CHAPTER 4

RESULTS

4.1 Some Bacterial organisms in Digestion Tank

Total bacterial counts in aerobic and anaerobic environments were 9.7 x 10^7 and 10.2×10^7 cells/ml, respectively. Bacterial counts for gram-negative bacteria, salmonellae group, bacillus group, streptococci and staphylococci were 3.3×10^7 , 1.1×10^5 , 1.1×10^7 , 2.0×10^7 and 4.7×10^4 cells per ml, respectively, or about 6.4×10^7 cells/ml.

4.2 Isolation and Selection of Pure Cultures

4.2.1 Cellulolytic Bacteria

Three isolates from 113 pure cultures of suggestive cellulolytic bacteria were selected and named CU1, CU3 and CU4.

They were characterized as:

CU1: Colonial characteristics grown on rumen fluid cellulose

agar--3mm in diameter, yellow to brown, flat, rugged edge,

surrounded with 3-mm clear zone (See Figure 4.1).

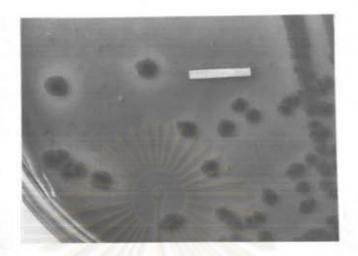


Figure 4.1 Colonial characteristic of cellulolytic bacteria CUl (x 1.6), on rumen fluid cellulose agar, incubate 4 weeks at 37°C in 5 % CO₂ 10 % H₂ N₂ balance atmosphere.

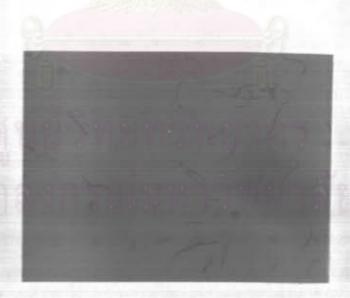


Figure 4.2 Morphological characteristic of cellulolytic bacteria CU1 (x330) cultivated in cellulose broth 4 weeks at 37°C in 5 % CO_2 10 % H_2 N_2 balance atmosphere.

Morphological characteristics -- rod-shape, gram-negative bacilli, 1 x 3-6 μ (See Figure 4.2).

CU3: Colonial characteristics--2-5 mm in diameter, yellow, clear, flat, rugged edge, surrounded with 3-mm clear zone (See Figure 4.3).

Morphological characteristics--rod-shape, gram-negative bacilli, 1 x 2-5 μ (See Figure 4.4)

CU4: Colonial characteristics--5 mm in diameter, pale yellow, flat, rugged edge, and surrounded with 3-mm clear zone, (See Figure 4.5)

Morphological characteristics--rod-shape, gram-negative bacilli, 1 x 2-6 μ (See Figure 4.6).

Pre-testes of cellulolytic activities of those three selected strains were performed. The media contained 0.1 or 0.2 % α-cellulose fibre were used to test acid formation, and the results are shown in Table 4.1. It was found that number of produced acid was depended on the concentration of cellulose in the medium, i.e., in low, only one acid or acetic acid but in high, two acids--acetic and succinic acids, were produced. Moreover, the amount of acetic acid in the high cellulose medium was about 2 times higher than the lower one. The capacity to degrade cellulose in CU1 and CU3 seems to be equal, but Figure 4.7 shows the rates of cellulose utilization by CU1 is better than the others. The pH of each monoculture was

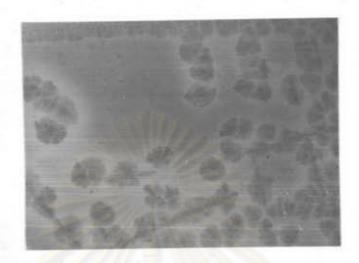


Figure 4.3 Colonial characteristic of cellulolytic bacteria CU3 (x 1.6), on rumen fluid cellulose agar 4 weeks at 37°C in 5 % $\rm CO_2$ 10 % $\rm H_2$ $\rm N_2$ balance atmosphere.

Figure 4.4 Morphological characteristic of cellulolytic CU3 (x 330), cultivated in cellulose broth 4 weeks at 37°C in 5 % CO $_2$ 10 % H $_2$ N $_2$ balance atmosphere.

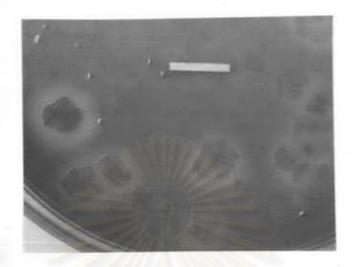


Figure 4.5 Colonial characteristic of cellulolytic bacteria CU4 (x 1.6), on rumen fluid cellulose agar, incubated 4 weeks at 37°C in 5 % CO₂ 10 % H₂ N₂ balance atmosphere.

Figure 4.6 Morphological characteristic of cellulolytic bacteria CU4 (x 330), cultivated in cellulose broth 4 weeks at 37°C in 5 % CO $_2$ 10 % H $_2$ N $_2$ balance atmosphere .

Table 4.1 Acid production from α - cellulose by three selected strains of cellulytic bacteria.

	Initial No.	α-cellulose	Production (µ mol) of					
Organisms	of Organisom (cells x 10')	(mg)	Acetic acid	Succinic acid				
CU 1	3.5	10	5.98(<u>+</u> 0.46)	ND				
	3,5	20	11.85(+ 2.15)	1.66(+0.25)				
CU 3	3.9	10	6,06(<u>+</u> 0,73)	ND				
	3.9	20	10.95(+ 0.65)	1.50(<u>+</u> 0.18)				
CU 4	3.8	10	5.50(<u>+</u> 1.36)	ND				
	3.8	20	10.82(+ 1.66)	1.70(+ 0.16)				

Alls were means of 5 replicate

ND = cannot be detected

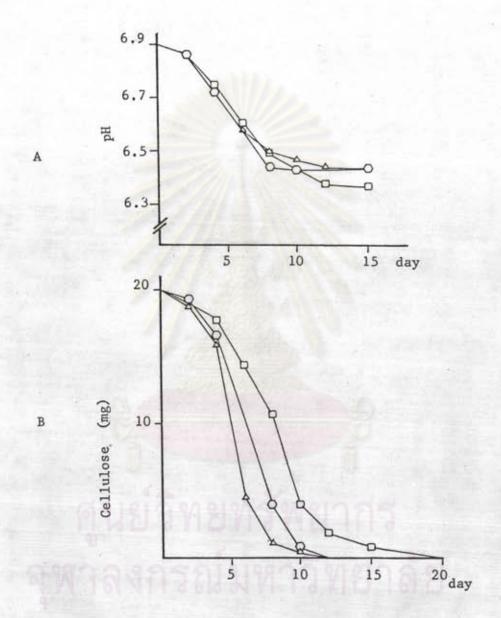


Figure 4.7 Remained cellulose contents and pH reduction in cellulose fermentation by three selected strains of cellulolytic bacteria : CU 1 (a), CU 3 (O), and CU 4 (D).

gradually drop until day 8. Anyway, there was no difference in the rate of pH reduction among those strains. Gaseous products of cellulose fermentation by the tested strains were H₂ and CO₂ (Table 4.2). Figure 4.8 shows the gas production rates of those. The rates of hydrogen gas production were constant for about 5, 8 and 10 days in monocultures of CU1, CU3 and CU4 respectively. Difference in the time course and lesser in the amounts, the rates of carbon dioxide production of those were similar to H₂ From these results indicated the selected cellulolytic bacteria strain CU1 might be suitable to use as the tested organism in other experiments.

4.2.2 Methanogens

Five isolates from 51 pure cultures of suggestive methanogenic bacteria were selected and they were named Sc1, Sc2, Sc3, Sc4 and Sc5. All isolates were tested for methanogenic activities. They were characterized as:

Scl: Colonial characteristics grown on Balch medium I agar-1 mm in diameter, smooth, round, convex, shining, pale yellow-green (102.5 µmol CH₄). See Figure 4.9.

Morphological characteristics—coccal form, gram-negative cocci, 1-2 μ (See Figure 4.10)

Table 4.2 H₂ CO₂ Production from cellulose fermentation of three selected strain of cellulolytic bacteria

	Product	ions (µ mol) of		
Organisms	н ₂	co ₂	CH ₄	H ₂ : CO ₂
CU 1	1032.5	501.1	0	2.05
CU 3	1135.5	487.2	0	2.33
CU 4	877.4	455.8	0	1.92
Mixed Culture	0	111,3	83.1	

Inoculated - 3 x 10⁷ cell into 20 mg a cellulose fibre, incubated at 37°C for 9 days

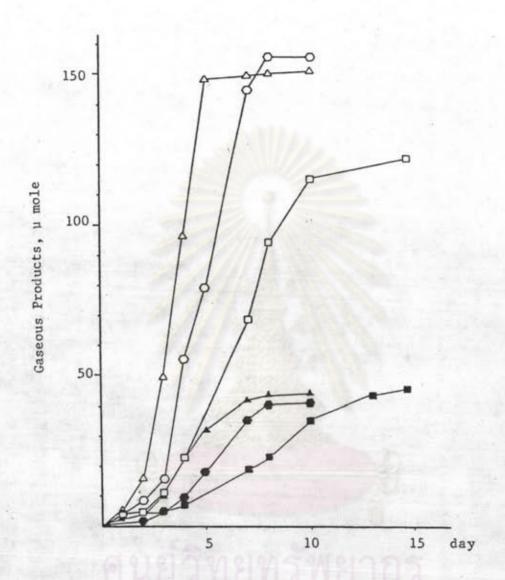


Figure 4.8 Gaseous products of cellulose fermentation by three selected strains of cellulolytic bacteria:

$$CU 1 (\triangle = H_2, \triangle = CO_2),$$

CU 3 (
$$O = H_2$$
, $\bullet = CO_2$) and

Figure 4.9 Colonial characteristic of methanogen Sc1 (x 1.6) on balch medium 1 agar, incubated 4 weeks at 37°C in 80 % H₂ 20 % CO₂ pressurized 2 atmosphere.

Figure 4.10 Morphological characteristic of methanogen Scl (x 330), cultivated in balch medium 1 broth, incubated 4 weeks at $37^{\circ}\mathrm{C}$ in 80 % H₂ 20 % CO₂ pressurized 2 atmosphere.

- Sc2: Colonial characteristics—lmm in diameter, shining, smooth, round, convex, yellow (113.4 μmol CH₄). See <u>Figure 4.11</u>.

 Morphological characteristics—coccal form, gram-negative cocci, 1-2 μ (See <u>Figure 4.12</u>)
- Sc3: Colonial characteristics-- 1-2 mm, shining, round, smooth, convex, yellow-green (111.5 μmol CH₄). See Figure 4.13.
 Morphological characteristics--coccal form, gram-negative cocci, 1-2 μ (See Figure 4.14).
- Sc4: Colonial characteristics--1-2 mm, shining, round, smooth, cenvex, pale yellow-green (151.2 µmol CH₄). See Figure 4.15.
 - Morphological characteristics—coccal form, gram-negative cocci, 1 μ (See Figure 4.16).
- Sc5: Colonial characteristics--2 mm, shining, round, smooth, convex, yellow green (152.3 μmol CH₄). See Figure 4.17.

 Morphological characteristics--coccal form, gram-negative cocci, 1 μ(See Figure 4.18).

 ${
m H_2-CO}_2$ utilizing capacity is a common character of all methanogens. To compare this, five tested methanogens were initially cultivated in different amounts of ${
m H_2-CO}_2$, and the results are shown in Tables 4.3 and 4.4. It was found that the more in ${
m H_2-CO}_2$ concentration,

Figure 4.11 Colonial characteristic of methanogen Sc2 (x1.6) on balch medium 1 agar, incubated 4 weeks at 37°C in 80% H₂ 20% CO₂ pressurized 2 atmosphere.



Figure 4.12 Morphological characteistic of methanogen Sc2 (x 330), cultivated in balch medium 1 broth, incubated 4 weeks at 37 °C in 80 % $\rm H_2$ 20% $\rm CO_2$ pressurized 2 atmosphere.

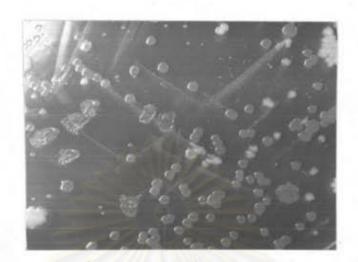


Figure 4.13 Colonial characteristic of methanogen Sc 3 (x 16) on balch medium 1 agar, incubated 4 weeks at 37°C in 80% H₂ 20% CO₂, pressurized 2 atmosphere.



Figure 4.14 Morphological characteristic of methanogen Sc3 (x 330), cultivated in balch medium 1 broth, incubated 4 weeks at 37°C in 80% H₂ 20% CO₂ pressurized 2 atmosphere.

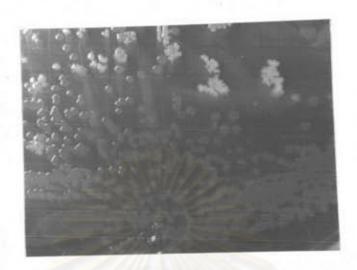


Figure 4.15 Colorial characteristic of methanogen Sc4 (x 1.6) on balch medium 1 agar incubated 4 weeks at 37°c in 80 % H₂ 20% CO₂ pressurized 2 atmosphere.

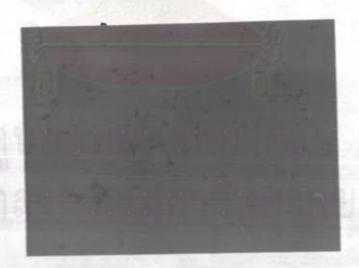


Figure 4.16 Morphological characteristic of methanogen Sc4 (x 330), cultivated in balch medium 1 broth, incubated 4 weeks at 37 c in 50% $\rm H_2$ 20% $\rm CO_2$ pressurized 2 atmosphere.

Figure 4.17 Colonial characteristic of methanogen Sc5 (x1,6) on balch medium 1 agar, incubated 4 weeks at 37°C in 80% H₂ 20% CO₂ pressurized 2 atmosphere.

Figure 4.18 Morphological characteristic of methanogen Sc5 (x330), cultivated in balch medium 1 broth, incubated 4 4 weeks at 37°C in 80% H₂ 20% CO₂ pressurized 2 atmosphere.

Table 4.3 $\rm H_2-CO_2$ utilizing capacity of the tested methanogen Sc1-Sc5 in low amount of $\rm H_2-CO_2$ condition

	H ₂ and CO ₂ loss	(µ1)	CH ₄ Production	Ratio
Bacteria	н ₂	co ₂	(µ1)	CH ₄ /H ₂ cons
Sc 1	590	77.4	1100,7	1.86
Sc 2	590	77.5	977.8	1.66
Sc 3	590	77.5	1134.0	1.92
Sc 4	590	58.4	1138.2	1.93
Sc 5	590	45.9	1480.2	2.50

Alls cultivated in 10 ml balch medium 1 broth with 10% + $\rm H_2^{5\%}$ CO $_2^{N_2}$ balance gas mixture in headspace, incubate 5 days at 37°C

Table 4.4 $\rm H_2-CO_2$ utilizing capacity of the tested methanogen Sc1-Sc5 in high amount of $\rm H_2-CO_2$ condition.

N	H ₂ and CO	loss (µ1)	CH ₄ Production	Ratio
Bacteria	H ₂	co ₂	(µ1)	CH ₄ /H ₂ cons
Sc 1	1694.0	1763.5	2296.7	1.35
Sc 2	1601.6	1775.0	2539.5	1.58
Sc 3	1828.2	1748.4	2498,5	1.36
Sc 4	2306.8	1433.1	3001.5	1.30
Sc 5	2183.8	1778,8	3415.9	1.56

Alls cultivated in 10 ml balch medium 1 broth with 80% $\rm H_2$ 20 % $\rm CO_2$ in head space, incubated 5 days at 37°c

Initial stage	н ₂	3953.8	μ1
	co2	1869.2	μl
	CH ₄	0	μ1

the more in $\mathrm{CH_4}$ formation. In $\mathrm{H_2}$ excess, the selected strains, Sc4 and Sc5, utilized large amounts of $\mathrm{H_2}$ to form $\mathrm{CH_4}$ gas. Comparing between the two systems, the ratio of $\mathrm{H_2}$ loss and $\mathrm{CH_4}$ production in low $\mathrm{H_2}$ condition was 1 to 2, but in excess condition, only 1 to 1.3, and also both Sc4andSc5 produced high amounts of $\mathrm{CH_4}$ in both systems.

4.3 Fermentation of Cellulose by Co-culture

In fifteen co-culture sets, the amounts of remained cellulose are summerized in Table 4.5, detailed results of certain sets are presented in Figures 4.19-4.24 in Appendix F. Depended on the cellulose digestion capacity of the tested organisms, CU1, CU3 and CU4, cellulose was not detectable on day 12, day 12-15 and day 20, respectively. The fermentation of α-cellulose by co-culture resulted in the formation of at least 3 to 4 products, acetic acid or acetate, succinic acid or succinate, carbon dioxide and methane. The amounts of acids are shown in Table 4.6. Only five sets, succinate could not be detected. The percentages of acid loss were widely ranged, from 0.1 - 39 % and 0-100 % for acetate and succinate, respectively. The pH of the medium decreased from 6.9 at the beginning of the incubation to 6.3 at the end of fermentation. Hydrogen was not detected during fermentation of all co-culture sets. Productions of CO₂ and CH₄ in co-culture systems of cellulolytic

Table 4.5 Remained cellulose in the fermentation of cellulose (20 mg) by monocultures of cellulolytic bacteria CU1, CU3 and CU4 and by, co-culture with methonogens Sc1, Sc2, Sc3; Sc4 and Sc5

	Remained	cellulose	1000	Remained	cellulose	Organism	Remaned	cellulose
Organism	day 6	day 12	Organism	day 6	day 12	Ulgainsa	day 6	day 12
U 1 system	4,5	0	CU 3 system	10,4	0	CU 4 system	14,2	2.0
U 1 + Sc1	2.6	0	CU 3 + Sc 1	10.7	0	CU 3 + Sc 1	13.5	1.7
+ Sc 2	4,1	0	+ Sc 2	8.8	0	+ Sc 2	14.5	0,6
+ Sc 3	3.7	0	+ Sc 3	6.4	0,1	+ Sc 3	13.9	2.0
+ Sc 4	2.5	0	+ Sc 4	8.3	0,6	+ Sc 4	12,5	0.7
+ Sc 5	3.9	0	+ Sc 5	7.1	0.5	♦ Sc 5	13,3	0.8

Table 4.6 Acid production in the fermentation of cellulose (20 mg) by monoculture of cellulolytics bacteria, Cu 1, CU 3 and CU 4 and by co-culture with methanogens, Sc1, Sc2, Sc3, Sc4 and Sc 5, for 15 day incubation.

.5.	Initial No of		Production	(µ mole) of	
Organism	Organism (cells) x 10 ⁷	Acetic acid	I loss	Succinic acid	I loss
CU 1 System	3.5	11,85 (+ 2,15)	0,0	1,66 (+ 0.25)	0,0
CU 1 + Sc1	3,5 + 3,7	7.65 (+ 1,14)	35,4	ND	100
+ Sc2	3.5 + 2.1	7,25 (± 1,06)	38,8	0.75 (<u>+</u> 0.09)	54,8
+ Sc 3	3.5 + 2.3	8,46 (± 1,35)	28,6	1.36 (± 0.13)	18,1
+ Sc 4	3,5 + 1.4	8,21 (±0,90)	30.7	0,90 (± 0,16)	45,8
+ se 5	3.5 + 2.5	9.63 (+ 1.03)	18.7	ND	100
2007					
CU 3 System	3.9	10.95 (± 0.65)	0,0	1,50 (± 0,18)	0,0
CU 3 + Sc 1	3.9 + 3.7	9.30 (± 1.20)	15.0	1,56 (+ 0,23)	0.0
+ Sc 2	3.9 + 2.1	8.20 (+ 0.82)	25,1	1,05 (± 0,13)	30.0
+ Sc 3	3.9 + 2.3	7.73 (± 1.0b)	29.4	1,06 (± 0,16)	29.3
+ Sc 4	3.9 + 1.8	8.10 (± 1.09)	26.0	1,07 (± 0,17)	28,6
+ Sc 5	3.9 + 2.5	10.25 (± 1:84)	6.4	1,15 (± 0,12)	24,6
CU 4 System	3.8	10.62 (± 1.66)	0.0	1,07 (± 0,16)	0,0
CU 4 + Sc 1	3.8 + 3.7	8.68 (± 1.30)	19.7	ND	100
+ 5c 2	3.6 + 2.1	10.81 (+ 1.23)	0.1	ND	100
+ Sc 3	3.8 + 2.3	7.70 (+ 0.81)	28,8	ND	100
+ sc 4	3.8 + 1.4	10.76 (+ 1.32)	0.5	0.63 (± 0.08)	22,4
+ Sc 5	3.8 + 2.5	8,33 (<u>+</u> 1,60)	23.4	0,72 (± 0,11)	32,7
Hixed	. 23.1	ND		ND	
Sc 1, 2, 3, 4, 5	3.7, 2.1, 2.3,	ND		ND	
	1.8, 2.5				

ND - could not be detected

bacteria strain CU 1, CU 3 and CU 4 are summerized in Tables 4.7-4.9, respectively, detailed result of certain sets are presented in Figures 4.25-4.30 in Appendix F. After 10-day incubation, total amounts of biogas production from co-culture sets were widely varied i.e, 1.8-4.3 mmol per gram of cellulose and composed of 58-75 % methane. Moreover, in the individual systems of cellulolytic bacteria, CU 1, CU 3 and CU 4, the maximal percentages of CH, composition were 68, 64 and 75, respectively. Degradation of cellulose in the mixed culture could not be observed. Comparison to co-culture fermentation, any of the cellulose fermentation products could not be detected. Table 4.10 compares the fermentation products and the periods of cellulose disappearence in six co-culture sets. The shortest period of absolute disappearence of cellulose high degree in acid utilizing, high level of total amount of biogas production and also high percentage of CH, composing, the co-culture system of CU 1-Sc4 was chosen for the next experiment,

4.4 Fermentation of Cellulosic Wastes by Co-culture

Similar to cellulose fermention, the end products from the fermemtation of cellulosic wastes, i.e., pineapple peel (25 % α - cellulose), paper (71 % α - cellulose), straw (45 % α - cellulose), bermuda grass (24 % α - cellulose) and water hyacinth (19 % α - cellulose) by mono culture and co-culure are volatile fatty acids, hydrogen, carbon dioxide, methane and others. Table 4.11 compares

Table 4.7 Gas Production from the fermentation of cellulose (20 mg) by the selected strain of cellulolytic bacteria, CU 1 alone and individually plus methanogen strain Sc1, Sc2, Sc3, Sc4, and Sc5, for 20-day incubation

Organism	-	(%)	CO ₂ Pro	CO ₂ Production µ mole (\$)		uction μ mole	CH ₄	: co ₂
	5 day	10 day	5 day	10 day	5 day	10 day	5 day	10 day
Cellulolytic bacteria CU 1	146.5	150.1	32.0	44.0	ND*	ND		
	(82.1)	(77.3)	(17.9)	(22,7)				
Cellulolytic bacteria CV 1+Methanogen Sc1	2.0	ND	25.0	30.0	36.2	49.0	1.44	1.63
	(3.2)		(39.6)	(38.0)	(57.2)	(62.0)		
Cellulolytic bacteria CU 1+Methanogen Sc 2	ND	ND	26.0	30.0	38.2	50.7	1.46	1.66
	164		(40.5)	. (37.2)	(59.5)	(62.8)		
Cellulolytic becteris CU 1+Methanogen Sc 3	ND	ND	24.2	27.1	37.5	48.0	1.54	1.77
			(39.2)	(36.1)	(60.8)	(63.9)		
Cellulolytic bacteria CU 1+Methanogen Sc 4	5.0	ND	20.2	22.0	30.2	46.2	1.50	2.09
	(9.0)	4	(36.5)	(32.3)	(54.5)	(67.7)		
Cellulolytic bacteria CU 1+Methanogen Sc 5	ND	ND	29.1	33.0	38.0	47.0	1.30	1.42
	Y I I	L 0-	(43.4)	(41.3)	(56,6)	(58.7)		
Mixed Culture	ND	ND	ND	ND ND	אס סא	ND ND		
Control	ND	ND	ND	ND	ND	ND ND	-	

^{*} ND = Any product could not be detected.

Table 4.8 Gas production from fermentation of 20 mg a cellulose fiber

Organism	-	etion µ mole	CO ₂ Production μ mole (\$)		-	ction µ mole	CE ₄ : CO ₂		
	5 day	10dday	5 day	10 day	5 day	10 day	5 day	10 day	
Cellulolytic bacteria CU 3	77.8	152.5	17.5	40.0	ND	ND			
	(81.6)	(79.2)	(18.4)	(20.8)					
Cellulolytic bacteria CU 3+Methanogem Sc 1	2.0	ND	10.5	30.3	23.0	52.0	2.30	1.70	
	(5.6)	11	(29,6)	(36.7)	(64.8)	(63.3)			
Cellulolytic bacteria CU 3+Methanogen Sc 2	ND	ND.	17.5	35.0	23.0	50.0	1.35	1.40	
		- //	(43.2)	(41.2)	(56.8)	(58,8)			
Cellulolytic bacteria CU3+Methanogen Sc 3	2,0	ND	25,0	34.8	36.0	49.0	1.44	1.44	
	(12,9)		(37,6)	(41,5)	(57,1)	(58.5)	3		
Cellulolytic bacteria CU 3+Methanogen Sc 4	6.0	ND	17,5	26.8	23,0	48.0	1.35	1.8	
	(12.9)	Van I	(37,6)	(35,8)	(49.5)	(64,2)		-	
Cellulolytic bacteria CU 3-Methanogen Sc 5	ND	ND	20.0	32.1	32.5	53.8	1.60	1.60	
		100	(38.1)	(37.4)	(61.9)	(62.6)			
Mixed culture	ND	ND.	ND	ND	ND	ND			
Control	ND	ND	ND	ND	ND	, ND	1		

Note Infermintation of 20 mg a cellulose fiber by pure culture of methanogen Sc1-Sc5 no gas production could be detected

^{*}Percent calenlated from total volume of biogas production

Table 4.9 Gas production from fermentation of 20 mg a celluloge fibre

Organism	H ₂ Production µ mole (%)			CO2 Production µ mole (%)			CH ₄ Production u mole (%)			CH ₄	: CO2	**
	5 day	10 day	15 day	5 day	10 day	15 day	5 day	10 day	15 day	5 day	10 day	15 day
Cellulolytic bacteria CU 4	38.1	115.0	121.0	8.0	35.0	45.0	ND	ND	ND			
	(82.6)	(76.7)	(72.9)	(17.4)	(23.3)	(27.1)			1			
Cellulolytic bacteria CU 4.Methanogen Sc 1	ND	ND	ND	8.0	18.8	19.0	10.8	35.0	55.5	1.25	1.94	2.89
		///	1274	(42.6)	(34.9)	(25.5)	(57.4)	(65.1)	(74.5)		1,54	2.09
Cellulolytic bacteria CU 4+Methanogen Sc 2	ND	ND	ND	5.2	9.1	16.6	9.0	27.5	50.1	1.8	3.0	3.1
		170.00		(36.6)	(24.8)	(24.9)	(63.4)	(75.2)	(75.1)	.,,	3.0	3.1
Cellulolytic bacteria CU 4+Nethanogen Sc 3	ND	ND	ND	8.0	12.5	2.5	10.5	27.5	53.0	1.2	2.2	2.12
	- 04			(43.2)	(31.2)	(32.0)	(56.8)	(68.8)	(68.0)			- Armer
Cellulolytic bacteria CU 4+Methanogen Sc 4	ND	ND	ND	8.0	19.0	21.0	8.0	27.0	46.0	1.0	1.4	2.19
	- 4			(50.0)	(41.3)	(31.3)	(50.0)	(58.7)	(68.7)	Co		
Cellulolytic bacteria CU 4+Methanogen Sc 5	2.0	ND	ND	10.8	18.9	28.0	13.9	38.0	58.0	1.3	2.1	2.0
	(7,4)	B YIN	1/13	(40.4)	(33.2)	(32.5)	(52.2)	(66.8)	(67.5)			
Mixed culture	ND	ND	ND	· ND	ND	ND	ND	ND	ND			
Control	ND	ND	ND	ND	ND	ND	ND	ED	ND			

Note In fermentation of 20 mg -cellulose fibre by pure culture of methanogen Sc 1-Sc5 no Gas production could be detected.

*Percent calculated from total volume of biogas production

Table 4.10 Cellulose fermentation products by six co-culture sets, some combinations of cellulolytic bacteria strains (CU1, CU3 and CU4) and methanogens (Sc1, Sc2, Sc4 and Sc5)

	100% cellulose	Production (p	mol) of		mol)	CH ₄ /cellulos			
Co-culture Set	loss (days)	Acetic acid	Succinic acid	total	total H ₂		CH ₄ : CO ₂	u mol/mg	
CU 1	10	11.85 (± 2.15)	1,66 (± 0.25)	194.1	150.1	ND (0)	0	0	
CU 1 + Scl	12	7.65 (± 1.14)	ND	79,0	ND	49.0(62.0)	1.6	2.5	
CU 1 + Sc 4	12	8.21 (± 0.90)	0.90 (± 0.16)	68.2	ND	46.2(67.7)	2.1	2.4	
CU 1 + Sc 5	12	9,63 (± 1,03)	10	80.0	ND	47.0(58.7)	1.4	2.4	
CU 3	12	10.95 (+ 0.65)	1.50 (± 0.18)	192.5	152,5	ND (0)	0	0	
CU 3 + Sc4	20	8.10 (± 1.09)	1.07 (<u>+</u> 0.17)	74.8	ND	48.0(64.2)	1.8	2.5	
CU 4	20	10,82 (<u>+</u> 1.66)	1.07 (± 0.16)	150.0	115	ND (0)	0	0	
CU 4 + Sc 2	20	10.81 (± 1.23)	On order	36.6	ND	27.5(75.2)	3.0	1.8	
CU 4 + Sc 4	20	11,96 (± 1,32)	0.83 (<u>+</u> 0.08)	46.0	ND	27.0(58.7)	1.4	1.6	
Mixed culture		Fet	rmentation could not be	letected -	0		_		

ND = could not be detected

Table 4.11 Acid production Gas production and remained cellulose in fermentation of cellulosic wastes (1g) by cellulolytic bacteria CU1,

CU1 + mathanogen Sc 4 and mixed-culture, incubated 25 day at 37°c

		Ac	tual						Alkali tr	eated		.,		
Substrates	Remained Cellulo	se Acid production	pH Gas production (μ mol)			(μ mol) ···	Remained cellulose Acid production			H	Gas	production	(µmo1)	
	mg (%)	(μ mol)	day 0	day 25	н ₂	co ₂	CH ₄	mg (%)	(µ mol)	day 0	day 15	н ₂	co ₂	CB4
Pineapple peel						9				4				
- CU 1	242 (94.5)	acetic 532.0, butyric	6.99	6.75	2180	700		184 (80.0)	acetic 397.8	6.90	6.48	ND	48	
		54.0, succinic 107.2							100000000000000000000000000000000000000	3-13-		1	6.5	
- CU 1 + Sc 4	228 (89.0)	acetic 435,2	6.99	6.62		194	484	192 (83.5)	acetic 262.0	6.90	6.46		102	198
- Mixed culture	252 (98,4)	-	6.99	6,79		168	146	222 (96.5)	acetic 470.8, propionic	6.90	6.78		244	10
Paper									182.4, butyric 456				57.5	
- CU 1	0 (0)	acetic 892.5	7.00	6.45	6125	1100		79 (11.7)	acetic 782.5	7,00	6.39	5625	1325	
- CU 1 + Sc 4	0 (0)	acetic 644.0	7,00	6.37	1 / 5	965	2120	0 (0)	acetic 743.0	7,00	6.43	320	1050	2610
- Mixed culture	595 (82.0)	ND	7.00	6.95	.50	ND	130	560 (82.3)	ND ND	7.00	6.89		150	75
trav					1	2000	1000							
- CU 1	296.6 (76.7)	acetic 423.3	7.00	6.75	3900	837		8 (2.5)	acetic 1054.6	7.00	6.36	3403	557	
- CU 1 + Sc 4	200 (51.7)	acetic 441.6	7.00	6.51		636	1433	0 (0)	acetic 757.6	7.00	6.41		617	1267
- Mixed culture	283.3 (73.3)	ND	7.00	6.96		240	633	293 (89.8)	ND	7.00	6.49		177	70
ermuda grass				Ma.										
- CU 1	98 (35.7)	acetic 583.6	6.99	6.45	3200	922		212 (84.8)	acetic 116.0	6,91	6.69	ND	ND	
- CU 1 + Sc 4	42 (15.3)	acetic 501.6	6.99	6.46		660	1600	196 (78.4)	acetic 147.8	6,91	6,66		60	ND
- Mixed culture	230 (63.9)	ND	6.99	6.88	79/1	154	ND	238 (95.2)	scetic 672.4, propionic	6.91	6,84		392	ND
ater hyacinth				TOP	0 11	P H	0.714	EL-1-30	180.4				-	7
- CU 1	90 (41.6)	acetic 233.6	7.00			220	-		100000000000000000000000000000000000000			1		
- CU 1 + Sc 4	122 (56.4)	acetic 233.6	7.00	6.48	1000	304	1229	178 (89.0)	acetic 147.0	6,85	6.52	ND	46	
- Mixed culture	182 (84.2)	The second second	7.00	6.59	. 4 9	202	260	142 (71.0)	acetic 127,4	6.85	6.44		68	60
manu surture	102 (04.2)	ND	7.00	6.91		164	42	186 (93.0)	ND	6.85	6.69		120	ND

the fermentation products and remained cellulose contents from those wastes under the actual and alkali pre-treated conditions. The degree of cellulose degradation in those wastes was widely varied. After 25 day incubation, the cellulose (about 12 mg) was disappeared from the actual paper by the mono-culture of 6U 1, and from paper (both actual and alkali-treated) and alkali-treated straw by the co-culture of CU 1 and Sc 4. Less than 25 % of α - cellulose contents of those wastes were degraded by mono-and/or co-cultures (See Table 4.12). In these studies, the most resistance to cellulose degradation was pineapple waste and the best substrate was paper waste. Compared with the mono-culture more cellulose was degraded in the co-culture except the two sets used actual water hyacinth and alkali-treated pineapple waste as substrates. The pH of the medium in both mono-and co-cultures was gradually decreased depending the degradation of cellulose.

The acid productions in those systems were varied qualitatively and/or quantitatively. It was found that acetate, the major acid, could be detected after 25-day incubation in all systems except the actual pineapple waste in monoculture system (Table 4.13).

The amounts of carbondioxide in co-cultures were generally lower than in the monoculture (Table 4.14). Hydrogen could be detected only in the monoculture of cellulolytic bacteria but not in co-culture. It was found that the amounts of hydrogen production and methane production were related, i.d., high in the first one

Table 4.12 Degree of cellulose degradation in 5 cellulosic wastes under actual and alkoli treated condition, incubated 25 day.

Substrate	% Cellulose Degradation			
SCANNON CASES	CU 1	CU1 + Sc4		
1. Actual paper	100	100		
2. Treated straw	97.5	100		
3. Treated paper	88.3	100		
4. Actual bermuda grass	64.3	84.7		
5. Actual water hyacinth	58.4	43.6		
6. Actual straw	23.3	48.3		
7. Treated pineapple peel	20.0	16.5		
8. Treated bermuda grass	15.2	21.6		
9. Treated water hyacinth	11.0	29.0		
10. Actual pineapple peel	5.5	11.0		

Table 4.13 Acid production (µmol/g substrate) in cellulosic waste fermentation by monoculture CU 1 and co-culture CUl+Sc4, in incubated 25 day, 37°C.

Substrate	Mono-culture CU1 Acetate			
1. Treated straw	1054.6	757.6		
2. Actual paper	897.5	644.0		
3. Treated paper	782.5	743.0		
4. Actual bermuda grass	583.6	510.6		
5. Actual pineapple peal	532.0	435.2		
7/1/54	(Butyrate 54.0,			
	Succinate 107.2)			
6. Actual straw	423.3	441.6		
7. Treated pineapple peel	397.8	262.0		
8. Actual water hyacinth	233.6	249.2		
9. Treated water hyacinth	147.0	127.4		
10. Treated bermuda grass	116.0	147.8		

Table 4.14 Gas production from the fermentation of cellulosic waste (µmol/g) by monoculture CU 1 and co-culture CU 1 + Sc4

Substrate		CU 1		CU 1 + Sc 4					
		H ₂ CO ₂	The Amount of gas (µmol/g)			ZCH ₄	CH ₄ : CO ₂		
	н ₂		total	CO ₂	CH ₄	3.4	Ratio		
	ciar	1100	3085	965	2120	68.7	2.20		
Actual paper	6125	1100	3003	903	2120	00.7	2.20		
Treated paper	5625	1325	3660	1050	26 10	71.3	2.48		
Actual straw	3900	837	2069	636	1433	69.2	2.25		
Treated straw	3403	557	1879	617	1262	67.1	2.04		
Actual bermuda grass	3200	922	2260	660	1600	70.7	2.42		
Actual piapple peel	2180	700	678	194	484	71.3	2.49		
Actual water hyacinth	1006	304	462	202	260	56.3	1.29		
Treated pineapple peel	ND*	48	260	102	158	60.7	1.55		
Treated water hyacinth	ND	46	128	68 *	60	46.8	0.88		
Treated bermuda grass	ND	ND	60	60	ND	0	0		

Table 4.15 Gas production in the fermentation of cellulosic wastes by the cellulolytic bacteria CU1 + methanogen Sc4, incubated at 37°C for 25 days.

	Gas production (µmol/g)					
Substrates	Dry Weig	ht	Cellulose loss		CH ₄ : CO ₂	
	Total Gas*	CH ₄	Total Gas	CH ₄	Ratio	
α-cellulose fiber**	3,410	2,400	3,410	2,400	2,13	
Treated paper	3,660	2,610	5,382	3,838	2.48	
Actual paper	3,085	2,120	4,251	2,922	2.19	
Actual bermuda grass	2,260	1,780	9,720	6,882	2,42	
Actual straw	2,069	1,430	11,076	7,625	2.25	
Treated straw	1,884	1,270	5,775	3,888	2.05	
Actual pineapple peel	678	480	24,068	16,519	2.49	
Actual water hyacinth	462	260	4,899	2,757	1,28	
Treated pineapple peel	300	170	7,895	5,312	1,94	
Treated water hyacinth	128	60	2,207	1,500	0.88	
Treated bermuda grass	60	0	1,111	0	0	

^{*}Total gas = the net amount of CH_4 and CO_2

^{**}incubated 37°C for 10 days, and cellulose could not be detected

caused high in the second one. Table 4.15 compares the gaseous products products of the fermentation of pure cellulose and cellulosic wastes. In pure cellulose system, the amounts of total gas and methane per gram of dry weight and per gram of utilized cellulose was equal. In the treated paper system, both amounts of total gas and CH, per gram of dry weight and per gram of cellulose loss were higher than the pure cellulose system. It meaned that certain amount of gaseous products might be partly produced from other components of the waste paper. The results showed that the amounts of total gas and CH, per gram of cellulose loss were higher than per gram of dry weight in all systems of cellulosic wastes. The ratio of CH4 to CO2 was varied in range from 0-2.49 in case of the cellulosic wastes but in the pure cellulose system was 2.13. However, the percentages of methane production from those four top systems, i.e., treated paper, actual paper, actual bermuda grass and treated straw, were rather high, 67-71. From five kinds of the tested substrates, the results indicated that the waste paper might be the best substrate for biogas production from cellulosic wastes.