

ABRIKOSOV'S SOLUTION

In this chapter we will find the solutions of the Ginzburg-Landau equations in reduced units.

First, we start from the Gibbs free energy density

$$g = a |\Psi|^2 + \frac{1}{2} b |\Psi|^4 + \frac{1}{2m^*} \left(-i\hbar \nabla + \frac{e^* \mathbf{A}}{c} \right) \Psi|^2 + \frac{(\mathbf{h} - \mathbf{H})^2}{8\pi}$$
 (4.1)

and change to reduced units by scaling according to

$$g \rightarrow \frac{|a|^2}{b}g$$

$$A \rightarrow \sqrt{2} H_c \lambda A$$

$$h \rightarrow \sqrt{2} H_c \kappa h$$

$$\Psi \rightarrow \sqrt{\frac{|a|}{b}} \Psi$$

$$r \rightarrow \xi r$$

Here, the definitions of the penetration depth λ , the coherence length ξ , and the Ginzburg-Landau parameter κ , are as following;

$$\lambda = \sqrt{\frac{m^*c^2b}{4\pi e^{*2}|d|}}$$

$$\xi = \sqrt{\frac{\hbar^2}{2m^*|d|}}$$

$$\kappa = \frac{\lambda}{\xi} = \frac{m^*c}{\hbar e^*} \sqrt{\frac{b}{2\pi}}$$

The critical field H_C is given by eq.(3.9), $H_C = \sqrt{(4\pi \text{ lal}^2/\text{b})}$. In reduced units the upper critical field $H_{C2} = 1$. Note that in these units $|\Psi| = 1$ in the bulk Meissner state. However, in normal units $|\Psi| << 1$ and we can neglect terms order $|\Psi|^6$ in the free energy.

Now, eq.(4.1) becomes

$$g = -|\Psi|^2 + \frac{1}{2}|\Psi|^4 + (-i\nabla + A)\Psi|^2 + \kappa^2(h - H)^2$$
 (4.2)

Since

$$\Psi = |\Psi| e^{i\phi}$$

we have that

$$(-i\nabla + A)\Psi|^2 = (-i\nabla + A)|\Psi|e^{i\varphi}|^2$$

$$= \left| -i e^{i\phi} \nabla \left| \Psi \right| - i \left| \Psi \right| i e^{i\phi} \nabla \phi + A \left| \Psi \right| e^{i\phi} \right|^{2}$$
 (4.3)

If we set $Q = A + \nabla \phi$, eq. (4.3) becomes

$$\left(-i\nabla + A \right) \Psi \right|^{2} = \left| -ie^{i\phi} \nabla |\Psi| + |\Psi| e^{i\phi} Q \right|^{2}$$

$$= \left(\nabla |\Psi| \right)^{2} + |\Psi|^{2} Q^{2}$$

$$(4.4)$$

Q is the so-called *supervelocity*, which is a gauge invariant quantity. It came from the definition of the supercurrent as shown in chapter II and $\nabla \times Q = \mathbf{h}$. Since A and ϕ appear only in the combination of Q, the form of ϕ itself is irrelevant. In fact, an arbitrary function can be added to $\phi(\mathbf{r})$ if its gradient is also subtracted from A. We will now only be interested in the amplitude $|\Psi|$, and for convinience we will denote the amplitude as Ψ .

Now eq. (4.2) becomes

$$g = -\Psi^2 + \frac{1}{2}\Psi^4 + (\nabla \Psi)^2 + Q^2\Psi^2 + \kappa^2(\nabla \times Q - H)^2$$
 (4.5)

Setting the variation of g with respect to Y to zero gives

$$-\Psi + \Psi^{3} + Q^{2}\Psi - \nabla^{2}\Psi = 0 {4.6}$$

This is the first Ginzburg - Landau equation in reduced units.

Minimizing $G = \int g dr$ with respect to Q(r), by the calculus of variations (Arfken, 1970), gives

$$\frac{\partial g_{s}}{\partial Q_{i}} - \sum_{j} \frac{\partial}{\partial r_{j}} \left[\frac{\partial g_{s}}{\partial (\partial Q_{i} / \partial r_{j})} \right] = 0$$
 (4.7)

as a necessary condition.

Since

$$\frac{\partial g}{\partial Q} = 2Q\Psi^2 \tag{4.8}$$

and by the same method used in the previous chapter (eqs.(2.20) - (2.24)), we obtain

$$\sum_{j} \frac{\partial}{\partial r_{j}} \left[\frac{\partial g_{s}}{\partial (\partial Q_{i} / \partial r_{j})} \right] = -2 \kappa^{2} \nabla \times (\mathbf{h} - \mathbf{H})$$
(4.9)

and eq.(4.7) becomes

$$\kappa^2 \nabla \times (\mathbf{h} - \mathbf{H}) + \mathbf{Q} \Psi^2 = 0 \tag{4.10}$$

This is the second Ginzburg-Landau equation in reduced units.

When the external magnetic field H is just below H_{c2} (which has magnetude 1 in these units), the internal magnetic field h is very close to $H(Q \approx Q_0)$ and the Ginzburg - Landau order parameter Ψ is very small. Therefore, in eq. (4.6) we can neglect terms of order Ψ^3 , yielding.

$$- \Psi_0 + Q_0^2 \Psi_0 = \nabla^2 \Psi_0 \tag{4.11}$$

This is the linearized equation approximation, where Ψ_0 is real and $\nabla \times \mathbf{Q}_0 = \mathbf{H}$. We try,

$$Q_0 = -\hat{\mathbf{z}} \times \frac{\nabla \Psi_0}{\Psi_0} + \sqrt{1 - H} \hat{\mathbf{z}}$$
 (4.12)

and we have

$$H = -\nabla \times \left(\widehat{z} \times \frac{\nabla \Psi_0}{\Psi_0}\right)$$

$$= -\widehat{\mathbf{z}}\nabla \cdot \frac{\nabla \Psi_0}{\Psi_0}$$

$$= -\widehat{\mathbf{z}} \left[\left(\frac{\nabla^2 \Psi_0}{\Psi_0} \right) - \left(\frac{\nabla \Psi_0}{\Psi_0} \right)^2 \right] \tag{4.13}$$

So, since $H = H\hat{z}$,

$$H = \left(\frac{\nabla \Psi_0}{\Psi_0}\right)^2 - \frac{\nabla^2 \Psi_0}{\Psi_0} \tag{4.14}$$

and

$$Q_0^2 = \left(\frac{\nabla \Psi_0}{\Psi_0}\right)^2 + 1 - H \tag{4.15}$$

We now calculate - Ψ_0 + $Q_0^2\Psi_0$ and find that

$$- \, \Psi_0 + Q_0^{\, 2} \, \Psi_0 \; = \left(\! \left(\! \frac{\nabla \Psi_0}{\Psi_0} \! \right)^2 - H \! \right) \! \Psi_0 \; = \; \nabla^{\, 2} \! \Psi_0$$

in agreement with eq.(4.11).

If we multiply eq.(4.6) by Ψ , we find that

$$-\Psi^{2} + \Psi^{4} + Q^{2}\Psi^{2} = \Psi\nabla^{2}\Psi \tag{4.16}$$

Using eq.(4.16), eq.(4.5) becomes

$$g = -\frac{1}{2} \Psi^4 + (\nabla \Psi)^2 + \Psi \nabla^2 \Psi + \kappa^2 (h - H)^2$$
 (4.17)

Consider, now the identity

$$\int_{V} d\mathbf{r} \left((\nabla \Psi)^{2} + \Psi \nabla^{2} \Psi \right) = \int_{V} d\mathbf{r} \nabla \cdot (\Psi \nabla \Psi)$$

$$= \int_{S} \Psi \nabla \Psi \cdot \hat{\mathbf{n}} \, ds \tag{4.18}$$

Since $\hat{\mathbf{n}} \cdot \nabla \Psi = 0$ is the surface condition (Landau and Lifshitz, 1980), the average of eq.(4.17) has only two terms remaining, and

$$\langle g \rangle = -\frac{1}{2} \langle \Psi^4 \rangle + \kappa^2 \langle (\mathbf{h} - \mathbf{H})^2 \rangle$$
 (4.19)

where the average value of a quantity x is defined as

$$\langle x \rangle = \frac{1}{V} \int dr x$$

Consider now $\Psi = \alpha \Psi_0$, where α is a constant, and we can choose, for H close to H_{c2} ,

$$Q = -\hat{\mathbf{z}} \times \frac{\nabla \Psi}{\Psi} + \text{small terms}$$
 (4.20)

The second Ginzburg-Landau equation, eq.(4.10), gives

$$\kappa^{2}\nabla \times \mathbf{h} \approx \hat{\mathbf{z}} \times \Psi \nabla \Psi \tag{4.21}$$

When

$$\mathbf{h} = h(\mathbf{x}, \mathbf{y}) \,\widehat{\mathbf{z}} \tag{4.22}$$

we have that

$$\nabla \times \mathbf{h} = -\widehat{\mathbf{z}} \times \nabla \mathbf{h}$$

and

$$\nabla h = -\frac{1}{2\kappa^2} \nabla \Psi^2 \tag{4.23}$$

The solution is

$$h = H - \frac{1}{2\kappa^2} \Psi^2$$

and

$$(h - H)^2 = \frac{\Psi^4}{4\kappa^4} \tag{4.24}$$

Substituting eq. (4.24) in eq. (4.19) we get

$$\langle g \rangle = \frac{1 - 2\kappa^2}{4\kappa^2} \langle \Psi^4 \rangle$$

$$= \frac{1 - 2\kappa^2}{4\kappa^2} \beta \langle \Psi^2 \rangle^2 \tag{4.25}$$

where, β is defined according to

$$\beta = \frac{\langle \Psi^4 \rangle}{\langle \Psi^2 \rangle^2} \tag{4.26}$$

We can write

$$Q = Q_H + Q' \tag{4.27}$$

where

$$Q_{\rm H} = -\widehat{\mathbf{z}} \times \frac{\nabla \Psi}{\Psi} \tag{4.28}$$

From the linearized equation eq. (4.11)

$$-\Psi + Q_0^2 \Psi = \nabla^2 \Psi$$
 (4.29)

(remember that $\Psi = \alpha \Psi_0$, where α is a constant), and multiplying by Ψ we get

$$-\Psi^{2} + Q_{0}^{2}\Psi^{2} = \Psi \nabla^{2}\Psi \tag{4.30}$$

Subtracting eq. (4.16) from eq. (4.30) yields.

$$\Psi^4 + (Q^2 - Q_0^2)\Psi^2 = 0 (4.31)$$

From the second of the Ginzburg-Landau equations, eq.(4.10) we get

$$Q\Psi^2 = \kappa^2 \nabla \times (\mathbf{H} - \mathbf{h}) \tag{4.32}$$

Putting eq. (4.27) into eq. (4.32) and then multiplying by Q', we have

$$(\mathbf{Q_H} \cdot \mathbf{Q'} + \mathbf{Q'}^2) \Psi^2 = \kappa^2 \mathbf{Q'} \cdot (\nabla \times (\mathbf{H} - \mathbf{h}))$$

$$= \kappa^2 \nabla \cdot ((\mathbf{H} - \mathbf{h}) \times \mathbf{Q'}) + \kappa^2 (\mathbf{H} - \mathbf{h}) \cdot \nabla \times \mathbf{Q'} \qquad (4.33)$$

By taking the curl of eq (4.27), we obtain

$$\nabla \times \mathbf{Q'} = -(\mathbf{H} - \mathbf{h}) \tag{4.34}$$

so that

$$\left(Q_{H}\cdot Q' + {Q'}^{2}\right)\Psi^{2} = \kappa^{2}\nabla\cdot\left(\left(H - h\right)\times Q'\right) - \kappa^{2}\left(H - h\right)^{2}$$
(4.35)

Consider the first term of the right hand side of eq.(4.35), and by the divergence theorem, we have

$$\int_{V} d\mathbf{r} \, \nabla \cdot ((\mathbf{H} - \mathbf{h}) \times \mathbf{Q}') = \int_{S} d\mathbf{s} \, \widehat{\mathbf{n}} \, \cdot ((\mathbf{H} - \mathbf{h}) \times \mathbf{Q}')$$

$$= \int_{S} ds \ Q' \cdot (\widehat{\mathbf{n}} \times (\mathbf{H} - \mathbf{h})) = 0 \qquad (4.36)$$

since $\hat{\mathbf{n}} \times (\mathbf{H} - \mathbf{h}) = 0$ on the surface (Fetter and Walecka, 1971).

Thus, the average of eq (4.35) is

$$\left\langle Q_{H} \cdot Q' \Psi^{2} \right\rangle + \left\langle Q'^{2} \Psi^{2} \right\rangle + \kappa^{2} \left\langle (H - h)^{2} \right\rangle = 0 \tag{4.37}$$

We now recall (eq. 4.15)

$$Q_0^2 = \left(\frac{\nabla \Psi_0}{\Psi_0}\right)^2 + 1 - H$$

Squaring eq (4.27) we have

$$Q^{2} = Q_{H}^{2} + 2Q_{H} \cdot Q' + {Q'}^{2}$$
 (4.38)

where

$$Q_{H} = -\widehat{z} \times \frac{\nabla \Psi}{\Psi}$$

and we find that

$$Q_{\rm H}^2 = \left(\frac{\nabla \Psi}{\Psi}\right)^2 \tag{4.39}$$

Then

$$Q^2 = \left(\frac{\nabla \Psi}{\Psi}\right)^2 + 2Q_H \cdot Q' + {Q'}^2 \tag{4.40}$$

so that

$$Q^2 - Q_0^2 = 2Q_H \cdot Q' + {Q'}^2 - 1 + H$$
 (4.41)

Substituting eq. (4.41) into eq. (4.31) gives

$$\langle \Psi^4 \rangle + 2 \langle Q_H \cdot Q' \Psi^2 \rangle + \langle Q'^2 \Psi^2 \rangle = (1 - H) \langle \Psi^2 \rangle$$
 (4.42)

and by eq.(4.37), we get

$$\langle \Psi^4 \rangle - 2\kappa^2 \langle (\mathbf{H} - \mathbf{h})^2 \rangle - \langle Q'^2 \Psi^2 \rangle = (1 - H) \langle \Psi^2 \rangle$$
 (4.43)

Next, from eq.(4.19) and eq.(4.25), we have that

$$-\frac{1}{2}\langle \Psi^4 \rangle + \kappa^2 \langle (\mathbf{h} - \mathbf{H})^2 \rangle = \frac{1 - 2\kappa^2}{4\kappa^2} \beta \langle \Psi^2 \rangle^2$$
 (4.44)

Then eq.(4.43) becomes

$$\beta \left(1 - \frac{1}{2\kappa^2}\right) \left\langle \Psi^2 \right\rangle^2 - \left\langle Q^2 \Psi^2 \right\rangle = (1 - H) \left\langle \Psi^2 \right\rangle \tag{4.45}$$

Then, since the second term of eq.(4.45) is small ($\langle Q^2 \Psi^2 \rangle \sim O(\Psi^6)$),

$$\langle \Psi^2 \rangle \approx \frac{(1-H) 2\kappa^2}{\beta (2\kappa^2 - 1)}$$
 (4.46)

Substituting eq.(4.46) into eq.(4.25), we get

$$\langle g \rangle = -\frac{\kappa^2 (1 - H)^2}{\beta (2\kappa^2 - 1)}$$
 (4.47)

Also, from eq.(4.24)

$$h = H - \frac{1}{2\kappa^2} \Psi^2$$
 (4.48)

and we see that

$$B = H - \frac{(1-H)}{\beta(2\kappa^2 - 1)}$$
 (4.49)

where $B = \langle h(x,y) \rangle$ is the magnetic induction. $H_{c2} = 1$ in these units.

According to eqs.(4.47), (4.48), and (4.49), for type II superconductors, both the average Gibbs free energy density $\langle g \rangle$ and the magnetic induction B are dependent on β (the investigation of β will be described in detail in the next chapter). The value of β is approximately equal to 1.16 for a triangular lattice of flux tubes, and 1.18 for a rectangular lattice (Abrikosov, 1957). The Gibbs free energy levels of these two states are very similar, but the triangular lattice is more stable since it occupies a lower energy level. The type I solution ($\mathbf{h} = 0$, $\mathbf{Q} = 0$, $\mathbf{\Psi} = 1$ in the bulk) has

$$\langle g \rangle = \kappa^2 H^2 - \frac{1}{2} \tag{4.50}$$

$$B = 0 \tag{4.51}$$

and the normal solution is $\langle g \rangle = 0$.

In case of type I superconductors, the Ginzburg-Landau parameter $\kappa < 1/\sqrt{2}$. In the presence of an applied magnetic field H, from eq.(4.50) the average Gibbs free energy density would be positive if $\kappa > 1/\sqrt{2}$ and H = 1, and equal to zero if the external field $H = H_C$ ($H_C = 1/\kappa\sqrt{2}$ in our units).