COMPUTER SIMULATIONS

FOR TYPEI i’PERCONDUCT ORS

Previous Work

Before the d/ ; \ - '~ \-\- low, we will first discuss a

3 \ a prototype attempt. They used the
numerical optimizati i led { annealing (Kirkpatrick et al., 1983)
to minimize the He . ectly. Their result agrees very well with an
‘the Abrikosov lattice solution.

analytic solution of t

2

However, the agreement ined in a rather artificial manner, by
assuming a priori that the sol : ith unit ell lengths in the ratio /3/2:
1(unlike our calcul@ Ve J nconstrained). Therefore,

they have forced the Eluno

they restricted their simylations to values of, ¥ and H for which the analytic solution is

well known. ﬂu B icdnedd &mﬁ PLEL D b which motivated our

work on this problcm Our goals were 1) to make no priori assumptions except at the
bouncaqy:wa a ﬁa\j mumaorll w EaL:s] @ Hich no analytic

solution is available.

cral r@ngular lattice. Furthermore,

There are several differences between the work of Doria e al., 1990 and our
work.  Firstly, their discretized Helmholtz free energy equation (scaled into

dimensionless form) was:
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AF = ﬁANL o [ el 05"1’!‘] + Fuin + Ffield (7.1)
X27Y Points

where the average kinetic energy is

y bonds €y

(7.2)
and the average field ene
Gt right left | |2
Frea = A - At )| (7.3)
NXN)’ squares
AF is the energy 5. ce between th ""ﬁ erconducting states per unit
volume, Ny and Ny ﬁ the irﬁ\e x and y directions. They

assume that the external qmagnetic field isyin the z direction , so by translational

invariance m%nu&l sabv b ¥ hhach Wrdbb 6o b of x and y. On cach

lattice point the complex order pardmeter has a yalue ¥; and atgach points there are

e AR AT LU BTN DL e s

ax and ay, and between nearest-neighbor sites the x and y components of the vector

potential are ATisht  Aleft AP and A§e"n. Also, at each lattice point they evaluate
VxA as a sum around a square of nearest -neighbor bonds circulating to the right, up,
q g g g p

left, and down.
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The gauge transforms that Doria et al used were:

(7.5)

of the vector potenti

It has been sho at v}?‘ §> 1) above for the free energy is

invariant under this tranSfogmatio ,4 -congeque ce 1 physical quantities desired are

also invariant. In practic . so they must choose ¢ so that A+ Vo

is unchanged, since
\Z

:| : I (7.6)

where h i tf'e] u&l A% ﬂe‘ié] 5 &N&L’lﬂ 2, we choose to use the

gauge—mde cndcnt quantity

RASRIMARIINGIRY o

where Q is the supervelocity and is gauge invariant, and we have that

VxQ = h (7.8)
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We emphasis that we can always use a real order parameter, in which case the
phase of the original complex order parameter is always paired with the vector potential
A in the combination A + V¢. Our free energy is obviously gauge invariant. Thisisa

much simpler approach than that of Doria et al.

Secondly, Doria et al e of the magnetic induction B instead

of the external magneti which &gy have already assumed that a
- T———

certain, finite amount Agnetie flux has.periee
sample (since the ! ;‘?\?&;\
ution to have the right amount of flux

e LA .
B = <n=) ‘Ins!g_ ad of following their idea, we fixed

d through the superconducting
eep the number of flux lines

constant). Therefo pced:

penetration for the cial assumption. In practice

one cannot do that - i control the internal magnetic
field h (the magnetic i

the external magnetic field e easier to control than the magnetic

induction B. Thisis w

energy. Thirdly, V}m_ ose a tixed tattice

nergy instead of the Helmholtz free

f 0
mentioned before in ﬂapte : nagnet: crﬁl B and the Ginzburg-Landau

the Abrikosov theory, as

parameter x are knowng by this theory the lattice constant can be determined. (their

simutaions o) b reg kL] N fi]g: very cose o the upper

limit Hg,, soqflnat the analytic soluition is known). Finally, @ne more assumption

onict i b N L o e il S bl A s e oo

boundary condition, which is a strong constraint.
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Lattice Equation
We have tried to derive the Abrikosov lattice solution without any a priori

assumptions except the Ginzburg-Landau free energy. As in the previous chapter for

the type I superconductors, we start with the Ginzburg-Landau function in two

xQx.y) - H)z] (7.9)

N e P P 4 Odown |2
G Ll Y 5. (_u_) xyfj]
xLy Points I 4 .

ij

“J.'”E’ %mﬂj” P
qmmﬁ*ﬁ”mummé‘i’“‘%“ﬁ’ﬂ

o 0l ek e

(7.10)
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where from fig. (7.1) we can see that the order parameter ¥, which is a real quantity

(as we mentioned in the previous section ), is defined at points on a grid. Qx and Qy

are the x and y components of the supervelocity respectively, and are defined on

“bonds” between lattice points. The subscripts i and j denote the dummy indices

along the x andy axes. Ly and L, are the dimensions of the superconductor in the

W

’- :"":fr '-l‘%“ ‘l'

| DL l'ﬁ‘\“**
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H-" s Ws Wt el ‘ !
s v
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. ’ u,;fi: g D=Qy

x and y directions.

L

\-

Fig. 7.1 Discretization of a two-dimensional superconducting sample

dimension Ly by Ly.
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We assumed that the external magnetic field lies in the z direction as shown in fig.
(7.1). On each lattice point the order parameter has the value ¥j. In each “box”
defined with corners on grid points, the x and y components of the supervelocity for

4 o
the VxQ termare Q%, Qdown, Q¥ and Q*". We evaluate VxQ as a sum around

ing to the right, up, left, and down. As

we mentioned earlier, ourdiSeretizati is gauge invariant.

Ly

Normal metal

>

W= Lx
ARAINTUUNIINYAY
9 ‘ i
Fig. 7.2 Boundary conditions used to simulate a type II super
conductor. The superconducting sample is surrounded by the

normal metal. We keep the order parameter equal to

zero at the boundary.
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ght ft
&% Q&e )‘I‘ and

However, we separated the QZ‘I-‘ term into two parts (

P+ own
Q? )\I,

where Qight Qleft QF and Q"™ are the values of the

supervelocity with respect to the order parameter ‘¥jj, that is, up, down , left and right

denote the bonds next to the location of ¥'i; .

Our boundary condition in tk
) =0 (7.11)

We expect ¥ ; ’ “ i‘a;}’“ where especially for H close to Hep. In

‘ \ the most appropriate. That is, we

keep the superconducting'sz . .' \ - pormal metal as shown in fig 7.2.
The supervelocity in the f&ﬂi.' ,', : st ined : it is assumed to be such that
VxQ = H, soasto make_ﬂ s TRagn 7 energy term zero in the normal metal,

indicating that the :. ully penetrates. 4,

The Simulated Annezﬂw% zchnigﬁe =
AUBINYNINYINT

As we ‘§hall see, our problem can be expressed as that of finding the global

AN 75 TR A SR S i i

a function f(x) of N variables, x = (X1,X2,X3,...XN). The function f(x) possibly
has many extraneous local minima. Conventional optimization methods, such as the

downhill simplex method ( Press et al., 1986), the conjugate gradient method ( Press

et al., 1986), etc., are ineffective here, because they tend to converge to whichever

local minimum they first encounter.



98

Simulated annealing (Kirkpatrick et al., 1983, Press et al., 1986, Press et al.,
1991, Silverman and Adler, 1992) is a stochastic, optimization technique for functions
of many variables. The principle of the method of simulated annealing is an analogy
with thermodynamics, especially with the way that liquids freeze and crystallize, or

metals cool and anneal. At high temperatures, the molecules of a liquid move freely

gradually lost. The atoms ai e often abl selves up and form a crystal which
is the state of minimu - ' 'j 1 . amazing fact is that, for slowly
ergy state.  In fact, if a liquid
metal is cooled quick o L l 10t reachithat state, but rather ends up in

and Boolchand, 1985) having

So the essence i€ pt . ooling, allowing ample time for

redistribution of the atoms. o ' . This is the technical definition of

annealing, and it i§ essentiz _"-'-‘-'I‘":”’Z*::':ﬁ::'f‘ ‘state will be achieved.

V..

0

For a clear undsrstandmg, let us compare annealing and quenching as methods

i %ﬂﬁf‘i‘lﬂ&i’ﬂ FWAN T

QEFIRT DAV YRR E) o o

would ?ead the system directly to the nearest valley or local minimum L with no way to
escape to the global minimum G. An annealing algorithm probably would lead, via a
path such as ABCDG or perhaps ABLCDG, to the global minimum G (Silverman and
Adler, 1992).



The heart of this method is implemented by the Metropolis procedure
(Metropolis et al., 1953), for which the source code is listed in appendix B. This
algorithm will give a verdict on whether to accept that state or not if the latest free

energy is less than the previous one, the algorithm will tell the program to accept that

Wr, there is still a probability to accept that

(7.12)

state. If the latest free energy value

state by the relation

where p is the proba , T is a fictitious temperature.

This is so called the 801z 1prob stribution. In practice, k is setto 1, so
| el T O
the temperature has u rey.
f(x) I 7
b ,k"
et
D

qutInaningng
RINININUNIINYINY

Fig. 7.8 Schematic plot of a function, f(x), that has several local minima

and one global minimum (marked by G ). The parameter x

represents different configurations of moving variables in the

system.
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We can see that a higher temperature gives us a higher probability to accept the
higher state, which means there is an opportunity to skip out of the metastable state to
another state. However, when the temperature is very low it is difficult or impossible
to jump out of a valley for the duration of the program. Whether the global minimum
. it was trapped in when the temperature was
w ¢ the temperature of the state slowly.

Therefore, in practice it i t to find wate temperature schedule for our

is attained or not depends on the last

very low, so it is very i

fufi’ ion (eq. 7.9), such as the order

in the regime where \m expect the 1xed staa which is an interesting state.

This would be ge first !’tio lead us to aMnderstand1 ﬁOf the dynamics of the flux

lines (such re complicate system.

ammmm m'am;l Ao

chapter V, this means that a mixed state was found. We chose the dimension of the
superconducting sample equal to 10 by 10 in coherence length units, the Ginzburg-
Landau parameter k = 3.0, the external magnetic field H = 0.5 and we chose N =9
(so we have 10 by 10 strips) from fig 7.1. We will see that now we have 261 moving
variables in our simulation. While either accepting or rejecting the latest state, the

count was kept until it reached ten times the numbers of variables (2610 ) and the
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fictitious temperature was then decreased with a rate equal to 25% ( we got this from
experiment ) from the starting temperature 10.0. The program stops when the
temperature has reached the lowest limit 0.0001.

Although we got the mixed state (the free energy density was negative), we

1, the supervelocity, and the internal
magnetic field because ha »only, ‘ ips in a 10 by 10 sample is very
crude. The boundary ’ dase the obsciving area to a depth approximately

equal to the Ginzburg- DAfameter ber that k = A/§ ) at each side.

(7.13:)

a). When thﬂxtemal magne cld H is very.close to Heo (Hep =1). From

eq. (7.13) th ic “:ﬁ thi ciﬁ ‘ in units of the coherence
length, £ ). a[uz as' o‘ys]:adm Mﬁﬁey chose H = 0.96).
¢ = QS

gets bigger. In our first simulation we chose H = 0.5, so we have only a 4 by 4

effective sample size which is insufficient.

Inevitably, we must increase the sample size to at least 20 by 20 and we need
100 by 100 strips (5 strips per unit of length, that is N = 99), so we have 29601

moving variables ! However, the computer time to perform the simulation for the
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previous case ; 10 by 10 sample, and only 261 variables, was at least a half an hour
on a Nixdorf mini-computer. Many days or weeks for 20 by 20 samples with , 100 by
100 strips would be needed for one simulation. As we mentioned in the previous

section, we don’t know the temperature schedule before some experiments have been

We know the T ELael ¢ Meissner. st is positive for K>1/2 (fig. 7.4),

and equal to zero in the . Howe \\ Mixed state there are several
e together when the external

or lower values of the external

magnetic field H (H .. This is @ne,of, the very important reasons why we

onductors by the simulated

annealing techniqug,’ _ ethod which has nowadays

become a popular opB:zation - imizing &Itiparameter functions.

pﬁg,uﬂpm 2N LB sceic
Y a4 (1l (11011 S

has also been used successfully for designing complex integrated circuits. Some
hundreds of thousands of circuit elements on a silicon substrate can be permuted and

assigned to locations that minimize the amount of wire required to connect the

transistors on a microchip (Vecchi et al., 1983).

In future we will try to solve this problem again with a bigger computer system.
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A A H
Meissne
% H=He2
0
H<Hce
b
Y
Fig. 7.4 Sc tic of the free encrgies of various states of a type II

stperconductor. The, free energy of the Meissner state is

Pl 1 Bl fpobbed g ot e e sve

negative valdes for mixedestates. b) The pessible energy levels

AN ORGELATEIT AT TiaY Y TR

more separated and more negative when H < Hy.
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CONCLUDING REMARKS

The rapid advances in comput

echnology have ensured that microcomputers
of sufficient power are now ral public at modest cost. Modern
computers range from erful, single-user workstations to

the extremely fast an

Some probl y soluble. By this, we mean

that a complete speci ies of a system leads directly,
and perhaps easily, t Toscopic properties (such as an
equation of state PV = ful of non-trivial, exactly soluble
problems in statistical me- : -,..~.~c-.€.» ional Ising model is a famous example
(Baxter, 1982). =Y &7

Some physical problem: t being exac y soluble, succumb readily to

analysis based on a straightforward approximation scheme. Computers may-have an

e rﬂ 18 DB IS WD DY S et

approximate t eory in a reasonable way. The, more difficult,and interesting the
problal,ﬁ %ﬂi@&rﬂesm t“z:\l :anxEJ %ﬁ %rj.ilable for special
cases, l:)loth to test existing approximation methods and to point the way towards new
approaches. It is also important to be able to do this without necessarily introducing the
additional question of how closely a particular model (which may be very idealized)

mimics a real physical system, although this may also be a matter of interest.
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Computer simulations have a valuable role to play in providing essential results

for probléms in physics which would otherwise only be soluble by approximate

methods. In this sense, compter simulation is a test of theories and, historically,

................

------------

. T =T AL " - Construct

Perform experiments LT R N approximate
; theory

Experimental Theoretical

results predictions

QW?MﬂﬁﬂJNWl’M

Flg. 1 The connection between experiment, theory, and computer

simulation (modified from Allen and Tildesley,1987 ).

simulations have indeed discriminated between well-founded approaches and ideas that

are plausible but, in the event, less successful. The results of computer simulations
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may also be compared with those of real experiments (the schematic diagram is shown

in fig. 1).

The principle of this thesis according to a fundamental rule of physics is that

physical systems seek their lowest pgssi le free energy state. An example is directly
ik of a superconducting sample, for a

mal applied magnetic field. At the

the O

lowest possible energ parameter ¥, the supervelocity

" Sy T

Q. and the internal mif€nciié Geld i fardrevealed. As We mentioned in chapter VI, the

N
\
\

problem of the type so complicated as the type II

superconductors (chap ent except for a very thin sample

(there is defect in thedGi ,\ » that the gradient of the order

parameter at the super€o should be zero). Computer

Pl ]
simulations for the type II supercor ore complicated and difficult. There

are several local mini ith.a tiny difference. This will

L oot i
o

I“‘#E-;;-:’-‘ S : i 'I___#i

j g

We hope that thissthesis will be useful to students , research workers and to

teachers an@eurgj %th iﬂﬂ%ﬁ; to illustrate the way

superconductors behave, on a mérosccﬁc scale, by using the’ Ginzburg-Landau

A RN T AN TN e

cause a lot of grea
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