สมการเชิงฟังก์ชันกำลังสองเชิงสี่มิติเบบเพกซิเดอร์

นางสาวปรีชญา สัญญฑิตย์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

4-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATIONS OF PEXIDER TYPE

Miss Preechaya Sanyatit

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Mathematics

Academic Year 2008
Copyright of Chulalongkorn University

Thesis Title

4-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATIONS OF PEXIDER TYPE

By

Miss Preechaya Sanyatit

Field of Study
Mathematics
Thesis Principal Advisor Associate Professor Paisan Nakmahachalasint, Ph.D.
Thesis Co-advisor Assistant Professor Nataphan Kitisin, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

THESIS COMMITTEE

(Associate Professor Patanee Udomkavanich, PhD.)
Pain Naker.. Principal Advisor
(Associate Professor Paisan Nakmahachalasint, PhD.)
natapler Lnitisin

(Khamron Mekchay, Ph.D.)

ปรีชญา สัญญฑิตย์ : สมการเชิงฟังก์ชันกำลังสองเชิงสี่มิติแบบเพกซิเดอร์.
(4-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATIONS OF PEXIDER TYPE)
อ. ที่ปรึกษาวิทยานิพนธ์หลัก : รศ. ดร. ไพศาล นาคมหาชลาสินธุ์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม :
ผศ. คร. ณัฐพันธ์ กิติสิน, 16 หน้า.

เราพิจารณาสมการเชิงฟังก์ชันกำลังสองหลายมิติแบบเพกซิเดอร์ซึ่งอยู่ในรูป

$$
\begin{equation*}
\sum_{i=1}^{2-1} f_{1}\left(\sum_{j=1}^{n} \sigma_{v} x_{j}\right)=2^{n-1} \sum_{j=1}^{n} g_{j}\left(x_{j}\right) \tag{1}
\end{equation*}
$$

โดยที่ $n \in \mathbb{N}-\{1\}$ และ $\sigma_{i j}=(-1)^{\left|\frac{1-1}{2^{2-1}}\right|}, i=1,2, \ldots, 2^{n-1}, j=1,2, \ldots, n$
โดยเฉพาะเมื่อ $n=3$ และ $n=4$ สมการจะอยู่ในรูป

$$
f_{1}\left(x_{1}+x_{2}+x_{3}\right)+f_{2}\left(x_{1}+x_{2}-x_{3}\right)+f_{3}\left(x_{1}-x_{2}+x_{3}\right)+f_{4}\left(x_{1}-x_{2}-x_{3}\right)=4 g_{1}\left(x_{1}\right)+4 g_{2}\left(x_{2}\right)+4 g_{3}\left(x_{3}\right)
$$

และ

$$
\begin{aligned}
& f_{1}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)+f_{2}\left(x_{1}+x_{2}+x_{3}-x_{4}\right)+f_{3}\left(x_{1}+x_{2}-x_{3}+x_{4}\right)+ \\
& f_{4}\left(x_{1}+x_{2}-x_{3}-x_{4}\right)+f_{5}\left(x_{1}-x_{2}+x_{3}+x_{4}\right)+f_{6}\left(x_{1}-x_{2}+x_{3}-x_{4}\right)+ \\
& f_{7}\left(x_{1}-x_{2}-x_{3}+x_{4}\right)+f_{8}\left(x_{1}-x_{2}-x_{3}-x_{4}\right)=8 g_{1}\left(x_{1}\right)+8 g_{2}\left(x_{2}\right)+8 g_{3}\left(x_{3}\right)+8 g_{4}\left(x_{4}\right)
\end{aligned}
$$

ตามลำดับ
ในงานวิจัยนี้ เราเริ่มด้วยการหาผลเฉลยทั่วไปของสมการ (1) เมื่อ $n=3$ โดยการประยุกต์ใช้ผล ที่ได้จากกรณี $n=3$ เราสามารถหาผลเฉลยทั่วไปของสมการ (1) ในกรณี $n=4$

ศูนย์วิทยทรัพยากร

จุหาลงกรณมหาวิทยาลัย

ภาควิชา \qquad คคิตศาสตร์ \qquad
สาขาวิชา \qquad คณิตศาสตร์ \qquad
ปีการศึกษา \qquad 2551

ลายมือชื่ออาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก.

\# \# 4972366523 : MAJOR MATHEMATICS
KEY WORDS : QUADRATIC FUNCTIONAL EQUATION / QUADRATIC FUNCTIONAL EQUATION OF PEXIDER TYPE

PREECHAYA SANYATIT : 4-DIMENSIONAL QUADRATIC
FUNCTIONAL EQUATIONS OF PEXIDER TYPE. THESIS PRINCIPAL
ADVISOR : ASSOC. PROF. PAISAN NAKMAHACHALASINT, PhD., THESIS COADVISOR : ASST. PROF. NATAPHAN KITISIN, Ph.D., 16 pp.

The multidimensional quadratic functional equations of Pexider type in the form

$$
\begin{equation*}
\sum_{i=1}^{2^{n-1}} f_{i}\left(\sum_{j=1}^{n} \sigma_{i j} x_{j}\right)=2^{n-1} \sum_{j=1}^{n} g_{j}\left(x_{j}\right) \tag{1}
\end{equation*}
$$

where $n \in \mathbb{N}-\{1\}$ and $\sigma_{i j}=(-1)^{\left\lfloor\frac{i-1}{2^{n-j}}\right\rfloor}, i=1,2, \ldots, 2^{n-1}, j=1,2, \ldots, n$ will be considered. In particular when $n=3$ and $n=4$, we have respectively the equations

$$
\begin{array}{r}
f_{1}\left(x_{1}+x_{2}+x_{3}\right)+f_{2}\left(x_{1}+x_{2}-x_{3}\right)+f_{3}\left(x_{1}-x_{2}+x_{3}\right)+f_{4}\left(x_{1}-x_{2}-x_{3}\right) \\
=4 g_{1}\left(x_{1}\right)+4 g_{2}\left(x_{2}\right)+4 g_{3}\left(x_{3}\right), \tag{2}
\end{array}
$$

and

$$
\begin{align*}
& f_{1}\left(x_{1}+\overline{x_{2}}+x_{3}+x_{4}\right)+f_{2}\left(x_{1}+x_{2}+x_{3}-x_{4}\right)+f_{3}\left(x_{1}+x_{2}-x_{3}+x_{4}\right)+ \\
& f_{4}\left(x_{1}+x_{2}-x_{3}-x_{4}\right)+f_{5}\left(x_{1}-x_{2}+x_{3}+x_{4}\right)+f_{6}\left(x_{1}-x_{2}+x_{3}-x_{4}\right)+ \\
& f_{7}\left(x_{1}-x_{2}-x_{3}+x_{4}\right)+f_{8}\left(x_{1}-x_{2}-x_{3}-x_{4}\right) \tag{3}\\
& =8 g_{1}\left(x_{1}\right)+8 g_{2}\left(x_{2}\right)+8 g_{3}\left(x_{3}\right)+8 g_{4}\left(x_{4}\right) .
\end{align*}
$$

In this thesis, we first solved the equation (1) when $n=3$. By applying this result, we obtained the general solutions for the case $n=4$.

Field of Study :Mathematics....
Academic Year : \qquad 2008 \qquad Principal Advisor's Signature : Pain Noun:-- Co-advisor's Signature : mitaflum............ins, L

ACKNOWLEDGEMENTS

I am very sincerely grateful to Associate Professor Dr. Paisan Nakmahachalasint and Assistant Professor Dr. Nataphan Kitisin, my thesis advisors, for their kindness, helpful suggestions, and compassionate guidance. Their assistance and careful reading are of great value to me in the preparation and completion of this thesis. I would like to express my gratitude to my thesis committee for their valuable comments, and to all of my teachers and lecturers.

In particular, I feel very grateful to my father and mother for their compassion and encouragement throughout my life.

Also, I would like to thank my great friends for many valuable suggestions and support.

ศูนย์วิทยทรัพยากร

 จุหาลงกรณ์มหาวิทยาลัย
CONTENTS

page
ABSTRACT (THAI) iv
ABSTRACT (ENGLISH) V
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER
I INTRODUCTION 1
II SOLUTIONS OF 3-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATION OF PEXIDER TYPE 4
III SOLUTIONS OF 4-DIMENSION QUADRATIC FUNCTIONAL EQUATION OF PEXIDER TYPE 8
REFERENCES 15
VITA 16

CHAPTER I

INTRODUCTION

A functional equation is an equation including one or more unknown functions with prescribed domain and range. Solving a functional equation means to find all functions which satisfy it identically. Functional equations have substantially grown to become an important branch of mathematics. Particularly during the last two decades, with its special methods, there are numbers of interesting results and several applications. The most famous functional equation, namely the additive Cauchy equation, often simply called the Cauchy equation defined as follows:

$$
\begin{equation*}
f(x+y)=f(x)+f(y) . \tag{1.1}
\end{equation*}
$$

A function that satisfies the equation (1.1) will be call an additive function. The classical quadratic functional equation is the equation of the form

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) . \tag{1.2}
\end{equation*}
$$

Any solution of (1.2) will be refered as a quadratic function (See [1]). The Pexider type of the equation (1.1) is the equation of the form

$$
\text { Similarly, the Pexider type of }(1.2) \text { is the equation of the form }
$$

In 1999, Soon-Mo Jung [2] gave the general solutions of the equation (1.3). Specifically, he proved the following theorem:

Theorem 1.1. Let X and Y be vector spaces over fields of characteristic different from 2, respectively. The functions $f_{1}, f_{2}, f_{3}, f_{4}: X \rightarrow Y$ satisfy the functional equation (1.3) for all $x, y \in X$ if and only if there exist a quadratic function $Q: X \rightarrow Y$, additive functions $a_{1}, a_{2}: X \rightarrow Y$, and constants $c_{1}, c_{2}, c_{3}, c_{4} \in Y$ such that

$$
\begin{aligned}
& f_{1}(x)=Q(x)+a_{1}(x)+a_{2}(x)+c_{1}, \\
& f_{2}(x)=Q(x)+a_{1}(x)-a_{2}(x)+c_{2}, \\
& f_{3}(x)=Q(x)+a_{1}(x)+c_{3}, \\
& f_{4}(x)=Q(x)+a_{2}(x)+c_{4}
\end{aligned}
$$

with

$$
c_{1}+c_{2}=2 c_{3}+2 c_{4} .
$$

Motivated by Theorem 1.1, we consider the quadratic functional equations of Pexider type of the form

$$
\begin{equation*}
\sum_{i=1}^{2^{n-1}} f_{i}\left(\sum_{j=1}^{n} \sigma_{i j} x_{j}\right)=2^{n-1} \sum_{j=1}^{n} g_{j}\left(x_{j}\right) \tag{1.4}
\end{equation*}
$$

where $n \in \mathbb{N}-\{1\}$ and $\sigma_{i j}=(-1)^{\left\lfloor\frac{\mid-1}{\left.2^{n-j}\right\rfloor}\right.}, i=1,2, \ldots, 2^{n-1}, j=1,2, \ldots, n$. In particular, when $n=3$ and $n=4$, we have respectively the equations

$$
\begin{align*}
& f_{1}\left(x_{1}+x_{2}+x_{3}\right)+f_{2}\left(x_{1}+x_{2}-x_{3}\right)+f_{3}\left(x_{1}-x_{2}+x_{3}\right)+f_{4}\left(x_{1}-x_{2}-x_{3}\right) \\
& \text { and } \tag{1.5}
\end{align*}
$$

$$
\begin{align*}
& f_{1}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)+f_{2}\left(x_{1}+x_{2}+x_{3}-x_{4}\right)+f_{3}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)+ \\
& f_{4}\left(x_{1}+x_{2}-x_{3}-x_{4}\right)+f_{5}\left(x_{1}-x_{2}+x_{3}+x_{4}\right)+f_{6}\left(x_{1}-x_{2}+x_{3}-x_{4}\right)+ \\
& f_{7}\left(x_{1}-x_{2}-x_{3}+x_{4}\right)+f_{8}\left(x_{1}-x_{2}-x_{3}-x_{4}\right) \\
& =8 g_{1}\left(x_{1}\right)+8 g_{2}\left(x_{2}\right)+8 g_{3}\left(x_{3}\right)+8 g_{4}\left(x_{4}\right) . \tag{1.6}
\end{align*}
$$

Note that the work of Soon-Mo Jung [2] in Theorem 1.1 implies the existence of the general solutions of the equation (1.4) for the case $n=2$. In this thesis, we would like to extend his result by solving for the general solutions for the equations (1.5) and (1.6) which are corresponding to the cases $n=3$ and $n=4$.

CHAPTER II

SOLUTIONS OF 3-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATION OF PEXIDER TYPE

In this chapter, we consider the equation (1.4)

$$
\sum_{i=1}^{2^{n-1}} f_{i}\left(\sum_{j=1}^{n} \sigma_{i j} x_{j}\right)=2^{n-1} \sum_{j=1}^{n} g_{j}\left(x_{j}\right)
$$

when $n=3$, i.e. the equation takes the form

$$
\begin{array}{r}
f_{1}\left(x_{1}+x_{2}+x_{3}\right)+f_{2}\left(x_{1}+x_{2}-x_{3}\right)+f_{3}\left(x_{1}-x_{2}+x_{3}\right)+f_{4}\left(x_{1}-x_{2}-x_{3}\right) \\
=4 f_{5}\left(x_{1}\right)+4 f_{6}\left(x_{2}\right)+4 f_{7}\left(x_{3}\right) . \tag{2.1}
\end{array}
$$

(Here, we replace g_{1} with f_{5}, g_{2} with f_{6}, and g_{3} with f_{7} for the ease of the notation indexing in the proof.)

In order to solve for the general solutions, we first make some certain substitutions to find the relations between those f_{i} 's. Afterward, the appropriate arrangements allow us to apply the result of Soon-Mo Jung. By proving Theorem 2.1, the general solutions to the equation (2.1) will be guaranteed. This result will in turn be crucial for solving the equation (1.4) in the case $n=4$.

Theorem 2.1. Let X and Y be vector spaces over fields of characteristic different from 2. The functions $f_{i}: X \rightarrow Y(i=1, \ldots, 7)$ satisfy the functional equation (2.1) for all $x_{1}, x_{2}, x_{3} \in X$ if and only if there exist a quadratic function $Q: X \rightarrow$ Y, additive functions $a_{i}: X \rightarrow Y(i=1, \ldots, 4)$, and constants $c_{i} \in Y(i=1, \ldots, 7)$
such that

$$
\begin{align*}
& f_{1}(x)=Q(x)+a_{1}(x)+a_{2}(x)+a_{3}(x)+a_{4}(x)+c_{1}, \\
& f_{2}(x)=Q(x)+a_{1}(x)+a_{2}(x)-a_{3}(x)-a_{4}(x)+c_{2}, \\
& f_{3}(x)=Q(x)+a_{1}(x)-a_{2}(x)+a_{3}(x)-a_{4}(x)+c_{3}, \\
& f_{4}(x)=Q(x)+a_{1}(x)-a_{2}(x)-a_{3}(x)+a_{4}(x)+c_{4}, \tag{2.2}\\
& f_{5}(x)=Q(x)+a_{1}(x)+c_{5}, \\
& f_{6}(x)=Q(x)+a_{2}(x)+c_{6}, \\
& f_{7}(x)=Q(x)+a_{3}(x)+c_{7}
\end{align*}
$$

with

$$
\begin{equation*}
c_{1}+c_{2}+c_{3}+c_{4}=4 c_{5}+4 c_{6}+4 c_{7} \tag{2.3}
\end{equation*}
$$

Proof. First, assume that f_{i} 's are solutions of (2.1). Define $c_{i}=f_{i}(0)$ for $i=$ $1, \ldots, 7$. By substituting $x_{1}=x_{2}=x_{3}=0$ in (2.1), we see that the c_{i} 's satisfy the relation (2.3). For $i=1, \ldots, 7$, let $F_{i}(x)=f_{i}(x)-c_{i}$. It is clear from (2.1) and (2.3) that the F_{i} 's satisfy the functional equation (2.1) with $F_{i}(0)=0$.

Denoted by $F_{i}^{e}(x)=\frac{F_{i}(x)+F_{i}(-x)}{2}$ and $F_{i}^{o}(x)=\frac{F_{i}(x)-F_{i}(-x)}{2}$ the even part and the odd part of $F_{i}(x)$, respectively. It is easy to see that the F_{i}^{o} 's and the F_{i}^{e} 's also satisfy (2.1). Next, we consider (2.1) for the F_{i}^{o} 's:

$$
\begin{align*}
F_{1}^{o}\left(x_{1}+x_{2}+x_{3}\right)+F_{2}^{o}\left(x_{1}+x_{2}-x_{3}\right)+ & F_{3}^{o}\left(x_{1}-x_{2}+x_{3}\right)+F_{4}^{o}\left(x_{1}-x_{2}-x_{3}\right) \\
& =4 F_{5}^{o}\left(x_{1}\right)+4 F_{6}^{o}\left(x_{2}\right)+4 F_{7}^{o}\left(x_{3}\right) \tag{2.4}
\end{align*}
$$

Put $x_{3}=0$ in (2.4) to obtain a quadratic equation of Pexider type,

$$
\begin{equation*}
\left(F_{1}^{o}+F_{2}^{o}\right)\left(x_{1}+x_{2}\right)+\left(F_{3}^{o}+F_{4}^{o}\right)\left(x_{1}-x_{2}\right)=2\left(2 F_{5}^{o}\right)\left(x_{1}\right)+2\left(2 F_{6}^{o}\right)\left(x_{2}\right) \tag{2.5}
\end{equation*}
$$

By Theorem 1.1 and F_{i}^{o} 's are odd functions, there exist additive functions a_{1}, a_{2} : $X \rightarrow Y$ such that

$$
\begin{equation*}
F_{1}^{o}+F_{2}^{o}=2 a_{1}+2 a_{2}, F_{3}^{o}+F_{4}^{o}=2 a_{1}-2 a_{2}, F_{5}^{o}=a_{1}, F_{6}^{o}=a_{2} \tag{2.6}
\end{equation*}
$$

Then put $x_{2}=0$ in (2.4), we have

$$
\begin{equation*}
\left(F_{1}^{o}+F_{3}^{o}\right)\left(x_{1}+x_{3}\right)+\left(F_{2}^{o}+F_{4}^{o}\right)\left(x_{1}-x_{3}\right)=2\left(2 F_{5}^{o}\right)\left(x_{1}\right)+2\left(2 F_{7}^{o}\right)\left(x_{3}\right) . \tag{2.7}
\end{equation*}
$$

Similarly, by Theorem 1.1, there exists an additive function $a_{3}: X \rightarrow Y$ such that

$$
\begin{equation*}
F_{1}^{o}+F_{3}^{o}=2 a_{1}+2 a_{3}, F_{2}^{o}+F_{4}^{o}=2 a_{1}-2 a_{3}, F_{7}^{o}=a_{3} . \tag{2.8}
\end{equation*}
$$

Analogously, putting $x_{3}=-x_{2}$ in (2.4) gives

$$
F_{1}^{o}\left(x_{1}\right)+F_{2}^{o}\left(x_{1}+2 x_{2}\right)+F_{3}^{o}\left(x_{1}-2 x_{2}\right)+F_{4}^{o}\left(x_{1}\right)=4 F_{5}^{o}\left(x_{1}\right)+4 F_{6}^{o}\left(x_{2}\right)+4 F_{7}^{o}\left(-x_{2}\right) .
$$

Since $F_{5}^{o}=a_{1}, F_{6}^{o}=a_{2}$, and $F_{7}^{o}=a_{3}$, we have

$$
F_{1}^{o}\left(x_{1}\right)+F_{2}^{o}\left(x_{1}+2 x_{2}\right)+F_{3}^{o}\left(x_{1}-2 x_{2}\right)+F_{4}^{o}\left(x_{1}\right)=4 a_{1}\left(x_{1}\right)+4 a_{2}\left(x_{2}\right)+4 a_{3}\left(-x_{2}\right) .
$$

Now, we rearrange the previous equation to the equation

$$
F_{2}^{o}\left(x_{1}+2 x_{2}\right)+F_{3}^{o}\left(x_{1}-2 x_{2}\right)=4 a_{1}\left(x_{1}\right)+4 a_{2}\left(x_{2}\right)-4 a_{3}\left(x_{2}\right)-F_{1}^{o}\left(x_{1}\right)-F_{4}^{o}\left(x_{1}\right)
$$

From this, we obtain the equation

$$
F_{2}^{o}\left(x_{1}+2 x_{2}\right)+F_{3}^{o}\left(x_{1}-2 x_{2}\right)=\left(4 a_{1}-F_{1}^{o}-F_{4}^{o}\right)\left(x_{1}\right)+\left(4 a_{2}-4 a_{3}\right)\left(x_{2}\right) .
$$

Hence, we get the equation

$$
F_{2}^{o}\left(x_{1}+2 x_{2}\right)+F_{3}^{o}\left(x_{1}-2 x_{2}\right)=2\left(2 a_{1}-\frac{F_{1}^{o}}{2}-\frac{F_{4}^{o}}{2}\right)\left(x_{1}\right)+2\left(a_{2}-a_{3}\right)\left(2 x_{2}\right)
$$

Applying Theorem 1.1 again, there exists an/additive function $a_{4}: X \rightarrow Y$ such

$$
\begin{equation*}
F_{2}^{o}=a_{1}-a_{4}+a_{2}-a_{3}, F_{3}^{o}=a_{1}-a_{4}-a_{2}+a_{3}, 2 a_{1}-\frac{F_{1}^{o}}{2}-\frac{F_{4}^{o}}{2}=a_{1}-a_{4} \tag{2.9}
\end{equation*}
$$

From (2.6), (2.8), and (2.9), we have

$$
\begin{aligned}
& F_{1}^{o}=a_{1}+a_{2}+a_{3}+a_{4}, F_{2}^{o}=a_{1}+a_{2}-a_{3}-a_{4}, F_{3}^{o}=a_{1}-a_{2}+a_{3}-a_{4}, \\
& F_{4}^{o}=a_{1}-a_{2}-a_{3}+a_{4}, F_{5}^{o}=a_{1}, F_{6}^{o}=a_{2}, F_{7}^{o}=a_{3} .
\end{aligned}
$$

Now, we consider (2.1) for the F_{i}^{e} 's:

$$
\begin{align*}
F_{1}^{e}\left(x_{1}+x_{2}+x_{3}\right)+F_{2}^{e}\left(x_{1}+x_{2}-x_{3}\right)+ & F_{3}^{e}\left(x_{1}-x_{2}+x_{3}\right)+F_{4}^{e}\left(x_{1}-x_{2}-x_{3}\right) \\
& =4 F_{5}^{e}\left(x_{1}\right)+4 F_{6}^{e}\left(x_{2}\right)+4 F_{7}^{e}\left(x_{3}\right) . \tag{2.10}
\end{align*}
$$

By letting $x_{3}=0$ in (2.10), we obtain

$$
\left(F_{1}^{e}+F_{2}^{e}\right)\left(x_{1}+x_{2}\right)+\left(F_{3}^{e}+F_{4}^{e}\right)\left(x_{1}-x_{2}\right)=2\left(2 F_{5}^{e}\right)\left(x_{1}\right)+2\left(2 F_{6}^{e}\right)\left(x_{2}\right) .
$$

Hence, by Theorem 1.1 again and since the F_{i}^{e} 's are even and $F_{i}^{e}(0)=0$, there exists a quadratic function $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
F_{1}^{e}+F_{2}^{e}=2 Q, F_{3}^{e}+F_{4}^{e}=2 Q, 2 F_{5}^{e}=2 Q, 2 F_{6}^{e}=2 Q . \tag{2.11}
\end{equation*}
$$

Then let $x_{2}=0$ in (2.10), and using Theorem 1.1, we get

$$
\begin{equation*}
F_{1}^{e}+F_{3}^{e}=2 Q, F_{2}^{e}+F_{4}^{e}=2 Q, 2 F_{7}^{e}=2 Q . \tag{2.12}
\end{equation*}
$$

Analogously, by letting $x_{1}=0$ in (2.10), we have

$$
\begin{equation*}
F_{1}^{e}+F_{4}^{e}=2 Q, F_{2}^{e}+F_{3}^{e}=2 Q . \tag{2.13}
\end{equation*}
$$

Thus, from (2.11), (2.12), (2.13), we get

$$
F_{1}^{e}=F_{2}^{e}=F_{3}^{e}=F_{4}^{e}=F_{5}^{e}=F_{6}^{e}=F_{7}^{e}=Q .
$$

Conversely, if there exist a quadratic function $Q: X \rightarrow Y$, additive functions $a_{i}: X \rightarrow Y(i=1, \ldots, 4)$, and constants $c_{i} \in Y(i=1, \ldots, 7)$ which satisfy (2.2) and (2.3), it is obvious that f_{i} 's satisfy the functional equation (2.1).

จุหาลงกรณ์มหาวิทยาลัย

CHAPTER III

SOLUTIONS OF 4-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATION OF PEXIDER TYPE

In this chapter, we consider the equation (1.4)

$$
\sum_{i=1}^{2^{n-1}} f_{i}\left(\sum_{j=1}^{n} \sigma_{i j} x_{j}\right)=2^{n-1} \sum_{j=1}^{n} g_{j}\left(x_{j}\right)
$$

when $\mathrm{n}=4$, i.e. the equation takes the form

$$
\begin{align*}
& f_{1}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)+f_{2}\left(x_{1}+x_{2}+x_{3}-x_{4}\right)+f_{3}\left(x_{1}+x_{2}-x_{3}+x_{4}\right)+ \\
& f_{4}\left(x_{1}+x_{2}-x_{3}-x_{4}\right)+f_{5}\left(x_{1}-x_{2}+x_{3}+x_{4}\right)+f_{6}\left(x_{1}-x_{2}+x_{3}-x_{4}\right)+ \\
& f_{7}\left(x_{1}-x_{2}-x_{3}+x_{4}\right)+f_{8}\left(x_{1}-x_{2}-x_{3}-x_{4}\right) \\
& =8 f_{9}\left(x_{1}\right)+8 f_{10}\left(x_{2}\right)+8 f_{11}\left(x_{3}\right)+8 f_{12}\left(x_{4}\right) \tag{3.1}
\end{align*}
$$

(Here, we replace g_{1} with f_{9}, g_{2} with f_{10}, g_{3} with f_{11}, and g_{4} with f_{12} for the ease of the notation indexing in the proof.)

It is interesting that the case $n=4$ poses much harder difficulties not seen in the previous case. In particular, there are even part of f_{i} 's, for some i, that do not directly satisfy the quadratic equation. But the enough relations between them, we are able to resolve the problem in Lemma 3.2. Again with the appropriate substitutions, Lemma 3.2 and Theorem 2.1 , we finally proved the Theorem 3.1 and therefore obtained the general solutions for the equation (1.4) in the case

Theorem 3.1. Let X and Y be vector spaces over fields of characteristic different from 2. The functions $f_{i}: X \rightarrow Y(i=1, \ldots, 12)$, satisfy the functional equation (3.1) for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$ if and only if there exist quadratic functions Q_{1}, Q_{2} : $X \rightarrow Y$, additive functions $a_{i}: X \rightarrow Y(i=1, \ldots, 8)$, and constants $c_{i} \in Y(i=$ $1, \ldots, 12)$ such that

$$
\begin{align*}
& f_{1}(x)= Q_{1}(x)+a_{1}(x)+a_{2}(x)+a_{3}(x)+a_{4}(x)+a_{5}(x)+a_{6}(x)+a_{7}(x)+a_{8}(x)+c_{1}, \\
& f_{2}(x)= Q_{2}(x)+a_{1}(x)+a_{2}(x)+a_{3}(x)-a_{4}(x)-a_{6}(x)-a_{7}(x)-a_{8}(x)+c_{2}, \\
& f_{3}(x)= Q_{2}(x)+a_{1}(x)+a_{2}(x)-a_{3}(x)+a_{4}(x)-a_{5}(x)+a_{6}(x)-a_{7}(x)-a_{8}(x)+c_{3}, \\
& f_{4}(x)= Q_{1}(x)+a_{1}(x)+a_{2}(x)-a_{3}(x)-a_{4}(x)-a_{6}(x)+a_{7}(x)+a_{8}(x)+c_{4}, \\
& f_{5}(x)= Q_{2}(x)+a_{1}(x)-a_{2}(x)+a_{3}(x)+a_{4}(x)-a_{6}(x)-a_{7}(x)+a_{8}(x)+c_{5}, \\
& f_{6}(x)= Q_{1}(x)+a_{1}(x)-a_{2}(x)+a_{3}(x)-a_{4}(x)-a_{5}(x)+a_{6}(x)+a_{7}(x)-a_{8}(x)+c_{6}, \\
& f_{7}(x)= Q_{1}(x)+a_{1}(x)-a_{2}(x)-a_{3}(x)+a_{4}(x)-a_{6}(x)+a_{7}(x)-a_{8}(x)+c_{7}, \\
& f_{8}(x)= Q_{2}(x)+a_{1}(x)-a_{2}(x)-a_{3}(x)-a_{4}(x)+a_{5}(x)+a_{6}(x)-a_{7}(x)+a_{8}(x)+c_{8}, \\
& f_{9}(x)= \frac{Q_{1}}{2}(x)+\frac{Q_{2}}{2}(x)+a_{1}(x)+c_{9}, \tag{3.2}\\
& f_{10}(x)= \frac{Q_{1}}{2}(x)+\frac{Q_{2}}{2}(x)+a_{2}(x)+c_{10}, \\
& f_{11}(x)= \frac{Q_{1}}{2}(x)+\frac{Q_{2}}{2}(x)+a_{3}(x)+c_{11}, \\
& f_{12}(x)= \frac{Q_{1}}{2}(x)+\frac{Q_{2}}{2}(x)+a_{4}(x)+c_{12} \\
& \text { with }
\end{align*}
$$

Before proving Theorem 3.1, we need the following lemma:
Lemma 3.2. Let X and Y be vector spaces over fields of characteristic different
from 2. Let $Q: X \rightarrow Y$ be a quadratic function. The even functions F_{1} and
$F_{2}: X \rightarrow Y$ such that $F_{1}(0)=0=F_{2}(0)$ and satisfy the equations

$$
\begin{align*}
& F_{1}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)+F_{2}\left(x_{1}+x_{2}+x_{3}-x_{4}\right)+F_{2}\left(x_{1}+x_{2}-x_{3}+x_{4}\right)+ \\
& F_{1}\left(x_{1}+x_{2}-x_{3}-x_{4}\right)+F_{2}\left(x_{1}-x_{2}+x_{3}+x_{4}\right)+F_{1}\left(x_{1}-x_{2}+x_{3}-x_{4}\right)+ \\
& F_{1}\left(x_{1}-x_{2}-x_{3}+x_{4}\right)+F_{2}\left(x_{1}-x_{2}-x_{3}-x_{4}\right) \\
& =8 Q\left(x_{1}\right)+8 Q\left(x_{2}\right)+8 Q\left(x_{3}\right)+8 Q\left(x_{4}\right) \tag{3.4}
\end{align*}
$$

and

$$
\begin{equation*}
F_{1}+F_{2}=2 Q \tag{3.5}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$ if and only if there exist quadratic functions Q_{1}, Q_{2} : $X \rightarrow Y$ such that $F_{1}=Q_{1}, F_{2}=Q_{2}$ and $Q_{1}+Q_{2}=2 Q$.

Proof. First, suppose that F_{1}, F_{2} satisfy the equations (3.4) and (3.5). Consider the equation

$$
\begin{equation*}
Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y) \tag{3.6}
\end{equation*}
$$

If we let $x=0=y$ in (3.6), we get $Q(0)=0$. And if we let $x=y$ in (3.6), we get $Q(2 x)=4 Q(x)$. Putting $x_{1}=x_{2}=x_{3}=x_{4}=\frac{x}{2}$ in (3.4) gives

$$
F_{1}(2 x)+4 F_{2}(x)=32 Q\left(\frac{x}{2}\right) .
$$

Replacing F_{2} by $2 Q-F_{1}$ in the previous equation, we have

$$
\begin{equation*}
F_{1}(2 x)-4 F_{1}(x)=32 Q\left(\frac{x}{2}\right)-8 Q(x) \tag{3.7}
\end{equation*}
$$

From (3.7) and the fact that $Q(2 x)=4 Q(x)$, we get

$$
\begin{equation*}
F_{1}(2 x)=4 F_{1}(x) \tag{3.8}
\end{equation*}
$$

$$
\begin{align*}
& \text { Now, putting } x_{1}=x, x_{2}=y, x_{3}=\frac{x+y}{2}, x_{4}=\frac{x+y}{2} \text { in (3.4) yields } \\
& \begin{aligned}
F_{1}(2 x+2 y)+2 F_{1}(x-y)+2 F_{2}(x+y)+ & F_{2}(2 x)+F_{2}(-2 y) \\
& =8 Q(x)+8 Q(y)+16 Q\left(\frac{x+y}{2}\right) .
\end{aligned}
\end{align*}
$$

Substituting F_{2} by $2 Q-F_{1}$ in (3.9), we have

$$
\begin{array}{r}
F_{1}(2 x+2 y)+2 F_{1}(x-y)+4 Q(x+y)-2 F_{1}(x+y)+2 Q(2 x)-F_{1}(2 x)+ \\
2 Q(-2 y)-F_{1}(-2 y)=8 Q(x)+8 Q(y)+16 Q\left(\frac{x+y}{2}\right) \tag{3.10}
\end{array}
$$

Applying (3.8) and properties of Q to the equation (3.10), we obtain

$$
\begin{array}{r}
4 F_{1}(x+y)+2 F_{1}(x-y)+4 Q(x+y)-2 F_{1}(x+y)+8 Q(x)-4 F_{1}(x)+ \\
8 Q(y)-4 F_{1}(y)=8 Q(x)+8 Q(y)+4 Q(x+y)
\end{array}
$$

From the previous equation, we get

$$
\begin{equation*}
2 F_{1}(x+y)+2 F_{1}(x-y)=4 F_{1}(x)+4 F_{1}(y) \tag{3.11}
\end{equation*}
$$

Divide (3.11) by 2 , we have

$$
F_{1}(x+y)+F_{1}(x-y)=2 F_{1}(x)+2 F_{1}(y)
$$

Thus F_{1} is a quadratic function. Since $F_{2}=2 Q-F_{1}$, we have F_{2} is also a quadratic function. Therefore, there exist quadratic functions Q_{1}, Q_{2} such that $F_{1}=Q_{1}$ and $F_{2}=Q_{2}$.

Conversely, if there exist quadratic functions $Q_{1}, Q_{2}: X \rightarrow Y$ such that $F_{1}=$ $Q_{1}, F_{2}=Q_{2}$, and $Q_{1}+Q_{2}=2 Q$, it is not hard to see that Q_{i} 's satisfy the equations (3.4) and (3.5), and $F_{1}(0)=0=F_{2}(0)$.

Now, we can prove Theorem 3.1 as follows:

Proof. First, assume that f_{i} 's are solutions of (3.1). Define $c_{i}=f_{i}(0)$ for $i=$ $1, \ldots, 12$. By substituting $x_{1}=x_{2}=x_{3}=x_{4}=0$ in (3.1), we see that the c_{i} 's satisfy the relation (3.3). For $i=1, \ldots, 12$, let $F_{i}(x)=f_{i}(x)-c_{i}$. It is clear from (3.1) and (3.3) that the F_{i} 's satisfy the functional equation (3.1) with $F_{i}(0)=0$.

Again, denoted by $F_{i}^{e}(x)$ and $F_{i}^{o}(x)$ the even part and the odd part of $F_{i}(x)$, respectively. It is easy to see that the F_{i}^{o} 's and the F_{i}^{e} 's also satisfy (3.1). Next,
we consider (3.1) for the F_{i}^{o} 's:

$$
\begin{align*}
& F_{1}^{o}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)+F_{2}^{o}\left(x_{1}+x_{2}+x_{3}-x_{4}\right)+F_{3}^{o}\left(x_{1}+x_{2}-x_{3}+x_{4}\right)+ \\
& F_{4}^{o}\left(x_{1}+x_{2}-x_{3}-x_{4}\right)+F_{5}^{o}\left(x_{1}-x_{2}+x_{3}+x_{4}\right)+F_{6}^{o}\left(x_{1}-x_{2}+x_{3}-x_{4}\right)+ \\
& F_{7}^{o}\left(x_{1}-x_{2}-x_{3}+x_{4}\right)+F_{8}^{o}\left(x_{1}-x_{2}-x_{3}-x_{4}\right) \\
& =8 F_{9}^{o}\left(x_{1}\right)+8 F_{10}^{o}\left(x_{2}\right)+8 F_{11}^{o}\left(x_{3}\right)+8 F_{12}^{o}\left(x_{4}\right) . \tag{3.12}
\end{align*}
$$

Put $x_{4}=0$ in (3.12) to obtain a quadratic equation of Pexider type,

$$
\begin{aligned}
& \left(F_{1}^{o}+F_{2}^{o}\right)\left(x_{1}+x_{2}+x_{3}\right)+\left(F_{3}^{o}+F_{4}^{o}\right)\left(x_{1}+x_{2}-x_{3}\right)+\left(F_{5}^{o}+F_{6}^{o}\right)\left(x_{1}-x_{2}+x_{3}\right)+ \\
& \left(F_{7}^{o}+F_{8}^{o}\right)\left(x_{1}-x_{2}-x_{3}\right)=4\left(2 F_{9}^{o}\right)\left(x_{1}\right)+4\left(2 F_{10}^{o}\right)\left(x_{2}\right)+4\left(2 F_{11}^{o}\right)\left(x_{3}\right)
\end{aligned}
$$

By Theorem 2.1 and since F_{i}^{o} 's are odd functions, there exist additive functions $a_{1}, a_{2}, a_{3}, a_{5}: X \rightarrow Y$ such that

$$
\begin{align*}
& F_{1}^{o}+F_{2}^{o}=2 a_{1}+2 a_{2}+2 a_{3}+a_{5}, F_{3}^{o}+F_{4}^{o}=2 a_{1}+2 a_{2}-2 a_{3}-a_{5}, \\
& F_{5}^{o}+F_{6}^{o}=2 a_{1}-2 a_{2}+2 a_{3}-a_{5}, F_{7}^{o}+F_{8}^{o}=2 a_{1}-2 a_{2}-2 a_{3}+a_{5}, \\
& F_{9}^{o}=a_{1}, F_{10}^{o}=a_{2}, F_{11}^{o}=a_{3} . \tag{3.13}
\end{align*}
$$

By putting $x_{3}=0$ in (3.12) and applying Theorem 2.1 again, there exist additive functions $a_{4}, a_{6}: X \rightarrow Y$ such that

$$
\begin{align*}
& F_{1}^{o}+F_{3}^{o}=2 a_{1}+2 a_{2}+2 a_{4}+2 a_{6}, F_{2}^{o}+F_{4}^{o}=2 a_{1}+2 a_{2}-2 a_{4}-2 a_{6}, \\
& F_{5}^{o}+F_{7}^{o}=2 a_{1}-2 a_{2}+2 a_{4}-2 a_{6}, F_{6}^{o}+F_{8}^{o}=2 a_{1}-2 a_{2}-2 a_{4}+2 a_{6}, \\
& F_{12}^{o}=a_{4} . \tag{3.14}
\end{align*}
$$

Similarly, by letting $x_{1}=0$, there exists an additive function $a_{7}: X \rightarrow Y$ such that

$$
\begin{align*}
& F_{1}^{o}-F_{8}^{o}=2 a_{2}+2 a_{3}+2 a_{4}+2 a_{7}, F_{2}^{o}-F_{7}^{o}=2 a_{2}+2 a_{3}-2 a_{4}-2 a_{7}, \\
& F_{3}^{o}-F_{6}^{o}=2 a_{2}-2 a_{3}+2 a_{4}-2 a_{7}, F_{4}^{o}-F_{5}^{o}=2 a_{2}-2 a_{3}-2 a_{4}+2 a_{7} . \tag{3,15}
\end{align*}
$$

From (3.14) and (3.15), we obtain

$$
\begin{equation*}
F_{1}^{o}+F_{6}^{o}=2 a_{1}+2 a_{3}+2 a_{6}+2 a_{7} \quad \text { and }, \quad F_{3}^{o}+F_{8}^{o}=2 a_{1}-2 a_{3}+2 a_{6}-2 a_{7} . \tag{3.16}
\end{equation*}
$$

Then putting $x_{4}=-x_{2}$ in (3.12), we get

$$
\begin{aligned}
& F_{1}^{o}\left(x_{1}+x_{3}\right)+F_{2}^{o}\left(x_{1}+2 x_{2}+x_{3}\right)+F_{3}^{o}\left(x_{1}-x_{3}\right)+F_{4}^{o}\left(x_{1}+2 x_{2}-x_{3}\right)+ \\
& F_{5}^{o}\left(x_{1}-2 x_{2}+x_{3}\right)+F_{6}^{o}\left(x_{1}+x_{3}\right)+F_{7}^{o}\left(x_{1}-2 x_{2}-x_{3}\right)+F_{8}^{o}\left(x_{1}-x_{3}\right) \\
& =8 F_{9}^{o}\left(x_{1}\right)+8 F_{10}^{o}\left(x_{2}\right)+8 F_{11}^{o}\left(x_{3}\right)+8 F_{12}^{o}\left(-x_{2}\right) .
\end{aligned}
$$

Next, we rearrange the previous equation to the equation

$$
\begin{aligned}
& F_{2}^{o}\left(x_{1}+2 x_{2}+x_{3}\right)+F_{4}^{o}\left(x_{1}+2 x_{2}-x_{3}\right)+F_{5}^{o}\left(x_{1}-2 x_{2}+x_{3}\right)+ \\
& F_{7}^{o}\left(x_{1}-2 x_{2}-x_{3}\right)=8 F_{9}^{o}\left(x_{1}\right)+8 F_{10}^{o}\left(x_{2}\right)+8 F_{11}^{o}\left(x_{3}\right)+ \\
& 8 F_{12}^{o}\left(-x_{2}\right)-\left(F_{1}^{o}+F_{6}^{o}\right)\left(x_{1}+x_{3}\right)-\left(F_{3}^{o}+F_{8}^{o}\right)\left(x_{1}-x_{3}\right) .
\end{aligned}
$$

By using (3.16), we get

$$
\begin{align*}
& F_{2}^{o}\left(x_{1}+2 x_{2}+x_{3}\right)+F_{4}^{o}\left(x_{1}+2 x_{2}-x_{3}\right)+F_{5}^{o}\left(x_{1}-2 x_{2}+x_{3}\right)+F_{7}^{o}\left(x_{1}-2 x_{2}-x_{3}\right) \\
& =8 F_{9}^{o}\left(x_{1}\right)+8 F_{10}^{o}\left(x_{2}\right)+8 F_{11}^{o}\left(x_{3}\right)+8 F_{12}^{o}\left(-x_{2}\right)-\left(2 a_{1}+2 a_{3}+2 a_{6}+2 a_{7}\right)\left(x_{1}+x_{3}\right)- \\
& \left(2 a_{1}-2 a_{3}+2 a_{6}-2 a_{7}\right)\left(x_{1}-x_{3}\right) . \tag{3.17}
\end{align*}
$$

Now, we can transform (3.17) to the equation

$$
\begin{array}{r}
F_{2}^{o}\left(x_{1}+2 x_{2}+x_{3}\right)+F_{4}^{o}\left(x_{1}+2 x_{2}-x_{3}\right)+F_{5}^{o}\left(x_{1}-2 x_{2}+x_{3}\right)+F_{7}^{o}\left(x_{1}-2 x_{2}-x_{3}\right) \\
=4\left(a_{1}-a_{6}\right)\left(x_{1}\right)+4\left(a_{2}-a_{4}\right)\left(2 x_{2}\right)+4\left(a_{3}-a_{7}\right)\left(x_{3}\right) . \tag{3.18}
\end{array}
$$

By Theorem 2.1, there exists an additive function $a_{8}: X \rightarrow Y$ such that

$$
\begin{align*}
& F_{2}^{o}=a_{1}-a_{6}+a_{2}-a_{4}+a_{3}-a_{7}-a_{8}, F_{4}^{o}=a_{1}-a_{6}+a_{2}-a_{4}-a_{3}+a_{7}+a_{8}, \\
& F_{5}^{o}=a_{1}-a_{6}-a_{2}+a_{4}+a_{3}-a_{7}+a_{8}, F_{7}^{o}=a_{1}-a_{6}-a_{2}+a_{4}-a_{3}+a_{7}-a_{8} \tag{3.19}
\end{align*}
$$

From (3.13), (3.14), and (3.19), we obtain

$$
\begin{aligned}
& F_{1}^{o}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}+a_{8}, F_{2}^{o}=a_{1}+a_{2}+a_{3}-a_{4}-a_{6}-a_{7}-a_{8}, \\
& F_{3}^{o}=a_{1}+a_{2}-a_{3}+a_{4}-a_{5}+a_{6}-a_{7}-a_{8}, F_{4}^{o}=a_{1}+a_{2}-a_{3}-a_{4}-a_{6}+a_{7}+a_{8}, \\
& F_{5}^{o}=a_{1}-a_{2}+a_{3}+a_{4}-a_{6}-a_{7}+a_{8}, F_{6}^{o}=a_{1}-a_{2}+a_{3}-a_{4}-a_{5}+a_{6}+a_{7}-a_{8}, \\
& F_{7}^{o}=a_{1}-a_{2}-a_{3}+a_{4}-a_{6}+a_{7}-a_{8}, F_{8}^{o}=a_{1}-a_{2}-a_{3}-a_{4}+a_{5}+a_{6}-a_{7}+a_{8}, \\
& F_{9}^{o}=a_{1}, F_{10}^{o}=a_{2}, F_{11}^{o}=a_{3}, F_{12}^{o}=a_{4} .
\end{aligned}
$$

Now, we consider (3.1) for the F_{i}^{e} 's:

$$
\begin{align*}
& F_{1}^{e}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)+F_{2}^{e}\left(x_{1}+x_{2}+x_{3}-x_{4}\right)+F_{3}^{e}\left(x_{1}+x_{2}-x_{3}+x_{4}\right)+ \\
& F_{4}^{e}\left(x_{1}+x_{2}-x_{3}-x_{4}\right)+F_{5}^{e}\left(x_{1}-x_{2}+x_{3}+x_{4}\right)+F_{6}^{e}\left(x_{1}-x_{2}+x_{3}-x_{4}\right)+ \\
& F_{7}^{e}\left(x_{1}-x_{2}-x_{3}+x_{4}\right)+F_{8}^{e}\left(x_{1}-x_{2}-x_{3}-x_{4}\right) \\
& =8 F_{9}^{e}\left(x_{1}\right)+8 F_{10}^{e}\left(x_{2}\right)+8 F_{11}^{e}\left(x_{3}\right)+8 F_{12}^{e}\left(x_{4}\right) . \tag{3.20}
\end{align*}
$$

Since the F_{i}^{e} 's are even and $F_{i}^{e}(0)=0$, by letting $x_{4}=0$ in (3.20) and using Theorem 2.1, there exists a quadratic function $Q: X \rightarrow Y$ with

$$
\begin{align*}
& F_{1}^{e}+F_{2}^{e}=2 Q, F_{3}^{e}+F_{4}^{e}=2 Q, F_{5}^{e}+F_{6}^{e}=2 Q, F_{7}^{e}+F_{8}^{e}=2 Q \\
& 2 F_{9}^{e}=2 Q, 2 F_{10}^{e}=2 Q, 2 F_{11}^{e}=2 Q \tag{3.21}
\end{align*}
$$

Put $x_{3}=0$ in (3.20) and using Theorem 2.1 again, we get

$$
\begin{equation*}
F_{1}^{e}+F_{3}^{e}=2 Q, F_{2}^{e}+F_{4}^{e}=2 Q, F_{5}^{e}+F_{7}^{e}=2 Q, F_{6}^{e}+F_{8}^{e}=2 Q, 2 F_{12}^{e}=2 Q \tag{3.22}
\end{equation*}
$$

Similarly, letting $x_{2}=0$ in (3.20) gives

$$
\begin{equation*}
F_{1}^{e}+F_{5}^{e}=2 Q, F_{2}^{e}+F_{6}^{e}=2 Q, F_{3}^{e}+F_{7}^{e}=2 Q, F_{4}^{e}+F_{8}^{e}=2 Q \tag{3.23}
\end{equation*}
$$

Analogously, putting $x_{1}=0$ in (3.20) yields

$$
\begin{equation*}
F_{1}^{e}+F_{8}^{e}=2 Q, F_{2}^{e}+F_{7}^{e}=2 Q, F_{3}^{e}+F_{6}^{e}=2 Q, F_{4}^{e}+F_{5}^{e}=2 Q \tag{3.24}
\end{equation*}
$$

From the equations $(3.21),(3.22),(3.23)$, and (3.24), we obtain

$$
\begin{align*}
& F_{1}^{e}=F_{4}^{e}=F_{6}^{e}=F_{7}^{e}, F_{2}^{e}=F_{3}^{e}=F_{5}^{e}=F_{8}^{e}, \\
& F_{1}^{e}+F_{2}^{e}=2 Q, F_{9}^{e}=Q, F_{10}^{e}=Q, F_{11}^{e}=Q, F_{12}^{e}=Q . \tag{3.25}
\end{align*}
$$

From (3.20) and (3.25), we now can apply Lemma 3.2 to get

$$
F_{1}^{e}=F_{4}^{e}=F_{6}^{e}=F_{7}^{e}=Q_{1} \quad \text { and } \quad F_{2}^{e}=F_{3}^{e}=F_{5}^{e}=F_{8}^{e}=Q_{2}
$$

where $Q_{1}, Q_{2}: X \rightarrow Y$ are quadratic functions such that $Q_{1}+Q_{2}=2 Q$.
Conversely, if there exist quadratic functions $Q_{1}, Q_{2}: X \rightarrow Y$, additive functions $a_{i}: X \rightarrow Y(i=1, \ldots, 8)$, and constants $c_{i} \in Y(i=1, \ldots, 12)$ which satisfy (3.2) and (3.3), it is obvious that f_{i} 's satisfy the functional equation (3.1).

REFERENCES

[1] Czerwik, S. Functional Equations and Inequalities in Several Variables.
Singapore: World Sciencific (2002).
[2] Jung, S. Quadratic Functional Equations of Pexider Type. Internat. J. Math. \& Math. Sci. 24 (2000): 351-359. doi=10.1155/S0161171200004075.
[3] Aczél, J. Lectures on Functional Equations and their Applications. London: Academic Press (1966).

VITA

Name Miss Preechaya Sanyatit

Date of Birth 25 October 1984

Place of Birth Bangkok, Thailand
Education B.Sc. (Mathematics), Chulalongkorn University, 2006

