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in the previous chapter we m "v g a quantity “ [, which playsan
important role in the fo e, ee that the state with the smallest
B will have the lowest e x: | be.the state which is observed in nature.
In this chapter we Raalue of B for flux lattices with
one flux line per uni linearized equation of motion as

follows :

(5.1)

where ¥ is complex, -Hy x. This equation is

equivalent to eq.( ,_;:;;;—__ hapter TV or the original
W
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The standard !eneral solution of this equation ( brikosov, 1988 an be written as

QW’]NﬂiﬂJﬁJWnﬂmaﬂ

¥ = o3 ceiexpl- LH(y - £F) (5.2)
k

where k2, = 1 - H, and Hp=1.
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Our purpose is to find the array of the flux lines as shown in fig. 5.1, which

gives the minimum free energy. Let ¢ be the lattice constant, and by and by are

components of b so that

(5.3)

circles de

For a square lattice
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We let

x—efx,y—)ly,andk—)z-f-k
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so that, from eq.(5.2), we have

= 2 c(k)e2mikx cxp{ 1 le(y 27‘]2‘) (5.4)
g He
But
so that,
¥ {5.5)
where n is summed over integer
Now, @ =-BA 'i in a unit cell, B is the

., i
internal magnetic ﬁe ntensity and A 1s the total aréa of a unit cell. Since flux is

A P e
AN AN umg;nma d

(5.6)

We use H instead of B here because the external magnetic field H is very close to

Hc, and the induction B differs from H by only a very small quantity.

Now eq.(5.5) becomes
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= Y, celmink exp{- L (y- nbz)z} (5.7)
n b2
and, after scaling,
a =X (5.8)
(5.9)
We can obtain unit vectors.i
(5.10)

Now
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so that

ad i ZEE-(b{i - biy) (5.11)
2

(5.12)

as shown in fig.5.2

--------
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Now we can write

G = %(szﬁ - pbiy + qY)

= 2L (pb,X - (pbs - q)F) , (5.13)
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Note that it is not necessarily true that ¥(r+b) = ¥(r); ¥ is not gauge invariant. The
gauge invariant quantity of physical significance is .

We expand o as follows

(5.18)

where Gy is the Fouriereoefficien

(5.19)
(5.20)

The average of ®is
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(5.21)
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Note that it is not necessarily true that ¥(r+b) = ¥(r); ¥ is not gauge invariant. The

gauge invariant quantity of physical significance is ®.

We expand o as follows

(5.18)

(5.19)

(5.20)

The average of wis
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Also

(5.22)

For G= 0,

wg=0 = ()

5 P 2L (y - mbs)

e \ P s E L S e e

Lylx i q"’.‘.
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Since

fl_x j dx e2mi(nm)x = Sw'n ‘ (5.24)



€q.(5.19) now becomes,

R % cnc;_pily_ f dy e iGry exp{-ﬁ‘z-{(y- nbof? + (y - (n - pbo)? }] |

(5.25)

Considering that,

we see that

-e v’ P)bzy +n2b, + byn2 + (n - p)2)}]
¥
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ﬁ}ﬁr + hy(n2 + (n - p)2) }]

From

fmdxc-(axz+bx+c) = @CXP{%-C}
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. so that, using the expression (5.13) for G, we have

a6 = 3 citho [T ot gL@R(n-p)-1G,F - ool + (n-pF)

_1_. 22 e)q{- 22_ GeA A4 |
Ly V2 STAAN

(5:27)
so that 'Y,
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Since from eq.(5.17)

and we find that
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%‘, log? = —L%%lg exp [ %?; Gz] (2 |c,,[2)2 (5.28)

Now P is defined according to

(5.29)
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= ‘1;;23 [ (622 + b2)p? - 2b1pq + o] (5.31)
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Finally,
B(bi.by) = 3 exp [-é‘;((bl2 +b2)p? - 2bypq + q2}] (5.32)
2|
- '\.,‘
By minimizing eg _:‘____,: umeri€atl found that there are two lattice
structures which have the samedowest valu e are for (b, by) = (1/2, V3/2)

and (172, 1/243), as she / ‘i‘:\\\
In the case of by =1/2 /

1 @’\\\

B2,

=60°), we have

(5:33)
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For b;=1/2 and b, = 1/2\13 -”.-‘92;-3' 0° - is the angle between by and by), we

obtain Lo

"l

11 2 | = % o 25 {s- 20+ ]
U @mmm;

ANNIBIUBAINLNER
<=xp[-—E{((p-q)2-(p-q)q+ )

= 2 exp[-Z&{(- pa+ o2l

=
B(% ) (5.34)
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Numerical Minimization of ﬁ

Return now to the optimization of |3 problem. Numerical calculations show
that for the square lattice of Abrikosov, P = 1.18 (Abrikosov, 1957), while for the

equilateral triangular lattice, B = 1.16 (Kleiner et al., 1964). Considering this small

difference, it is understandable 1 error could have led Abrikosov
stable. Later work by Kleiner et

al. rectified this err array has in fact the most

favorable value of .

According t »appropriate values of b; and
b, which make the val ork, we found two lattices
which have the same esults are shown in figs. 5.3 -
5.6). However in fig.5. ) triangles are the same equilaterél

triangles (60°). Where

and

b). by = 049999999 and b, =, 0.28867520 (8 = 309)

ﬂum‘namwmm

Note that the sxzc of the equilateral triangle is irreleyant since we have used an arbitrary
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Fig. 5.3 I5":‘ e structures of flux lines with

aller triangular lattice has the

same structure as thsjlgger one.

ﬂUEl’JVIEIVI’i‘WEI'Iﬂ‘E

qmaammumwmaa



orl  9zI 901 990 990 KO 930 900

o'l

29l
T

-~

-

Beta

j

AUEINENTNYING

TN TU AR INE A E

Fig. 5.4

B vs. by where by is fixed at 0.5
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the lowest values of = 1.1595. (b= 0.5 while b, = 0.2886

and 0.8660).
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