Chapter Two

Theory

2.1 Eguations of State

5 iauunt the repulsive and
' e ——

attractive inter les. The earliest

empirical equati " van der Waals with
two adjustable pdTamé tégs ‘ e the repulsive and

attractive interaft i juation is

(2.1)

Its basic i ns concern wit.ih two i@purtant points which

have remai YI::EI ﬂtjull subsequent
equation of state development. First the repulainn effects
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cohesive) effects caused by molecular attraction force. 1In
addition, the equation should have the validity to connect
both liquid and vapor phases continuously. This equation
also provides the basis for the first theory of
corresponding states and the first guidelines for a method

of extending a pure component egquation to mixtures. Due to




the fact that such a simple equation is able to give a
remarkably qualit.atiwi description of the overall P-V-T
behavior of vapors and liguids, an immediate effort to make
it also quantitatively correct has been produced. Since

d or attractive term, such

then, modifications of 1

and/or introducing a

4 been made and many
——

S

.equations of state @i en, P d. They range from

as changing its

temperature depen

simple expressions ] ; “"two censtants to complicated

forms.

Although th eral parameters give

A

precise representati #¢ - {He4BYVT data and calculations of

thermodynamic prnpertie’ t ¥ Peguire tediocus manipulations

and excessive ‘ engthy iterative

A4

calculations. Dhue many authors have

been interested !m two or t 'réeparnmetm- cubic equations of
state which g : i’ transformed into
cubie equa@u ﬁﬂ}lﬁ 'ﬂﬂTflnjnr. Z The
attractdv i g ?T]: i in their
simpliiﬁiiiﬁm@ﬂlﬁﬁn . Ame ginning, the

two-parameters equations of state were developed, some of
which introduced deviation function to fit pure substance
PVT data and others improved their capability for VLE
calculations. One of the most successful equations was that
proposed by Redlich and Kwong (6), in 1949. In their

equation, the VDW’'s attractive term that was changed from




a/ve" to "a/T0 %y (vib)" improved the volumetric
representation of the VDW equation. The Redlich-Kwong (RK)
egquation can be used to calculate volumetric and thermal
properties with a good degree of accuracy. However, the

to binary VLE calculations

]’# ributed to the lack of

ﬁgnce of temperature.
—

application of this

equati
yvields poor results.
accuracy in -
Therefore, diffe{' iflicat of the temperature
dependence funct arameters have been
proposed by man Successfu modification was
introduced by So . \ proved the temperature
independent para iginal RK EOS to a
temperature depend: y he introduced the
acentric factor and’ défs 'lations for the modified

parameter. This egquatitn; the' e-Redlich-Kwong equation

{ SRK) ",-———,—'— ------ :i}‘ components and

succéssfully to multi

alc@ntinns for mixtures
of nonpolar substantes Howeveg; it does not work that well

for carbon ﬂ:um HRTRYIBTe rente 1o

systems ccmt.aining hydrogén. It selso fail&s to generate
satiaradbdiy Motoed |z sl Mhabid MEEIABLE) 1o gives
devia.t.intrlis that increase from about 7% at reduced
temperature below 0.65 to about 27% at reduced temperature
approaching 1.0. Using a similar approach, Peng and
Robinson (2) presented in 1976 a two-parameter el-quatinn
which performed equally well with the SRK EOS. 1In fact, it

can predict the liquid phase densities better than SRK EOS




and give the accurate egquilibrium ratio. Still, the
prediction of liquid region is unsatisfactory compared to

experimental values.

there has been increased

In recent years, hows /

‘ &er egquations of state to
i A; predictions.

It is

interest in developing

believed that the g: off '*'-'

to reproduce liguid
. One is that the

critical compress £ LA\ held constant at a

value of 1/3 for# s n)ff 98} _.__.=|n \{Q\\\\-\

pendent of temperature

€ nd the other reason
is that the volume® param : = ]
while the argumenfs Fed” ) cipetic theory of gases

ot

indicate that the parameter b a decreasing function of

temperature. Tg state data, any cubic

tely the critical

f 3
o BUHINENTHY DT sorconie

introducing a third paraméter, c, @and by modifying the SRK

o A RAR AU TBIIDEIRY comrrare

liquid volumes of pure substances. He studied compressed

equation of hp

compressibility lﬂ:tar,

ligquid water -in the temperature range of 32-700°F and
pressure range of 500-5000 psi for 65 data points. The
results showed an average absolute error of 3.8% compared to
an average absolute error of 37.5% for the SRK egquation.

Harmens and Knapp (4) developed another three-parameter



equation of state in 1980 and their equation, the HEK
equation, was tested over an extensive range of pressure and
temperature. Its overall performance was found to be

superior to SRK and PR equations.

In 1980, Schmidt developed an equation

of state that showes P ion of liquid density
values and vapor in the low pressure
area. Their equ van der Waals's type
where the parame xpression similar to
that of Soave. than one hundred

substances and 1li bstances were tested
and the results wer bhe SRK and PR equations,

In 1982, Patel and T JJEE{{-f“i-. ed a new equation of state

for fluids angd

igh predicted well

volumetric prn:i tTies 1T ]g:inn while giving

accurate VLE caliﬂlat g ainia many good features

of the SRK and PR feguations while overcoming some of their

limitations ﬂ u EL“J nﬂmj Wﬂﬂﬁrﬂﬁ density cubic

equation of state for nonpolar fluids was E resented in

1982 55| libal B Nadel B DA

equatiun, can be extended to polar and associative fluids,

the KS

mainly nonpolar hydrocarbons. Results showed their equation
to be superior to the PR EOS and to perform as well as the
three-parameter corresponding states modified BWR equation.
It was also shown to perform as well as other noncubic

equation of state, Finally, in 1985, Adachi et al. (9)




presented a three-parameter cubic equation of state for
representing specifically saturated liqu id volumes. This
equation gave the lowest overall average percent deviation

in the calculated values of saturated liquid velumes. In

spite of these improvements, the two-parameter SRK and PR

2-2 L=

The origina ion of state (6),

developed in 1949y ' hle improvement over

current equations of’ ff“'f‘:ﬁ; mple forms at the time of

its introduction. Kwong succeeded in

demonstrating F;_'-’__'—"'—"‘m“‘i‘a"‘s.‘ n the attractive

terms of wan derﬂia d 7 onsiderably improve

the prediction of ¢yal pur-phase roperties. Their equation

has the mﬂummamw BIN3
.amaﬂmm SJW]’JV]EI']GEI

F = = ¥ {212}
V-b T*vw+h}




and by application of the criticality conditions, the

parameters a and b are found in terms of the critical

properties as

a = 0.427480 (RT.)?* /P, {2.3)

b = 0.086640 RT./P. _  (2.4)
and

2o = 1/3 . (2.5)
To a large ex ‘ fj';;; yined its popularity over

the past three deca modifications. One of

the most significan f_this equation was made
by Socave (1) inti@lwr _(7'-ﬂerature—dependent

"a{T,w)" involving

iF |

term “aIT*“ of t :‘E..‘

the temperature riec factor, so that the

i o AR ﬂmw 4N
ammm;yumg 18

¥ = V(V+b)

(2-6}
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The parameter a(T,w) was formulated primarily to make

the equation fit the vapor pressure data of hydrocarbon,

with the result

a(T,w) = aa = ﬂ.4274aﬂa{RTa (2.7)
where

ot =1 4m01 -1, (2.8)

m = 0.480 + 1.57 (2.9)
The coefficients) B i 2\ W0 vere modified by

Graboski and Daubert (109

m = 0.48508 + :- Tw - 5’4 (2.10)

] — ]

expkéssed in terms of the

m.p,.,m.,nf,;umnamw ik
L AMABINIUNAINGIAY e

where Z is the compressibility factor and A and B are

defined by

A = aaP/(RT)? (2.12)
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and

B = bP/(RT) . (2.13)

This polynomial form is solved for the largest root at

the smallest root at a

2-3 H': P
Several goals; and Robinson in
developing a new tWo on of state cubic in
volume (2) :
1. The pardcticsr - fhle in terms of P,

T., and acentric “#
i

2, The model fhnuld reault in improved performance in

the viciniﬂ Hﬁ@eﬂﬁ%%ﬂﬂ?rticulaﬂ? for

calculation of 2 Z, and liquid denaity.

A FRATVBILIN TR o o e
binary interactinn coefficient, and that should be
independent of temperature, pressure, and composition.

4, The equation should be applicable to all
calculations of all fluid properties in natural gas

Processes.
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Their equation is given by

RT aa
P o= = e (2.14)
V(V+b) + b(V-b)

a = 0.457235 {n"rc/ | N (2.15)

b = 0.077796 RT, (2.16)
and
Zo, = 0.307, (2.17)
——— Y
The addition jof the b ‘érm in the denominator of
the attractive tersi.resulted ip an improved prediction of

the iausa Phapiiy ) BRNTHY TR, eccier o

temperature, tharefnre. this equatdon is considered to

e oAl SRR URAINED R crncene

term thnt uses only two parameters (11).

Peng and Robinson adopted Soave'’s approach for

calculating a as given by egqn. 2.8. Thev also used w as the
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correlating parameter for the slope, m, in egn. 2.8 as given

by

m = 0.37464 + 1.54226w - 0.26992w?. (2.18)

This expression was e ffanded by the investigators

m= 0.3796 + 1.4 o3, (2.19)

Introducing
=0 , (2.20)

73 4+ (B-1)Z* + (A-

where paramete efined as in egn. 2.12

and egn. 2.13.

e - Y A e W
E:ﬂqnﬁt’lﬁﬁn;jlm upmggdnﬂém&ed form of
the van der Waals type equation which used the acentric
factor (w) as the third parameter in addition to the
eritical data, critical temperature (T.) and critical

pressure (P.). Also, the denominator "V2" in the attractive

term of the original equation was replaced by an expression
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quadratic in volume to obtain the equation of the following

form :

RT aa

L] [2-21}

where a s&n 15 of the eritical

properties by

i “ﬁ{iﬁqmmwmm
ARININIAUARINGINY
9 = B¢, . (2.25)

The critical compressibility factor, €., is expressed
as an empirical parameter instead of letting it have a
fixed value as in the SRK or PR equations or have a value

egqual to the experimental wvalue. Since it is proved that
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the fixed wvalues in two previous equations result in
considerably deviations of ©predicted saturated 1liquid
densities and predicted" critical volumes from the

experimental data.

The proposed exp v critical compressibility
factor is ' -

¢ = 1;3[{1+ndup§i"""f

(2.26)

B, = 0.25989 - 0.0

The dimensio also a function of

temperature Ié,"» g1y : ] owever, they made

the lodificntiaﬂ 1 =3 teym and proposed the

i¥

following expressippns

ﬂ'lJEJ’J‘VIEWIiWEJ’]ﬂ‘i

for w 5 0.4, m = my ¢

&ﬁ?&ﬂﬂ‘iﬁumﬂﬂﬂiﬂﬂﬂ

and for the intermediate range, 0.4 < w < 0.55 ,
m= [(w-0.4)/0.15)mp + [(0.55-w)/0.15]my , (2.28)

with

016793
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my = mg + (1/70)(5T.-3mg-1)* , (2.29)
my = mg + 0.71(Tp-0.779)% , (2.30)
mp = 0.465 + 1.347w - 0.528w2 44 4for w < 0.3671; (2.31)

and —
mg = 0.5361 + n.dﬁsﬂﬂ'i'!"f > 0,367 (2.32)

Ku--rature dependence
M

For supercrit
of the parameter tric factor, w,

dependence as

a=1- (0.4774 + 1.32880 Aol . (2.33)
=7
Finally, the pojlynomia, , he (8an. 2.21 in terms
of the compressibilit¥sfactor is o~
ﬂ'LlEJ'J NENTNYINT
23 + (uB- n-l}z* + (WB*-UB?-UB+A)Z - (WB +WBZ+AB)A£ 0 ,(2.34)
FRAINIULIINBTNY

where parameters A and B are also defined as in eqn.

2.12 and eqn. 2.13 with

=
1

1+3w {2.35)

W = _SWI IE.EG}
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A comparison of calculated and experimental wvapor
pressure data for a wide range of pure substances (3) has
shown that the equation can reproduce the experimental data
at pressures above 1 bar with an accuracy similar to that of
the PR equation. However, in the lower pressure range, this
equation yields better ag ment ith the experiment data
than the SRK and PR eguatic 4 in Table 2.1. In

- - 7 —m—

prediction, it is

addition, in terms

acy equally well

\\\\ , as an example,

”, quid volume for

shown that the SW
with the SRK and
shows the deviati

methane as a functi

ﬂ'lJEl’J‘VIEWIﬁWEI’]ﬂ‘i
ammnimum'mmaa



Ps > 1 bar
Substance group No. of No. of Mo. of Aw. Rbs. Dew.
substance data points data poinks --
SH PR SRK
Alkanes 40 978 1331 0.22  0.37  1.06
Alkenes 29 675 ¢ 942 0.39 0.37 0.80
Alkylbenzenes 36 1118 1476 0.86 0.64 1.47

Z
.,i

ﬂUEJ’JVIEJVIiWEJ’Iﬂ‘i
ammmmummmaa

81
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FIGURE 2.1 Deviation in liquid volume for meghane as a

A WReAiGh o rehiddabt dipekad b i) Bithne sex,

PR, and SW equations of state (3)
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The egquation proposed by Patel and Teja (5) was an
extension of those equations of Soave, Peng and Robinson,

and Schmidt and Wenzel. Their equation used, in addition to

the critical temperature /u ‘critical pressure (P.),
two substance dependen FaTE 4 and F as input
parameters. The egq 1 - ng form :

. 12.37)

[ { ‘—.-;J, y
Obviously, the form &F the eubic equation chosen was

not new. A similar! darlier by Harmens

X
U

and Knapp (4) -!“"i_', making certain

assumptions, two >vious equations can~be obtained from

oo AN NI T o
R RTRIIHARIN N Y

Application of critical constraints to this equation

yvields

a = Q.(RT,)* /P, , {2.38)
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b = @ RT./P, , (2.39)
and ‘
e = Q. RY:/ Py s (2.40)
where — |
9. =1 - 3¢, , / ! | (2.41)
Qg = 38T + 3(1=2% (2.42)

and 9, is root of the cubic

equation

23 + (2-3¢,)9,2 (2.43)

J.H

The authors gave an npprnxl ion value of 9 as

ﬂ‘lJEJ’JVIEJVIiWEJ’]ﬂi

Oy = 0. 32429fc = 0.022005 . (2.44)

ARNAININ NN INYAL

For the dimensionless factor a, they chose the same
function of reduced temperature as that used by previous

equations in eqn. 2.8.

The equation, therefore, requires a knowledge of four

characterization constants Tes Per €.+ and slope m. The
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authors pointed out that ¢, is not equal to the experimental
critical compressibility factor, but is treated as an
empirical parameter whose procedure is being identical to
that of Schmidt and Wenzel (3). The €., thus, is obtained

from one or more liquid density data points and m is

obtained from the vapo of the pure fluids. As a

result, they proposedst s “ne' generalized expressions

m = 0.452413 + 1 (2.45)
and
€. = 0.329032 - ﬂ.ﬁ? - (2.46)

It should;; Q____,,_‘_Jﬂ}DT4, this equation

reduces to thet'i'., ﬁéz f ¢ = 0.3333, the

W d
equation reduces 'n the SRK equatiun. hus, characteristics

ot oo i) 0 G SNEPAN T 20

However, dll application of the equatlon extends to heavy

iR RRTTOI AN YT T

If A, B, and C are defined as

A = aaP/(RT)* , (2.47)

B = bP/(RT) , (2.48)
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and
C = cP/(RT) , (2.49)
eqn. 2.37 can be rearranged in terms of Z to produce

./ﬂmw-am =0 . (2.50)
#.

equatiun -with pure

73 + (C-1)z% + (A-2B

The tested " Y

substances (5) shg .//

the representatio

the equation in

vapor densities
were better than cubic equations
of state as shown als ‘apd, 243. In conclusion, its
overall average devi@ti s w < 2.4% compared with 3.3% for
the PR equation for 3 m —'} points including available
data for methanpé Figure 2.2 shows its
superior perfo' 1‘ ion in saturated

[I

liquid density cﬂculations for n-eicow ane. For the wvapor

T aﬁaﬁmﬁ‘mmm s
“W"‘I M’ﬂ‘ifu umqwma ¢
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Table 2.2 Comparison of the absolute average deviation in
saturated liquid densities for PT, PR, and SRK

EOS. (5)

Components PR SRK
AAD(%) AAD(%)
Methane 7.66 5.72
Ethane 7.12 13.32
Propane 5.93 14.51
n-Butane 5.61 19.36
i-Butane 3.40 15.64

n-Pentane

n-Hexane 3.22 24.02
n-Heptane 0.637- D. - 2.04 4,69 29.56
ﬂumwmwmﬁﬁ s -

Carbon d10x1 = {47 0. T}2 0 EBT 1 TB ‘;5.22 23.00
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Table 2.3 Comparison of the absolute average deviation in
saturated vapor densities for PT, PR, and SRK

EOS. (5)

Components SRK
AAD(%)
Methane 0.51
Ethane 1.97
Propane 2.91
n-Butane 3.23
i-Butane 1.30
n-Pentane 3.30
n-Hexane : 4.10
n-Heptane ¢ 1.32 0.63 3.54
4.53

conen 848 J 1BV T NHAN T
PIAINTUNAAINGINY
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saturated liquid densities of n-eicosane for the

PT and PR equations of state (5)
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The calculations of VLE is concerned with finding the
state of equilibrium between liquid and wvapor phases when

particular conditions or perties are specified. The

properties in question m . ompositions and relative
amounts of the phase . 4 pressure, enthalpy,

sperties. Given some

entropy, or some

of these propertie alculated.

For every c [ \i— e, the condition of

thermodynamic equil m ﬁ?; = ‘ apor and a liquid is
given by
(2.51)
where
fy.» Parmf‘!fﬁdﬂ%l@ % E&%‘%W EJ’] N3
V = vapor p

et
]

1QW%€iéﬂﬂ‘§ﬂJ UA1INYA Y

The fundamental problem is to relate these fugacities
to mixture compositions, since it is the latter which are of
concern in process design. The fugacity of a component in a
mixture depends on the temperature, pressure, and

composition of that mixture. In principle, any measure of
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composition can be used. For the vapor phase, as an
example, the composition is nearly always expressed by the
mole fraction y. To relate fiv to temperature, pressure,

and mole fraction, it will be expressed in terms of fugacity

e

; \\;;\\\ by an equation of
' \ N blied to the liquid

. \\

The partial Y#i'ﬂ; [f¥cient @; depends on

coefficient as

(2.52)

ient may be derived

from vapor-phase

state. The sam

rhase by replacin

temperature and pressuisy aa multicomponent mixture,

=
on all mole -' ;‘;:_:;;;.z-;;a;.;;?‘ and not just on
individual compoment pori phase, the partial
fugacity coefficiegt is, by definitiﬂn, normalized such that

o UM BN TNART oo

it is usuall a good nasuﬁrt1on to set ’i =

9 j@’]ﬁtﬂhﬂ‘i%l y}mwma 3

Kij = yi/x; = ﬂiLfﬂiv (2.53)

where K; is the Equilibrium ratio for component i in

the mixture which is a key quantity in the analysis of
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vapor-liquid equilibria. Its implementation will be made in
calculations of dewpoints, bubble points, and flashes,

normally by an equation of state.

In 1988, T.H. Ahmed (12) conducted a comparative study

' _including all these four

. - if—liquid equilibrium of

Comparison of the

of several equations
equations, in the pnnfa
multicomponent hy;’;,~
five equations for

experimental and

a selected systemn . In his work, he

concluded that, diction, the PR, PT and

.4“\\H-hereas the PT and SW
7\
|

ofed that, in this work,

5W equations all

[
-

are found to giy sompressibility factor

predictions (12).

the interaction coefficient ded only between methane

and the heavi'_..__.. 5 _ —#,, with the
o X J

experimental da“il

)

AULINENINEINS
RINNIUUNIININY

U
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' predicted by five equations of state (12)
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2.7 Mixing Rules

The mixing rules have the purpose of responding to a

property of a mixture in terms of the composition and the

properties of the pure ,components. Depending on the
property, the cunposi}L  1 mole or volume or weight
fractions. Some of € have a rational basis,
but most are p many instances, the
prediction of a H\% d by incorporating a
limited amount BT &xpe al’ data, on the mixture or on
component pairs ’
have a major imps
Most equations o #ept the "classical" mixing
rules, that is,_ the of :%fkiﬁ- als mixing rules :

s

(2.54)

szhﬂusqwswswawni L

SELT AINTNUMINYINY e

with the cross parameter taken to be

aajj = I‘.Eﬂ.iﬂ.ﬂj]tll—ﬁi‘j} " (2.57)
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Once these expressions for the mixing rules are chosen,
the fugacity coefficients of any component i in the vapor or
ligquid phase can be calculated. The equations of the
fugacity coefficients for four equations of state are

presented in Table 2.4.

The behaviof 1ly is affected by

interactions of , ularly if some are
polar. Interactig higher combinations
usually are less ‘hbse between pairs of
components. Higher ons often are small and

thus hidden by _impe practicable equations of

state, so that '-—'i:_—-_ﬂh-_“" ‘ y data in addition
to those of pui@ o ’ uljy leads to a major

possible 1mpruVqup in the curacyf of the equation of

R LIS (MY CRE

possible hinnry interactiagn cneffxiients.

AWIANN TN UA1INYAY
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TABLE 2.4 Fugacity coefficient expression for SRK, PR,

5W, and PT equations of state.

Equation of state Expression

¥jlaa);;/(aa)y=bj/by}*

Z-B)-(A/2.82843B)=*
aa ) m-bi/bg}*
/(Z-0,.414B) ]

SW EOS In(Z-B)-(A/SB)*
@a); j/(aa)y-b; /by }*
3/2)/(Z-(U-S)B/2) |
PT EOS RTlp(g;) = RTb;/{¥-byp) - RTLln(Z-B)

ﬂﬂﬂ?ﬂﬂ%ﬁ%ﬂﬂﬂﬂlﬂ?am oy

¢ (aa)p(by+c;)/[2(Q%5d? )]

AWTANTI D EebdaAA D Lo B st

*{1In[(Q+d)/(Q-d)]1-2Qd/(Q*-d? )}

where V = ZRT/P
‘ Q = Vi#(bgtcy)/2
d = [bycp*(bgtcy)?/41?
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Coefficients (K; ;)

In practice, the optimal wvalues of Ki.j ‘should be

determined from binary vapor-liquid equilibrium data by

minimizing the diffenehnd the calculated and
librium properties, A
number of criteria hLa been Wsed for the evaluation as

follow :
predicted K values
predicted bubble point

3. minimization of in predicted bubble point
vapor cg i 3 : --7-—7—5,‘

4, minimiza “ uﬁ variance (16)

5. u1n1mizat1cip of the sum of variances of the flash

~F RN HRTNE NS

6. tnim. zation of I,he deviatinn hatw calculated

FRIIRT R ANAQ R

The binary interaction coefficients obtained by
different models may not be-identical, presenting a probleem
that which method will yield the most desirable results.
Furthermore, all the listed methods above wilth the exception

of the last one involve iterative calculations of either
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bubble point or flash type for each datum (22). Thus, they
may be rather time-consuming, especially in cases where
there are more than one binary interaction coefficient in an
equation of state, complicated state equation, and/or large

data set.

.y}
]

AULINENTNEINS
RN TN INIEY

T40A0039
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