CHAPTER III

RESULTS

Physical Properties of Lactose-Avicel PH 101 R Placebo Pellets Prepared with Various Spheronization Times, Binder Types and Concentrations

1 Determination of Placebo Pellets Appearance

1.1 Methoce1 E-15LVR

The microscopie appearance of lactose-Avice1 PH101R pellets using Methoce $1 \mathrm{E}-15 \mathrm{LV}$ as a binder are illustrated in Figures 12 and 13. At 414 rpm of spheronizer speed, pellets appeared to be rod shape. Shorter rod shape combined with a little sphere pellets with smooth surface were received when spheronization time was increased. In the case of binder concentration increased, the pellets of longer rod shape with more smogth surface/were obtained? At spheronizer speed of 951 rpm, pellets were quite sphere shape. Increasing in sphericity with more smooth surface of peljets were obtained when spheronization time was increased. The binder concentration increased, the pellets were slightly increased in size, more smooth surface but decreased in sphericity.

Figure 12 Photomicrographs of lactose-Avicel PH101R pellets using various concentrations of Methocel $=15 \mathrm{LV}^{R}$ as a function of spheronization times at spheronizer speed of 414 rpm ($\times 35$) (A5,A10,A15 are $1.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 5,10 , 15 min of sphergnizationtime: $35, \mathrm{BTO}, \mathrm{Bi} 5$ are $1.67 \% \mathrm{w} / \mathrm{w}$ of binder concentration at $5,10,15 \mathrm{~min}$ of spheronization time
 $10,15 \mathrm{~min}$ of spheronization time)

The microscopic appearance of lactose-Avicel $\mathrm{PH}_{101}{ }^{\mathrm{R}}$ pellets using HPC-L ${ }^{R}$ as a binder are presented in Figures 14 and 15. At spheronizer speed of 414 rpm , rod shape of pellets were observed. Increasing spheronization time gave more smooth surface. In addition, increasing binder concentration had slightly increased in size of pellets. The orders of smooth surrface appearance of pellets were as followed : binder concentration $1.67 \% \mathrm{w} / \mathrm{w}>2.00 \% \mathrm{w} / \mathrm{w}>1.33 \% \mathrm{w} / \mathrm{w}$. At 951 rpm of spheronizer speed, sphere shape pellets were obtained. Increasing in sphericity with more smooth surface of pellets were obtained from increasing/spheronization time. Increasing in rough surface of pellets were received from increasing binder concentration.

1.3 Methocel A4M8

The microscopic appearance of lactose-Avicel PH101R pellets using Methocel $A 4 M^{R}$ as a binder are shown in Figures 16 and 17. At 414 rpm of spheronizer speed, rod shape pellets were also observed. Combination of shorter rod shape and sphere pellets with smooth surface were increased With increasing/spheronizationtime. Longer rod shape with rough surface pellets were increased with increasing binder concentration. At speed of 951 rom? pêfers/ were quite sphere shape. Sphericity with smooth surface of pellets were increased with increasing spheronization time. Increasing binder concentration had decreased in sphericity, increased in size and increased in rough surface of pellets.

Figure 14 Photomicrographs of lactose-Avicel PH101R pellets using various concentration of $H P C-L^{P}$ as a function of spheronization times at spheronizer speed of $414 \mathrm{rpm}(\times 35)$
(A5, A10, At 5 are $1.33 \% ~ w / w ~ o f ~ b i n d e r ~ c o n c e n t r a t i o n ~ a t ~ 5,10, ~$ 15 min of spheronization time: $\mathrm{B5}, \mathrm{~B} 10, \mathrm{~B} 15$ are $1.67 \% \mathrm{w} / \mathrm{w}$ of Q
binder concentration at $5,10,45 \mathrm{~min}$ of spheronization time; Q and $05, \mathrm{C10}, \mathrm{C15}$ are 2.00% w/wof binden concentration at 5, $10,15 \mathrm{~min}$ of spheronization time)

Figure 15 Photomicrographs of lactose-Avicel PH101R pellets using various concentration of $H P C-L^{R}$ as a function of spheronization times at spheronizer speed of $951 \mathrm{rpm}(x 35)$
(A5,A10,A15 are $1.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 5,10 , 6 a U 15 m in of spheronization time: $\mathrm{B} 5, \mathrm{~B} 1 \mathrm{O}, \mathrm{Bi} 5$ are $1.67 \% \mathrm{w} / \mathrm{w}$ of binder concentration at $5,10,15 \mathrm{~min}$ of spheronization time; Q $9 /$ and $65,910,015$ are $2.00 \% \mathrm{w} / \mathrm{w}$ of/binder concentration at 5, $10,15 \mathrm{~min}$ of spheronization time)

Figure 16 Photomicrographs of lactose-Avicel $\mathrm{PH} 101^{R}$ pellets using various concentration of Methoce $1 A 4 M^{R}$ as a function of spheronization times at spheronizer speed of 414 rpm (x35) (A5,A10,A15 are $0.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 5,10 , 15 min of spheronization time; $\mathrm{B} 5, \mathrm{~B} 10, \mathrm{~B} 15$ are $0.67 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 5,10,15 min of spheronization time) ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Figure 17 Photomicrographs of lactose-Avicel $\mathrm{PH} 101^{R}$ pellets using various concentration of Methoce $1 \mathrm{~A} 4 \mathrm{M}^{R}$ as a function of spheronization times at spheronizer speed of 951 rpm (x35) (A5,A10,A15 are $0.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 5,10 , 15 min of spheronization time; $\mathrm{B} 5, \mathrm{~B} 10, \mathrm{~B} 15$ are $0.67 \% \mathrm{w} / \mathrm{w}$ of binder concentration at $5,10,15$ min of spheronization time)

$1.4 \mathrm{HPC}-\mathrm{M}^{\mathrm{R}}$

The microscopic appearance of lactose-Avicel PH101 ${ }^{\text {R }}$ pellets using $H P C-M^{R}$ as a binder are presented in Figures 18 and 19. At 414 rpm of spheronizer speed, rod shape pellets were obtained. Combination of shorter rod shape and sphere pellets with more smooth surface were also obtained from increasing spheronization time. However, longer rod shape with smooth surface of pellets were increased with increasing binder concentration. At 951 rpm of spheronizer speed, pellets were quite sphere/shape. Sphericity with smooth surface of pellets were increased with increasing spheronization time.In different binder concentration, the highest sphericity with smooth surface of placebo pellets were obtained from $1.67 \% \mathrm{w} / \mathrm{w}$ of binder concentration.

1.5 Compared Jype of Binders at Different Concentrations

 and Spheronization Fimes on Microscopic Appearance of Placebo PelletsAt spheronizer speed of 951 rpm , pellets using HPC-MR as a binder were more sphericity/with smooth surface than pellets using HPC-L ${ }^{R}$ or Methocel E-15LV V^{R} asjbinder.

Particle size distribution of lactose-Avicel PH101R pellets are presented in Tables 6-9 and Figures 20-31. Pellets using HPC-MR as a binder were more narrow size distribution than pellets using the other binders.

Figure 18 Photomicrographs of lactose-Avicel PH101R pellets using varjous concentration of $H P C-M^{R}$ as a function of spheronizaQ 9ttion times at spheronization speed of $414 \mathrm{rpm}(x 35)$ (A5,A10, A15 are $1.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 5,10, 15 min of spheronization time; $\mathrm{B} 5, \mathrm{~B} 10, \mathrm{~B} 15$ are $1.67 \% \mathrm{w} / \mathrm{w}$ of binder concentration at $5,10,15 \mathrm{~min}$ of spheronization time; $C 5, C 10, C 15$ are $2.00 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 5,10 , 15 min of spheronization time and D5,D10,D15 are $2.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration at $5,10,15 \mathrm{~min}$ of spheronization time)

60
Figure 19 Photomicrographs of glactosetavicel RHforR pellets using various concentration of HPC-MR as a function of spheronizaQ ition times at spheronization speed of $951 \% \mathrm{pm}(\times 35)$
$9(\mathrm{~A} 5, \mathrm{~A} 10, \mathrm{~A} 15$ are $1.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 5,10 , 15 min of spheronization time; B5,B10,B15 are $1.67 \% \mathrm{w} / \mathrm{w}$ of binder concentration at $5,10,15 \mathrm{~min}$ of spheronization time; $C 5, C 10, C 15$ are $2.00 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 5,10 , 15 min of spheronization time and D5,D10,D15 are $2.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration at $5,10,15 \mathrm{~min}$ of spheronization time)

Table 6 Sieve analysis of lactose-Avicel $\mathrm{PH}_{101}{ }^{\mathrm{R}}$ pellets prepared with various spheronization times and concentrations of hydroxypropyl methylcellulose (Methocel E-15LVR)

Table 7 Sieve analysis of lactose-Avicel PH101R pellets prepared with various spheronization times and concentrations of hydroxypropyl cellulose (HPC-LR

Table 8 Sieve analysis of lactose-Avicel $\mathrm{PH}_{101} \mathrm{R}^{\text {pellets }}$ prepared with various spheronization times and concentrations of hydroxypropyl methylcellulose (Methocel A4M ${ }^{R}$)

Table 9 Sieve analysis of lactose-Avicel $\mathrm{PH}_{101} \mathrm{R}$ pellets prepared with various spheronization times and concentrations of hydroxypropyl cellulose (HPC-MR)

Concentration(\% w/w)	Spheronization	\% Weight Retained (a)				
	Time	Siev	ve No.			
	(\min)	18	20	40	60	Pan
1.33	1	35.27	29.01	21.97	6.21	1.91
	10	38.02	24.83	16.75	7.38	1.37
			22.22	14.34	7.68	1.97
		40.48	27.13	15.03	7.25	1.38
1.67		239.39	24.57	17.36	7.08	1.40
	15 通步	41.11	24.39	14.12	8.03	1.63
2.00		30.40	40.78	21.75	4.22	0.75
	10	, 32.75	38.16	18.58	4.42	0.38
$\rho 9 e^{5}$		8.09	36.09	15.94	1.88	0.03
					1.01	0.03
2.33	10	33.83	48.25	14.57	1.15	0.02
	15	34.80	45.13	15.49	0.62	0.01

(a) averaged from two determinations

Figure 20 Percent retained on sieve of lactose-Avicel $\mathrm{PH} 101^{R}$ pellets using $1.33 \% \mathrm{w} / \mathrm{w}$ of Methocel $E-15 \mathrm{LV}^{R}$ as a function of spheronization times:

$6 \mathrm{~min} 10 \mathrm{~min} \quad 15 \mathrm{~min}$

Figure 21 Percent retained on sieve of lactose-Avicel $\mathrm{PH} 101^{R}$ pellets using $1.67 \% \mathrm{w} / \mathrm{w}$ of Methocel $\mathrm{E}-15 \mathrm{LV}^{R}$ as a function of spheronization times

Figure 22 Percent retained on sieve of lactose-Avicel $\mathrm{PH} 101^{R}$ pellets using $2.00 \% \mathrm{~W} / \mathrm{W}$ of Methoce $E-15$ LV R as a function of spheronization times

Percent welght retalned (\%)

Figure23 Percent retained on sieve of lactose-Avicel PH101R pellets using $1.33 \% \mathrm{w} / \mathrm{w}$ of HPC-L ${ }^{R}$ as a function of spheronization times

Figure 24 Percent retained on sieve of lactose-Avicel PH101R pellets using $1.67 \% \mathrm{~W} / \mathrm{w}$ of HPC-L ${ }^{R}$ as a function of spheronization times

$\square 5 \mathrm{~min} \quad 10 \mathrm{~min} \quad 15 \mathrm{~min}$

Figure 25 Percent retained on sieve of lactose-Avicel PH101R pellets using $2.00 \% \mathrm{w} / \mathrm{w}$ of HPC-L L^{R} as a function of spheronization times

Figure 26 Percent retained on sieve of lactose-Avicel $\mathrm{PH} 101^{R}$ pellets using $0.33 \% \mathrm{w} / \mathrm{w}$ of Methocel $\mathrm{A} 4 \mathrm{M}^{R}$ as a function of spheronization times

Figure 27 Percent retained on sieve of lactose-Avicel $\mathrm{PH} 101^{R}$ pellets using $0.67 \% \mathrm{w} / \mathrm{w}$ of Methoce $1 \mathrm{~A} 4 \mathrm{M}^{R}$ as a function of spheronization times

Figure 28 Percent retained on sieve of lactose-Avicel PH101R pellets using $1.33 \% \mathrm{w} / \mathrm{w}$ of $H P C-M^{R}$ as a function of spheronization times

Figure 29 Percent retained on sieve of lactose-Avicel PH101R pellets using $1.67 \% \mathrm{w} / \mathrm{w}$ of $\mathrm{HPC}-\mathrm{M}^{\mathrm{R}}$ as a function of spheronization times

Figure 30 Percent retained on sieve of lactose-Avicel $\mathrm{PH} 101^{R}$ pellets using $2.00 \% \mathrm{~W} / \mathrm{W}$ of HPC-MR as a function of spheronization times

Figure 31 Percent retained on sieve of lactose-Avicel PH101R pellets using $2.33 \% \mathrm{w} / \mathrm{w}$ of $\mathrm{HPC}-\mathrm{M}^{R}$ as a function of spheronization times

3 Mean Particle Size Determination

The effect of spheronization times, binder types and concentrations on the mean particle size of lactose-Avicel PH101R pellets are given in Table 10 and Figures $32-38$. The mean particle size was ranging from $0.800-1.784 \mathrm{~mm}$.

3.1 Methocel E-15LVR

Increasing spheronization time at $1.67 \% \mathrm{w} / \mathrm{w}$ and 2.00% w/w of binder concentration were notsignificantly different in mean particle size at 95% confidentrlevel. But increasing of spheronization time at $1.33 \% \mathrm{w} / \mathrm{w}$ resulted in increasing mean particle size. At each spheronization time, the grders of mean particle size of pellets were as followed : binder concentration $1.67 \% \mathrm{w} / \mathrm{w}>2.00 \% \mathrm{w} / \mathrm{w}>1.33 \% \mathrm{w} / \mathrm{w}$.

$3.2 \mathrm{HPC}-\mathrm{L}^{\mathrm{R}}$

(9) The mean particte size increased with increasing spheronization time at each binder concentration. At, 10 and 15 min of spheronization time were ooberved that mean particiesize at $1.67 \% \mathrm{w} / \mathrm{w}$ of binder concentration was larger than $2.00 \% \mathrm{w} / \mathrm{w}$ and $1.33 \% \mathrm{w} / \mathrm{w}$, respectively. In addition, increasing binder concentration at 5 min was not significantly different at 95% confident level.

3.3 Methocel A4MR

Table 10 Granule size of lactose-Avicel $\mathrm{PH} 101^{R}$ pellets prepared with various spheronization times, types and concentrations of binders

(a) averaged from two determinations

Figure 32 Granule size of lactose-Avicel $\mathrm{PH}_{101} \mathrm{R}$ pellets using Methocel $E-15 L V^{R}$ as a function of Methocel E-15LVR concentrations and spheronization times

Figure 33 Granule size of lactose-Avicel PH101R pellets using HPC-LR as a function of HPC-L ${ }^{R}$ concentrations and spheronization times

Figure 34 Granule size of lactose-Avicel PH101R pellets using Methocel $A 4 M^{R}$ as a function of Methocel $A 4 M^{R}$ concentrations and spheronization times

Figure 35 Granule size of lactose-Avicel PH101R pellets using HPC-MR as a function of $H P C-M^{R}$ concentrations and spheronization times

Figure 36 Granule size of lactose-Avicel PH101R pellets using 1.33% w/w of binder concentration as a function of binder types and spheronization times

Methocel E-15LV HPW HPC-L HPC-M

Figure 37 Granule size of lactose-Avicel PH101R pellets using 1.67% w / w of binder concentration as a function of binder types and spheronization times

Figure 38 Granule size of 7 actose-Avicel $\mathrm{PH} 101^{R}$ pellets using 2.00% w / w of binder concentration as a function of binder types and spheronization times

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Increasing spheronization time at $0.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration and increasing binder concentration a 5 min of spheronization time were not significantly different in mean particle size at 95\% confident level. At 10 and 15 min , the orders of mean particle size of pellets were as followed : binder concentration $0.67 \% \mathrm{w} / \mathrm{w}>0.33 \%$ w/w. However, the mean particle size increased with increasing spheronization time at $0.67 \% \mathrm{w} / \mathrm{w}$.

The mean particte size increased with increasing spheronization time at $1.33 \% \mathrm{w} / \mathrm{w}$ and $2.00 \% \mathrm{w} / \mathrm{w}$ of binder concentration. Increasing spheronization time at $1.67 \% \mathrm{w} / \mathrm{w}, 2.33 \% \mathrm{w} / \mathrm{w}$ and increasing binder concentration at each spheronization time were not significantly different at 95\% confident Jevel.

3.5 Compared Type of Binders at Different Concentrations

 and Spheronization Times on Mean Particle Size of Pellets

The mean particle size of pellets were varied in different bindergtypes and concentrations, and spheronization times.

4 Percent Sieve Fraction on 14/20 Mesh Cut Determination

The effect of spheronization times, binder types and concentrations on percent sieve fraction on $14 / 20$ mesh cut of lactoseAvicel $\mathrm{PH} 101^{R}$ placebo pellets are shown in Table 11 and Figures 39-45.

Table 11 Percent sieve fraction on $14 / 20$ mesh cut of lactose -Avicel PH 101 R pellets prepared with various spheronization times, types and concentrations of binders

Figure 39 Percent sieve fraction on $14 / 20$ mesh cut of 1actose-Avice1 PH101 ${ }^{R}$ pellets using Methocel $E-15 L^{R}$ as a function of Methoce1 E-15LVR concentration and spheronization times Percent sieve fraction ($\%$)

Figure 40 Percent sieve fraction on $14 / 20$ mesh cut of lactose-Avicel PH101R pellets using $H P C-L^{R}$ as a function of $H P C-L^{R}$ concentration and spheronization times

Figure 41 Percent sieve fraction on $14 / 20$ mesh cut of lactose-Avicel PH101 ${ }^{\text {R }}$ pellets using Methocel $A 4 M^{R}$ as a function of Methocel $A 4 M^{R}$ concentration and spheronization times

Percent sleve fraction (\%)

Figure 42 Percent sieve fraction on $14 / 20$ mesh cut of lactose-Avicel PH101 ${ }^{R}$ pellets using $H P C-M^{R}$ as a function of HPC-MR concentration and spheronization times

Figure 43 Percent sieve fraction on $14 / 20$ mesh cut of lactose-Avicel PH101 ${ }^{R}$ pellets using $1.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration as a function of binder types and spheronization times

Percent sleve fraction (\%)

Methocel E-15LV आImy HPC-L 着HPC-M

Figure 44 Percent sieve fraction on $14 / 20$ mesh cut of lactose-Avicel PH101R pellets using $1.67 \% \mathrm{w} / \mathrm{w}$ of binder concentration as a function of binder types and spheronization times

Figure 45 Percent sieve fraction on $14 / 20$ mesh cut of lactose-Avicel PH101R pellets using $2.00 \% \mathrm{w} / \mathrm{w}$ of binder concentration as
a function of binderitypes and spheronization times

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

The percent sieve fraction on $14 / 20$ mesh cut was ranging from 38.43-82.08.

4.1 Methoce1 E-15LVR

Increasing spheronization time at each of binder concentration was not significantly different in percent sieve fraction on $14 / 20$ mesh cut at 95% confident level. At each spheronization time, percent sieve fraction on $14 / 20$ mesh cut of $1.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration was higher than that of the others.

4.2 HPC-L

At $1.67 \% \mathrm{w} / \mathrm{w}$ and $2.00 \% \mathrm{w} / \mathrm{w}$ of binder concentration, percent sieve fraction on $1 / 4 / 20$ mesh cut at 5 min of spheronization time was higher than that of the others. Increasing spheronization time at $1.33 \% \mathrm{w} / \mathrm{w}$ and increasing binder concentration at 5 and 10 min were not significantly different at 95% confident level. But percent sieve fraction on $14 / 20$ mesh cut of $1.33 \% \mathrm{w} / \mathrm{w}$ at 15 min was higher than that

Increasing spheronization time at each binder concentration and increasing binder concentration at 5 min of spheronization time were not significantly different at 95\% confident level. At 10 and 15 min of spheronization time, percent sieve fraction and $14 / 20$ mesh cut of $0.33 \% \mathrm{w} / \mathrm{w}$ was higher than that of $0.67 \% \mathrm{w} / \mathrm{w}$ of
binder concentration.

4.4 $H P C-M^{R}$

Increasing spheronization time at each binder concentration was not significantly different in percent sieve fraction on $14 / 20$ mesh cut at 95% confident level except at $1.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration. Percent sieve fraction on $14 / 20$ mesh cut at 15 min of $1.33 \% \mathrm{w} / \mathrm{w}$ was lower than that of the others. At each spheronization time, percent sieve fraction on $14 / 20$ mesh cut of $2.33 \% \mathrm{w} / \mathrm{w}$ was higher than that of the others.
4.5 Compared Type of Binders at Different Concentrations and Spheronization Times opPercent Sieve Fraction on 14/20 Meah Cut The effect of spheronization times and binder concentrations were studied. The percent sieve fraction on $14 / 20$ mesh cut of placebo pellets used $H P C-M^{R}$ as a binder was higher than used the other binders. Except for the/percent sieve fraction on $14 / 20$ mesh cut of $1.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 15 min of spheronization time was not significantly different at 95% confident Tevel. 8

5 Bulk Density and Tapped Density Determination

The effect of spheronization times, binder types and concentrations on bulk density, tapped density of lactose-Avicel PH1O1R pellets are shown in Tables 12 and 13, respectively. For all case, the

Table 12 Bulk density of lactose-Avicel PH101R pellets prepared with various spheronization times, types and concentrations of binders

(a) averaged from three determinations

Table 13 Tapped density of lactose-Avicel $\mathrm{PH} 101^{\mathrm{R}}$ pellets prepared with various spheronization times, types and concentrations of binders

(a) averaged from three determinations
bulk density and tapped density were ranging from $0.80-0.87 \mathrm{~g} / \mathrm{ml}$ and $0.81-0.92 \mathrm{~g} / \mathrm{ml}$, respectively. Bulk density was not different from tapped density.

5.1 Methoce1 E-15LVR

Increasing spheronization time had not effect on bulk density and tapped density. Bulk density and tapped density increased with increasing binder concentration.
5.2 HPC-1 ${ }^{R}$

At 15 min of spheronization time of each binder concentration, lower bulk density and tapped density were obtained.

Increasing binder concentration and spheronization time were not significantiy different in bulk density and tapped density at 95% confident level.

5.4 $H P C-M^{R}$

At 15 min of spheronization time of each concentration, higher bulk density and tapped density were obtained except for 2.33% w/w. Increasing spheronization time had not effect on bulk density and tapped density except for 5 min .

5.5 Compared Type of Binders at Different Concentrations

 and Spheronization Times on Bulk Density and Tapped Density of PelletsThe bulk density and tapped density of pellets were varied in different binder types concentrations and spheronization times.

6 Flow Rate Determination

From Table 14 and/Figures $46-52$, flow rate of lactose-Avice1 PH101 ${ }^{\text {R }}$ placebo pellets prepared with various spheronization times, binder types and concentrations are shown. The range of flow rate was between $224.72-296.14 \mathrm{~g} / \mathrm{min}$

6.1 Methoce 1 E $15 \mathrm{LV}^{R}$

Ranging of flow rate as a function of spheronization time were followed as at $1.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration : 5 min ~ $10 \mathrm{~min}>15 \mathrm{~min}$ and at $1.67 \% \mathrm{w} / \mathrm{w} \div 10 \mathrm{~min}>5 \mathrm{~min} \sim 15 \mathrm{~min}$. Increasing spheronization time at $2,00 \% \mathrm{~W} / \mathrm{w}$ and increasing binder concentration at 10 and 15 min were not effect on flow rate. The flow rate at 5 min as a function of bindercconcentration decreased inthe following order : $1.33 \% \mathrm{w} / \mathrm{w}>2.00 \% \mathrm{w} / \mathrm{w}>1.67 \% \mathrm{w} / \mathrm{w}$.

$$
6.2 \mathrm{HPC}-\mathrm{L}^{\mathrm{R}}
$$

The orders of flow rate at $1.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration were followed as : spheronization time $10 \mathrm{~min}>15 \mathrm{~min}>$

Table 14 Flow rate of lactose-Avicel $\mathrm{PH}_{101} \mathrm{R}$ pellets prepared with various spheronization times, types and concentrations of binders

(a) averaged from three determinations

Figure 46 Flow rate of lactose- $\overline{A V i c e l ~} \mathrm{PH} H 01^{\mathrm{R}}$ pellets using Methocel $\mathrm{E}-15 \mathrm{LV} V^{R}$ as a function of Methocel $\mathrm{E}-15 \mathrm{LV} V^{R}$ concentration and spheronization times

Figure 47 Flow rate of lactose-Avicel PH101 ${ }^{R}$ pellets using HPC-LR as a function of HPC-L ${ }^{R}$ concentration and spheronization times

Flow rate $(\mathrm{g} / \mathrm{min})$

Figure 48 Flow rate of lactose-Avicel PHHO1R pellets using Methocel $A 4 M^{R}$ as a function of Methocel $A 4 M^{R}$ concentration and spheronization times

Flow rate ($\mathrm{g} / \mathrm{min}$)

Figure 49 Flow rate of lactose-Avicel PH101R pellets using HPC-MR as a function of $H P C-M^{R}$ concentration and spheronization times

Figure 50 Flow rate of lactose-Avicel PH101R pellets using $1.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration as a function of binder types and spheronization timesumal

Methocel E-16LV HPNW HPCM

Figure 51 Flow rate of lactose-Avicel PH101R pellets using $1.67 \% \mathrm{w} / \mathrm{w}$ of binder concentration as a function of binder types and sphonization times

Figure 52 Flow rate of lactose-Avicel PH 101 R pellets using $2.00 \% \mathrm{w} / \mathrm{w}$ of binder concentration as a function of binder types and spheronization times

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

5 min. The flow rate reduced with increasing binder concentration at 10 and 15 min . But increasing spheronization time at $1.67 \% \mathrm{w} / \mathrm{w}$ and 2.00 \% w/w, and increasing binder concentration at 5 min were not significantly different ($P>0.05$).

6.5 Compared Type of Binders at Different Concentrations and Spheronization Times on Flow Rate

At $1.33 \% \mathrm{w} / \mathrm{w}$ and $2.00 \% \mathrm{w} / \mathrm{w}$ of binder concentration
with 5 min of spheronization time ; and $1.67 \% \mathrm{w} / \mathrm{w}$ of binder concentration with 10 min of spheronization time, the flow rate were not significantly different $(P>0.05)$. The other spheronization time and binder concentration were studied. High flow rate value was obtained from pellets using HPC-M ${ }^{R}$ as a binder except for $1.33 \% \mathrm{w} / \mathrm{w}$ at 10 min . In addition, for $1.67 \% \mathrm{w} / \mathrm{w}$ at 15 min ; and $2.00 \% \mathrm{w} / \mathrm{w}$ at 10 and 15 min , pellets using $H P C-M^{R}$ as a binder gave the highest flow rate value.

7 Angle of Repose Determination

Angle of repose of lactose-Avicel $\mathrm{PH} 101^{\mathrm{R}}$ pellets prepared with various spheronization times, binder types and concentrations are shown in Table 15 and Figures 53-59. The range of angle of repose was between $20.64-30.83^{\circ}$.
7.1 Methocel E-15LVR

Almost of increasing binder concentration and spheronization time were hot significantiy difflerent in angile of repose at 95% confident level. The angle of repose reduced with increasing spheronizationctime at 633% w/w of binder concentration and increasing binder concentration at 5 min of spheronization time.

7.2 HPC-LR

Increasing spheronization time at $1.33 \% \mathrm{w} / \mathrm{w}$ and 1.67 $\% \mathrm{w} / \mathrm{w}$ of binder concentration were not significantly different in angle

Table 15 Angle of repose of lactose-Avicel PH 101 R pellets prepared with various spheronization times, types and concentrations of binders

(a) averaged from three determinations

Figure 53 Angle of repose of $/$ lactose-Avicel PH101R pellets using Methoce1 E-15LVR as a function of Methoce1 E-15LVR concentration and spheronization times

Angle of repose (${ }^{\circ}$)

Spheronization time (min)

Figure 54 Angle of repose of lactose-Avicel PH101R pellets using HPC-LR as a function of HPC-L ${ }^{R}$ concentration and spheronization times

Figure 55 Angle of repose of Tactose-Avicel PH101R pellets using Methocel $\mathrm{A} 4 \mathrm{M}^{\mathrm{R}}$ as a function of Methocel $\mathrm{A} 4 \mathrm{M}^{\mathrm{R}}$ concentration and spheronization times

Angle of repose (5)

Figure 56 Angle of repose of lactose-Avicel $\mathrm{PH}_{101}{ }^{R}$ pellets using HPC-MR as a function of HPC-MR concentration and spheronization times

Figure 57 Angle of repose of lactose-Avicel ${ }^{\text {PH101 }}{ }^{\mathrm{R}}$ pellets using 1.33 $\% \mathrm{w} / \mathrm{w}$ of binder concentration as a function of binder types and spheronization time

Angle of repose (c)

Methocel E-15LV
AmIV HPC-L
HPC-M

Figure 58 Angle of repose of lactose-Avicel PH1O1 ${ }^{\text {R }}$ pellets using 1.67 \% w/w of binder concentration as a function of binder types spheronization times

Figure 59 Angle of repose of/factose-Avicel PH101 ${ }^{R}$ pellets using 2.00 $\% \mathrm{w} / \mathrm{w}$ of binder concentration as a function of binder types and spheronization times

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย
of repose at 95% confident level. The orders were followed as, at 2.00 $\% \mathrm{w} / \mathrm{w}$ of binder concentration : spheronization time $5 \mathrm{~min}>10 \mathrm{~min}$ _ 15 min . At $2.00 \% \mathrm{w} / \mathrm{w}$ of binder concentration at each spheronization time gave the highest angle of repose value.

7.3 Methoce1 A4MP

Each binder concentration, angle of repose at 5 min was higher than that of 10 and $15 / \mathrm{min}$ of spheronization time. Increasing binder concentration at 5 and 10 min were not significantly different at 95% confident level. The angle of repose increased with increasing binder concentration at 15 min .
7.4 $H P C-M^{R}$

Almost of increasing binder concentration and spheronization time were not significantly different in angle of repose at 95% confident level. Except for the angle of repose of $2.00 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 10 ming of spheronization time and $2.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 10 and 15 min of spheronization time were lower than that of the other binder concentrations and spheronization times.

7.5 Compared Type of Binders at Different Concentrations

 and Spheronization Times on Angle of ReposeA11 spheronization times and binder concentrations were studied. The angle of repose of pellets used HPC-LR as a binder was
lower than used the other binders. Except for the angle of repose of $2.00 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 5 min of spheronization time was not significantly different at 95% confident level. And in the case of $2.00 \% \mathrm{w} / \mathrm{w}$ at 10 min , the angle of repose of pellets used $H P C-M^{R}$ as a binder was lower than used the other binders.

Percent Friability Determination

$$
\begin{aligned}
& \text { Increasing binder concentrations and spheronization } \\
& \text { times were not significantly different in percent friability at } 95 \% \\
& \text { confident level except for } 2.00 \% \mathrm{w} / \mathrm{w} \text { of binder concentration. The } \\
& \text { orders followed as, at } 2.00 \% \mathrm{w} / \mathrm{w} \text { of binder concentration : spheroni- } \\
& \text { zation time } 5 \mathrm{~min}>15 \mathrm{~min}>10 \mathrm{~min} \text {. }
\end{aligned}
$$

Table 16 Percent friability of lactose-Avicel PH101R pellets prepared with various spheronization times, types and concentrations of binders

(a) averaged from two determinations

Figure 60 Percent friability of lactose-Avicel PH101 ${ }^{R}$ pellets using Methoce1 E-15LVR as a function of Methocel E-15LVR concentration and spheronization times

Percent frlabillty (\%)

Spheronization time (min)

Figure 61 Percent friability of lactose-Avicel PH101R pellets using HPC-LR as a function of HPC-L L^{R} concentration and spheronization times

Figure 62 Percent friability of lactose-Avicel PH101R pellets using Methoce1 $A 4 M^{R}$ as a function of Methocel $A 4 M^{R}$ concentration and spheronization times

Figure 63 Percent friability of lactose-Avicel PH101R pellets using HPC $-M^{R}$ as a function of HPC-MR concentration and spheronization times

Figure 64 Percent friability of lactose-Avicel $\mathrm{PH} 101^{R}$ pellets using $1.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration as a function of binder types and spheronization times

Figure 65 Percent friability of lactose-Avicel $\mathrm{PH} 101^{R}$ pellets using $1.67 \% \mathrm{w} / \mathrm{w}$ of binder concentration as a function of binder types and spheronization times

Figure 66 Percent friability of lactose-Avicel PH101R pellets using $2.00 \% \mathrm{w} / \mathrm{w}$ of binder concentration as a function of binder types and spheronization times

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

8.3 Methocel A4M ${ }^{R}$

Increasing binder concentrations and spheronization times were not significantly different in percent friability at 95% confident level.
$8.4 \mathrm{HPC}-\mathrm{M}^{\mathrm{R}}$

Increasing spheronization times were not significantly different in percent friability at 95% confident leve1. At $2.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration of each spheronization time gave the lowest percent friability.
8.5 Compared Jype of Binders at Different Concentrations and Spheronization Times on Percent Friability

In the case of $1.33 \% \mathrm{w} / \mathrm{w}$ of binder concentration at 5 and 10 min of spheronization time ; $1.67 \% \mathrm{w} / \mathrm{w}$ at 10 and 15 min ; and $2.00 \% \mathrm{w} / \mathrm{w}$ at 10 min , the percent friabi2ity of pellets used HPC-L ${ }^{R}$ as a binder was lower than that the others. The percent friability of pellets prepared with the other binder concentrations and spheronization times were not significantly different at 95% confident level.

Physical Properties of Lactose-Avicel PH101R Placebo Pellets Prepared with Various Water Contents

Physical properties of lactose-Avicel $\mathrm{PH} 101^{R}$ pellets prepared
with various amount of water by using $2.00 \% \mathrm{w} / \mathrm{w}$ of $H P C-M^{R}$ as a binder and 15 min of spheronization time are presented in Table 17 and Figure 67.

1 Determination of the Pellets Appearance

At $35 \% \mathrm{w} / \mathrm{w}$ of water content base on dry basis, pellets had long rod shape. At $40 \%, 42 \%$ and $44 \% \mathrm{w} / \mathrm{w}$ of water content, respectively, pellets became sphere shape with rough surface. At $50 \% \mathrm{w} / \mathrm{w}$ of water content very large size of pellets were obtained.

2 Particle Size Distribution Determination

The pellets using $40 \%, 42 \%$ and $44 \% \mathrm{w} / \mathrm{w}$ of water content base on dry basis had narrow size distribution.

3
Mean Particle Size Determination

Mean particle size of the pellets using $40 \%, 42 \%$ and 44% w/w of water content base on dry/basis/were not significantly different at 95% confident level. The mean particle size was ranging from 0.958 $-1.013 \mathrm{mm} .9 \cap 6 \mathrm{q}$? $669198 \cap \cap 9$?

4 Percent Sieve Fraction on 14/20 Mesh Cut Determination

Percent sieve fraction on $14 / 20$ mesh cut was ranging from 74.18-77.99. The pellets using $40 \% \mathrm{w} / \mathrm{w}$ of water content base on dry basis had lower percent sieve fraction on $14 / 20$ much cut.

Table 17 Physical properties of lactose-Avicel PH101R pellets prepared with various amounts of water by using $2 \% \mathrm{w} / \mathrm{w}$ of HPC $-\mathrm{M}^{R}$ and 15 minutes of spheronization time

using vafious amount of water at 2.00% w/W Of HPC-MR, 15 min of spheronization times and spheronizer speed of 951 rpm ($\times 35$) ค. $9 \%(\mathrm{~A}, \mathrm{~B}, \mathrm{Q}, \mathrm{P}, \mathrm{E}$ are $35 \%, 401 \%, 42 \%, 44 \%$ and 50% of water base on dry basis respectively)

5

Bulk Density and Tapped Density Determination

Bulk density and tapped density were ranging from 0.80-0.83 $\mathrm{g} / \mathrm{m} 1$ and $0.84-0.87 \mathrm{~g} / \mathrm{ml}$, respectively. Bulk density and tapped density of the pellets reduced with increasing amount of water.

6 Flow Rate Determination

Flow rate of peljets using $40 \%, 42 \%$ and $44 \% \mathrm{w} / \mathrm{w}$ of water content was ranging from $246.94-282.42 \mathrm{~g} / \mathrm{min}$. Flow rate of the pellets decreased with increasing amount of water.

7 Angle of Repose Determination

Angle of repose was ranging from $27.22-27.32^{\circ}$. Increasing amount of water was not significantly different at 95% confident level.

8 Percent Friability Determination

ศนยิิทยทรัพยากร

Percent friability was ranging from 0.1935-0.4630. Increasing amount of waterowas not signifficantly different at 95% confident level.

Physical Properties of Uncoated Terbutaline Sulphate Pellets

1 Determination of Uncoated Terbutaline Sulphate Pellets Appearance in Various Steps of Preparation

The microscopic appearance of product in each step in prepared the pellets is presented in Figure 68.

2 Physical Properties of Uncoated Terbutaline Sulphate Pellets

Physical properties of uncoated terbutaline sulphate pellets are presented in Table 18 and Figure 69. The pellets had narrow size distribution. The mean particle size was approximately about 0.962 mm and percent sieve fraction on $14 / 20$ mesh cut was 77%.Bulk density and tapped density were not different. The pellets had high flow rate but low angle of repose. The percent friability was very low.

3 Dissolution Profiles of Uncoated Terbutaline Sulphate Pellets The dissolution data of uncoated terbutaline sulphate pellets is shown in Table 19. The released profile of uncoated terbutaline sulphate pellets which was plotted between the percentage amount of drug release as a function of time is presented in Figure 70.

Physical Properties of Film Coated Terbutaline Sulphate Pellets

Appearance

The microscopic appearance of film coated pellets both before and after dissolution test are given in Figures 71-78. Thickness of coated layer and smooth surface area were increased with increasing

Figure 68 Photomicrographs of uncoated terbutaline sulphate
in various steps of preparation (x35)
($A=$ dry mixing; $B=$ wetting; $C=$ extrusion and

 จุหาลงกรณ์มหาวิทยาลัย

Table 18 Physical properties of uncoated terbutaline sulphate pellets

Physical Properties

(a) averaged from two determinations
(b) averaged from three determinations

Figure 69 Photomicrographs of uncoated terbutaline sulphate pellets in various magniftications
($A=\times 35 ; B=\times 75 ; G 5 \times 500$ and $D=\times 500$ (cross-section)

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Table 19 Cumulative released of terbutaline sulphate from uncoated terbutaline sulphate pellets

Figure 70 Dissolution profile of terbutaline sulphate from uncoated pellets

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Figure 71 Photomicrographs of $5.4 \% \mathrm{w} / \mathrm{w}$ film coated terbutaline sulphate pellets (formulation 2) at before and after test for dissolution (A1, A2, $\overline{A 3}$ are before test for dissolution at $\times 35, \times 500$, $\times 2000$ (cross-section) ofmagnification; B1,B2,B3 are after test for dissolution at $\times 35, \times 500, \times 2000$ (cross-section) of【

Figure 72 Photomicrographs of $5.4 \% \mathrm{w} / \mathrm{w}$ film coated terbutaline sulphate pellets (formulation 1) at before and after test for dissolution
(A1,A2,A36 are before test for dissolution at $\times 35, \times 500$, $\times 2000$ (orosstsedtion) ofomanification;B1,B2,B3 are after Q

Figure 73 Photomicrographs of $3.2 \% \mathrm{w} / \mathrm{w}$ film coated terbutaline sulphate pellets (formulation 1) at before and after test for dissolution
(A1,A2,A3 are before test for dissolution at $\times 35, \times 500$, र2000 (cross-section) of magnifidation B1,B2,B3 are after test for dissolution at $\times 35, \times 500, \times 2000$ (cross-section) of

Figure 74 Photomicrographs of $1.5 \% \mathrm{w} / \mathrm{w}$ film coated terbutaline sulphate pellets (formulation 1) at before and after test for dissolution
\qquad (A1, A2, A3 are beforen test/fol dissolution at $x 35, \times 500$,
$\times 2000$ (cross-section) of magnification; B1, B2, B3 are after Q 9\%test (orgdissolution $\mathrm{at} \times 35, \times 500, \times 2000$ (cross-section) of magnification)

Figure 75 Photomicrographs of $1.1 \% \mathrm{w} / \mathrm{w}$ film coated terbutaline sulphate pellets (formulation 1) at before and after test for dissolution

(A1, A2, A3 are before test for dissolution at $\times 35, \times 500$, $\times 2000$ (cross-section) of magnificationd; B1, B2, B3 are after Q $90^{\text {test for dissolution at }}$ magnification) $635, \times 500, \times 2000$ (cross-section) of

Figure 76 Photomicrographsiof $3.2 \% \mathrm{w} / \mathrm{w}$ film coated terbutaline sulphate pellets (formulation 3) at before and after test for dissolution
(A1, $\mathrm{A} 2, \overline{\mathrm{~A}} 3$ are before test for formulation at $\times 35, \times 500$, $\times 2000$ (cross-section) of magnification; B1,B2,B3 are after test for dissofution at $\times 35, \times 500, \times 2000$ (cross-section) of 9
magnification) จุหาลาลกรารัณมหหาวิทยาลัย

Figure 77 Photomicrographs of $3.2 \% \mathrm{w} / \mathrm{w}$ film coated terbutaline sulphate pellets (formulation 4) at before and after test for dissolution (A1,A2,A3 are before test for dissolution at $\times 35, \times 500$, $\times 2000$ (cross-section) of magnification; $\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3$ are after

Figure 78 Photomicrographs of $3.2 \% \mathrm{w} / \mathrm{w}$ film coated terbutaline sulphate pellets (formulation 5) at before and after test for dissolution
(A1, A2, $\bar{A} 3$, are before test for dissolution at $\times 35, \times 500$, $\times 2000$ (codss-section)/of maghifjcation; B1, B2, B3 are after test for dissolution at $\times 35, \times 500, \times 2000$ (cross-section) of จุหจจงคศรณมหาวิทยาลย
amount of ethylcellulose. After dissolution test, these pellets had channels in coated layer. Thickness of coated layer and surface area were not different with increasing amount of HPC-MR in the film coating formulation. After dissolution test, these pellets had more number and size of channels in coated layer than pellets which had not contain HPC $-M^{R}$ in the formulation.

2 Dissolution Profiles of Film Coated Terbutaline Sulphate Pellets
2.1 The Effect of Amount of Propylene Glycol on the Released Profile of Film Coated Terbutaline Sulphate Pellets

The dissolytion data of each formulation are given in Tables 20 and 21. The released profile of each formulation which was plotted between the percentage amount of drug selease as a function of time is presented in Figure 79. Amount of propylene glycol had no effect on drug released.

ศนย์วิทยทรัพยากร

2.2 The Effect of Amount of Ethylcellulose on the Released Profileoof Film Coated Terbutaline sulphate Pellets 6

The dissolution data of each formulation are shown in Tables 21-24. The released profile of each formulation which was plotted between the percentage amount of drug released as a function of time is presented in Figure 80. The released profile of drug decreased with increasing amount of ethylcellulose.

Table 20 Cumulative released of terbutaline sulphate from $5.4 \% \mathrm{w} / \mathrm{w}$ ethylcellulose film coated terbutaline sulphate pellets (Formulation 2)

Table 21 Cumulative released of terbutaline sulphate from $5.4 \% \mathrm{w} / \mathrm{w}$ ethylcellulose film coated terbutaline sulphate pellets (Formulation 1)

Table 22 Cumulative released of terbutaline sulphate from $3.2 \% \mathrm{w} / \mathrm{w}$ ethylcellulose film coated terbutaline sulphate pellets (Formulation 1)

Table 23 Cumulative released of terbutaline sulphate from $1.5 \% \mathrm{w} / \mathrm{w}$ ethylcellulose film coated terbutaline sulphate pellets (Formulation 1)

Table 24 Cumulative released of terbutaline sulphate from $1.1 \% \mathrm{w} / \mathrm{w}$ ethylcellulose film coated terbutaline sulphate pellets (Formulation 1)

Figure 79 Dissolution profile of terbutaline sulphate from $5.4 \% \mathrm{w} / \mathrm{w}$ of coating level of film coated terbutaline sulphate pellets formulation 1 and 2 , 2,0

Figure 80 Dissolution profile of terbutaline sulphate from film coated terbutaline sulphate pellets formulation 1

2.3 The Effect of Ratio of HPC $-M^{R}$ and Ethylcellulose on

 the Released Profile of Film Coated Terbutaline Sulphate PelletsThe dissolution data of each formulation are given in Tables 25-27. The released profile of each formulation which was plotted between the percentage amount of drug released as a function of time is presented in Figure 81. The released profile of drug increased with increasing ratio of HPC-M and ethylcellulose.
2.4 The Effect of Loading Dose on the Mixture of Uncoated Terbutaline Sulphate Pellets and Film Coated Terbutaline Sulphate Pellets

The dissolution data of each formulation are shown in Tables 28 and 29. The released profile of each formulation which was plotted between the percentage amount of drug released as a function of time is presented in Figure 82. During dissolution test, the released profile of drug increased in about first two hours when incorporate uncoated terbutaline sulphate pellets as loading dose.

2.5 Dissolution Profiles of Selected Formulation Compared

The dissolution data of Bricanyl ${ }^{R}$ Durules and the selected formulation are shown in Tables 30 and 31, respectively. The released profiles of Bricanyl ${ }^{R}$ Durules and the selected formulation which were plotted between the percentage amount of drug released against time are presented in Figure 83. The released profile of drug

Table 25 Cumulative released of terbutaline sulphate from $3.2 \% \mathrm{w} / \mathrm{w}$ ethylcellulose film coated terbutaline sulphate pellets (Formulation 3)

Table 26 Cumulative released of terbutaline sulphate from $3.2 \% \mathrm{w} / \mathrm{w}$ ethylcellulose film coated terbutaline sulphate pellets (Formulation 4)

Table 27 Cumulative released of terbutaline sulphate from $3.2 \% \mathrm{w} / \mathrm{w}$ ethylcellulose film coated terbutaline sulphate pellets (Formulation 5)

Table 28 Cumulative released of terbutaline sulphate from the mixture of $1.5 \% \mathrm{w} / \mathrm{w}$ ethylcellulose film coated terbutaline sulphate pellets (Formulation 1) and uncoated terbutaline sulphate pellets ratio 7:1

Table 29 Cumulative released of terbutaline sulphate from the mixture of $1.1 \% \mathrm{w} / \mathrm{w}$ ethylcellulose film coated terbutaline sulphate pellets (Formulation 1) and uncoated terbutaline sulphate pellets ratio 7:1

Table 30 Cumulative released of terbutaline sulphate from Bricanyl Durules ${ }^{R}$

Table 31 Cumulative released of terbutaline sulphate from sustained released pellets capsule (lot 1)

Table 32 Cumulative released of terbutaline sulphate from sustained released pellets capsule (lot 2)

Table 33 Cumulative released of terbutaline sulphate from sustained released pellets capsule (lot 3)

Figure 81 Dissolution profile of terbutaline sulphate from $3.2 \% \mathrm{w} / \mathrm{w}$ of coating level of film coated terbutaline sulphate pellets formulation $3,4,5$

Percent cumulatlve released (\%)

Figure 82 Dissolution profile of terbutaline sulphate from $1.1 \%, 1.5$ \% w/w of coating level of film coated terbutaline sulphate pellets formulation 1 and mixture of $1.1 \%, 1.5 \% \mathrm{w} / \mathrm{w}$ of coating level of coated terbutaline sulphate pellets with uncoated terbutaline sulphate pellets ratio 7:1

Figure 83 Dissolution profile of terbutaline sulphate from Bricany R^{R} Durules and selected film coated terbutaline sulphate pellets formulation

Figure 84 Dissolution profile of terbutaline sulphate from three batches of selected film coated terbutaline sulphate pellets capsule
from Bricany ${ }^{R}$ Durules and the selected formulation appear to be the same.

2.6 Reproducibility of Film Coated Terbutaline Sulphate

Pellets

Three batches of the selected formulation were prepared to study the reproducibility of dissolution profiles of terbutaline sulphate from film coated terbutaline sulphate pellets. The dissolution data of three batches of the selected formulation are shown in Tables 31-33. The released profile of three batches of the selected formulation which were plotted between the percentage amount of drug released as a function of time is presented in Figure 84. The dissolution profiles of film coated terbutaline sulphate pellets which was selected were found to be reproducible.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

