CHAPTER II

HISTORICAL

Chemistry of Ketocenazole

1. Chemical name. The chemical name of ketoconazole is cis -1- Acetyl -4- [4-[[2- (2,4 -dichlorophenyi) -2 - (1 H - imidazol -1 - yl methyl)-1,3-dioxolan-4-y]-methoxy] phenyl] piperazine. Its structure and numbering scheme are shown ief figure 2

Figufe 2\%: Chemicalstructure and rumbering of ketoconazole

Molecular weight : 531.44
$\mathrm{pKa} \quad: \quad 2.94,6.51$
2. Description : white to slightly beige powder, melting range $147-150^{\circ} \mathrm{C}$
3. Solubility : Practically insoluble in water, soluble 1 in 54 of ethanol, 1 in 2 of chloroform, 1 in 9 of methanol, very slightly soluble in ether.

4. Synthesis (Heeres et al , 1979)

4.1 The synthesis, staring from 2,4-dichloroacetophenone is outlined in Scheme 2. Ketalizationof 1 with glycerine was performed in a benzene, n-butanol mediom with azeotropic removal of water in the presence of a catalytic amonnt of p-toluenesulfonic acid. Without isolation, the ketal 2 was brominated at $30^{\circ} \mathrm{C}$ to bromo ketal 3.
4.2 Benzoylation of 3 in pyridine afforded the ester as a cis/trans mixture, from whiok the cis form 4 could be isolated by crystallization from EtOH. The pure trans isomer could be obtained by liquid chromatography of the mother liquor.

4.3 Coupling of bromo ketal 4 in dry DMA with imidazole

 gave the imidazole derivative 5 . The ester 5 was saponified at reflux with NaOH in dioxane-water medium to the alcohol 6 . This alcohol was converteg tol methatesulfonate 9,9 which was coupled with the sodium salt of 8 to give ketoconazole .
จหาลงกรณมหาวิทยาลัย

${ }^{9}$ 5. Determination of Ketoconazole : Many method have been used to assay ketoconazole in pharmaceutical preparation, raw material and human serum. Some of them are described below;

Scheme : 2 Syntheses of Ketoconazole

5.1 Colorimetric Method

In 1988 , Sane and workers had reported the determination of ketoconazole in pharmaceutical preparation. The method was based on the formation of ion-pair complexes of the drug with reagents like bromocresol green (BCG), bromocresol purple (BCP), bromophenol blue (BPB) and bromopheol req (BPR) in acidic medium. The ion-pair complexes formed were guantitatively extracted in chloroform and its absorbance was measured at 420 nm . The method was statistically validated and was found to be precise and accurate.
5.2 High Perfoniance Liquid Chromotographic Methods (HPLC)

Many methods for the determination of ketoconazole by HPLC have been reported by Alton (1980), Swezey et at. (1982), Badcock (1984), Column, mobile phase , wavelength of UV - detector and conditions used were different in order to be applicable for each method. Fof example, in 1982, Swezey and workers assayed ketoconazole in human plasma by using μ-Bonapack C -18 reversed phase columm, qacetonitrile $Q 0.055^{\circ} \mathrm{M} /$ Sorensen'ss phosphate buffer $(\mathrm{pH} 6.6$ with hydrochloric acid $)(60: 40)$ as mobile phase and 370 nm

5.3 Potentiometric Method

Potentiometric method for the determination of ketoconazole in raw material was recommended by the USP XXII(1990). Ketoconazole was dissolved in glacial acetic acid and titrated with perchloric acid.

6. Identification of the chemical structure

6.1 Ultraviolet spectrum (Moffat et al ., 1986)

In aqueous acid it has absorption maxima at 269 nm ($\mathrm{A}_{1}^{1}=26 \mathrm{a}$)
In aqueous alkali it has absorption maxima at $287 \mathrm{~nm}\left(\mathrm{~A}_{1}^{1}=29 \mathrm{~b}\right)$
In methanol it has two absorption maxima at $244 \mathrm{~nm}\left(\mathrm{~A}_{1}^{1}=280 \mathrm{~b}\right)$ and $296 \mathrm{~nm}\left(\mathrm{~A}_{1}^{1}=32 \mathrm{~b}\right.$)
6.2 Infrared spectrumb Moffat et al ., 1986)

Principle peaks at wavenumber $1640,1507,1258,1240$, 1211, $1200, \mathrm{~cm}^{-1}$ (KBr cis5-)
6.3 NMR proton and ${ }^{13} \mathrm{C}$ spectrum (Dawson, 1990)

A Burker AM -400 was used to measure the proton and ${ }^{13} \mathrm{C}$ spectrum. The spectrum was measured with the base dissolved in CDCl_{3}, using TMS as the infernal standard. Table 1 gives the valves of $\delta(\mathrm{ppm})$ and $\mathrm{J}(\mathrm{Hz})$ corresponding to their structural assignation.

Pharmacelogy

Antifungal activity : Ketoconazole is active against most pathogenic fungi, including dermatophytes andyeastsso it used to treat a wide variety of superficial or systemic fungal infection. Ketoconazole is effective affer orat administration against suppefficial mycoses, such as dermatophyte or yeast skin infection , Pityriasis versicolor, oncomycosis, oral or vaginal candidosis and systemic mycoses, such as systemic candidosis, paracoccidioidomycoses, histoplasmosis (Heel et al.,1982 ;Borger and Bossche ,1982).

Table 1: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shift of ketoconazole ($\delta \mathrm{H}$ and $\delta \mathrm{C}$ from TMS ± 0.01). , (Dawson , 1990)

Mechanism of action : Like other imidazole derivatives , ketoconazole presumably exerts its antifungal activity by altering cellular membrane, resulting in increased membrane permeability, secondary metabolic effects, and growth inhibition . (Heel et al.,1982; McEvoy, ed., 1989). Although the exact mechanism of action of ketoconazole has not been fully determined, it has been suggest that the fungistatic activity of the drug may result from interference with ergosterol synthesis probably via inhibition of C -14 demethylation of steroi internediate (e.g. lanosterol) (McEvoy, ed., 1989).

Pharmacokinetic

Absorption : Ketoconazole is rapidly adsorbed from the GI tract. The bioavailability of oral ketoconazole depends on the pH of the gastric content in the stomach; an increase in the pH results in decrease absorption of the drug. The effect of food on the rate and extent of GI absorption of ketoconazole has not been

Distribution: Ketoconazole has been detected in urine, bile,
 administration of a 200 mg dose of drug in adult. In human blood, only 1% of ketoconazole is presented as free drug in plasma, 83.7% is bound to plasma proteins , primarily albumin and 15.3% in blood cell (Daneshmend and Wornock, 1988).

Elimination : Ketoconazole is partially metabolized in the liver, to several inactive metabolites by oxidation and degradation of the imidazole and piperazine rings, by oxidative O -dealkylation, and by aromatic hydroxylation. The major route of elimination of ketoconazole and the metabolites appears to be excretion into the feces via the bile (McEvoy, ed , 1989

Photolysis

Consideration of the decomposition of pharmaceutical compounds resulting fron the absorption of radiant energy in the form of light has become more important in recent years because of the complex chemical structure of anany new drugs (Lachman ,Lieberman and Kanig ,eds. , 1986).

Mechanism of phototysis

Two major mechanisms can be identified (Lin and Lachman, 1969 ; Stewart and Tucker, 1985 ; Conners, Amidon and Stella ,eds. , 1986)
(a) primaryphotochemical decomposition i δ
(b) photosensitiser or secondary photochemical decomposition

QPymaryoh hôtochemical ceactions gceur when 6 heidrug molecule (A) itself absorbs energy from the radiation source, then an unstable excited state species $\left(\mathrm{A}^{*}\right)$ is produced (Eq. 1). The absorbed energy can be lost either by a radiative mechanism in which the energy is given off several ways :
(a) as thermal energy producing an increase in temperature in the surrounding medium (Eq. 2);
(b) as fluorescence or phosphorescence where the absorbed energy is re-emitted as longer wavelength radiant energy (Eq. 3); or
(c) as chemical energy initiating chemical decomposition (Eq. 4).

The whole process can be defined by Equations 1-4

The potential for decomposition of a drug will be greater at shorter wavelengths since the energy of radiation is related to wavelength by :

จหาลงกรรณ์มหาวิทยาลัย
Where $\mathrm{E}=$ energy absorbed
$h=$ Planck's constant (6.625×10^{-27} erg-s)
$v=$ frequency of the radiation in $\mathrm{Hz}\left(\mathrm{s}^{-1}\right)$
c $=$ velocity of light
$\lambda=$ wavelength

Thus the shorter the wavelength (λ) or the higher the frequency (v), the greater is the energy absorbed. Consequently, drug degradation is more like to occur when radiation is absorbed in the ultraviolet and lower visible regions of the spectrum. The chemical reactions occurring are complex but include oxidation-reduction, ring rearrangement and modification, and polymerisation.

In photosensitiser or secondary photochemical reactions, the energy is absorbed by pon-drug molecules (B) which impart their increased energy to the drug molecules (A) with subsequent degradation (Eqs, 7,8). The molecules absorbed radiant energy are called phowsenisitisers and act as catalyst for drug decomposition.

The kinetics of photochemical reactions is more complicated than kineticsoff thetma1 9 feactions (qhahman et ai, 1986) This is due to (1) the complex nature of most photochemical reactions (Lin
 factors (nature of solute, solvent, pH , buffer type, concentration and excipients), and storage factors (radiation sources, time and intensity of irradiation, temperature and packaging) (Stewart and Tucker,1985) and (3) the photochemical reaction may be enhanced by, inhibited by,
or independent of simultaneous thermal reactions.(Lin and Lachman , 1969)

As a result of the complexity of photolytic reactions, zeroorder, first-order and second-order are possible in photodegradative reactions. Photolysis reactions are usually associated with oxidation because the latter class of reaction is often initiated by light (Mollica , Ahuja and Cohen, 1978; Banker andRhodes, 1990).

Prevention of photolytic reactions

To prevent degradation of drugs by photolysis, the use of appropriate light resistant containers offers the best form of protection against decomposition Generally amber bottles will restrict the incident energy below $4 T 0 \mathrm{~nm}$. (Lachman, Swartz , and Cooper, 1960) In addition, depending on the type of chemical reaction caused by light absorption, the formulation can be mampulated to stabilize the drug (Stewart and Tucker, 1985).

Oxidation is one of the major causes of drug instability. Two basic mechanismes of oxidation jexist \nrightarrow ? 9 M ? $\frac{1}{y}$

9 (a) autoxidation which involves reaction with molecular oxygen, chain reactions and free radical formation ; and
(b) the reversible loss of electrons without the addition of oxygen.
(a) Autoxidation occurs in three phases : initiation propagation and termination, as in scheme 3

Initiation process is catalyzed by heat and light (Mollica, Ahuja and Cohen, 19678 . ${ }^{6}$ In addition, autoxidation is catalyzed by hydrogen ion concentration, trace metals or peroxides and presence of

(b) Oxidation occurs by the reversible loss of electrons without the addition of oxygen. This process of oxidation involves the transfer of electrons and protons. A chemical oxidation-reduction halfreaction can be expressed by :
reduced form \rightleftharpoons oxidized form +n electrons (Eq.9)

The Nernst equation is used to compute standard oxidation potential (E°). The greater the standard oxidation potential of the cell, e.g., the greater the difference berveen the oxidation and reduction half- cell potentials, the more readily-will oxidation occur.(Stewart and Tucker, 1985)

Photolysis of midazole

Because imidazole is the important part in the structure of ketoconazole, so photochemical reaction of imidazole must be considerable. When inidazote or imidazole derivative was exposed to light, it could be changed as following :

A. Fragmentation

Many studies about the photochemical ffagmentation product of imidazole derivatives have been reported (Ogata et al.,1970, Haddadin, Havi pandNazer, 1978 on Gainsford and Woolhouse , 1978). For example, in 1970 , Ogata and coworkers reported the
 (18.14%) as the major product from the irradiation of 1 -benzyl -2 - ethylbenzimidazole-3-oxide (Scheme 4).

Scheme 4 : The photodegraded product of 1-benzyi-2-ethybenzimidazole - 3 - oxide

ศูนย์วิทยทรัพยากร

Scheme : 5 The photodegraded product of benzimidazole 3-oxide

Similarly, Haddadin and his colleaques found that, when 1 hydroxy - 2 -methylbenzimidazole 3 -oxide (1 b) was photolyzed, the product was o-nitrosoacetanilide (3b) and whereas there is no substituent at $\mathrm{C}-2$ (1a), the product isolated was o-nitrosoformanilide (3a). This reaction was believed to proceed via a fused oxaziridine intermediate (2) (Scheme 5).

B. Rearrangement

Although the reyerse reaction was well known , the photochemical conversion of imidazoles into pyrazoles and benzimidazole into indazoles does not take place. However , 1,4 - and 1,2 disubstituted imidazoles were ainterconverted in t-butanol, while 1,4,5- trimethyl imidazole gives the 1,2,5 - isomer in ethanol, t - butanol or cyclohexane .In 1969, Beak and Messer reported that , irradiation of 1,4 -dimethylimidazole (1) in t-butanol for 41 hours gives 1,2 dimethylimidazole $f 2$) in 40% conversion which under the same condition 2 is converted to 1 with 50% conversion after 30.5 hours (Scheme 6) audd photplysis $/ 1,4,59 f$ trimethylimidazole (3) in ethanol or cyclohexane gives $1,2,5$ - trimethylimidazole (4) (Scheme 7). The photoreariangetments of 52 afd $3 / 70$ isomeficinidazole may involves an initial disrotatory formation of bicyclic isomer (6) followed by a 1,3sigmatropic shift to a second bicyclic isomer (7) which undergoes a disrotatory ring opening to the product (Scheme 8). In 1976 ,Copper and Ervin reported that under irradiation at 300 nm , trans $-1-$
styrylimidazoles (1) were transformed into the cis - isomers (2) which subsequently undergo photocyclization to 3 (Scheme 9). This was probably a radical cyclization on to the imidazole ring gains credence both from the position of attack at C-2 .

The photo-Fries rearrangement of N -substituted imidazoles, where the substituent on nitrogen was an acyl group, to give 2 - and 4 -substituted isomers could involve either a dissociative path (A) or an intramolecular process (B) The excited species could be a radical or a radical cation . More complex acyl groups, e.g. stearoyl, tend to undergo cleavage in the side chain, but the 1-acylimidazole (1), derived from dehydroabietic ácid appears to be subject only to migration, perhaps via a cyclobutanol intermediate, to give 2 - and 4 acyl derivatives (2) (Schemet0).

Scheme 6 : The intercorversion of 1,4 and 1,2 dimethyl imidazole on photolysis

Scheme : 7 The intercomversion of $1,4,5$ and $1,2,5$ trimethyl imidazole on photolysis
จุฬาลงกรณ์มหาวิทยาลัย

Scheme : 8 The photorearrangement mechanism of imidazole

Scheme :9 The photocyclization of trans-1 -styrylimidazole

C. Polymerization

When imidazoles and benzimidazoles have free NH groups, intermolecular hydrogen bonding gives rise to linear associates of molecules in the crystals and in fion-protic solvents. Early determinations of molar masses and dipole moments gave anomalous results because of this phenomenon, particularly when concentrated solutions of the azoles were used. In fact, linear associates of as many as 20 molecules of imidazole were possible at high concentrations in solvents such as benzene. This intermolecular hydrogen bonding gave rise to broad NH signals in NMR spectra, and in solvents capable of exchange, e.g.
 processes gave rise to dimeric products in which hydrogen is lost, sometimespy cencerfent oxidation? In qravg, Cole and workers reported that, irradiation benzimidazole in various solvents with free access to air gave the unsymmetrical dehydrodimer, 2,4' - and 2,5' bibenzimidazole . this reaction probably proceeds through the intermediacy of a 2 - benzimidazolyl radical which substituted the benzene moiety unchanged (Scheme 11).

Scheme 11: The degradation producs of benzimidazole on photolysis

