) is used in structural design.  

Table 4.7 Optimal solutions with different optimization solvers 

Optimal solutions NLPSolve fmincon DNCONF KNITRO 

X1 (m) 1.208 1.208 1.208 1.208 

X2 (m) 0.443 0.443 0.443 0.443 

X3 (m) 1.549 1.549 1.550 1.550 

X4 (m) 0.386 0.386 0.386 0.386 

X5 (m) 0.614 0.614 0.614 0.614 

X6 (m) 0.250 0.250 0.250 0.250 

X7 (mm2) 1077.51 1077.51 1077.50 1077.50 

X8 (mm2) 1405.57 1405.57 1405.57 1405.57 

X9 (mm2) 1822.26 1822.26 1822.26 1822.26 

Total cost (฿) 11975.83 11975.83 11975.83 11975.83 

 
 It can be noticed that all optimal solutions are the same in all algorithms. 

NLPSolve produces the same solutions in comparing with fimincon, DNCONF and 

KNITRO although those used different initial search points. It can be concluded that 

the optimal solution by computer methods is the global minimum. These results are 

valid and reasonable. 
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B. Optimization solutions with slope constraints 

This section presents the optimization solutions from example 2 in Table 4.1 

which is solved by the same algorithms presented above. Ultimate strength design 

(USD) as well as its constraints are included in computation. The solutions are 

summarized in Table 4.8. 

Table 4.8 Optimal solutions with different optimization solvers in case of 

including slope constraints 

Optimal solutions NLPSolve fmincon DNCONF KNITRO 

X1 (m) 0.246 N/A N/A 0.246 

X2 (m) 0.435 N/A N/A 0.435 

X3 (m) 2.367 N/A N/A 2.367 

X4 (m) 0.554 N/A N/A 0.554 

X5 (m) 0.446 N/A N/A 0.446 

X6 (m) 0.250 N/A N/A 0.250 

X7 (mm2) 1665.495 N/A N/A 1665.495 

X8 (mm2) 2146.310 N/A N/A 2146.310 

X9 (mm2) 1689.484 N/A N/A 1689.484 

FSSLOPE
MIN

 2.500 N/A N/A 2.500 

Total cost (฿) 13447.091 N/A N/A 13447.091 

Running time (s) 180.34 s N/A N/A 18.68 s 

 
Note: N/A stands for “Not Available”.  

According to Table 4.8, NLPSolve and KNITRO can determine optimal design 

with including slope constraints. These two methods give the same results. The others 

such as fmincon, and IMSL DNCONF cannot determine the optimal solution.   

 However, it is not always that MAPLE and KNITRO can find the optimal 

solution due to several reasons such as: 

1. algorithm may not rigorous 

2. input values does not satisfy requirement constraints in slope stability with 

safety factor equal to 2.50 

3. Square root terms are appeared in FS slope expression 
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It can be concluded that slope constraints is very nonlinear and complex, 

namely, first and second derivative of safety factor of slope with respect to center of 

critical circular arc failure surface ( 0FS X  , 0FS Y  ) and all elements of Hessian 

matrix (
2

2
0

FS

X




, 
2

2
0

FS

Y




, 
2

0 0

FS

X Y


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) for sufficiency of the optimal condition.  

4.4 Comparison between conventional and optimal design of RC cantilever 

retaining wall 

The conventional method for designing reinforced concrete cantilever 

retaining wall has been presented already in literature review by using approximate 

proportions of wall components. A comparison between the conventional and optimal 

design is made in order to demonstrate the efficiency of optimization technique. 

Table 4.9 Conventional design of RC cantilever retaining wall  

Design 

variables 

Trial dimension 

and required 

safety factor 

Con 

design 1 

Con 

design 2 

Con 

design 3 

Con 

design 4 

X1 (m) 0.1H 0.55 0.55 0.55 0.55 

X2 (m) 0.1H 0.55 0.55 0.55 0.55 

X3 (m) 0.3H to 0.5H 2.00 2.20 2.30 2.40 

X4 (m) 0.1H 0.60 0.60 0.60 0.60 

X5 (m) D - 0.1H 0.40 0.40 0.40 0.40 

X6 (m) 0.250 0.25 0.25 0.25 0.25 

X7 (mm2) - 1827.00 1827.00 1827.00 1827.00 

X8 (mm2) - 1827.00 1827.00 1834.36 1834.36 

X9 (mm2) - 1652.00 1652.00 1652.00 1652.00 

FSOV 2.00 2.701 3.070 3.263 3.462 

FSSDP 2.00 2.972 3.089 3.147 3.205 

FSSD0 1.50 1.637 1.753 1.812 1.870 

FSBE 3.00 4.942 5.482 5.757 6.032 

FSSLOPE REQ 2.50 2.433 2.481 2.505 2.529 

Total cost (฿) - 14436.27 14868.48 15088.91 15407 
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Table 4.9 shows total cost and factor of safety of slope stability from 

conventional design. USD is used in structural design of stem, heel, and toe slab. The 

input of the conventional design is reported the same as example 2 in Table 4.1. Two 

important parameters taken into trial selection are total height (H=5.20 m) and soil 

embedment (D=1.0 m).  

The different percentage with respect to total cost of conventional method can 

be calculated as: 

Different percentage (%) 
tcost(con) tcost(opt)

100%
tcost(con)


   (4.1)    

Since critical safety factor of slope from Con design 3 is equal to required, 

value, the solutions in that column will be used to compare with optimal design. Thus 

from Equation (4.1), it can be concluded that the total cost of whole structure 

decreases about 10.88% when optimization technique is applied. 

4.5 Results and discussion on two examples 

Two examples are presented in this section. In each example, the optimal 

design is focused on effective stress analysis (ESA) with structural design based on 

USD and WSD. Table 4.10 presents both USD and WSD without and with slope 

constraints. Optimal solutions are obtained by running KNITRO solver algorithm.    

All symbols of wall design variables are defined as: 

X1, X2, X3 (m) = total width of toe, stem thickness at bottom, and total width 

of heel, respectively 

 X4 (m) = thickness of footing slab  

X5 (m) = depth of soil cover above slab footing 

X6 (m) = stem thickness at top  

X7 (mm2) = horizontal reinforcing area of toe per unit length of wall 

X8 (mm2) = horizontal reinforcing area of heel per unit length of wall 

X9 (mm2) = horizontal reinforcing area of stem per unit length of wall  
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Figure 4.6 Plot of conventional design and optimal design 
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4.5.1 Optimization with effective stress analysis (ESA) 

A. Optimal solutions of example 1 (ESA) 

Table 4.10 presents optimal solutions of example 1 analyzed by effective 

stress condition. The optimal solution by working stress and ultimate strength design 

including slope constraints are also reported in that table. 

Table 4.10 Optimization solutions of example 1 (ESA) 

Design Variables 

Exercise 1 (WSD) Exercise 1 (USD) 

Without slope With slope Without slope With slope 

Optimum 
values 

Optimum 
values 

Optimum 
values 

Optimum 
values 

X1 (m) 1.518 0.879 1.838 0.896 

X2 (m) 0.626 0.619 0.549 0.553 

X3 (m) 2.077 2.522 1.917 2.551 

X4 (m) 0.487 0.536 0.544 0.705 

X5 (m) 1.313 1.264 1.255 1.095 

X6 (m) 0.250 0.250 0.250 0.250 

X7 (mm2) 1494.744 652.462 1625.079 2188.110 

X8 (mm2) 2922.433 3871.956 1731.317 2306.400 

X9 (mm2) 2702.530 2672.498 2112.667 1922.707 

MinFSSLOPE 2.453 2.50 2.432 2.500 

Optimal Cost (฿) 19229.907 19263.569 18020.115 19509.764 

  
In example 1, depth of soil embedment is considered as an important input. If 

designers use shallow depth, solvers cannot find optimal solutions which give 

minimum safety factor of slope equal to 2.50. Generally, the width of heel (X3) and 

thickness of base slab (X4) of the optimal solution with slope stability is higher than 

that without slope constraints. The larger values will satisfy required safety factor of 

slope failure, wall sliding failure along the base without passive force, and shear heel 

failure. In addition, main reinforcement areas in each section are higher. 

The results also show that even though the optimal solution without slope 

stability constraints gives lower cost of material, such design is not adequate and 

unsafe because the minimum safety factor of slope failure is violated with the 
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required FSSLOPE. On the other hand, the optimal solution with including slope 

stability constraints give higher total cost of material, but the design is safe and valid 

because the minimum FSSLOPE is equal to the required value.  

This result means that slope constraint is active and its safety factor is the 

controlled value for the optimal solution. Other active constraints are wall sliding 

failure along the base without passive force and shear heel failure. 

B. Optimal solutions of example 2 (ESA) 

Table 4.11 presents optimal solutions of example 2 analyzed by effective 

stress condition. The similar discussion can be applied to example 1. 

Table 4.11 Optimization solutions of example 2 (ESA) 

Design Variables 

Example 2 (WSD) Example 2 (USD) 

Without slope With slope Without slope With slope 

Optimum 
values 

Optimum 
values 

Optimum 
values 

Optimum 
values 

X1 (m) 0.606 0.228 1.208 0.246 

X2 (m) 0.496 0.491 0.443 0.435 

X3 (m) 1.809 2.337 1.550 2.367 

X4 (m) 0.376 0.422 0.386 0.554 

X5 (m) 0.624 0.578 0.614 0.446 

X6 (m) 0.250 0.250 0.250 0.250 

X7 (mm2) 554.627 82.869 1077.506 1665.495 

X8 (mm2) 2459.913 3569.290 1405.567 2146.310 

X9 (mm2) 2307.069 2272.199 1822.260 1689.484 

minFS 2.375 2.500 2.3111 2.500 

Optimal Cost (฿) 12528.285 13338.788 11975.826 13447.091 

  
The result indicates that slope constraint is active as well as shear and 

eccentricity. Safety factor of shear in heel is the controlled value for the optimal 

solution since heel slab resists directly to surcharge on surface and soil weight of 

backfill.  
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From results in both two examples, it can be concluded that constraints of 

slope failure mechanism, shear in heel, wall sliding failure along the base without 

passive force, and eccentricity failure have significant effects on the optimal 

dimensions and reinforcements of cantilever retaining wall. 

4.5.2 Optimization with total stress analysis (TSA) 

A. Optimal solution of example 1 (TSA) 

Table 4.12 presents optimal solutions of example 1 analyzed by total stress 

condition. The optimal solution by working stress and ultimate strength design 

including slope constraints can be determined by solvers. 

Table 4.12 Optimization solutions of example 1 (TSA) 

Design Variables 

Example 1 (WSD) Example 1 (USD) 

Without slope With slope Without slope With slope 

Optimum 
values 

Optimum 
values 

Optimum 
values 

Optimum 
values 

X1 (m) 2.144 0.623 1.705 0.707 

X2 (m) 0.612 0.621 0.541 0.544 

X3 (m) 1.15 3.809 1.715 3.743 

X4 (m) 0.431 0.780 0.506 1.015 

X5 (m) 1.069 1.119 1.994 0.485 

X6 (m) 0.250 0.250 0.250 0.250 

X7 (mm2) 2860.766 205.625 1616.320 3280.5838 

X8 (mm2) 1029.775 5861.907 1496.815 3388.981 

X9 (mm2) 2842.349 2341.086 2189.600 1643.685 

minFS 3.679 3.423 3.689 3.407 

Optimal Cost (฿) 17801.903 25371.675 16847.842 27231.442 

  
Generally, the width of heel (X3) thickness of base slab (X4) of the optimal 

solution with slope stability is higher than that without slope constraints. The higher 

values can satisfy required safety factor of slope failure, and bearing capacity failures. 

In addition, main reinforcement areas in each section are higher. This result shows 
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that bearing capacity constraint and shear in heel constraint are active and its safety 

factor is the controlled value for the optimal solution.  

B. Optimal solutions of example 2 (TSA) 

Table 4.13 presents optimal solutions of exercise 2 analyzed by total stress 

condition. The optimal solutions by working stress and ultimate strength design 

including slope constraints can be determined by solvers 

Table 4.13 Optimization solutions of example 2 (TSA) 

Design Variables 

Example 2 (WSD) Example 2 (USD) 

Without slope With slope Without slope With slope 

Optimum 
values 

Optimum 
values 

Optimum 
values 

Optimum 
values 

X1 (m) 1.586 0.457 1.403 0.513 

X2 (m) 0.532 0.534 0.470 0.469 

X3 (m) 1.179 2.885 1.431 2.867 

X4 (m) 0.380 0.532 0.411 0.693 

X5 (m) 0.620 0.468 0.589 0.307 

X6 (m) 0.250 0.250 0.250 0.250 

X7 (mm2) 2151.073 191.574 1363.522 2151.777 

X8 (mm2) 1096.259 4405.265 1164.444 2591.615 

X9 (mm2) 2521.805 2311.379 1996.451 1698.917 

minFS 4.014 3.679 3.996 3.686 

Optimal Cost (฿) 14194.153 17147.983 13123.023 17627.117 

  
Generally, the width of heel (X3) thickness of base slab (X4) of the optimal 

solution with slope stability is higher than that without slope constraints. The higher 

values can satisfy required safety factor of slope failure, and bearing capacity failures. 

In addition, main reinforcement areas in each section are higher. 

This result shows that bearing capacity constraint and shear in heel constraint 

are active and its safety factor is the controlled value for the optimal solution. 
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4.6  Results on integral bridge abutment  

The first part of input parameters to find maximum shear in abutment support 

is described in Table 4.14 (for more details on analysis formulation, see appendix C). 

Table 4.14 Input parameters for finding maximum shear force  

Name Symbol Value Unit 

Length of bridge span L 6.50 m 

Width of barrier wb 0.20 m 

Width of bitumen laying wl 7.40 m 

Total width wt 7.80 m 

Thickness of bitumen Tb 0.05 m 

Thickness of bridge slab T 0.40 m 

Thickness of barrier Tb 0.60 m 

Width of sidewalk wsw 0.00 m 

Thickness of sidewalk  tsw 0.00 m 

Pedestrian Load PL 3.60 kN/m2 

Thickness of stem beam Tbe 0.60 m 

Width of stem beam wbeam 0.40 m 

Width from stem beam to end slab side wbe 0.90 m 

Number of stem beam nbeam 0 - 

Unit weight of concrete c  24.00 kN/m3 

Unit weight of bitumen bi  22.50 kN/m3 

Design Truck (AASHTO) LL HS20* - 

Width design lane wlane 3.60 m 

Design lane load Lane 9.30 kN/m 

Dynamic allowance factor IM 33 % 

  

The line load distributed per 1 meter can be expressed as: 

1 maxP V wt   (4.2) 

where P1 = axial compression force from external load per unit length of wall 

Vmax = maximum reaction of applied load on bridge (kN) 

 wt = total width of bridge (m)  

*
 HS20 = Truck 20 tons according to AASHTO (2007) 



96 
 

Table 4.15 Input parameters for optimal design of bridge abutment wall 

Input parameters Symbol Unit Ex1 Ex2 

Point Load P1 kN/m 180.0 180.0 

Total Height H  m 6.0 5.8 

Depth of embedment D m 1.0 1.0 

Yield strength of reinforcing steel yf  MPa 400.0 400.0 

Compressive strength of concrete cf '  MPa 25.0 25.0 

Unit weight of steel st  Kg/m3 7850.0 7850.0 

Unit weight of concrete c  kN/m3 24.0 24.0 

Concrete cover cover mm 70.0 70.0 

Diameters of bar long  mm 25 25 

Diameter of stirrups st  mm 10 10 

Surcharge loading q  kN/m2 20.0 20.0 

Backfill of slope   Degree 0.0 0.0 

Unit weight of backfill soil 1  kN/m3 18.0 16.8 

Cohesion of backfill soil 1c  kN/m2 0.0 0.0 

Internal friction angle of backfill soil 1  degree 30.0 30.0 

Unit weight of base soil 2  kN/m3 19.0 18.0 

Cohesion of base soil 2c  kN/m2 40.0 20.0 

Undrained shear strength of base soil Su kN/m2 80.0 80.0 

Internal friction angle of base soil 2  degree 20.0 30.0 

FS for overturning stability ovFS  - 2.0 2.0 

FS for sliding stability (include PP) sdpFS  - 2.0 2.0 

FS for sliding stability (exclude PP) sd0FS  - 1.5 1.5 

FS for bearing stability  beFS  - 3.0 3.0 

FS for slope stability  slopeFS  - 2.2 2.2 

Factor of safety against shear and moment 
failures 

FSs,FSm - 1.0 1.0 

Unit cost of concrete 
CC  ฿/m3 2,550 2,550 

Unit cost of steel 
STC  ฿/kg 22.0 22.0 

Unit cost of formwork 
FC  ฿/m2 150.0 150.0 
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From structural analysis, maximum shear force (Vmax) equals to 1403 kN. 

From Equation 4.2, the axial compression force per unit length of wall (P1) equal to 

180 kN/m.  

The total axial load (P) including self-weight of stem wall is calculated as: 

 1 c 6 4P P x H x     (4.3) 

where P1 = axial compression force from external load per unit length of wall 

 c = unit weight of concrete 

 x6 = width of stem wall 

 H, x4 = total height, and slab footing thickness, respectively     

The optimization problem of bridge abutment wall is solved in MAPLE 

program with Ultimate Strength Design in ACI Code 318-05. The results of these two 

examples by Total Stress Analysis and Effective Stress Analysis are presented in 

Table 4.16 and Table 4.17. 

Table 4.16 Optimal dimension and reinforcement of example 1 

Design Variables 

Example 1 (USD)(TSA) Example 1 (USD)(ESA) 

Without slope With slope Without slope With slope 

Optimum 
values 

Optimum 
values 

Optimum 
values 

Optimum 
values 

X1 (m) 2.916 2.474 1.84 1.456 

X2 (m) 0.526 0.524 0.520 0.511 

X3 (m) 0.720 1.944 1.260 2.922 

X4 (m) 0.765 0.780 0.808 0.867 

X5 (m) 0.235 0.220 0.192 0.133 

X6 (m) 0.526 0.524 0.520 0.511 

X7 (mm2) 2387.78 2439.03 2541.22 2746.74 

X8 (mm2) 2387.78 2439.03 2541.22 2746.74 

X9 (mm2) 5261.48 5239.94 5197.14 5111.68 

minFS 2.10 2.296 2.15 2.200 

Optimal Cost (฿) 26309.23 28673.30 25183.23 29709.59 
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From Table 4.16, although analysis without slope case give lower cost than 

analysis with slope case, the design is not safe because factor of safety of slope in the 

former case does not satisfy slope requirement.  

Generally, for both total stress and effective stress analysis, the width of toe 

(X1) is smaller while the width of heel is higher.  

Table 4.17 Optimal dimension and reinforcement of example 2 

Design Variables 

Example 2 (USD)(TSA) Example 2 (USD)(ESA) 

Without slope With slope Without slope With slope 

Optimum 
values 

Optimum 
values 

Optimum 
values 

Optimum 
values 

X1 (m) 2.661 2.348 1.386 0.662 

X2 (m) 0.482 0.480 0.471 0.471 

X3 (m) 0.593 1.785 0.913 2.917 

X4 (m) 0.726 0.740 0.810 0.810 

X5 (m) 0.273 0.260 0.190 0.190 

X6 (m) 0.482 0.480 0.471 0.471 

X7 (mm2) 2253.95 2299.23 2525.27 2427.20 

X8 (mm2) 2253.95 2299.23 2525.27 2621.00 

X9 (mm2) 4818.35 4800.88 4706.62 4705.88 

minFS 2.201 2.425 1.783 2.20 

Optimal Cost (฿) 23085.96 25561.35 21039.91 24866.58 

Times (s) 13.572 13.572 45.693 45.693 

 

From Table 4.17, the total cost of without slope case is always lower than that 

of with slope case. The design in slope case is safe because factor of slope is satisfied 

with requirement.   

Generally, for both total stress and effective stress, the width of toe (X1) is 

smaller while the width of heel is higher.  
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CHAPTER V 

PARAMETRIC STUDY 

 

5.1 Introduction 

The parametric study considers the effect of input (design) parameters on the 

final design values. In this study, two previous examples are used and each input 

parameter is changed following the actual field problems, then its effect is 

investigated using optimization technique.  

5.2 Analysis process 

Example 2 of Table 4.1 is used in this section. Table 5.1 lists the input 

parameters and investigated values on sensitivity study. In order to investigate the 

effect of each design parameter on the design variables, one parameter is varied while 

other parameters remain constant. This numerical analysis is solved using computer 

code written in KNITRO and MAPLE. 

Table 5.1 Input parameters used in the analysis 

N0
 

Input 

Parameter 
Symbol Unit 

Reference 

Value 
Investigated Value 

1 

Compressive 

strength of 

concrete 

cf '  MPa 25.0 17, 21, 25, 28, 31, 32 

2 
Yield strength of 

reinforcing steel yf  MPa 400.0 300, 400 

3 
Internal friction 
angle of backfill 

soil 
1  degree 30.0 22, 24, 26, 28, 30, 32, 34, 36 

4 Cohesion of base 
soil 2c  kN/m2 30.0 30, 40, 50, 60, 70, 80 

5 Internal friction 
angle of base soil 2  degree 28.0 26, 28, 30, 32, 34, 36, 38, 40  

 

5.3 Sensitivity study on concrete strength 

Concrete strength ranging from 17 MPa to 35 MPa is usually used in practical 

design. In this sensitivity study, the unit price of concrete per one cubic meter in 
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Thailand is mentioned already in methodology. Table 5.2 shows the optimal solution 

with different value of concrete strength. 

Table 5.2 Effect of concrete strength on optimal solution (ESA-USD) 

f’c (MPa) 17 21 25 28 31 33 

X1 (m) 0.233 0.241 0.246 0.250 0.254 0.256 

X2 (m) 0.452 0.442 0.435 0.427 0.422 0.418 

X3 (m) 2.354 2.362 2.367 2.372 2.376 2.378 

X4 (m) 0.656 0.590 0.554 0.527 0.505 0.499 

X5 (m) 0.344 0.402 0.446 0.472 0.494 0.501 

X6 (m) 0.250 0.250 0.250 0.250 0.250 0.250 

X7 (mm2) 2022.740 1818.720 1665.490 1574.340 1496.120 1473.540 

X8 (mm2) 2022.740 1962.570 2146.300 2276.560 2399.130 2440.280 

X9 (mm2) 1535.190 1624.900 1689.480 1748.030 1791.690 1820.300 

Optimal 

Cost (฿) 
13931.930 13571.370 13447.090 13555.000 13587.110 13735.860
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Figure 5.1 Effect of concrete strength on total cost 

 According to Figure 5.1, compressive strength of concrete equal to 25 MPa 

gives minimum total cost since its unit price depends on its strength.  
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Figure 5.2 Effect of concrete strength on optimal dimensions 

 In Figure 5.2, when various strength of concrete is used, several design 

dimensions slightly changes. The most significant change is thickness of footing slab 

which it depends on concrete strength since its thickness is controlled by shear design. 

Higher concrete strength can reduce footing thickness.    

 For economical saving, it is highly recommended to use compressive strength 

of concrete equal to 25 MPa 

5.4 Sensitivity study on yield strength of reinforcing steel 

Two typical yield strength of reinforcing steel used in practical design are 

SD30 (300 MPa) and SD40 (400 MPa). In this sensitivity study, unit price of 

reinforcing steel per one kilogram in Thailand is mentioned already in the 

methodology section. Table 5.3 shows the optimal solutions with different value of 

yielding strength. 
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Table 5.3 Effect of yielding strength on optimal solution (ESA-USD) 

fy
 (MPa) 300 400 

X1 (m) 0.233 0.246 

X2 (m) 0.490 0.434 

X3 (m) 2.335 2.367 

X4 (m) 0.547 0.554 

X5 (m) 0.453 0.446 

X6 (m) 0.250 0.250 

X7 (mm2) 2188.780 1665.490 

X8 (mm2) 2822.050 2146.310 

X9 (mm2) 1934.760 1689.480 

Optimal Cost (฿) 14578.980 13447.090 
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Figure 5.3 Effect of steel yield strength on total cost 

 According to Figure 5.3, yield strength of reinforcing steel equal to 400 MPa 

gives minimum total cost due to its high strength.   

 In Figure 5.4, when various yield strengths of steel are used, several design 

dimensions slightly increase except X2. Optimal solution of type SD30 or SD40 are 

quite the same.     
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Figure 5.4 Effect of concrete strength on optimal dimensions 

Thus for economical saving, it is highly recommended to use yield strength of 

reinforcing steel equal to 400 MPa. 

5.5 Sensitivity study on internal friction angle of backfill soil 

Internal friction angle of backfill is varied following the actual field problems. 

Its effect on optimal dimensions and cost are summarized in Table 5.4.  
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Table 5.4 Effect of internal friction angle on optimal solution (ESA-USD) 

1  (degree)  22 24 26 28 30 32 34 36 

X1 (m) 0.149 0.165 0.185 0.212 0.246 0.291 0.351 0.434 

X2 (m) 0.498 0.481 0.465 0.450 0.435 0.420 0.406 0.393 

X3 (m) 2.970 2.829 2.683 2.530 2.367 2.191 1.998 1.779 

X4 (m) 0.680 0.650 0.620 0.587 0.554 0.517 0.477 0.432 

X5 (m) 0.319 0.349 0.380 0.412 0.446 0.482 0.522 0.567 

X6 (m) 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 

X7 (mm2) 2107.410 2003.620 1896.360 1784.210 1665.490 1537.900 1398.110 1241.02 

X8 (mm2) 2691.340 2564.220 2432.270 2293.700 2146.300 1987.090 1811.690 1613.37 

X9 (mm2) 1810.920 1780.510 1719.780 1748.030 1689.480 1659.780 1631.140 1604.31 

Optimal Cost (฿) 16768.260 15908.900 15071.640 14252.390 13447.090 12651.420 11860.700 11069.51
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Figure 5.5 Effect of internal friction angle of backfill soil on total cost 

 According to Figure 5.5, internal friction angle have significant effects on total 

cost and optimal dimensions. Total cost decreases when angle of internal friction is 

quite large.     
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Figure 5.6 Effect of internal friction angle of backfill soil on optimal dimensions 

  In Figure 5.6, the higher angle of internal friction decreases bottom stem 

thickness, heel length, and thickness of footing. However, toe length increases as heel 
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length decreases. It is highly recommended to use higher angle of internal friction 

angle for economizing total cost of construction.  

5.6 Sensitivity study on cohesion of base soil 

Internal friction angle of backfill is varied following the actual field problems. 

Its effect on optimal dimensions and cost are reported in table 5.5. 

Table 5.5 Effect of cohesion of base soil on optimal solution (ESA-USD) 

c2 

(kN/m2) 
30 35 40 50 60 70 80 

X1 (m) 0.246 0.748 1.085 0.966 0.769 0.606 0.468 

X2 (m) 0.435 0.439 0.438 0.442 0.439 0.437 0.436 

X3 (m) 2.367 1.699 1.355 1.466 1.675 1.868 2.047 

X4 (m) 0.554 0.416 0.379 0.369 0.411 0.451 0.487 

X5 (m) 0.446 0.584 0.620 0.631 0.589 0.549 0.512 

X6 (m) 0.250 0.250 0.250 0.250 0.250 0.250 0.250 

X7 
(mm2) 

1665.49 1184.06 1053.53 1018.57 1166.50 1304.74 1434.01 

X8 
(mm2) 

2146.30 1541.15 1089.56 1330.33 1518.84 1693.96 1856.84 

X9 
(mm2) 

1689.48 1812.04 1856.20 1846.63 1814.15 1782.78 1752.85 

Optimal 

Cost (฿) 
13447.09 11814.21 11309.60 11355.13 11763.47 12181.40 12605.02

 

According to Figure 5.7, cohesion of base soil has more effects on total cost 

and optimal dimensions. Total cost decreases when angle of internal friction 

increases. However, the total cost is the most economical when cohesion of base soil 

equal 40 kN/m2 is used.  

In Figure 5.8 both X1 and X3 are increased and decreased at the same time. 

Thickness of footing becomes the smallest when cohesion of base soil cohesion equal 

40 kN/m2 is used. It is important to investigate the cohesion of soil base since it 

affects on both total cost and dimensions.  
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Figure 5.7 Effect of cohesion of base soil on total cost 
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Figure 5.8 Effect of cohesion of base soil on optimal dimensions 

5.7 Sensitivity study on internal friction angle of base soil  

Internal friction angle of backfill is varied following the actual field problems. 

Its effect on optimal dimensions and cost are reported in Table 5.6. 

Figure 5.9 shows the effects of internal friction of base soil on total cost. 
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Table 5.6 Effect of internal friction angle of base soil on optimization solutions (ESA-USD) 

2  (degree)  26 28 30 32 34 36 38 40 

X1 (m) 0.100 0.246 0.460 0.672 0.883 1.086 1.086 1.086 

X2 (m) 0.434 0.435 0.437 0.438 0.441 0.438 0.438 0.438 

X3 (m) 2.730 2.367 2.056 1.787 1.552 1.355 1.355 1.355 

X4 (m) 0.630 0.554 0.490 0.434 0.386 0.379 0.379 0.379 

X5 (m) 0.370 0.446 0.510 0.565 0.614 0.620 0.620 0.620 

X6 (m) 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 

X7 (mm2) 1930.13 1665.490 1440.43 1247.26 1078.89 1053.53 1053.53 1053.53 

X8 (mm2) 2473.88 2146.30 1864.90 1621.27 1407.34 1089.56 1089.56 1089.56 

X9 (mm2) 1616.82 1689.48 1744.84 1796.80 1836.98 1856.20 1856.20 1856.20 

Optimal Cost (฿) 14539.06 13447.09 12628.63 12003.08 11516.22 11309.60 11309.60 11309.60
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Figure 5.9 Effect of angle of internal friction of base soil on total cost 

 According to Figure 5.9, cohesion of base soil has more effects on total cost 

and optimal dimensions. Total cost decreases when angle of internal friction 

increases.    
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Figure 5.10 Effect of angle of internal friction of base soil on design dimensions 

 In Figure 5.10, angle of internal friction of base soil has significant effects on 

decreases heel length and thickness of footing. However, as toe length increases, heel 
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length decreases until it becomes constant for higher internal friction angle. It is 

highly recommended to use higher angle of internal friction angle for economizing 

total cost of construction. On the other hand, higher angle can lead to a constant total 

cost and dimensions.  
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CHAPTER VI 

CONCLUSION AND RECOMMENDATIONS 

 

6.1 Conclusion 

This thesis presented the application of the optimization techniques to optimal 

design of reinforced concrete cantilever retaining wall. Two numerical examples were 

mainly solved by optimization solvers in MAPLE and KNITRO. Comparisons 

between conventional and optimal design have been reported. A parametric study for 

optimization technique has also been investigated.     

We can conclude that this study provides a complete optimal design method of 

cantilever retaining wall satisfying all geotechnical constraints where past researches 

in this field were unable to achieve. The result obtained in this study is the most 

optimal, and thus there is no need to further analyze slope stability, because it is 

already include in the analysis. On the other hand, optimal results obtained from 

previous researches were still required to check sufficiency of factor of safety against 

slope stability because it lacks of in the analysis. Furthermore, their results may not be 

the most optimal.  

This research is successful in developing the optimal design that satisfies all 

imposed restrictions. The capabilities of both proposed methods are demonstrated 

through their applications in varieties of general retaining wall problems. 

According to parametric study, compressive strength of concrete has the effect 

on thickness of footing since the shear design does not require shear reinforcing. The 

internal friction angle of backfill has significantly effects on total cost, bottom of 

stem, footing thickness, and heel length. The internal friction angle of soil base also 

has the same effect similar to that of backfill.   

6.2 Recommendations for future work  

After having completed this research, several recommendations for future 

works can be summarized below:  

 Further study on slope stability constraints in case that slope failure is 

non-circular shape (wedge failure surface) 

 



112 
 

 Apply other methods of slices to derive expression of safety factor and 

make a comparison on these methods in optimal solutions 

 Construct design charts for reinforced concrete cantilever retaining wall 

 Optimization reinforced concrete cantilever retaining wall subjected to 

seismic loading. This will be more advantageous since some regions in 

Thailand are in earthquake zone. 
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Ultimate Strength and Working 

Stress Design 
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Reinforced Concrete Cantilever Retaining Wall 
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Figure A.1 Typical section of RC cantilever retaining wall 

1. Calculate H’ 

1

1 3

3

H ' H H

H x tan

H ' H x tan

 
 

  

 

2. Rankine’s active earth pressure and passive earth pressure 

2 2
1

a 2 2
1

cos cos cos
K cos

cos cos cos

    
 

      

2 2
pK tan 45

2

   
 

 

 ptK 1  (Total stress analysis) 

  

 

1 1 1,C ,   

2 2 2 u,C , ,S   
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Table A.1 Important input parameters 

N0 Input parameters (1) Unit (2) Symbol (3) 

1 Total height of wall m H 

2 Depth embedment m Dcover 

3 Point Load P kN/m P 

4 Yield strength of reinforcing steel MPa yf  

5 Compressive strength of concrete MPa '
cf  

6 Unit weight of concrete kN/m3 c  

7 Unit weight of steel Kg/m3 s  
8 Concrete cover mm c 

9 Diameters of bars mm   

10 Surcharge load kN q 

11 Backfill slope Degree   

12 Unit weight of backfill soil kN/m3 1  

13 Cohesion of backfill soil KPa 1C  

14 Internal friction angle of backfill soil Degree 1  

15 Unit weight of base soil kN/m3 2  

16 Cohesion of base soil KPa 2C  

17 Internal friction angle of base soil Degree 2  

18 Undrained shear strength of base soil kN/m2 Su 

19 Cost of steel ฿/kg 
sC  

20 Cost of concrete ฿/m3 
cC  

21 Cost of formwork ฿/m2 
fC  

22 Dead Load factor - DL 

23 Live Load factor - LL 

 

3. Rankine’s active force and passive force per unit length of wall 

 Effective stress analysis (ESA) 

  2
a a 1P 1 2 K H ' 

 

     22
av a a 1 a 1 3P P sin 1 2 K H ' sin 1 2 K H x tan sin           

     22
ah a a 1 a 1 3P P cos 1 2 K H ' cos 1 2 K H x tan cos         

 

     2

p p 2 4 5 2 p 4 5P 1 2 K x x 2c K x x      
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  Total stress analysis 

     2

pt 2 4 5 u 4 5P 1 2 x x 2S x x      

4. Surcharge force per unit length of wall 

 s a a 3P K qH ' K q H x tan   
 

 sv a a 3P K qH 'sin K q H x tan sin     
 

 sh a a 3P K qH 'cos K q H x tan cos     
 

5. Surcharge force acting downward  

- [In case surcharge q is present only] 

 q 3P q x cos   

- [In case surcharge q = 0] 

qP 0  
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1. Factor of safety against overturning failure 

 Table A.2 Summation of resisting moment acting on retaining wall 

N0 
Area 

Weight/unit 
length of wall 

Moment arm from C Moment about B 

(m2) (kN/m) (m) (kN.m/m) 

1 3 4A1 x (H x )   1 1 1W A    1 1 2 3a x x 1 2 x    M1 = W1 x a1

2   3 3A2 1 2 x (x tan )   2 1 2W A    2 1 2 3a x x 2 3 x    M2 = W2 x a2

3 6 4A3 x (H x )   3 c 3W A    3 1 2 6a x x 1 2 x    M3 = W3 x a3

4 2 6 4

1
A4 (x x )(H x )

2
    4 c 4W A    4 1 2 6

2
a x x x

3
    M4 = W4 x a4

 

5 1 2 3 4A5 (x x x )x    5 c 5W A   5 1 2 3

1
a (x x x )

2
    M5 = W5 x a5

 

6 1 5A6 x x 6 2 6W A   6 1a 1 2 x M6 = W6 x a6 

7 Surcharge Loading 3
q

x
P q

cos


  7 1 2 3a x x x 2   Pq x a7 

8 Inclined surcharge sv sP P sin  8 1 2 3a x x x   s 8P sin a

9 Inclined earth pressure av aP P sin   9 1 2 3a x x x    a 9P sin a  

10 Point Load P P P 1 2 6a x x x 2   PP a

  
i

q sv av

V W

P P P P

 

  
 

  

 

6

i iR
i

s a 8 q 7 P

M Wa

P P sin a P a P a



      

 
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Note:  1)   Section 6 is usually ignored by designers because of erosion condition 

(Das, 2007) 

2) In working stress design (WSD), section 6 is included 

3) PP is neglected in calculating moment for overturning stability   

Table A.3 Summation of driving moment acting on retaining wall 

description 
Force Moment arm from C Moment about C 

(kN/m) (m) (kN.m/m) 

Surcharge sh sP P cos    s 3

1
a H x tan

2
    Ms = Psh x as

 

Earth-
pressure ah aP P cos    a 3

1
a H x tan

3
    Ma = Pah x aa

 

 
s

a

H P cos

P cos

 

 


 

 
s sov

a a

M P cos a

P cos a

 

 


 

 
 Factor of safety against overturning: 

A. Total overturning 

 
   

6

i i q 7 s a 8 P
R1 i 1

ov
ov s a

W a P a (P P )sin a P a
M

FS
M P cos H ' 2 P cos H ' 3



      
 

  




 B. Partial overturning 

     

6

i i q 7 P
R2 i 1

ov
ov earth s a s a 8

Wa P a P a
M

FS
M M P cos H ' 2 P cos H ' 3 (P P )sin a



   
 

        


 

 

2. Factor of safety against sliding failure 

 Effective stress analysis 

Maximum resisting force derived from the soil per unit length of the wall 

along the bottom the base slab  

  aR ' V tan ' BC '    

where  V = summation of vertical forces (kN) 

' = angle of friction between soil and the base slab (degree) 

C’a = cohesion between soil and the base slab (kN/m2) 



124 
 

B = length of base slab (m) 

Summation of horizontal resisting force FR 

R a pF V tan ' B C' P        

If assuming PP = Pp(mobi) = mobilized passive forces by designer’s preferences.
 

P(mobi) P

1
P P

n


 

where n = input variable factor for passive mobilized n = 1,2,3… 

 Interface between concrete base and soil base can be calculated as: 

1 2' k    

a 2 2C ' k C  

where k1 = 1/2 to 2/3 (Das, 2007) 

k2 = 1/3 to 2/3 (Das, 2007)  

k = input parameters 

   R 1 2 2 2 pF V tan k B k C P        

Factor of safety against sliding: 

A. Consider PP 

 
   

 

a pR1
(sliding) 2

h a 1 a

1 2 2 2 p

2
a 1 a

V tan ' BC' PF
FS

F 1 2 K H' K qH ' cos

V tan k B k C P

1 2 K H ' K qH ' cos

   
 

    
    


    





 

B. If PP(mobilized) is used: 

     
 

1 2 2 2 pR2
sliding 2

h a 1 a

V tan k B k C 1 n PF
FS

F 1 2 K H ' K qH ' cos

   
 

    




 C. If PP = 0 

   
 

1 2 2 2R3
sliding 2

h a 1 a

V tan k B k CF
FS

F 1 2 K H ' K qH ' cos

  
 

    




 
 Total stress analysis 

In this case, C2=Su and 2 0   
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Factor of safety against sliding in total stress analysis: 

A. Consider PP 

 
 

2 u pR1(t )
(sliding) 2

h a 1 a

B k S PF
FS

F 1 2 K H ' K qH ' cos

 
 

    




 

B. If PP(mobilized) is used: 

   
 

2 u pR2(t )
sliding 2

h a 1 a

B k S 1 n PF
FS

F 1 2 K H ' K qH ' cos


 

    




 C. If PP = 0 

 
 

2 uR3(t )
sliding 2

h a 1 a

B k SF
FS

F 1 2 K H ' K qH ' cos
 

    




 

3. Factor of safety against bearing failure 

 Eccentricity below foundation 

x soil below foundation

x1 x2 x3

R

x4

x5

H

½B ½B
e

  

Figure A.2 Checking for eccentricity and bearing capacity failure 

 Taking moment about the toe of the base at B, the resultant vertical force at 

the base is located at x , where B 3 x 2B 3   (Budhu, 2008). 

 net R ovM M M
x

V V


   
 
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    R ov
1 2 3 1 2 3

M M1 2
x x x x x x

3 V 3


      


 

e = eccentricity of the resistance force R  (m) 

R ovM MB
e

2 V


  


  

max toe

V 6e
q q 1

B B
    
 

     

min heel

V 6e
q q 1

B B
    
 

  

if  e B 6  , then minq 0 , pressure distribution is trapezoidal 

if  e B 6  , then minq 0 , avoid this case !!!! 

 General ultimate bearing capacity equation  

General bearing capacity equation:  

 Effective stress analysis 

  u 2 cs cd ci c qs qd qi q 2 s d iq c N N N N qN N N N 1 2 B' N N N N         

 Total stress analysis 

 t
u u cs cd ci c qs qd qi q 2 s d iq S N N N N qN N N N 1 2 B ' N N N N        

 Bearing capacity factors 

 Effective stress analysis 

2tan 2 o 2
qN e tan 45

2
     

   

 c q 2N N 1 cot  
 

 q 2N 2 N 1 tan   
 

 2 2 4 5q D x x      

B ' B 2 e    
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 Total stress analysis  

c

q

N 5.14

N 1

N 0






 

 Shape factor (DeBeer) 

 

  
 

 

cs q c

qs 2

s

N 1 N N B' L '

N 1 B' L ' tan

N 1 0.4 B' L '

 

  

 

  

Wall footing is infinite length (L= ), thus cs qs sN N N 1    

 Depth factor (Hansen) 

 Effective stress analysis 

In case  fD B' 1   

 
   

cd f

2

qd 2 2 f

d

N 1 0.4 D B'

N 1 2 tan 1 sin D B'

N 1

 

    



 

 Total stress analysis ( 2 0  ) 

 cd f

qd

d

N 1 0.4 D B'

N 1

N 1

 





 

 Inclination factor (Meyerhof) 

 Effective stress analysis 

: inclined angle  

 o 1
htan F V     

 
 

2o o
ci qi

2o o
i 2

N N 1 90

N 1

  

  
 

 Total stress analysis ( 2 0  ) 

 2o o
ci qi

i

N N 1 90

N 0

  


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 Factor of safety of bearing capacity can be calculated as: 

 Effective stress analysis 

 be u maxFS q q  

 Total stress analysis 

t
be u maxFS q q  

STRUCTURAL DESIGN (ACI CODE) 

Typical formulas used in Working Stress Design (WSD) for designing beams 

with tension reinforcement only  

1. Compressive strength of concrete c cf 0.45f '    (MPa) 

2. Strength of steel in WSD  sw yf 0.50f    (MPa) 

3. Design strength of steel  s swf min(f ,170)   (MPa) 

4. Modulus elasticity of steel  sE 200000    (MPa) 

5. Modulus elasticity of concrete  s cE 4700 f '   (MPa) 

s cn E E   the nearest integer 

s c

1
k

1 f nf



 

j 1 k 3   

6. Required steel area  s
s

M
A

f jd
   

7. Shear force of concrete  c cV 0.09 f ' bd    

8. Shear stress of concrete  c c0.09 f ' 1000    

Typical formulas used in Ultimate Strength Design for designing beams with 

tension reinforcement only 

1. Equivalent rectangular stress block  1a c    

2. The factor 1  : 1 c

0.85

1.09 0.008f '

0.65


  



if   
c

c

c

f ' 30 MPa

30 MPa f ' 55 MPa

f ' 55 MPa


 

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3. Minimum steel ratio  min y1.4 f   

4. Steel ratio in balanced condition sb 1 c
b

y y

A 0.85 f ' 600

bd f 600 f

 
      

 

5. Maximum steel ratio  max b

3

4
    

6. Reinforcing steel ratio design c u
2

y c

0.85f ' 4M
1 1

f 1.7 f ' bd

 
      

 

If letting u
u 2

M
R

bd



  c u

y c

0.85f ' 2R
1 1

f 0.85f '

 
     

 
 

7. The usable flexural strength  y
n s y

c

f
M A f d 1

1.7f '

 
    

 
 

y2
n y

c

f
M f bd 1

1.7f '

 
    

 
 

8. Required steel area  sA bd   

9. Shear force of concrete   c cV 1 6 f ' bd     

10. Shear stress of concrete   c c1 6 f '    

Code DL LL Shear   Moment   

ACI 318-99 1.4 1.7 0.85 0.9 

ACI 318-05 1.2 1.6 0.75 0.9 
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4. Factor of safety against toe shear and moment failure mode 

x1 x2 x3

qmax

qmin

q1

x4

x5

q2
 

Figure A.3 Pressure distribution under footing 

  2 3
1 max min min

1 2 3

x x
q q q q

x x x


  

 
   

  3
2 max min min

1 2 3

x
q q q q

x x x
  

 
 

 0 max 1 1
1

d
q q q q

x

 
   

 
   (USD) 

 3 max 1 1
1

d
q q q q

2x

 
   

 
   (WSD) 

qmax

q1

Mu,toe

X1

q0

d

self-weight concrete

x4

critical section for shear design

Ld

x7

shrinkage and
temperature steel

cover (c)

TOE DESIGN

Weight from soil cover

 

Figure A.4 Pressure distribution for toe design 
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Force accounting in toe design: 

1. Upward soil pressure for shear (WSD)   sup 3 max 3W q 1 2 q q    

2. Upward soil pressure for shear (USD)   uup 0 max 0W q 1 2 q q    

3. Upward soil pressure for moment    up 1 max 1W q 1 2 q q    

4. Self-weight of concrete   sc 4 cW x   

5. Weight of soil covers   ssc 5 2W x   

 WSD (Working Stress Design) 

Effective depth for design   4d x c 2    

Critical section for shear in working stress design    4d 2 1 2 x c 2    

 Toe shear force 

s,toe sup sc sscW W W W  

         s,toe 3 max 3 1 4 c 1 5 2 1V q 1 2 q q x d 2 x x d 2 x x d 2             

Service shear stress     s,toe s,toeV b d     (kN/m2)  

Resisting shear stress    sr,toe c1 6 f ' 1000  
  

(kN/m2) 

 Toe bending moment 

 1 1 1
s,toe 1 1 max 1 1 1 c 4 1 2 5 1

x x x1 2
M q x q q x x x x x x

2 2 3 2 2

                                 
 

 Compute reinforcing area X7
s 

 s
7 s,toe sx M f jd  

Resisting moment of toe in WSD 

s
sr,toe 7 sM x f jd  

 Factor of safety against toe shear failure mode 

ss,toe s,toe sr,toeFS      

 Factor of safety against bending moment failure mode 

 sm,toe sr,toe s,toeFS M M
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 USD (Ultimate Strength Design) 

+ ACI-99 Load factor DL=1.4,  LL=1.7, DLw=0.9 

+ ACI-02 Load factor DL=1.2,  LL=1.6, DLw=0.9 

Combination load factor for shear design U = LLWupward  – DLwWc 

o The critical section for shear design is located at a distance d from the 

front face of the stem which 4d x c 2    

o Limbrunner and Aghayere (2007) do not consider critical section for 

shear. !!!!!!  

 Toe shear force (when consider critical section d) 

      u,toe 0 max 0 1 c 4 1V LL q 1 2 q q x d DLw x x d          

  Toe shear force (when do not consider critical section) 

      u,toe 1 max 1 1 c 4 1V LL q 1 2 q q x DLw x x          

Ultimate shear stress     u,toe u,toeV b d     (kN/m2)  

Resisting shear stress    ur,toe c1 6 f ' 1000   
 

(kN/m2) 

+ ACI-99 0.85   

+ ACI-02 0.75    

 Toe bending moment 

 1 1
u,toe 1 1 max 1 1 1 c 4 1

x x1 2
M LL q x q q x x DLw x x

2 2 3 2

                     
 

Compute reinforcing area X7 

where c u
2

y c

0.85f ' 4M
1 1

f 1.7 f ' bd

 
    

  
 

0.90   

b = 1 m (strip 1m for analysis) 

If let u
u

M
R

bd



   c u

y c

0.85f ' 2R
1 1

f 0.85f '

 
    

  
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 Required reinforcing steel ratio 
req min

req max

  

  
 

Thus, 7X b d    (m2) 

Resisting moment of toe slab 

 y2
ur,toe y '

c

f
M f bd 1

1.7f

 
   

 
 

 s 7A x

bd bd
  

 
= reinforcement ratio in toe slab 

y7
ur,toe 7 y '

c

fx
M x f d 1

1.7bd f

 
   

 
  

 Factor of safety against toe shear failure mode 

us,toe ur,toe u,toeFS      

 Factor of safety against bending moment failure mode 

 um,toe ur,toe u,toeFS M M
 

5. Factor of safety against heel shear and moment failure mode 

upward pressureHEEL DESIGN

x3

self-weight concrete

surcharge loading

overburden pressure

Mu,heel

x4Ldcover (c)

shrinkage and temperature steel

x8

qmin

q2

 

Figure A.5 Pressure distribution for heel design 

 Force accounting in heel design 

1. Overburden pressures    over 1 4 3W H x 1 2 x tan        
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2. Surcharge loading surW q cos   

3. Self-weight of concrete c 4 cW x   

4. Upward soil pressure   up min 2 minW q 1 2 q q    

 WSD (Working Stress Design) 

Cernica (1966) reported that moment and shear for the case of zero foundation 

pressure shall multiply the by 2/3 for conservative design. 

 Heel shear force 

  s,heel ov sur cV 2 3 W W W     

         s,heel 1 4 3 3 3 c 4 3V 2 3 H x 1 2 x tan x q cos x x x            
  

Service shear stress     s,heel s,heelV b d     (kN/m2)  

Resisting shear stress   sr,heel c0.09 f ' 1000  
  

(kN/m2) 

 Heel bending moment  

  s,heel ov sur cM 2 3 M M M    

 

 

s,heel 1 4 3 3 3 3 3

3 3 c 4 3 3

2 1 1 2
M H x x x x tan x x

3 2 2 3

2 q 1 1
x x x x x

3 cos 2 2

                
              

  

Compute reinforcing area X8
s  

 s
8 s,heel sx M f jd

 

Resisting moment of heel in WSD
 s

sr,heel 8 sM x f jd  

 Factor of safety against toe heel failure mode 

ss,heel sr,heel s,heelFS   
 

 Factor of safety against moment 

 sm,heel sr,heel s,heelFS M M
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  USD (Ultimate Strength Design) 

+ ACI-99 Load factor DL=1.4, LL=1.7 

+ ACI-02 Load factor DL=1.2, LL=1.6 

+ Combination load factor  U=DL×Wc  +  DL×Wover  + LL×Wsur 

d = effective height given by  4d x c 2    

 Heel shear force 

       u,heel 1 4 3 3 3 c 4 3V DL H x 1 2 x tan x LL q cos x DL x x             
 

 
Ultimate shear stress     u,heel u,heelV b d     (kN/m2)  

Resisting shear stress     ur,heel c1 6 f ' 1000   
 

(kN/m2) 

+ ACI-99 0.85   

+ ACI-02 0.75    

 Heel bending moment (conservative design) 

Conservative design in ultimate strength neglects effect of upward pressure 

below heel (ACI Code). !!!!! 

   

 

u,heel 1 4 3 3 3 3 3

3 3 c 4 3 3

1 2
M DL H x x x 1 2 x tan x x

2 3

q 1 1
LL x x DL x x x

cos 2 2

        
       

 

Compute reinforcing area X8  

 Method to calculate reinforcement ratio in heel slab is reported the same as in 

design of toe slab. Thus, requirement top steel area in heel slab is expressed as: 

8X b d    (m2) 

Resisting moment of heel slab 

 y2
ur,heel y '

c

f
M f bd 1

1.7f

 
   

   
  

s 8A x

bd bd
  

 
Reinforcement ratio in heel slab 

y 68
ur,heel 8 y '

c

fx
M x f d 1 10

1.7bd f
 

    
 
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0.90   

 Factor of safety against toe heel failure mode 

us,heel ur,heel u,heelFS   
 

 Factor of safety against moment 

 um,heel ur,heel u,heelFS M M
 

6. Factor of safety against stem shear failure mode 

x4

x5

x2-x6

x6

q

H

x9

earth pressure

surcharge loading

M

A
ds

u,stem

shrinkage and temperature
steel

critical section
for shear design

   

Figure A.6 Force distribution on stem 

1. Lateral force applied to the stem 

   2

a a 1 4P 1 2 K H x     Inclination alpha  

    2

a a 1 4P 1 2 K H x cos     Horizontal direction 

+ Arm  a 4A 1 3 (H x )   

2. Surcharge force applied to the stem 

 s a 4P K q H x     Inclination alpha   

 s a 4P K q H x cos     Horizontal direction 
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+ Arm   s 4A 1 2 H x    

 WSD (Working stress design) 

 Stem shear force 

     2

s,stem a 1 4 a 4V 1 2 K H x cos K q H x cos      
 

Service shear stress    s,stem s,stemV b d     (kN/m2)  

Resisting shear stress   sr,heel c0.09 f ' 1000  
  

(kN/m2) 

 Stem bending moment 

         2

s,stem a 1 4 4 a 4 4

1 1
M 1 2 K H x cos H x K q H x cos H x

3 2
          

  Compute reinforcing area X9
s  

 s
9 s,stem sx M f jd

 

 Resisting moment of stem in WSD
 s

sr,stem 9 sM x f jd  

 Factor of safety against stem failure mode 

ss,stem sr,stem s,stemFS   
 

 Factor of safety against moment 

 sm,stem sr,stem s,stemFS M M  

 USD (Ultimate strength design) 

+ ACI-99 Load factor DL=1.4, LL=1.7 

+ ACI-02 Load factor DL=1.2, LL=1.6 

+ Combination load factor  U=LL×Pactive  +  LL×Psurcharge 

The critical section for shear is located at a distance ds out of the stem height 

s 2d x c 2  
 

 Stem shear force 

     2

u,stem a 1 4 s a 4 sV LL 1 2 K H x d cos K q H x d cos             
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Ultimate shear stress   u,stem u,stem sV b d     (kN/m2)  

Resisting shear stress  ur,stem c0.17 f ' 1000   
  

(kN/m2) 

+ ACI-99 0.85   

+ ACI-02 0.75   

 Stem bending moment 

 u,stem a a s sM LL P A P A    
 

       2

u,stem a 1 4 4 a 4 4

1 1 1
M LL K H x cos H x K q H x cos H x

2 3 2

               

       3 2

u,stem a 1 4 a 4M LL 1 6 K H x cos 1 2 K q H x cos           

Compute reinforcing area X9 

 Method to calculate reinforcement ratio in heel slab is reported the same as in 

design of toe slab. Thus, requirement top steel area in heel slab is expressed as: 

9x b d    (m2) 

Resisting moment of stem 

 y2
ur,stem y '

c

f
M f bd 1

1.7f

 
   

 
 

s 9A x

bd bd
  

 
reinforcement ratio in stem 

y 69
ur,stem 9 y '

c

fx
M x f d 1 10

1.7bd f
 

    
 

 

 0.90   

 Factor of safety against stem failure mode 

ss,stem ur,stem u,stemFS   
 

 Factor of safety against moment 

 um,stem ur,stem u,stemFS M M
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Stem face steel 

 h 0.0025  = horizontal reinforcement ratio 

v 0.0015  = vertical reinforcement ratio 

 Ast  = shrinkage and temperature  st h avA b h     

 hav  = average depth   

 As = Horizontal front face   sh,front stA 2 3 A   

 As = Horizontal back face   sh,back stA 1 3 A   

 As = Vertical front face   sv,front v avA b h      
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APPENDIX B 

Typical Formulas in Analyses of  

Reinforced Concrete Column Section 
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Design Assumptions in the ACI Code 

 

 
 

Figure B.1 Strain and stress diagrams for ultimate strength design (Lee, 2009) 

 Summary of acting force based on Figure B.1. 

1. Compressive force carried by concrete 

    c 1C 0.85f 'c c b    

2. The force carried by the top steel 

   s sC A ' f 's 0.85f 'c   

 Based on strain compatibility 

       s s s

d '
f 's E ' E 0.003 1

c

         
 if s s0 ' fy E    

   s s yf 's E ' f       if s s' fy E   

3. The force carried by the bottom steel 

   s s sT f A  

Based on strain compatibility 

       s s s

d
fs E E 0.003 1

c

         
 if s s0 fy E    

   s s yfs E f       if s sfy E   
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Figure B.2 Variation of with net tensile strain t and c d for Grade 60 

reinforcement steel (Hassoun, 2005) 

 Since variation of term c d establishes the compression-controlled, transition 

zone, and tension-controlled based on figure B.2, four domains of column analysis are 

represented explicitly in term of c d  (Lee, 2009).    

Four domains are considered: 

i. Domain 1 : compression-controlled region 

 s y s0.003E d f 0.003E c d    

In this domain 0.65  and top reinforcement is yielding 

ii. Domain 2 : Transition zone 

   s s y s y s0.003E d ' 0.003E f c 0.003E d f 0.003E      

In this domain 0.233 0.25d c   and both the top and bottom reinforcement 

is yielding 

iii. Domain 3 : Transition zone 

 s s y3d 8 c 0.003E d ' 0.003E f     

In this domain 0.233 0.25d c   and bottom reinforcement is yielding 
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iv. Domain 4 : Tension-controlled region 

1d ' c 3d 8     

In this domain 0.90  and bottom reinforcement is yielding 

Note: The domain with 1c d '  and the domain with c d are excluded in the study. 

Compression-controlled region 

Force equilibrium based on free body diagram in Figure B.1 

n c s sP C C T    

 n c s s c s sP 0.85f ' ab A ' f ' 0.85f ' A f   
 

       n c 1 s y c s s

d
P 0.85f ' c b A ' f 0.85f ' A E 0.003 1

c

           
 

Taking moment on neutral axis based on free body diagram in Figure B.1. 

n c s s

h a h h
P e C C d ' T d

2 2 2 2
                
       

 n n c s s c s s

h a h h
M P e 0.85f ' ab A ' f ' 0.85f ' d ' A f d

2 2 2 2
                  
       

     

   

1
n c 1 s y c

s s

ch h
M 0.85f ' c b A ' f 0.85f ' d '

2 2 2

d h
A E 0.003 1 d

c 2

           
  

              
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APPENDIX C 

Typical Formulas in Analyses of External 

Design Load for the Bridge 
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Determine Maximum Bending Moment and  

Maximum Shear Force 

 

 

 

 

 

 

 

 

 

 

 

  
 

Figure C.1 Assuming cross section of bridge slab on simply supported span L 

Table C.1 Input parameters  

Name Symbol 

Length of bridge span L 

Width of barrier wb 

Width of bitumen laying wl 

Total width wt 

Thickness of bitumen tb 

Thickness of bridge slab T 

Thickness of barrier Tb 

Width of sidewalk wsw 

Thickness of sidewalk  tsw 

Pedestrian Load PL 

Thickness of stem beam Tbe 

Width of stem beam wbeam 

Width from stem beam to end slab side wbe 

Number of stem beam nbeam 

 

L

T 

wt

tb
Tb 

wsw

wl wb wb 

Tbe 

wbe wbe wbeam

wsw

tsw 
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Table C.1 Input parameters  

Unit weight of concrete c  

Unit weight of bitumen bi  

Design Truck (AASHTO) HS20* 

Width design lane wlane 

Design lane load Lane 

 
(*) Design truck HS20 characteristics    

 

 

 

 

 

 

For simply supported beam as shown in Figure C.1, maximum shear and 

bending moment can be calculated as: 

 

Figure C.2 Shear and bending moment due to uniformly distribution load 

 

Tandem Load 

Truck Load 
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1) Shear and moment due to future wearing surface (DW) 

Laying width wl wt 2 wb 2 wsw      

Total weight   b bDW tb wl tb wt 2 wb 2 wsw             

2
DW,max

DW,max

M DW L 8

V DW L 2

 

 
  

2) Shear and moment due to structure component and attachment (DC)  

 Weight of barrier 

cWb wb Tb 2      

 Weight of sidewalk concrete 

    cWcsw wsw tsw 2      

 Weight of concrete slab 

cWc wt T     

 Weight of stem beam (if presents) 

cWbe wbeam Tbe nbeam      

Total weight of component and attachment  

   c c

c c

DC Wb Wc Wcsw Wbe wb Tb 2 wsw tsw 2

wt T wbeam Tbe nbeam

             

        
 

2
DC,max

DC,max

M DC L 8

V DC L 2

 

 
 

3) Shear and moment due to Pedestrian load 

If pedestrian load is present on sidewalk, 

PL=3.60 kN/m2
 

 (AASHTO s3.6.1.6) 

DPL PL wsw   

2
DPL,max

DPL,max

M DPL L 8

V DPL L 2

 

 
 

4) Shear and moment due to lane load  

Clear road way width  cw wt 2 wb 2 wsw      

Number of design lane dlane cw wlane (nearest int eger)  

Llane = 9.30 kN/m  (AASTHO s3.6.1.2.4) 
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2
1Lane,max

1Lane,max

M Lane L 8

V Lane L 2

 

 
 

5) Shear and moment due to tandem load 

 Maximum shear force 

 

 

 

 

 

  

      1R L L tan L L tan L w tan      

  
     

1Tandem,max

L tan L L tan L w tan
V

L

   
   

 Maximum bending moment for span 

 

 

 

 

 

 

 

 
   

x w tan 2 x L

x 1 2 L w tan 2

  

   
 

       
       

1

1

R L L tan L x L tan L x wtan

L tan L x L tan L x wtan
R

L

      

     


 

       
1Tandem,max 1

L tan L x L tan L x wtan
M R x x

L

     
   

 

 

 

L

R1 

L

LtanLtan

x
x Position of the resultant 

force of tandem 

LtanLtan wtan 

wtan

R1 
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6) Shear and moment due to truck load 

 Maximum shear force 

 

 

 

 

 

 

 

          1R L Ltr3 L Ltr2 L wtr2 Ltr1 L wtr1 wtr2          

 
         

1Truck,max

Ltr3 L Ltr2 L wtr2 Ltr1 L wtr1 wtr2
V

L

       
   

 Maximum bending moment for span 

 

 

 

 

 

 

       
     

R y Ltr2 wtr2 Ltr1 wtr1 wtr2

Ltr2 wtr2 Ltr1 wtr1 wtr2
y

Ltr1 Ltr2 Ltr3

    

   


 

 

 

 

 

 

 

 

 

 

 

L

R1 

wtr2 

Ltr3 Ltr1Ltr2 

wtr1

wtr2 wtr1 

y 

Ltr1 Ltr2 Ltr3 R 

R1 

wtr2

Ltr3 Ltr1Ltr2

wtr1

R

L

cL 
R2

y Mmax 
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1 2R R Ltr1 Ltr2 Ltr3     

       

   

2

L 1 L 1
R L Ltr3 y wtr2 y Ltr2 wtr2 y

2 2 2 2

L 1
Ltr1 wtr2 y wtr1

2 2

            
   
      
 

 
       

   
2

L 1 L 1
Ltr3 y wtr2 y Ltr2 wtr2 y

2 2 2 2
R 1 L

L 1
Ltr1 wtr2 y wtr1

2 2

                 
        

  

      1Truck,max 2

L 1
M Ltr1 Ltr2 Ltr3 R wtr2 y Ltr3 wtr2

2 2
        
 

 

Vehicle design load (ASSHTO) include IM 

Dynamic Load Allowance (IM = 33% : all other limit state), thus 

 
 

L Truck Tandem Lane

L Truck Tandem Lane

M (1 IM 100) max M ,M M

V (1 IM 100) max V ,V V

  

  
 

ML and VL : are include Dynamic Load Allowance !!!!! 

Load combinations in design strength 

 Strength I 

 I 1 2 3

1.25 1.50 1.75
M DC DW LL IM

0.90 0.65 0.00

      
          

      
 

 Strength II 

 II 1 2 3

1.25 1.50 1.35
M DC DW LL IM

0.90 0.65 0.00

      
          

      
 

In load combinations taken into account of multiple present of Live Load 

factor m, the combination becomes: 

i. Case 1 Lane Load and pedestrian Load:  m1=1.20  for vehicular live load 

m2=1.0    for pedestrian load 

ii. Case 2 Lane Load : m1=1.20, m2=0.0 

iii. Case 2 Lane Load and pedestrian Load : m1=m2=0.85 

iv. Case greater Lane Load and pedestrian Load: m1=m2=1.0 

v. Case 3 Lane Load : m1=0.85, m2=0.0 

vi. Case greater Lane Load : m1=0.65, m2=0.0      
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 Bending Moment 

Case 1 Lane Load:  [dlane = 1] 

 STR[1] DC DW L PLM 1.25M 1.5M 1.75 M m1 1 M m2          

Case 2 Lane Loads: [dlane = 2] 

 STR[2] DC DW L PLM 1.25M 1.5M 1.75 M m1 2 M m2          

 Shear  

Case 1 Lane Load:  [dlane = 1] 

 STR[1] DC DW L PLM 1.25M 1.5M 1.75 M m1 1 M m2          

Case 2 Lane Loads: [dlane = 2] 

 STR[2] DC DW L PLM 1.25M 1.5M 1.75 M m1 2 M m2          
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APPENDIX D 

Detail of optimal calculations 
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Detail of Optimal Calculation 

q

retained material

H

B C

Pp

R

x

CL

e

Ps
Pa

qmax

qmin

H'

 

Figure D.1 Pressure distribution on conventional retaining wall 

Detail of optimal calculations on conventional retaining wall Ex1 (EAS-USD) 

Term Value Unit 

H’ 6.223 m 

Ka 0.3372 - 

Kp 2.0396 - 

Kpt 1.000 - 

Pa 117.537 kN/m2/m 

Ps 20.985 kN/m2/m 

 

Overturning 

Criterion 

Unit MR MD Optimal FS Required FS 

kN.m/m 1003.504 307.447 3.258 2.000 

 

Sliding 

criterion 
Unit FR Pp

 FD
 Optimal FS Required FS 

With PP kN/m 206.992 268.432 137.995 3.445 2.000 

without PP kN/m 206.992 - 137.995 1.500 1.500 
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Bearing 

criterion 

Unit qmax qmin
 qu

 
Optimal  

FS 

Required 

FS 

kN/m2/m 162.48 49.18 627.85 3.86 3.000 

 

Eccentricity 

criterion X  

Unit  1 3 B   2 3 B   1 6 B e 
Result X  Result e 

m 1.333 2.666 0.667 0.357 Ok  Ok 

 

Slope 

criterion 

Unit MR MD MDq R (m) 
Optimal  

FS 

Required 

FS 

kN.m/m 6070.61 2107.82 320.42 8.04 2.5000 2.5000 

 

Shear criteria Unit VU VR Optimal FS Required FS 

Toe kN/m 201.168 390.944 1.943 1.000 

Heel kN/m 390.944 390.944 1.000 1.000 

Stem kN/m 138.475 295.512 2.134 1.000 

Moment criteria Unit MU MR Optimal FS Required FS 

Toe kN.m/m 92.862 476.753 5.134 1.000 

Heel kN.m/m 501.637 501.637 1.000 1.000 

Stem kN.m/m 314.957 314.957 1.000 1.000 

 

 

Detail of optimal calculations on conventional retaining wall Ex1 (ESA-WSD) 

Term Value Unit 

H’ 6.221 m 

Ka 0.3372 - 

Kp 2.0396 - 

Kpt 1.000 - 

Pa 117.537 kN/m2/m 

Ps 20.976 kN/m2/m 

 

Overturning 

Criterion 

Unit MR MD Optimal FS Required FS 

kN.m/m 1004.40 307.596 3.265 2.000 
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Sliding 

criterion 
Unit FR Pp

 FD
 Optimal FS Required FS 

With PP kN/m 206.836 268.432 137.890 3.447 2.000 

without PP kN/m 206.836 - 137.890 1.500 1.500 

 

Bearing 

criterion 

Unit qmax qmin
 qu

 
Optimal  

FS 

Required 

FS 

kN/m2/m 159.53 49.54 624.87 3.92 3.000 

 

Eccentricity 

criterion X  

Unit  1 3 B   2 3 B   1 6 B e 
Result X  Result e 

m 1.340 2.680 0.670 0.353 Ok  Ok 

 

Slope 

criterion 

Unit MR MD MDq R (m) 
Optimal  

FS 

Required 

FS 

kN.m/m 6054.50 2101.40 320.40 8.04 2.5000 2.5000 

 

Shear criteria Unit VU VR Optimal FS Required FS 

Toe kN/m 74.093 207.343 2.798 1.000 

Heel kN/m 207.343 207.343 1.000 1.000 

Stem kN/m 108.681 245.217 2.256 1.000 

Moment criteria Unit MU MR Optimal FS Required FS 

Toe kN.m/m 44.332 44.332 1.000 1.000 

Heel kN.m/m 263.056 263.056 1.000 1.000 

Stem kN.m/m 214.737 214.737 1.000 1.000 

 

Detail of optimal calculations on conventional retaining wall Ex2 (ESA-USD) 

Term Value Unit 

H’ 5.20 m 

Ka 0.3333 - 

Kp 2.7698 - 

Kpt 1.000 - 

Pa 75.7120 kN/m2/m 

Ps 17.3333 kN/m2/m 
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Overturning 

Criterion 

Unit MR MD Optimal FS Required FS 

kN.m/m 470.109 176.300 2.666 2.000 

 

Sliding 

criterion 
Unit FR Pp

 FD
 Optimal FS Required FS 

With PP kN/m 158.646 124.231 93.045 3.040 2.000 

without PP kN/m 158.646 - 93.045 1.705 1.500 

 

Bearing 

criterion 

Unit qmax qmin
 qu

 
Optimal  

FS 

Required 

FS 

kN/m2/m 189.667 0.000 826.014 4.355 3.000 

 

Eccentricity 

criterion X  

Unit  1 3 B   2 3 B   1 6 B e 
Result X  Result e 

m 1.016 2.032 0.508 0.508 Ok  Ok 

 

Slope 

criterion 

Unit MR MD MDq R (m) 
Optimal  

FS 

Required 

FS 

kN.m/m 3376.44 1145.87 204.70 6.439 2.5000 2.5000 

 

Shear criteria Unit VU VR Optimal FS Required FS 

Toe kN/m 68.777 297.410 4.324 1.000 

Heel kN/m 297.410 297.410 1.000 1.000 

Stem kN/m 105.302 222.998 2.117 1.000 

Moment criteria Unit MU MR Optimal FS Required FS 

Toe kN.m/m 8.593 275.914 32.106 1.000 

Heel kN.m/m 352.072 352.072 1.000 1.000 

Stem kN.m/m 207.337 207.337 1.000 1.000 
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Detail of optimal calculations on conventional retaining wall Ex1 (TSA-USD) 

Term Value Unit 

H’ 6.327 m 

Ka 0.3372 - 

Kp 1.000 - 

Kpt 1.000 - 

Pa 121.503 kN/m2/m 

Ps 21.336 kN/m2/m 

 

Overturning 

Criterion 

Unit MR MD Optimal FS Required FS 

kN.m/m 1625.198 322.539 5.038 2.000 

 

Sliding 

criterion 
Unit FR Pp

 FD
 Optimal FS Required FS 

With PP kN/m 332.933 321.375 142.295 4.598 2.000 

without PP kN/m 332.933 - 142.295 2.339 1.500 

 

Bearing 

criterion 

Unit qmax qmin
 qu

 
Optimal  

FS 

Required 

FS 

kN/m2/m 145.22 84.08 435.68 3.000 3.000 

 

Eccentricity 

criterion X  

Unit  1 3 B   2 3 B   1 6 B e 
Result X  Result e 

m 1.664 3.329 0.832 0.222 Ok  Ok 

 

Slope 

criterion 

Unit MR MD MDq R (m) 
Optimal  

FS 

Required 

FS 

kN.m/m 10537.57 2682.62 410.50 9.374 3.406 2.5000 
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Shear criteria Unit VU VR Optimal FS Required FS 

Toe kN/m 143.909 585.818 4.070 1.000 

Heel kN/m 585.818 585.818 1.000 1.000 

Stem kN/m 123.063 291.127 2.365 1.000 

Moment criteria Unit MU MR Optimal FS Required FS 

Toe kN.m/m 51.459 1070.507 20.802 1.000 

Heel kN.m/m 1104.634 1104.634 1.000 1.000 

Stem kN.m/m 266.475 266.475 1.000 1.000 

 

 

Detail of optimal calculations on conventional retaining wall Ex2 (TSA-USD) 

Term Value Unit 

H’ 5.50 m 

Ka 0.3333 - 

Kp 1.000 - 

Kpt 1.000 - 

Pa 85.708 kN/m2/m 

Ps 18.333 kN/m2/m 

 

Overturning 

Criterion 

Unit MR MD Optimal FS Required FS 

kN.m/m 792.381 207.548 3.817 2.000 

 

Sliding 

criterion 
Unit FR Pp

 FD
 Optimal FS Required FS 

With PP kN/m 282.306 229.00 104.042 4.914 2.000 

without PP kN/m 282.306 - 104.042 2.713 1.500 

 

Bearing 

criterion 

Unit qmax qmin
 qu

 
Optimal  

FS 

Required 

FS 

kN/m2/m 149.036 43.871 447.109 3.000 3.000 

 

Eccentricity 

criterion X  

Unit  1 3 B   2 3 B   1 6 B e 
Result X  Result e 

m 1.283 2.566 0.642 0.349 Ok  Ok 
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Slope 

criterion 

Unit MR MD MDq R (m) 
Optimal  

FS 

Required 

FS 

kN.m/m 6293.27 1327.71 247.31 7.250 3.995 2.5000 

 

Shear criteria Unit VU VR Optimal FS Required FS 

Toe kN/m 108.965 384.246 3.526 1.000 

Heel kN/m 384.246 384.246 1.000 1.000 

Stem kN/m 111.956 244.513 2.184 1.000 

Moment criteria Unit MU MR Optimal FS Required FS 

Toe kN.m/m 28.459 460.555 16.182 1.000 

Heel kN.m/m 550.834 550.834 1.000 1.000 

Stem kN.m/m 229.495 229.495 1.000 1.000 
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