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reduced units.

First, we startf
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Here, the definitions of the penetration depth A, the coherence length &, and the

Ginzburg-Landau parameter x , are as following;

The critical field H i lal2/b). In reduced units the

A\
\.\‘\

upper critical field Hcg its 'Yl = 1 in the bulk Meissner

state. However, in normalftinjts 1 ¢ €an neglect terms order W16 in the

free energy. ZRIA A

'y

Fll
Now, eq.(4. “?- c

A umwmw'am @2
since ™} W] AINTUURIINYIAY

v =|‘1’|ei‘1>
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we have that

[-iv+A)¥* = [-iv + A) ¥ e’

= |_i “'

- i Ml ie 10V + A P e 9] (4.3)

(4.4)

j Sa gauge invariant quantity. It came
from the definition of the sup nt Shown in chapter Iland VxQ = h.
Since A and ¢ appear o Q, the-form of ¢ itself is irrelevant.

In fact, an arbitrary function can gtadient is also subtracted from

A. We will now onl ii % interested e amplitude ,:,' and for convinience we will
denote the arglitudc as e, Z L7
Now eq. (4. )qloeurﬂq qn Ejﬂsw Ej’]ﬂi

b, L R
AT TR V2 VAR s
Setting the variation of g with respect to ¥ to zero gives

M W Q. N = 6 (4.6)

This is the first Ginzburg - Landau equation in reduced units.
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Minimizing G = I g dr with respect to Q(r), by the calculus of variations (Arfken,

1970), gives

4.7)
as a necessary conditio:
Since
(4.8)
and by the same method dSed ehabreri(cqs.(2.20) - (2.24)), we obtain
28 (4.9)
and eq.(4.7) becomes
ﬂUEJ’JVIZEWﬁWEJ’lﬂi
h H)+ Q¥ 7 0 (4.10)

ammmmumwmaa

This is e second Ginzburg-Landau equation in reduced units.

When the external magnetic field H is just below H,, (which has magnetude 1
in these units), the internal magnetic field h is very close to H (Q = Qq) and the
Ginzburg - Landau order parameter ¥ is very small. Therefore, in eq. (4.6) we can

neglect terms of order ‘I’3, yielding.
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Wy + QR = Viw, (4.11)

This is the linearized equation approximation, where ¥, isrealand V x Qg = H.

)] (4.13)
So, since H=Hz, | ,
Aueanengnyans
QW’lﬂﬂﬂiﬂJ WIAEAY
s (V_:;q)er - (4.15)

We now calculate - ¥+ Qy2¥, and find that
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et

in agreement with eq.(4.11).
If we multiply eq.(4.6) by ¥,

97+ Q2 — (4.16)

(4.17)

Consider, now the identity ﬁr. e
ZE AT

.I.H

A umwmﬁmam
NN IUNMINNAY

Since n- V¥ = 0 is the surface condition (Landau and Lifshitz, 1980), the

average of eq.(4.17) has only two terms remaining, and
@ = -1{e)+x2(n-n)) (4.19)

where the average value of a quantity x is defined as
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Consider now ¥ = oW, where « isaconstant, and we can choose, for H close

to Heo,

T HUEINENINEINS
RIANTU A INeaY

The solution is



and

Substituting eq. (4.24)«

where, P is definegdécordingto P
"’;_ |~' J

AudInefingns
AERINIUUNININY

Q =Qu+Q

where

50

(4.24)

(4.25)

(4.26)

4.27)
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Qq = -Zx (4.28)
b 4

From the linearized equation eq. (4.11)
-G = v (4.29)
(remember that ¥ / »\‘ it), "and multiplying by ¥ we get

= :
FRE Y L ARNS
\ (4.30)
Subtracting eq. (4.16)

(4.31)

From the second of . 2 ] - (4 10) we get

ﬂUB?ﬂﬁWﬁWﬂﬂﬂ‘i 32
pui Wi@ﬁeﬂiiﬂdﬂ&%’ﬁ%ﬂﬁl Bk

(QuQ +@)¥? = 2" (V x (H - h)
= k2V-(H-h)xQ)+x(H-h)V xQ’ (4.33)

By taking the curl of eq (4.27), we obtain
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VxQ'=-(H-h) . (4.34)

so that

(QH-Q'+Q’2)‘P2_ » _’_)-KZ(H-h)2 (4.35)

Consider the first te

theorem, we have

fdrV-(-

_)=0 (4.36)

“since N x(H - h) = 9 on the surface (Fetter and . cka 1971).

B P AN TNENT
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- We now recall (eq. 4.15)



Squaring eq (4.27) we have

Q2 = Q2+2QuQ’+Q"”

where

and we find that

Then

so that

ﬂ‘UEJ’J‘VIHVIﬁWEJ’]ﬂ‘i

Ve Q? = 2QuQ’ +Q"

QW'WMﬂ‘ifHNWTmEﬂﬁEJ

Substltutmg eq. (4.41) into eq. (4.31) gives

w9+ 2(Qu@ ¥ )+ = (1-B)(¥?)

and by eq.(4.37), we get
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(4.38)

(4.39)

(4.40)

(4.41)

(4.42)



() -2¢2(m-n)2- (@) = 1 -m)(¥?)

Next, from eq.(4.19) and eq.(4.25), we have that

pa--+

2x2

Then, since the second mrof eqil '?:' all (1€ z)~0(‘1"s) ),

e Ai*

- s Wﬁ ﬁ‘ﬁﬂﬂ*fw JNT
ammnm%ﬂmmaﬂ

Also, from eq.(4.24)

22

and we see that
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(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)
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B = it (4.49)

where B = <h(x,y) > is the magnetic induction. H¢y = 1in these units.

According to eqs«(4.47), (4.48) N/@ for type II superconductors, both
> , .

the average Gibbs fre o v > and the-magnetic induction B are dependent
on P (the investigati I “’:\ etailin the next chapter). The value

of P is approximat ¢ 16, for, ajtrianguldr lattice of flux bes, and 1.18 for
a rectangular lattice. e energy levels of these two
states are very simil table since it occupies a lower

energy level. The typedsoltition 7 =0, ), ¥'=1 in the bulk) has
(4.50)

(4.51)

and he normﬂ%&ll’}g‘ifl%l NINYINT

In case of type I superconductors, the Ginzburg-Landay parameter x < 1/42.

i e Bhiblock G Sofkadnkt o i ) Tl 50 Gl erage ives e

energy densny would be positive if k > 1/2 and H =1, and equal to zero if the

external field H=H; (He = 1/ky2 in our units).
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