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TYPEI AND TYPE II SUPERCONDUCTORS

Type I Superconductors

In general highestetfiperatures igh magnetic fields destroy

“\\\\ less than the zero field T, (0)

then we have the folié g €lauo sh D, ‘* \ nternal and external fields as

superconductivity.

shown in ﬁg 4

)
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Fig 3.1 The relationship between the external field(#) and the internal

field(k) in a type I superconductor.
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For H > H, we have the the normal state which is assumed to be non-magnetic

(internal magnetic field A = H , where H is the external magnetic field). For H < H

we have the Meissner effect (h = 0). If the sample is superconducting at temperature

T in zero field, there is a unique critical field H(T) above which the sample becomes

normal. This transition is reversible, for superconductivity reappears as soon as H is

(3:4)
]
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Flg 3.2 Phase diagram in the H-T plan;., showing superconducting and

normal regions, and the critical curve H(T) or T(H)

between them (Tinkham, 1975).
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From eq.(2.28) for the supercurrent, we have

(3.2)

We cannot have
since VxV¢ = It follows that ¥ = 0
(normal phase). 7
5'3
On the other 1and, sel in t] non for J, then we can have

vy

a supercondu £ n that case, ‘— - — an |‘P| = € IIEC
Gy Tﬁﬂwswmﬁ el

bR A L
(h -H)

whete g1 ) = f + is the free energy density for the normal

8n
phase (¥ = 0). The two phases are in thermodynamic equilibrium at the critical field

H, . This condition may be expressed by the equation
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gs(Hc ) = gn(Hc ) (3.4)

The normal state of most superconducting elements is nonmagnetic (h = H ), so we

find

£3.8)
In contrast, & vanisheg,jasthe’stp o seir = 0), which yields

(3.6)
The Gibbs free energ g state. In particplar

(3.7)

miform Ginzburg-Landau order parameter,

3
However, for an : nE Zou

we saw in chapter I '! at T

Auginemdnemns o
R WA N T NN INE A Y

2
HZ = 4@ ; b, = |ahfE (3.9)

Also,
2
g(H) = g40) + g;



2
s _ e
2t 2
= guH) + H—SnHL (3.10)

is important to emphasize that

the coherence length £ af He pofiet ation depth A a | oth phenomenological quantities

and

. comﬂlu@dfg wywwmg e
awwaqnwmwgyn L

This is independent of temperature near 7, (Fetter and Walecka, 1971).
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In 1957, Abrikosov published a remarkably significant paper (Abrikosov,
1957), in which he investigated what would happen in the Ginzburg-Landau
theory if x were very large (A >>£). This should lead to a negative surface energy
(Tinkham, 1975, Rose-Innes and Rhoderick, 1978, de Gennes, 1989), so that the
process of subdivision into domains shpuld proceed until it is limited by the

microscopic length €. Becausethis'b is so different from the classic behavior

described earlier, he called these uctors”. The Ginzburg-Landau

k =

Fig.3.3 Schematic plot of the penetration depth A and the coherence
length & of superconductor (a). type I : & >A~2,
(b). type Il: & <Ay2 (Fetter and Walecka, 1971)
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For type II superconductors the degree of flux penetration is shown in fig. 3.4. For

H > H,, the sample is normal (h = H ), while for H < H;; we have a complete
Meissner effect (k = 0 ). In the intermediate state (H,; < H < Hp) the sample is in a
mixed condition with non-uniform flux penetration, commonly called the mixed state
or vortex state. H.; and H, are called respectively the lower and upper critical fields.

A brief of calculation H; a 51 oyltiie ( inzburg-Landau theory will be given

latter (Tinkham, 1975., de ‘Genine 89t gant mathematical details were
: ,' on Ginzburg-Landau Theory”,
1991).

AAA9NGEA

Fig. 3.4 The internal magnetic field (h) versus the external magnetic field
(H) for type I (dashed line) and type II (solid line)

superconductors (de Gennes, 1989).
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‘a v/
rig. 45 1) Frherildfibdl by Bl ithikfot ara gven
» Ginzburg-Landau parameger k and externabmagnetic field (H).
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In fig. 3.5, we show the three phases of a superconductor which have the lowest free

energy for a given Ginzburg-Landau parameter k and applied magnetic field H.
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Mixed State

In the previous section we have mentioned the formation of the mixed state for
certain superconductors, due to the negative surface energy between two different

regions. The configuration of the al regions threading the superconducting

iy e to volume of normal material is a
dalc& It turns out that a favorable
SUpErco ‘Q‘W Orisshreaded by cylinders of normal
: \ ‘ hall refer to these cylinders as
hemselves in 3 \ ar pattern, in fact a triangular

material should be such th

maximum (Rose-Inne

configuration is one i
material lying paralle
normal cores . The

close-packed lattice

We might expeet rifal ¢ores aye a very small radius, because the
smaller the radius of the atio of its surface area to its volume.

The bulk of the material i e to the applied field being opposed

d 3’- perimeter of the specimen.

by a diamagnetic s g X

This diamagnetic mﬂna ore lying parallel to the applied

magnetic field, and within each core is a magnetic field having the same direction as that

of the appheﬂn%&l fital ke ek Wit ich cbfe s generated by a vortex of

persistent current that circulates arotind the core with a sense of retation opposite to that

of theai mgfltaﬁa m N mttc \'n’lm;s’llaﬂgesulting flux are

1llustrated in Fig. 3.6.




The vortex current encircling a normal core interacts with the magnetic field
produced by the vortex current encircling any other and, as a result, any two cores repel
each other. This is somewhat similar to the repulsion between parallel solenoids or bar
magnets. Because of this mutual interaction the flux lines do not lie at random but
arrange themselves into a regular p:riodic hexagonal array as shown in fig.3.7. This

/ brikosov lattice (Kleiner, et al., 1964).

array is usually known as the
The existence of the no res and the ent in a periodic lattice has been

revealed by experime of Essman and Tréduble (Trduble

and Essmann, 1968 ores by allowing very small

(500 A) ferromagn a type-II superconductor in

the mixed state. Th ¢ the magnetic flux is strongest,

: , ' " L 7
i.e. where the normal j _ 8! .’ --hsown in fig. 3.8.

Details of the mixed state

Imaglne a TYDEC—ti-iater it a 10w appiic A ad

N

na etic induction B vanishes

pnetic field H, the sample

exhibits a completc_

(B = [ h(r)dr), as H is }ncreased toa cr1t1ca1 value Hiq. The penetration of magnetic

o vecome il B0 FIDEIIRG IR P o) s formec. Thes

filaments cons?gt of a core region which is not sharply defined, but is spread out over

w actp Rk BB TR HH Db &)k Blfshova n nisas

Further, the magnetic flux associated with each core spreads into the
surrounding material over a distance approximately equal to the penetration depth A.
The properties of the material vary with position in a periodic manner. At the center of
each vortex the order parameter (concentration of superelectrons) falls to zero, so that

along the center of each vortex is a very thin core (strictly a line ) of normal material.

s
LACA AaM @ i~ A
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. flux (Kittel, 1988).
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The dips in the order parameter are about two coherence lengths wide. The flux density
due to the applied magnetic field is not cancelled in the normal cores and falls to a small
value over a distance about A away from the core as shown in fig.3.7. The total flux

generated at each core by the encircling current vortex is just one quantum of magnetic

/ &' STREAM LINES OF
s

.\\ SUPERCURRENT
» &

T d | o
AMIANTUNNIINY1AY

Fig. 3.6 An isolated flux line, carrying a single flux quantum, consisting
of acylindrical core whose radius is equal to the coherence
length € of the material. A current circulates around the

core out to the penetration depth A.
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o
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Fig 3. 7 - The mixed state in an applied magnetic field H just greater than
A WA BT IR vere e
in a triangular pattern. (b) Variation of the order parameter ¥
with position. (¢) Variation of internal magnetic field h with

position ( Rose-Innes and Rhoderick, 1978).
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Fig 3.8 Triangular lattice of vorticescontaining dislecations as seen

o VA 61 N b ittt sk itk ke,

(Trauble and Essmann, 1968).

38
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The Lower Critical Field He

At the lower critical field Hy, the transition to the mixed state occurs with the

entry of the first few vortices (Duzer and Turner, 1981). The separation of these

vortices is much greater than A for fields near H.q , making it possible to calculate the

energy of an isolated vortex cting \e®mall contribution from interaction with

. éorm then we would have ¥ = 0
everywhere. So we ce : : e uniform local flux.penetration. Keeping as much
symmetry as possibl€"we ¢ 4 flax 1 ne b = N(r) z . The function h(r) has its
7 . A suitable choice of vector

A(r)). For x>> 1 we have

1 "‘-.—7- ,,,,,,, — 7
Tl =ty (3.12)

The solution of this eﬁﬂtion is the mddified Bessel function h ~ Kp(r/A). By

R — E AN E AN LT S s it
Y SNl il 0

Gslno flax - = Gslﬁrst vortex (3~13)

and also we have (J. Poulter, 1991)
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Hal L oEhe
= —Zﬂjo rdeh(e = =Nl (3.14)

(3.15)

ifortunately requires numerical

us, considerable attention has been

given to the extreme type i
in which x = A/€ > -

\A

We will treat only ma

ﬁ“"mviwsw Jalik
ama@nmﬁﬂmwmaa

Now that we have evaluated the line tension €, we can substitute back into (3.15) to get

1at the core is very small. We

(3.16)

H¢;. The field at which flux first penetrates (for k >> 1) is

L tnx (3.17)

Do hx = >
A

41t7\.2

4me,

N"Ig‘

N =
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The Upper critical Field Hp

Near H,, the vortices are packed so tightly that the cores fill much of the

volume and the vortices form a lattice so

at the energy has the minimum value.

For H only just helow He t 1zburs - Landau order parameter ¥ will be

very small. From eq. s.of order ¥ or smaller, then

we have
=0 (3.18)
This is the linearized Ginzbusg il equation. whete the external field H = VxAy.
For a particle of mass foc - e* moving in a magnetic field
H = VXAQ, thek 2

e AO (3.19)

ﬂumwawﬁWmﬂi
e BT YA e

Lifshitz} 1977),

= 1 p?
E = (n+ Yo + e (3.20)
where

o ol | (3.21)
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The energy levels corresponding to motion perpendicular to the magnetic ﬁeld

are just the Landau levels (Landau and Lifshitz, 1977). For the case of the linearized

Ginzburg-Landau equation

and

In order to determine 4

that we must choose n

We have from beforé | = A ‘

ﬂuEJ’JVIEJ "ﬁ EYE ik
_amadnsaifimingdy

and Hyo > H, onlyif « >

Nl

gest possible value of .

(3.22)

(3.23)

This means

(3.24)

(3.25)

(3.26)
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