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FUNDAMENTAL CONSIDERATION
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the corner forces, R, arised from the jump of twisting moments at

each corner have to be considered and can be written as
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By considering the equilibrium of foreces in the z-direction
and moments about =x- and y-axes, leads to the governing biharmonic

equation, called the "plate equation"
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Using equation (18) as the basic boundary equation, the
system of simultaneous equations are created by moving (x,y) to
the defined unknown parts of the plate such as at boundary (x,¥),
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corners (X_,¥,), column supports (x_,y_,) and along line supports
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Now rearranging equation (18) and then moving (x,y) to

the boundary (x,y), we obtain
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where @ is the included angle ( for smooth boundary point,

= 1 at the boundary point.
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Now move (x,y) to the location of each column supports ;
differentiate with respect to x ;5 differentiate with respect to y to

obtain equations (21), (22) and (23) as shown below
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Moving (x,y) to the location of line support (x_,y_) 3

)

differentiating with respect to normal direction , n,6 , and
differentiating with respect to tangential direction , t_, equations
{24), (25) and (26) are obtained.
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The influence functions of w ;only the additional from
previous study which appeared in the last term of equations (19

through (26), are stated in Appendix B.
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Equations (19) through (26) constitute (2+3L+3M) integral
equations in
- two unknown functions w, g— which are continuous functions
throughout the boundary
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