

CHAPTER II

HISTORICAL

A. Chemical Constituents of Sophora Linn.

The groups of compounds commonly found in the genus of Sophora are alkaloids and flavonoids.

List of the compounds found in various species of Sophora is shown in Table 2.1.

Table 2.1 Chemical constituents of Sophora spp.

Botanical origin	Category and chemical substance	Plant part	Reference
Sophora alopecuroides	alkaloid :		1
Linn.	aloperine	serial parts	Zhao (1980)
	of Somoton Sould	leaves, seeds	Orekhov et al. (1935)
า การ กุฬาล	D STONS HI	stems	Zhao et al. (1984)
	baptifoline	aerial parts	Monakhova et al. (1973)
	cytisine	aerial parts	Zhao (1980)
		seeds	Qi et al. (1989)
	13,14-dehydrosophoridine	-	Kuchkarov et al. (1978)
	13,14-dehydrosophoridine N-oxide	-	Kuchkarov et al. (1977)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
6. alopecuroides Linn.	alkaloid :		
	3a-hydroxysophoridine	serial parts	Monakhova et al. (1973)
	lehmannine	_	Pu et al. (1987)
	natrine	serial parts	Zhao (1980)
		leaves, seeds	Orekhov et al. (1935)
		roots	Cui, and Zhang (1986)
		stems	Zhao et al. (1984)
	matrine N-oxide	aerial parts,	Plekhanova, and Smirnov
		seeds	(1965)
	N-allylaloperine	-	Talkochev et al. (1975)
	N-hydroxy-13,14-dehydrosophoridine	<u>-</u>	Kuchkarov et al. (1978)
	N-(2-hydroxyethyl) cytisine	aerial parts	Monakhova et al. (1973)
	N-hydroxysophoridine,		Kuchkarov et al. (1978)
	N-methylaloperine		
	N-methylcytisine	aerial parts	Zhao (1980)
6.9	neosophoranine	aerial parts	Monakhova et al. (1974a)
	oxymatrine	serial parts	Zhao (1980)
		roots	/
	MUSCH MILLS	FLD 16	Cui, and Zhang (1986)
4		seeds	Qi et al. (1989)
	oxysophocarpine	roots	Cui, and Zhang (1986)
		seeds	Qi et al. (1989)
	pachycarpine	aerial parts,	Plekhanova, and Smirnova
		seeds	(1965)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
6. alopecuroides Linn	alkaloid i		
	sophocarpine	aerial parts	Zhao (1980)
		leaves, seeds	Orekhov et al. (1935)
		roots	Cui, and Zhang (1986)
		stems	Zhao et al. (1984)
	sophocarpine N-oxide	-	Kuchkarov, and
			Kushmuradov (1979)
	sophoramine	aerial parts	Zhao (1980)
		leaves	Orekhov et al. (1935)
	sophoridine	serial parts	Zhao (1980)
	A 40 (48 (48 (48 (48 (48 (48 (48 (48 (48 (48	leaves, seeds	Orekhov et al. (1935)
	202000	roots	Cui, and Zhang (1986)
		stens	Zhao et al. (1984)
	sophoridine N-oxide		Kuchkarov, and
		W.	Kushmuradov (1979)
	sophorine	แกกร	Southon, and
	E 67101181	DILLE	Buckingham (1989)
	tricrotonyltetramine	onein	Monakhova et al. (1974b)
	amino acid ;	1904	Nonakhova et al. (1574)
	alanine	leaves	Ter-Karapetyan, and
			Akopyan (1960)
	arginine, asparagine,	leaves	Ter-Karapetyan, and
	aspartic acid, glutamic acid		Akopyan (1957)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
. alopecuroides Linn.	smine scid :		
	glycine, lysine	leaves	Ter-Karapetyan, and Akopyan (1960)
	proline	leaves	Ter-Karapetyan, and Akopyan (1957)
	serine, threonine	leaves	Ter-Karapetyan, and Akopyan (1960)
	tryptophen	leaves	Ter-Karapetyan, and Akopyan (1957)
	tyrosine, valine	leaves	Ter-Karapetyan, and Akopyan (1960)
	fatty acid :		
	linoleic, oleic, palmitic	seeds	Artamonova et al. (1987
	citric, fumeric, lectic, melic,	branches, leaves,	Pakanaev, and Kattaev
P	malonic, oxalic, succinic, tartaric steroid:	roots	(1966)
จุฬา	β-sitosterol sugar :	seeds	Akramova et al. (1964)
	fructose	leaves	Ter-Karapetyan, and Akopyan (1960)
	galactose	seeds	Huang et al. (1984)
	glucose	leaves	Ter-Karapetyan, and Akopyan (1960)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. alopecuroides Linn.	sugar :		
	nannose	seeds	Huang et al. (1984)
	tetraterpenoid :		
	a-cerotene	seeds	Akramova et al. (1964)
Vexibia alopecuroides	flavonoid:		
Rafin.)	isobavachin, trifolirhizin	roots	Yusupova et al. (1984)
	vexibidin, vexibinol	roots	Batirov et al. (1985)
G. chrysophylla Seem.	alkaloid :		
	annodendrine	leaves, stems	Murakoshi et al. (1984)
	(-)-anagyrine	leaves, seeds,	Murakoshi et al. (1984)
		stems	
	(-)-baptifoline	seeds, stems	Murakoshi et al. (1984)
	(-)-cytisine	bark, leaves,	Murakoshi et al. (1984)
		seeds, stems	
~	5,6-dehydrolupanine	leaves, stems	Murakoshi et al. (1984)
[9]	epilamprolobine	stems	Murakoshi et al. (1984)
0.000.0	epilamprolobine N-oxide	leaves, seeds,	Murakoshi et al. (1984)
- J.M. 19	MUSCINN I	stems	
	kuraranine	leaves, stems	Murakoshi et al. (1984)
	lamprolobine	stems	Murakoshi et al. (1984)
	(-)-lupanine	leaves, stems	Murakoshi et al. (1984)
	(+)-mamanine	bark, leaves,	Murakoshi et al. (1984)
		stems	

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. chrysophylla Seem.	alkaloid:		
	(-)-mamanine N-oxide	leaves	Murakoshi et al. (1984)
	(+)-matrine	bark, leaves,	Murakoshi et al. (1984)
		seeds, stems	
	(+)-matrine N-oxide	leaves, seeds,	Murakoshi et al. (1984)
		stens	
	(-)-N-formylcytisine	stens	Murakoshi et al. (1984)
	(-)-N-methylcytisine	leaves, seeds,	Murakoshi et al. (1984)
		stems	and the state of t
	17-oxolupanine	leaves	Murakoshi et al. (1984)
	(-)-pohakuline	bark, leaves,	Murakoshi et al. (1984)
		stems	
	(-)-rhombifoline	seeds	Murakoshi et al. (1984)
	sophocrysine	seeds	Briggs, and Russell
91	Banbadan		(1942)
. denudata Bory	alkaloid :	97.910 A	31
	anagyrine, cytisine heptifoline,	seeds	Faugeras et al. (1973)
	α-matrine, N-methylcytisine,		
	oxymatrine		
		All Maries	

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
6. flavescens Ait.	alkaloid :		
	(+)-sllomatrine	roots	Murakoshi et al. (1982)
	anagyrine	aerial parts	Ueno et al. (1978b)
	(-)-anagyrine	flowers, roots,	Murakoshi et al. (1982)
		seeds	
	baptifoline	serial parts	Ueno et al. (1978b)
	(-)-baptifoline		Murakoshi et al. (1982a
	(-)-7,11-dehydrometrine	seeds flowers	Murakoshi et al. (1982)
	(-)-7,8-dehydrosophoramine	merial parts	Ueno et al. (1978b)
	(-)-13,14-dehydrosophoridine	aerial parts	Murakoshi et al. (1982a
	(+)-5α,9α-dihydroxymatrine	flowers, seeds	Murakoshi et al. (1982)
	(+)-9α-hydroxymatrine	aerial parts,	Murakoshi et al. (1982s
	4	seeds	
	(-)-9α-hydroxysophocarpine,	aerial parts	Murakoshi et al. (1982a
ର	(-)-9a-hydroxysophocarpine N-	แกกส	
	oxide	25-11-56	
	(-)-9α-hydroxysophoramine	flowers,	Murakoshi et al. (1982a
	INITORON ON ALL	aerial parts	
	isokuraranine	flowers	Murakoshi et al. (1982a
	(+)-isometrine	roots	Ueno et al. (1975)
	(+)-kuraramine	flowers	Murakoshi et al. (1981)
	(+)-lehmannine	aerial parts	Murakoshi et al. (1982a
	lupanine, (+)-mamanine	flowers	Murakoshi et al. (1982a

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
6. flavescens Ait.	alkaloid :		
	netrine	serial parts	Ueno et al. (1978b)
	(+)-matrine	flowers, roots,	Murakoshi et al. (1982a
	matrine N-oxide	merial parts	Ueno et al. (1978b)
	(+)-matrine N-oxide,	flowers, roots,	Murakoshi et al. (1982a
	(-)-N-methylcytisine	seeds	
	(-)-N-methylcytisine	aerial parts	Ueno et al. (1978b)
	oxymetrine	aerial parts	Wei et al. (1988)
		roots	Bai et al. (1982)
	oxysophocarpine	roots	Cui, and Zhang (1986)
	(-)-rhombifoline	flowers	Murakoshi et al. (1982a
	(-)-sophocarpine,	serial parts	Ueno et al. (1978b)
	(+)-sophocarpine N-oxide	flowers, roots,	Murakoshi et al. (1982a
	4	seeds	
	(-)-sophoramine, sophoramol	serial parts	Ueno et al. (1978b)
	(-)-sophoramine, (+)-sophoramol,	flowers, roots	Murakoshi et al. (1982a
	(+)-sophoranol N-oxide		
	sophoridine	roots	Bai et al. (1982)
	(-)-sophoridine	aerial parts	Murakoshi et al. (1982a
	alkylchromone :		
	2-heneicosyl-5,7-dihydroxy-6,8-	serial parts	Ueno et al. (1978a)
	dimethylchromone,		
	2-tricosyl-5,7-dihydroxy-6,8-		
	dimethoxychromone		

Botanical origin	Category and chemical substance	Plant part	Reference
S. flavescens Ait.	benzoquinone : kushequinoine A	roots	Wu et al. (1986)
	flavonoid :		
	formononetin, isokurarinone, kuraridinol, kurarinol	roots	Kyogoku et al. (1973a)
	kushenine, kushenol A,	roots	Wu et al. (1985a)
	kushenol B, kushenol C,		
	kushenol E, kushenol F,	roots	Wu et al. (1985b)
	kushenol G, kushenol H,		
	kushenol kushenol K,	roots	Wu et al. (1985c)
	kushenol L, kushenol M		
	kushenol N, kushenol O	roots	Wu et al. (1986)
	neokurarinol, norkurarinol	roots	Kyogoku et al. (1973a)
	5-0-methylkushenol C	~	Yagi et al. (1989)
	trifolirhizin Saponin :	Bana	Yagi et al. (1989)
S. angustifolia Sieb	sophoraflavoside, soyasaponin	roots	Yoshikawa et al. (1985)
et Zucc.)	arachidic, linoleic, myristic,	callus tissue	Kashimoto (1957)
	oleic, palmitic, stearic		
	flavonoid ;		
	isoanhydroicaritin,	roots	Komatsu et al. (1970d)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. angustifolia Sieb	flavonoid:		
et Zucc.)	kuraridin, kurarinone	roots	Hatayana, and Komatsu
	luteolin 7-0-glucoside	leaves	Nakaoki et al. (1955)
	1-maackiain	callus tissue	Furuya, and Ikuta (1968
		roots	Honda, and Tabata (1982
	noranhydroicaritin	roots	Komatsu et al. (1970d)
	norkurarinone	roots	Hatayana, and Komatsu
	pterocarpin	callus tissue	Furuya, and Ikuta (1968
	xanthohumo1	roots	Komatsu et al. (1970d)
. franchetiana Dunn	alkaloid :		
	(+)-ammodendrine	aerial parts	Ohmiya et al. (1981)
	(-)-anagyrine	aerial parts,	Ohmiya et al. (1981)
ศูน	ยวิทยทรัพย	leaves, seeds,	
9		stens	
จหาล	(-)-baptifoline, cytisine,	aerial parts,	Ohmiya et al. (1981)
٩	(-)-N-formyl cytisine	leaves, roots,	
		seeds, stems	
	(-)-rhombifoline	aerial parts,	Ohmiya et al. (1981)
		leaves, seeds,	
		stems	

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. franchetiana Dunn	alkaloid :		
	(-)-tsukushinamine A	serial parts	Bordner et al. (1980)
		leaves, roots,	Ohmiya et al. (1981)
		seeds, stems	
	(-)-tsukushinamine B,	serial parts	Ohmiya et al. (1981)
	tsukushinamine C		
	flavonoid:		
	(-)-4-methoxymaackiain	roots	Komatsu et al. (1981b)
	sophoracounestan A	roots	Komatsu et al. (1981a)
	sophoracoumestan B,	roots	Komatsu et al. (1981b)
	sophorafuran A		
	(+)-sophoraisoflavanone B,	roots	Komatsu et al. (1981a)
	(-)-sophorapterocarpan A	3	
S. g/auca Lesch.	alkaloid ;		
	nananine	roots, stems	Chen, and Liu (1987)
qj P	triterpene alcohol :		
	epi-lupeol, lupeol	roots, stems	Chen, and Liu (1987)
S. japonica Linn.	alkaloid :		
	cytisine	seeds	Abdusalamov et al. (1972
	lupanine	leaves	Wink et al. (1983)
	matrine, N-methylcytisine,	seeds	Abdusalamov et al. (1972

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. joponica Linn.	alkaloid: stizolamine	seeds	Yoshida, and Hasegawa
	amino acid :		
	alanine	buds	Yankov (1962)
	alanine, arginine, asparagine	fruits	Grdzelidze, and Kiknadzo
	aspartic	buds	Yankov (1962)
	aspartic, glutanic	fruits	Grdzelidze, and Kiknadz
	glutamic, glycine, histidine	buds	Yankov (1962)
	isoleucine, leucine, lysine	buds	Yankov (1962)
		fruits	Grdzelidze, and Kiknadz
	methionine	buds	Yankov (1962)
	4-methyleneglutamine,	leaves, roots	Winter and Dekker (1987
	4-nethylglutanic,	เมากร	
	2-oxo-4-methyleneglutaric		
	phenylalanine	buds	Yankov (1962)
	phenylalanine, proline, serine	fruits	Grdzelidze, and Kiknadz
	serine, threonine	buds	Yankov (1962)
	threonine, tryptophan	fruits	Grdzelidze, and Kiknadz
	tyrosine, valine	buds	Yankov (1962)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. <i>joponic</i> a Linn.	amino acid : valine	fruits	Grdzelidze, and Kiknadze
			(1971)
	fatty acid :		
	arachidic	-	Kashimoto (1954)
	linoleic, linolenic, oleic	seeds	Cornes, and Rudenco
	palmitic, stearic	-	Kashimoto (1954)
	flavanoid:		
	anhydropisatin (flemichapparin B),	roots	Komatsu et al. (1976a)
	biochanin A		
	biochanin A,	wood	Takeda et al. (1977)
	biochanin A-7-β-D-gentiobioside,		
	biochanin A-7-p-D-xyloxylglucoside		
	5,4'-dihydroxyisoflavone-7- diglucorhamnoside	Ū	Ho et al. (1984)
	5,7-dihydroxy-3',4'- methylenedioxyisoflavone	roots	Komatsu et al. (1976a)
ରଖ	genistein	fruits	Szabo et al. (1967)
	genistein-7-p-D-cellobioside	6 TI D	Ho et al. (1984)
	irisolidone	roots	Komatsu et al. (1976a)
	irisolidone,	wood	Takeda et al. (1977)
	irisolidone-7-0-glucoside		-
	isorhamnetin	buds	Ishida et al. (1989)
	isorhamnetin-3-rutinoside	flower buds	Kimura, and Yamada (1984

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
6. japonica Linn.	flavonoid:		
	kaempferol, kaempferol-3,7-diglucoside	fruits	Akhmedkhodzhaeva et al.
	kaempferol-3-rutinoside	flower buds	Kimura, and Yamada (1984
	neackiain	wood	Takeda et al. (1977)
	d-maackiain	roots	Komatsu et al. (1976a)
	d!-maackiain	leaves	Vanetten et al. (1983)
		roots	Shibata, and Nishikawa
	medicagol	1 1 -	Komatsu et al. (1978a)
	(+) medicarpin	leaves	Vanetten et al. (1983)
	pratensein	wood	Takeda et al. (1977)
	pterocarpin		Mizuno et al. (1989)
	quercetin	buds	Ishida et al. (1987)
		fruits	Akhmedkhodzhaeva et al.
	rutin		Balbaa et al. (1974)
	ลงกรณ์มหา	leaflets,	ลัย
	D1 X 1 1 0 010 0X 7 1.	pericarps,	01.60
		branches	
	rutin, sissotrin	wood	Takeda et al. (1977)
	sophojaponicin	roots	Shibata, and Nishikawa
	- Sopine Japoni to i ii	10003	(1963)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. japonica Linn.	flavonoid:	a l	
	sophorabioside,	fruits	Szabo et al. (1967)
	sophoraflavonoloside,		
	sophoricoside		
	5,7,4'-trihydroxyflavone-3-	-	Ho et al. (1984)
	rhamnodiglucoside		
	phenolic:		
	puerol A, puerol B,	roots	Shirataki et al. (1987)
	sophoraside A	10003	Shirabaki et ali (1501)
	polyalcohol:	~	
	4		
	glycerol	fruits	Grdzelidze, and Kiknadze
			(1971)
	polysaccharide:		
	galactomannan	seeds	Kooiman (1971)
	saponin :		
	azukisaponin I, azukisaponin II,	buds	Kitagawa et al. (1988)
	azukisaponin V, kaikasaponin I,		
	kaikasaponin II,		0
	kaikasaponin III, soyasaponin I,		188
	soyasaponin III		
	steroid:		
	β-sitosterol	flowers, seeds	Mitsuhashi et al. (1973)
		roots	Komatsu et al. (1976a)
	sugar :		
	fructose, glucose	nectar	Haragsim, and Macha (196

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. japonica Linn.	sugar :		
	sophorose	fruits	Clancy (1960)
	sucrose	nectar	Haragsin, and Macha (1969
S. linearifolia	alkaloids :		
Griseb.	(+)-matrine, (+)-matrine N-oxide	-	Corral et al. (1972)
	(+)-sparteine	leaves	Parente et al. (1969)
S. mollis R. Grah	alkaloid :		
	ammodendrine,	leaves, stems	Murakoshi et al. (1982b)
	(-)-anagyrine, (-)-baptifoline,		
	(-)-cytisine,		
	5,6-dehydrolupanine,		
	(-)-N-formylcytisine,		
	(-)-N-methylcytisine,		
	rhombifoline, (+)-spartein		
	flavonoid :		
	biochanin A	heart#ood	Jain, and Koul (1972)
(S. griffithii Stocks)	23222111111	near chood	bernyand nour (1512)
(3. grilliant scocks)		seeds	Karakozova et al. (1975)
	argentine		
	cytisine	aerial parts	Primukhamedov et al.
		roots, stalks	Primukhamedov et al.
		seeds	Karakozova et al. (1975)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
(S. griffithii Stocks)	alkaloid :		
	matrine	aerial parts	Primukhamedov et al.
		roots, stalks	Prinukhamedov et al.
	matrine, N-methylcytisine	seeds	Karakozova et al. (1975)
	N-methylcytisine, pachycarpine	aerial parts	Primukhamedov et al.
		roots, stalks	Primukhamedov et al.
	sophocarpine	seeds	Karakozova et al. (1975)
	sophoramine	aerial parts	Primukhamedov et al.
		roots, stalks	Primukhamedov et al.
. moorcroftiana	alkaloid:	1877	
Benth. ex Baker	matrine	fruits	Cui, and Zhang (1986)
Q W	a-matrine, oxymatrine	aerial parts	Faugeras et al. (1976)
	oxymatrine, oxysophocarpine,	fruits	Cui, and Zhang (1986)
	sophocarpine	aerial parts	Faugeras et al. (1976)
	calycosin	roots	Shirataki et al. (1988)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. moorcroftiana Benth. ex Baker	flavonoid: euchrestaflavanone A, licoisoflavone A	-	Mizuno et al. (1989)
	licoisoflavone B, 1-maackiain, medicagol,	roots	Shirataki et al. (1988)
	sophoraflavanone B, sophoraflavanone G sophoraflavanone H, sophoraflavanone I	-	Mizumo et al. (1989)
	sophoraisoflavone A	roots	Shirataki et al. (1988)
S. pachycarpa C.A. May	alkaloid :	seeds	- Aslanov et al. (1966)
	anabasine	-3	Markman, and Glushenkova
	cytisine goebeline	seeds -	Aslanov et al. (1966) Markman, and Glushenkova (1963)
	isosophoramine matrine, matrine N-oxide	seeds	Sadykov et al. (1962) Zainutdinov et al. (1968)
	17-oxosparteine	-	Southon, and Buckingham
	pachycarpidine	seeds	Aslanov et al. (1966)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. pachycarpa C.A. May	alkaloid :		
	pachycarpine (d-sparteine)	leaves	Orekhov et al. (1933)
		vegetative parts	Sokolov, and Koblova
	sophocarpidine, sophocarpine	leaves	Orekhov et al. (1934)
		seeds	Zainutdinov et al. (1968)
	sophoramine	seeds	Zainutdinov et al. (1968)
	flavonoid :		
	genistein 7-0-xyloglucoside	-	Sattikulov et al. (1983)
	organic acid :		
	citric, fumeric, lactic, malic,	branches,	Pakanaev et al. (1966)
	oxalic, succinic, tartaric	leaves, roots	
	steroid :	. 32	
	β-sitosterol, tocopherols	seeds	Markman and Glushenkova
	suger :	HEIDS	(1.00)
	nannose, sucrose	114.11	Sattikulov et al. (1983)
-70 0 R/ C	tetraterpenoid :	Волета	00
W IN	carotene		Sattikulov et al. (1983)
(Goebelis pachycarps	alkaloid:		
Bunge, ex Boiss.)	sophorbenzamine	-	Southon, and Buckingham

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. prodanii E. Anders	alkaloid :	_	Constantinescu et al.
	cytisine	_	(1969) Paslarasu and Badauta-
			Tocan (1973)
	sophocarpine, sophoridine,	roots	Pislarasu, and Dragut
	anthracene :		
	aloe emodol	roots	Paslarasu and Feodorov- Rincing (1976)
	flavonoid:		
	rutoside	all tissues	Pislarasu and Safta- Nistorica (1968)
	sugar :	3	
	quercetol	all tissues	Pislarasu and Safta- Nistorica (1968)
S. prostrata J. Buch.	flavonoid:	AD, HI	
୍କୁ ଅନ୍	apigenin-7-0-rhamnosylglucoside, 7,4'-dihydroxyflavone,	leaves	Markham (1973)
	7,4'-dihydroxyflavone-7-0-rhamnosylglucoside,		
	lucenin-2, luteolin,		
	luteolin-7-0-rhamnosylglucoside,		

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. prostrata J. Buch.	flavonoid: 7,3',4'-trihydroxyflavone, 7,3',4'-trihydroxyflavone-7-0- rhamnosylglucoside, vicenin-2	leaves	Markham (1973)
S. secundiflora	alkaloid :		
Lag. ex DC.	11-allylcytisine	fruits	Keller, and Hatfield
	anagyrine	seeds	Keller, and Hatfield (1979)
		stens	Chavez, and Sullivan
	(-)-anagyrine	leaves	Murakoshi et al. (1986)
	argentine	leaves	Makboul et al. (1987)
	(-)-baptifoline	leaves	Murakoshi et al. (1986)
	cytisine	seeds	Keller, and Hatfield (1979)
	ลงกรณมห	stems	Chavez, and Sullivan
	(-)-cytisine	leaves	Murakoshi et al. (1986)
	5,6-dehydrolupanine	seeds	Keller, and Hatfield (1979)
		stems	Chavez, and Sullivan

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. secundiflora	alkaloid :		
Lag. ex DC.	epi-lupinine	seeds	Keller, and Hatfield
	13-hydroxysparteine	leaves	Abdel-Baky, and Makboul (1985)
	p-isosparteine, lupanine	fruits	Keller, and Hatfield
	lupanine	stens	Chavez, and Sullivan
	lupinine	leaves	Makboul et al. (1987)
	(-)-N-acetylcytisine	leaves	Murakoshi et al. (1986)
	N-formylcytisine	stems	Chavez, and Sullivan
	(-) N-formylcytisine	leaves	Murakoshi et al. (1986)
	N-methylcytisine	seeds	Keller, and Hatfield (1979
		stems	Chavez, and Sullivan (1984)
	(-)-N-methylcytisine,	leaves	Murakoshi et al. (1986)
	(+)-11-oxocytisine		
	rhombifoline	fruits	Keller, and Hatfield (1979)
	rhombifoline, sparteine	stems	Chavez, and Sullivan (1984)
	sparteine	leaves	Abdel-Baky, and Makboul
		seeds	Keller, and Hatfield
	thermopsine	seeds	Izaddoost et al. (1976)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. secundiflora	amino acid :		
Lag. ex DC.	alanine, arginine, asparagine,	seeds	Izaddoost et al. (1976)
	aspartic, cadaverine, glutamic,		
	0-glutamyltyrosine, glycine,		
	histidine, 4-hydroxypipecolic,		
	isoleucine, leucine, lysine,		
	phenylalanine, pipecolic,		
	proline, serine, tryptophan,		
	tyrosine, valine		
	fatty acid:		
	linoleic, oleic, stearic	seeds	Dominguez, and Canales
	flavonoid:		
	apigenin, apigenin-7-0-glucoside	leaves	Makboul, and Abdel-Baky
	5-deoxykaempferol, fisetin	leaves	Hasan et al. (1987)
	kaempferol,	leaves	Makboul, and Abdel-Baky
	kaempferol-3-0-rhamnoglucoside,		(1984)
	kaempferol-3-0-rhamnoside		ୀର ଧ
	3-methoxyquercetin	leaves	Hasan et al. (1987)
	quercetin, rutin	leaves	Makboul, and Abdel-Baky
			(1984)
(S. secondiflora DC.)	flavanoid ;		
	(-) unanisoflavan	-	Minhaz et al. (1976)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
(S. secondifiora DC.)	flavonoid:		
	calycosin, liquiritigenin		Minhaz et al. (1976)
	secondifloran	-	Minhaz et al. (1977)
6. subprostrata Chun	alkaloid :		
et TC. Chen	anagyrine	roots	Komatsu et al. (1970b)
	matrine	roots	Cui, and Zhang (1986)
	methylcytisine	roots	Komatsu et al. (1970b)
	oxymatrine	roots	Cui, and Zhang (1986)
	sophocarpine	roots	Chuang et al. (1983)
	flavonoid :		
	bayin	roots	Shirataki et al. (1986)
	daidzein	roots	Kyogoku et al. (1973b)
	4',7-dihydroxy1-6,8-bis (3-	roots	Kyogoku et al. (1973c)
	methy1-2-buteny1)flavanone		
	6-[3-(2',4'-dihydroxyphenyl)	roots	Kyogoku et al. (1973d)
	acryloy13-7-hydroxy-2,2-	1817	
	dimethy1-8-(3-methy1-2-	A .	
	butenyl)-2#-benzopyran,	139181	188
	2-(2',4'-dihydroxypheny1)-8,8-		
	dimethyl-10-(3-methyl-2-		
	butenyl)-8#-pyrano [2,3-d]		
	chroman-4-one		
	genistein	roots	Komatsu et al. (1970a)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
. subprostrata Chun	flavonoid:		
et TC. Chen	2-[(7'-hydroxy-2',2'-dimethy1-	roots	Kyogoku et al. (1973c)
	2H-benzopyran)-6'-y1]-7-		
	hydroxy-8-(3-methy1-2-		
	butenyl) chroman-4-one		
	2-[{3'-hydroxy-2',2'-dimethyl-	roots	Kyogoku, et al. (1973b)
	8'-(3-methy1-2-buteny1)}		
	chroman-6'-y13-7-hydroxy-8-		
	(3-methy1-2-buteny1) chroman-		
	4-one,		
	2-[{2'-(1-hydroxy-1-methylethyl)		
	-7'-(3-methy1-2-buteny1)-2',		
	3'-dihydrobenzofuran}-5'-y1]-		
	7-hydroxy-8-(3-methy1-2-		
	butenyl) chroman-4-one		
	(-maackiain	roots	Komatsu et al. (1970a)
	(-pterocarpin	roots	Shibata, and Nishikawa
			(1963)
	sophoradin	roots	Komatsu et al. (1970b)
	sophoradochromene	roots	Komatsu et al. (1970c)
	sophoraflavone A,	roots	Shirataki et al. (1986)
	sophoraflavone B		
	sophoranochromene	roots	Kommatsu et al. (1970c)
	sophoranone	roots	Komatsu et al. (1970b)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. subprostrata Chun	flavonoid:		
et TC. Chen	trifolirhizin	roots	Shibata, and Nishikawa
	(-)trifolirhizin 6'-monoacetate	roots	Komatsu et al. (1976b)
	2',4',7-trihydroxy-6,8-bis (3-	roots	Kyogoku et al. (1973d)
	methyl-2-butenyl) flavanone		
	steroid:		
	p-sitosterol,	roots	Chuang et al. (1983)
	β-sitosterol-β-D-glucoside,		
	stigmasterol		
	triterpenoid:		
	lupeol	roots	Chuang et al. (1983)
S. tetraptera J. Will.	alkaloid :		
	ammodendrine, anagyrine	fruits	Kinghorn et al. (1982)
	baptifoline	leaves	Reyes et al. (1988)
	cytisine	bark	Briggs et al. (1975)
	0.0000101000	leaves, flowers	Reyes et al. (1988)
	cytisine, matrine	seeds	Urzua, and Cassels (1970
	α-matrine	bark	Briggs et al. (1975)
		leaves	Reyes et al. (1988)
	N-formylcytisine	fruits	Kinghorn et al. (1982)
	N-methylcytisine	leaves	Reyes et al. (1988)
		seeds	Briggs, and Taylor (1938

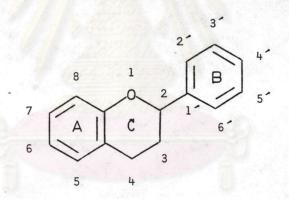
Botanical origin	Category and chemical substance	Plant part	Reference
6. tetraptera J. Mill	alkaloid ;		
	rhombifoline	fruits	Kinghorn et al. (1982)
	sophochrysine	seeds	Briggs, and Mangan (1948
	flavonoid:		
	apigenin-7-0-glucoside,	leaves	Markham (1973)
	apigenin-7-O-rhamnosylglucoside,		
	apigenin-7-O-rhamnosylglucoside-		
	4'-O-glucoside,		
	7,4'-dihydroxyflavone,		
	7,4'-dihydroxyflavone-7-0-		
	glucoside,		
	7,4'-dihydroxyflavone-7-0-		
	rhamnosylglucoside,		
	luteolin, luteolin-7-0-glucoside,		
	luteolin-7-0-rhamnosylglucoside		
	neackiein	bark, wood	Briggs et al. (1975)
	quercetin 3-0-galactoside, rutin	leaves	Reyes et al. (1988)
	7,3',4'-trihydroxyflavone,	leaves	Markham (1973)
	7,3',4'-trihydroxyflavone-7-		000
	O-glucoside,		IN E
	7,3',4'-trihydroxyflavone-7-0-		
	rhamnosylglucoside, vicenin-2		
(S. macrocarpa Sm.)	alkaloid :		
	baptifoline	seeds	Silva et al. (1968)
	3-hydroxymatrine	leaves	Negrete et al. (1982)
	5α-hydroxymatrine (sophoranol)	leaves	Negrete et al. (1981)

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. macrocarpa Sm.)	alkaloid :		
	(+)-9α-hydroxymatrine	leaves	Negrete et al. (1983)
	metrine N-oxide	leaves	Negrete et al. (1981)
S. wicrophylla Ait.)	alkaloid ;		
	anagyrine, a-matrine	flowers	Briggs et al. (1960)
	nethylcytisine	seeds	Briggs, and Ricketts (1937)
	methylcytisine, sophochrysine	bark, flowers	Briggs et al. (1960)
	flavonoid:		
	diosmin	flowers	Briggs et al. (1960)
	lucenin-2, rhamnosylisovitexin,	leaves	Markham (1973)
	rhamnosylvitexin		
5. tomentosa Linn.	alkaloid :		
	(+)-ammodendrine, (-)-anagyrine,	leaves, fruits,	Murakoshi et al. (1981)
	(-)-baptifoline, (-)-cytisine,	seeds, stems	
	(-)-epilamprolobine,		
	(+)-epilamprolobine N-oxide,		
	(+)-matrine, (+)-matrine N-oxide,		ត្តស
	5-(3'-methoxycarbonylbutyroyl)		
	aminomethyl-trans-quinolizidine,		
	(-)-N-acetylcytisine,		
	(-)-N-formylcytisine,		
	(-)-N-methylcytisine,		
	(+)-sophocarpine N-oxide		

Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
6. tomentosa Linn.	alkaloid :		
	stizolamine	seeds	Yoshida, and Hasegawa
	chromone ;		
	sophorachronone A	roots	Shirataki et al. (1983)
	flavonoid :		
	2-(2',4'-dihydroxyphenyl)-5,6-	aerial parts	Komatsu et al. (1978a)
	methylenedioxybenzofuran,		
	2-(2'-hydroxy-4'-methoxyphenyl)-		
	5,6-methylenedioxybenzofuran,		
	formonometin, isoliquiritigenin	assial scale	Komatsu et al. (1978b)
	isobavachin, (-)-isosophoranone (-)-isosophoranone	serial parts	Shirataki et al. (1983)
	isosophoronol	10005	Delle Monache et al.
	1 susupinor uno 1		(1977)
	(-maackisin, medicagol	aerial parts	Kommatsu et al. (1978a)
	pterocarpin		Mizuno et al. (1989)
	sophorabioside	-	Farkas et al. (1968)
	sophoracarpan A, sophoracarpan B	serial parts	Kinoshita et al. (1986)
	. sophoraflavanone A	roots	Shirataki et al. (1983)
	sophoraflavanone B,	aerial parts	Komatsu et al. (1978b)
	sophoraisoflavanone A, sophoronol		
	sophorono1	roots	Delle Monache et al.
			(1976)
	wighteone	<u>-</u>	Mizuno et al. (1989)


Table 2.1 (Continue)

Botanical origin	Category and chemical substance	Plant part	Reference
S. tomentosa linn.	phenolic: 1-octadecyl caffeate steroid: stigmasterol	aerial parts	Komatsu et al. (1978b) Komatsu et al. (1979a)
S. tonkinensis Gagnep.	alkaloid: (-)-cytisine, (+)-matrine, (+)-matrine N-oxide, (+)-sophocarpine N-oxide (+)-sophoramine, (+)-sophoranol	roots	Dou et al. (1989)
S. veiutina Lindl. var. zimbabweensis Gillett & Brummitt	alkaloid: cytisine, (+)-9s-hydroxylamprolobine, (+)-lamprolobine	leaves	Asres et al. (1986)
S. viciifolia Hance	alkaloid: oxidized sophocarpine, sophocarpine flavonoid:	flowers, leaves	Li, and Chang (1981)
	diosmin	_	Plouvier (1966)

B. Chemistry of Flavonoids

1. Introduction to Flavonoids

Flavonoids represent a very widespread group of water-soluble polyphenolic derivatives which the basic structure is flavan or 2-phenyl benzopyran (1). The flavonoid group may be described as a series of $C_6 - C_3 - C_6$ compounds. That is their carbon skeleton consists of two aromatic rings (C_6 groups) jointed in a chroman structure by a three-carbon unit (Goodwin and Mercer, 1983; Robinson, 1980). The numbering system for the flavonoid derivatives is given below:

Flavan (2-phenyl benzopyran)

(1)

In the great majority of case, the A ring (the left-hand ring) is either monohydroxylated or dihydroxylated. By contrast, the B ring (the right-hand benzene ring) is either monohydroxylated, dihydroxylated or trihydroxylated. This difference is due to the fact that the two rings have different biosynthetic origins: ring A

is formed by the condensation of three molecules of acetic acid, whilst the B ring is derived from sugars by the shikimic route. In addition, the substituents may be -OCH₃, -OCH₂O-, O-glycosides or C-glycosides (Ribereau-Gayon, 1972).

2. Flavonoid Glycosides

Flavonoids frequently occur as glycosides. The various aglycone having one or more of their hydroxyl groups attached to a sugar by a glycosidic linkage is O-glycoside. The glycosidic linkage is usually β , for instance, the 7- β -D-glucoside of apigenin (2). The α -configuration has only been reported in the case of L-arabinosides and L-rhamnosides, for example, the α -L-arabinoside of quercetin (3).

apigenin 7- β -D-glucoside quercetin 3- α -L-arabinoside (2)

The unusual flavonoid derivative is the C-glycoside, in which a sugar residue is combined, through its carbon atom 1, with an aglycone, through one of the latter's carbon atoms forming a C-C bond. The best known

vitexin, R = H

(4)

orientin, R = OH

(5)

C-glycosides are vitexin (4), 8-C-glucosylapigenin, and orientin (5), 8-C-glucosylluteolin. The C-glycosides are highly resistant to hydrolysis by acids and by enzymes. They are often found to be combined as O-glycosides, such as the 4'-rhamnoside of vitexin.

The sugars involved in the structure of flavonoid glycosides are almost exclusively aldoses. The presence of D-fructose, a ketose, is quite exceptional. D-glucose is by far the most common sugar found in glycosidic combination, but L-rhamnose, D-galactose, L-arabinose, D-xylose and a derivative of glucose, D-glucuronic acid, may be found. Besides the monosaccharides, disaccharides and even trisaccharides may be involved in the glycosidic structure

which termed monosides, diosides and triosides, respectively. A compound with two of its hydroxyl groups attached to monosaccharide residues would be a dimonoside. For every aglycone, therefore, there may be many different glycosidic combinations, which is the reason for the very large number of flavonoid glycosides known to occur in the plant kingdom. Examples of naturally occurring flavonoids containing different sugars are given in Table 2.2 (Goodwin and Mercer, 1983; Ribéreau-Gayon, 1972; Robinson, 1980).

Table 2.2 Some examples of flavonoids with different sugar residues.

Class	Glycoside (source)	Aglycone	Sugar	Linkage (sugar →aglyconeH0)
Monoside	Delphinidin-3-rhamnoside (flower petals of Lathyrus odorata Linn.)	Delphinidin	L-Rhamnose	α1 → 3H0
	Quercitrin (bark of Quercus tinctoria Bartram)	Quercetin	L-Rhamnose	α1 → 3H0
	Isoquercitrin (flowers of Gossypium herbaceum Linn.)	Quercetin	D-Glucose	р 1 → 3НО
	Quercimetrin (flowers of Gossypium herbaceum Linn.)	Quercetin	D-Glucose	р1 →7НО

Table 2.2 (Continue)

Class	Glycoside (source)	Aglycone	Sugar	Linkage (sugar→aglyconeH0
Dioside	Quercetin-3-sophoroside (leaves of Pisum sativum Linn.)	Quercetin	Sophorose [D-Glucose (p1→2) D- Glucose]	p1 → 3HO
	Neohesperidoside (leaves of Typha tatifolia Linn.)	Quercetin	L-Rhamnose (α1→2) D- Glucose	р1 → ЗНО
	Rutin (<i>R</i> uta graveolens Linn.)	Quercetin	Rutinose [L-Rhamnose α1 →6) D- Glucose]	р1 → 3НО
Trioside	Quercetin-3-(2-Glucosyl)- rutinoside (flower petals of Solanum tuberosum Linn.)	Quercetin	L-Rhamnose $(\alpha 1 \rightarrow 6) D-$ Glucose $(\beta 1 \rightarrow 2) D-$ Glucose	p1→3H0
Dimonoside	Cyanin (petals of Centaurea cyanus Linn.)	Cyanidin	D-Glucose D-Glucose	p1→ 3H0 p1→ 5H0

3. Classification of Flavonoids

Flavonoids are classified according to the state of oxidation of the central C_s unit (C-2,3,4) in the molecule. Going from most reduced to most oxidized, the structure and their classes are denoted in Table 2.3 (only the key portion of the molecule is shown).

Table 2.3 The different flavonoid classes listed in increasing oxidation level of the three central carbon atoms of the flavonoids.

Oxidation Level	Structure	Class	Principal substance	
		01833	Name	Hydroxylstion(*)
1	CH ₂ CH ₂	Flavans	koaburanin	5 (7-0-glucose)
2	CH ₂ CH OH	Catechins (Flavan-3-ols)	catechin	5,7,3',4'

Table 2.3 (Continue)

Oxidation	Structure	Class	Principal substance			
Level	Structure	U1855	Name	Hydroxylation(*)		
2	CH2 CH2 CH2	Dihydrochalcones	phloretin hydroxyphloretin	3,2',4',6' 3,4,2',4',6'		
3	CH H	Chalcones	butein	3,4,2',4'		
	O CH CH ₂	Flavanones (dihydroflavones)	naringenin butin eriodictyol	5,?,4° 7,3°,4° 5,7,3°,4°		
	CH CH OH	Leucoanthocyanidins (flavan-3,4-diols)	leucocyanidin leucodelphinidin	5,7,3',4' 5,7,3',4',5'		

Table 2.3 (Continue)

Oxidation	Structure	Class	Principal	substance
Level	Structure	61855	Name	Hydroxylstion(*)
4	O C CH CH	Flavones	apigenin luteolin	5,7,4' 5,7,3',4'
	O C OH	Anthocyanidins	pelargonidin cyanidin delphinidin	5,7,4' 5,7,3',4' 5,7,3',4',5'
	0 C=CH-	Aurones	sulphuretin aureusidin	6,3',4'
6 %	Ö CH OH	Flavanonols (dihydroflavonols)	fustin	7,3',4' 5,7,3',4'

Table 2.3 (Continue)

Oxidation	Structure	Class	Principal substance			
Level		0.000	Name	Hydroxylation(*)		
5	OC OH	Flavonols	kaempferol quercetin myricetin	5,7,4' 5,7,3',4' 5,7,3',4',5'		

* Numbering system: (1) most flavonoids

(II) chalcones,

dihydrochalcones

(III) aurones

According to Harborne and Mabry (1982), flavonoid aglycones are divided into groups as follow:

3.1 Anthocyanidins

The structure common to all anthocyanidins is the flavylium, or 2-phenyl benzopyrylium ion (6).

flavylium (2-phenyl benzopyrylium) ion

Anthocyanidin		Subst	ituent	position	ns	
Anonocyaniain	3	5	7	3'	4'	5'
apigeninidin (7)	-	ОН	ОН	1	ОН	- 1
capensinidin (8)	ОН	OCH	ОН	OCH ^a	ОН	OCH
cyanidin (9)	ОН	ОН	ОН	ОН	ОН	-
delphinidin (10)	ОН	ОН	ОН	ОН	ОН	ОН
hirsutidin (11)	ОН	ОН	OCH a	OCH	ОН	OCH
luteolinidin (12)		ОН	ОН	ОН	ОН	-
malvidin (13)	ОН	ОН	ОН	OCH ^a	ОН	OCH
pelargonidin (14)	ОН	ОН	ОН	-	ОН	-
peonidin (15)	ОН	ОН	ОН	OCH a	ОН	-
petunidin (16)	ОН	ОН	ОН	ОН	ОН	OCH _a
rosinidin (17)	ОН	ОН	OCH	OCH _a	ОН	-
tricetinidin (18)	- 1	ОН	ОН	ОН	ОН	ОН

Although some twenty-two anthocyanidins are known, the three most common ones are cyanidin (9), delphinidin (10) and pelargonidin (14). Besides that, another widespread anthocyanidins in nature are peonidin (15), petunidin (16), and malvidin (13). All of them differ in the number of hydroxyl or methoxyl groups in ring B.

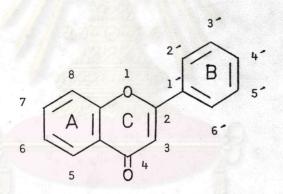
Apart from those common structures, there are anthocyanidins of more restricted distribution which have

the hydroxyl groups in the 5- or 7-position methylated, these are hirsutidin (11), rosinidin (17), capensinidin (8) and finally 5-methyldelphinidin.

In addition, there are four compounds which lack a hydroxyl group in the 3-position. These are tricetinidin (18), luteolinidin (12), apigeninidin (7) and carajurin (6,4'-dimethoxy-5,7-dihydroxyflavylium).

The anthocyanidins is one of the main classes of flavonoids which contribute colour to plants. The colour properties depend on the number of hydroxyl groups in ring B. Both the intensity and shade of colour also vary with changes in pH because of their ionic character. Thus, in acid solution (methanol-HC1), the colour of pelargonidin (14) (with one hydroxyl group in ring B) is scarlet or orange-red, cyanidin (9) with two groups is crimson or magenta, and delphinidin (10) with three groups is mauve, purple or blue. If the pH of an acid solution of an anthocyanidin is raised, the solution becomes colourless near pH 7.0 owing to the formation of a colourless pseudobase (A, Fig. 2.1); above pH 7.0 the bluer anhydrobases are formed (B, Fig. 2.1) and at very high pH values irreversible changes occur which are initiated by ionization of the phenolic hydroxyls (Fig. 2.1) (Goodwin and Mercer, 1983; Ikan, 1969; Ribereau-Gayon, 1972).

Figure 2.1 The effect of varying the pH on anthocyanidins.


(The anthocyanidin taken as the example is pelargonidin.)

3.2 Flavones and Flavonols

The flavones and flavonols are probably the most widely distributed of all the yellow plant pigments although the deeper yellow colors of plants are normally due to carotenoids (Robinson, 1980).

3.2.1 Flavones

Kostanecki and Tambor named the compound 2-phenylbenzopyrone (19) as flavone. The numbering shown is that now universally accepted (Gripenberg, 1962).

flavone

(2-phenylbenzopyrone)

(19)

Flavone	Substituent positions							
riavone	5	7	3'	4 '	5'			
apigenin (20)	ОН	ОН	-	ОН	_			
chrysin (21)	ОН	ОН	-	_				
luteolin (22)	ОН	ОН	ОН	ОН	_ = 100			
tricetin (23)	ОН	ОН	ОН	ОН	он			
tricin (24)	ОН	ОН	OCH	ОН	ОСН			

The flavones, apigenin (20) and luteolin (22) are widely distributed in the angiosperms. Tricin (24), on the contrary, is common only in grasses. The less common members of this class are chrysin (21), a constituent in heartwood of *Pinus* species, and flavone with no substituent in either benzene ring, which occurs in *Primula* (Ribéreau-Gayon, 1972). The flavone tricetin (23) is known with very rare occurrence (Harborne, 1984).

Flavones carrying isoprenoid substituents are common occurrence in Artocarpus, Morus and Tephrosia species. The isoprenoid substituent mostly is dimethylallyl unit. The dimithylallyl hydrate and geranyl units have been also reported (Venkataraman, 1975; Wollenweber, 1982).

3.2.2 Flavonols

The flavonols (25), 3-hydroxyflavones, are distinguished from the flavones by the presence of an hydroxyl group in position 3; this is the only hydroxyl group in the molecule which is not phenolic (Ribereau-Gayon, 1972).

flavonol
(3-hydroxyflavone)
(25)

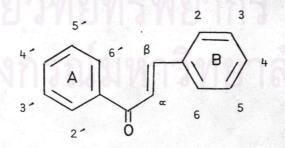
Flavonol			Subs	tituent	positi	ons		
	5	6	7	8	2'	3,	4.	5'
zalestin (26)	OCH	IJĬ	ОН	٦٥	11	ОН	ОН	-
risetin (27)	1158	r i 9	ОН	-	/ 3 .1	ОН	ОН	-
gossypetin (28)	ОН	10 0	ОН	ОН	-	ОН	ОН	-
sorhamnetin (29)	ОН	-	ОН	-	7	OCH _a	ОН	-
maempferol (30)	ОН	-	ОН	-	-	-	ОН	-
marin (31)	ОН	_	ОН	-	ОН	-	ОН	_

Flavonol	Substituent positions								
	5	6	7	8	2'	3'	4*	5'	
myricetin (32)	ОН	<u>.</u>	ОН	-	-	ОН	ОН	ОН	
quercetagetin (33)	ОН	ОН	ОН	-		ОН	OH	-	
quercetin (34)	ОН		ОН	-	-	ОН	.OH	_	
robinetin (35)	-	j- 9	ОН	-	-	ОН	ОН	ОН	
syringetin (36)	ОН	/-	ОН	-	-	OCH a	ОН	ОСН	

While flavones occur characteristically in the more herbaceous plant families such as, Umbelliferae, Labiatae, Compositae, etc., flavonols are most abundant in woody angiosperms. They are very widely distributed in plants, both as co-pigments to anthocyanin in petals and also in leaves of higher plants. Although over two hundred flavonol aglycones are known, only three are common: kaempferol (30); quercetin (34); and myricetin (32), corresponding in hydroxylation pattern to apigenin (20); luteolin (22); and tricetin (23), respectively. Quercetin (34) is, without any question, the phenolic compound with the widest distribution in nature. While these flavonols occur widely in flowers, often acting as co-pigments intensifying the colour to the anthocyanidins. Kaempferol (30) and quercetin (34) contribute to white, cream and ivory-coloured flowers. Flavonols, which are methylated or have unusual glycosidic patterns, for example, syringetin (36), contribute to the

yellow colour flowers of the meadow pea, Lathyrus pratensis Linn., and isorhamnetin (29), the best known O-methylated derivatives, may also contribute to the petal colour of the common marigold, Calendula officinalis Linn., although in this case the major pigmentation is probably due to carotenoids. The other point of view of flower colouration are flavonols having an extra hydroxyl in the 6- or 8-position, especially found in the Compositae and Leguminosae, since these are much yellower in colour than the common flavonols. For example, quercetagetin (33), a 6-hydroxyflavonol is a yellow flower pigment in African marigold, Tagetes erecta Linn., while 8-hydroxyquercetin, gossypetin (28) is the principal yellow colouring matter of the primrose and cotton flowers (Goodwin and Mercer, 1983; Harborne, 1973, 1984; Ribereau-Gayon, 1972).

Besides occurring in flowers, flavonols occur with great frequency in leaves. For example, a leaf survey of over 1000 species showed that 48% contained kaempferol (30), 56% quercetin (34) and 10% myricetin (32) (Harborne, 1973).


In addition, a number of rather exceptional structures occurs in the flavonols. Fisetin (27) and robinetin (35) are characterised by lacking a hydroxyl group in position 5, thus possessing a resorcinol residue in place of the usual phloroglucinol residue. They are rather uncommon, but are present in the Leguminosae. Morin (31) with the unusual 2'-hydroxy substitution has been found in several plants in Moraceae (Ribereau-Gayon 1972).

3.3 The Minor Flavonoids

According to Bohm (1982), the minor flavonoids consist of chalcones, aurones, dihydrochalcones, flavanones and dihydroflavonols. Each of these classes is of limited natural distribution. Occurrence is either sporadic, e.g. flavanones, or else limited to a very few plant groups (Harborne, 1984).

3.3.1 Chalcones

Chalcones are open chain flavonoids, characterized by their possession of two aromatic rings (A and B) are linked by an aliphatic three-carbon chain which does not participate in forming a hetero ring as is usually found in other types of flavonoid compounds. Therefore the chalcone numbering is different from the system used for the other flavonoid types. The positions are shown numbered in structure (37). Bridge carbons are marked relative to the carbonyl function. (Bohm, 1975 a, 1982; Shimokoriyama, 1962).

chalcone

Chalcone		Substituent positions							
VIII 155110	2'	3,	4'	5*	6'	2	3	4	5
bavachalcone (38)	ОН	-	OCH _a	*C ₅	-	2		ОН	
butein (39)	ОН	_	ОН	_	-	- -	ОН	ОН	_
derricin (40)	ОН	*C _s	OCH		-	-	-	-	-
echinatin (41)	-	-	ОН	-	-	OCH	-	ОН	-
okanin (42)	ОН	ОН	ОН	-	-	-	ОН	ОН	-
pedicellin (43)	OCH	OCH	OCH	OCH	OCH	-	-	-	-
robtein (44)	ОН	-	ОН	-	-	h)-	ОН	ОН	OH
robone (45)	ОН	-	OCH	-	OCH	OCH	-	OCH	ОСН
triangularin (46)	ОН	CH	OCH	-	ОН	-	-	-	-
xanthoangelol (47)	ОН	*C 10	ОН	_	_	-	-	ОН	_

Explanation of symbols :

$$^{\text{L}}_{\text{S}} = -\text{CH}_{2} - \text{CH} = \text{C} - \text{CH}_{3}$$
 $^{\text{CH}_{3}}$
 $^{\text{CH}_{3}}$
 $^{\text{L}}_{\text{CH}_{3}} = -\text{CH}_{2} - \text{CH} = \text{C} - \text{CH}_{2} - \text{CH} = \text{C} - \text{CH}_{3}$
 $^{\text{L}}_{\text{CH}_{3}} = -\text{CH}_{3} - \text{CH}_{3} - \text{CH}_{3}$

Chalcones are not strictly speaking flavonoids, since they have an open-chain structure (37). However, they are usually classified with them because they are generally considered to be the immediate precursors of the commoner flavonoids. Furthermore on acid treatment they isomerize to flavanones and the reverse reaction occurs in base. This

interconversion is shown for the chalcone butein (39) and the flavanone butin (48):

The reaction is easily observable since the chalcones are much more highly colored than the flavanones, especially in basic solution where they are orange-red (Harborne, 1973; Robinson, 1980).

The chalcones are of relatively infrequent occurrence in about 20 families of the plant kingdom (Bohm, 1982; Harborne, 1973). They play an ecological role in nature, in relation to plant colour. Being bright yellow pigment, they have been found in many plant organs, but most conspicuously in flowers. Most yellow flower colour is due to the presence of carotenoids but in the case of certain members of the Compositae, Oxalidaceae, Scrophulariaceae, Gesneriaceae, Acanthaceae and Liliaceae, chalcones contribute significantly to the corolla pigmentation (Bohm, 1975a; Ribéreau-Gayon, 1972).

Naturally occuring chalcones are all hydroxylated to a greater or lesser extent; the parent compound chalcone itself is not known as a natural product. The A ring substitution pattern is usually based upon the phloroglucinol system (2',4',6'-trihydroxy). The B ring originates from a phenylpropanoid precursor and thus most commonly exhibits a 4-mono, 3,4-di or 3,4,5trihydroxylation pattern. Structures which vary from the common types, however, abound. A typical chalcone is butein (39) which occurs free in the wood or bark of several trees, Acacia, Adenanthera, Macherium and Rhus (Bohm, 1975a; Harborne, 1973).

3.3.2 Aurones

Aurones are hydroxylated 2-benzylidenecoumaranones (49), which the ring system is numbered in the following way (Bohm, 1982; Robinson, 1980).

aurone (benzylidenecoumaranone)

Aurone		Sul	ost ituen	t posi	tions	
	4	6	7	3'	4.	5'
aurensidin (50)	ОН	ОН	-	ОН	ОН	6 -
bracteatin (51)	ОН	ОН	<u>-</u>	ОН	ОН	ОН
hispidol (52)	-	ОН	_	-	ОН	-
leptosidin (53)	-	ОН	OCH	ОН	ОН	-
maritimetin (54)	7,/-	ОН	ОН	ОН	ОН	-
rengasin (55)	OCH	ОН	-	ОН	ОН	-
sulfuretin (56)	_	ОН	-	ОН	ОН	_

The term "aurone" which recognised both their yellow-golden colour and their isomeric relationship with the flavone was introduced by Bate-Smith and Geissman in 1951 to convinently represent the class of benzalcoumarone pigments that were discovered in flowers (Bohm, 1975a; Shimokoriyama, 1962). The aurones are formed from chalcone by aerial or enzymic oxidation and are deeper yellow in colour. Both aurones and chalcones are yellow pigments which the colours change to red-orange when fumed with ammonia or the alkaline vapour of a lighted cigarette. They occur together characteristically in the petals of the flowers in the Compositae. However, they have also been recorded in over ten other families and the aurones are not restricted to floral tissue but have been obtained from

bark, wood and leaves as well (Bohm, 1975a; Goodwin and Mercer, 1983; Harborne, 1973, 1984; Ribereau-Gayon, 1972).

Leptosidin (53) is the first representative of aurones to be isolated from a natural source (Shimokoriyama, 1962). The most widely distributed aurone is aureusidin (50) which occurs naturally as glycoside. Sulfuretin (56) is also one of the most common aurones (Bohm, 1975a, 1982; Harborne 1984).

3.3.3 Dihydrochalcones

Dihydrochalcones (57) relate directly to the chalcones and can be derived therefrom by reduction of the chalcone α, β -double bond. As with chalcones the A-ring is derived from acetate and thus has the phloroglucinol hydroxylation pattern. Similarity, the B-ring, derived from a phenylpropanoid precursor, usually shows the 4-mono or 3,4-dihydroxylation pattern. The numbering system follows that used for chalcones (Bohm, 1975a).

dihydrochalcone

	Substituent positions						
Dihydrochalcone	2'	4 •	6'	4			
davidogenin (58)	он	ОН		ОН			
4'-0-methyldavidogenin (59)	ОН	OCH		ОН			
uvangoletin (60)	ОН	ОН	OCH	-			

Dihydrochalcones have a different distribution pattern from chalcones, being mainly confined to the Rosaceae and Ericaceae (Harborne, 1984). In this class only a limited number of substances are known. Davidogenin (58), 4'-O-methyldavidogenin (59) and uvangoletin are examples of dihydrochalcones (Bohm, 1982).

3.3.4 Flavanones

Flavanones are based upon the structure of 2-phenylbenzopyran-4-one (61). The numbering system of the flavanone nucleus is similar to that in most other flavonoid series: primed numbers are used for the Bring, and unprimed numbers for the Aring (Bohm, 1975b, 1982).

flavanone (2-phenylbenzopyran-4-one)
(61)

Flavanone		S	ubstitu	ent pos	itions		
	5	6	7	8	2'	3'	4'
angophorol (62)	ОН	СНэ	OCH _a	CH	_	-	ОН
arjunone (63)	OCH	Y_ 34	OCH	- 6	OCH	-	OCH
bavachinin (64)	-	"C _s	OCH	6-X/	-	-	ОН
butin (65)	-	_	ОН		-	ОН	ОН
cryptostrobin (66)	ОН	- 9/	ОН	СНэ	_	-	-
crytominetin (67)	ОН	CH	ОН	СН	4-	ОН	ОН
eriodictyol (68)	ОН		ОН		- e	ОН	ОН
flemiflavanone A (69)	ОН	°C _s	ОН	°C _s	ОН	_	OCH
hesperetin (70)	ОН		ОН	-	-	ОН	OCH
isobavachin (71)	_	-	ОН	°C _s	-	-	ОН
isosakuranetin (72)	ОН	-	ОН	_	=	-	OCH
kanakugin (73)	ОСН	OCH	OCH ³	OCH	-	_	-
matteucinol (74)	ОН	CH	ОН	CHa	_	-	OCH

Flavanone	Substituent positions							
	5	6	7	8	2'	3.	4'	
naringenin (75)	ОН	-	ОН	_1	_	_	ОН	
pinocembrin (76)	ОН	-	ОН	-)	-	-	-	
plathymenin (77)	-	ОН	ОН	-	-	ОН	ОН	
sakuranetin (78)	ОН	-	OCH	-	-	-	ОН	
steppogenin (79)	ОН	_	ОН	10 <u>-</u>	ОН	_	ОН	

Explanation of symbol:

Flavanones are isomeric with chalcones from which they can be obtained synthetically and from which they arise biosynthetically. They are interconvertible in vitro. Chalcones are frequently found in nature together with the flavanone analogues, but the converse is not always true. Flavanones, for examples, accumulate in quantity in Citrus fruits without being accompanied by chalcones (Bohm, 1975b; Harborne, 1984).

The flavanones are fairly widely distributed, but not so widely as the flavones and flavonols (Ribéreau-Gayon, 1972). The parent compound, flavanone (61), is not known to be naturally occurring; the simplest plant flavanone has a hydroxyl group at position 7. The most widely occurring of

all flavanones is naringenin (75) which has been reported 26 genera. Two well-known mono-O-methyl derivatives of naringenin which occur naturally are sakuranetin (78) and isosakuranetin (72). Eriodictyol (68) also occurs fairly frequently in flowering plants. The simplest flavanone that bears the phloroglucinol hydroxylation pattern on the A-ring is pinocembrin (76). Matteucinol (74) is the first natural C-methylated flavonoid to be reported. Though today C-methylated compounds are known among every class of flavonoid, they are still most abundant among the flavanones. These C-methylflavanones are as cryptostrobin (66), angophorol (62) and crytominetin (67) (Bohm, 1975b, 1982; Harborne, 1973).

3.3.5 Dihydroflavonols

The dihydroflavonols are constructed upon the same fundamental ring system as flavanones and are 2-phenyl-3-hydroxybenzopyran-4-one (80). They are often called 3-hydroxyflavanones or flavanonols. The numbering system is the same as that for flavanones (Bohm, 1975b).

Dihydroflavonol

(2-phenyl-3-hydroxybenzopyran-4-one)

Dihydroflavonol	Substituent positions								
	5	6	7	2'	3,	4.	5'		
alpinone (81)	ОН		OCH a	_ 8	-	-			
aromadendrin (82)	ОН	-	ОН	-	_	ОН	-		
cedeodarin (83)	ОН	CHa	ОН	-	ОН	ОН			
dihydromorin (84)	ОН	1-	ОН	ОН	-	ОН	-		
dihydrosyringetin (85)	ОН	_	ОН	-	OCH	ОН	OCH,		
fustin (86)	/-/	=-	ОН	-	ОН	ОН	2		
pinobanksin (87)	ОН		ОН	-		-	-		
sepinol (88)	-	v	ОН	-	ОН	OCH	ОН		
taxifolin (89)	ОН	Exit.	ОН	_	ОН	ОН	_		

7-Hydroxydihydroflavonol is the simplest known naturally occurring member of this series. It occurs free in the heartwood of Platymiscium praecox Mart. ex Benth. together with the corresponding flavanone. The simplest dihydroflavonol exhibiting the phloroglucinol A-ring substitution pattern is pinobanksin (87) which is widely distributed in Pinus. One of the most widely distributed dihydroflavonols is dihydrokaempferol, or aromadendrin (82). Other most commonly encountered member of this class is dihydroquercetin or taxifolin (89) which is well-known as heartwood constituent of many trees, particularly gymnosperms. (Bohm 1975b, 1982; Harborne, 1973). The

majority of the dihydroflavonols are known as wood constituents and are found in the free state; few glycosides have been found to occur (Shimokoriyama, 1962).

A dihydroflavonol and a flavonol with identical hydroxylation pattern in the A and B-ring often occur together in the same plant. This suggests that the relationship between dihydroflavonol and flavonol is closer than that found between flavonol and flavone. Therefore, dihydroflavonols and flavonols may be derived from the common precursor through the same initial state, or that one may be converted into the other.

3.4 Proanthocyanidins

Freudenberg and Weinges (1962) proposed the term "proanthocyanidin" to cover those colourless substances which transformed into anthocyanidins on heating in acid solution. This is a chemical term and does not any biogenetic relationship. The terms "leucoanthocyanidin" and "leucoanthocyanin" were used interchangeably over the last twenty years or so for those natural products which yield anthocyanidins on heating in acid solution. At the present day, the terminology of "leucoanthocyanidin" has been reserved for the monomeric proanthocyanidins such as the flavan-3,4-diols, and Haslam (1982) suggested that the term "leucoanthocyanin" should no longer be used as it was a generic expression and not specific enough. So the term leucoanthocyanidin as

described above, and the name condensed proanthocyanidin, which means for the various flavan-3-ol dimers and higher oligomers, will be used here (Haslam, 1975, 1982; Ribéreau-Gayon, 1972).

3.4.1 Natural Leucoanthocyanidins

flavan-3,4-diol
(90)

Flavan-3,4-diol	Substituent positions								
riavan 5,4 uroi	5	7	8	3,	4'	5'			
leucocyanidin (91)	ОН	ОН	3 - 1	ОН	ОН	-			
leucodelphinidin (92)	ОН	ОН	1919	ОН	ОН	ОН			
leucofisetinidin (93)	10 04	ОН	-	ОН	ОН	-			
leucorobinetinidin (94)		ОН	-	ОН	ОН	ОН			
melacacidin (95)		ОН	ОН	ОН	ОН	-			
teracacidin (96)	<u> </u>	ОН	ОН	-	ОН	-			

Natural leucoanthocyanidins are flavan-3,4-diols. These colourless substances give red solution with acid. They are widely distributed in plant kingdom. The majority, it may be noted, have been isolated from the wood or bark of trees, particularly Acacia species (Haslam, 1975, 1982; Ikan, 1969). They are frequently found in plant tissues, where they are concerned in the formation of the condensed proanthocyanidins. They are distinguished from other flavonoids in that they rarely exist as glycosides (Ribéreau-Gayon, 1972; Robinson, 1980).

The leucoanthocyanidins known include leucocyanidin (91) and leucodelphinidin (92) which have the 5,7-hydroxylation pattern common to the majority of natural flavonoids, teracacidin (96), melacacidin (95), leucofisetinidin (93) and leucorobinetinidin (94). (Ribéreau-Gayon, 1972).

3.4.2 Condensed Proanthocyanidins

The name proanthocyanidin is used alternatively for condensed tannins because on treatment with hot acid, some of the carbon-carbon linking bonds are broken and anthocyanidin monomers are released. Here, they are more specificially named as condensed proanthocyanidins. These substances possess di-, tri-, and tetra-flavan structure of the general type in which the flavan monomer units are linked by C-C bonds between the four position of one flavan unit and ring A of the next unit. Most condensed

proanthocyanidins are procyanidins (97), which means that they yield cyanidin on acid treatment. Prodelphinidins and propelargonidins are also known, as are mixed polymers which yield delphinidin and pelargonidin on acid degradation (Harborne, 1984; Haslam, 1975, 1982).

procyanidin

(97)

3.5 Biflavonoids

These compounds are flavonoid dimers. The dimeric compounds which formed by carbon-carbon or carbon-oxygen coupling between two flavone units are called biflavones. Up to now, not only biflavones but also flavanone-flavones and biflavanones are found. Most also carry O-methyl substituents, a typical example being kayaflavone (98) (Geiger and Quinn, 1975; Harborne, 1984).

kayaflavone

(98)

3.6 Isoflavonoids

The isoflavonoids are biogenetically related to the flavonoids but constitute a distinctly separate class in that they contain a rearranged C skeleton and may be regarded as derivatives of 3phenylchroman. The enzyme(s) responsible for this biochemical rearrangement would appear to be rather specialized, since isoflavonoids have a very limited distribution, being confined essentially to the subfamily Papilionoideae (Lotoideae) of the Leguminosae. There are, however, occasional examples of their occurrence in the subfamily Caesalpinioidae, and in other families (Rosaceae, Moraceae, Amaranthaceae, Podocarpaceae, Chenopodiaceae, Cupressaceae, Iridaceae, Myristicaceae, Stemonaceae) together with recent reports of their isolation from a marine coral and several microbial cultures (Dewick, 1982, 1988).

The structural variety displayed in the isoflavonoids is, in fact, greater than existing in the normal flavonoid series (Wong, 1975). With regard to Dewick (1982), the isoflavonoids are structurally subdivided into several classes according to oxidation levels in the skeleton, and the complexity of the skeleton as follow:

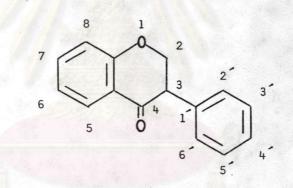
3.6.1 Isoflavones

Isoflavones constitute the largest group of natural isoflavonoid derivatives. Being 3-phenylchromones (99), they are isomers of the flavones; the lateral benzene ring is attached to the carbon atom in position 3 instead of position 2 (Dewick, 1982, 1988; Ribéreau-Gayon, 1972; Wong, 1975).

isoflavone (3-phenylchromone)

Isoflavone	Substituent positions									
150f 18Volle	5	6	7	8	2*	3,	4'	5'	6'	
baptigenin (100)		-	ОН	-	-	ОН	ОН	ОН		
biochanin A (101)	ОН	-	ОН	-	•	-	OCH	-	-	
daidzein (102)	-	-	ОН		-		ОН			
dipteryxin (103)	-	OCH	ОН	ОН	-	- 0.000	OCH	-	-	
formononetin (104)	-//	/4	ОН	-	-	-	OCH	-	-	
genistein (105)	ОН	40	ОН	-	144	-	ОН	-	-	
irigenin (106)	ОН	OCH	ОН	-	-	OCH _a	OCH	ОН	-	
isocaviunin (107)	ОН		ОН	OCH	OCH	2	OCH	OCH	-	
licoricone (108)	-	23.0	ОН	-	OCH	°C _s	OCH	-	ОН	
luteone (109)	ОН	"C _s	ОН	-	ОН	-	ОН	-	-	
muningin (110)	OCH	ОН	OCH	-	-04	-	ОН	-	-	
podospicatin (111)	ОН	OCH a	ОН	-	ОН	-	-	OCH	-	

Explanation of symbol


$$^{a}C_{5} = -CH_{2}-CH=C-CH_{3}$$
 CH_{3}

The isoflavones are colourless substances, though they are capable of forming colours with metals and were once used as mordant dyes (Harborne, 1973). They are much less widely distributed than the flavones, as they are restricted almost entirely to the Papilionoideae (Lotoideae), a subfamily of the Leguminosae. Nevertheless 234

isoflavones are known and they often have structural features rarely met with in the other flavonoids. The four extremely common isoflavones are daidzein (102), formononetin (104), genistein (105) and biochanin A (101) (Dewick, 1982, 1988; Harborne, 1984; Ribereau-Gayon, 1972).

3.6.2 Isoflavanones

In the same way as isoflavones, isoflavanones (112) are isomeric with the flavanones; the lateral benzene ring is attached to the carbon atom in position 3 instead of position 2.

isoflavanone

(112)

Isoflavanone	Substituent positions								
7307 7374110110	5	6	7	8	2'	3'	4.		
kievitone (113)	ОН	07	ОН	*C _s	ОН		ОН		
lespedeol A (114)	ОН	°C 10	ОН	-	ОН	-	ОН		
ougenin (115)	ОН	CH	OCH	-	ОН	OCH	ОН		
padmakastein (116)	ОН	_	OCH	-	_	- 0	ОН		
violanone (117)	- /		ОН	-	OCH ^a	ОН	0CH ₃		

Explanation of symbols:

$${}^{2}C_{5} = {}^{-}CH_{2}^{-}CH = {}^{-}C_{3}^{-}$$
 ${}^{C}H_{3}^{-}$
 ${}^{C}C_{10} = {}^{-}CH_{2}^{-}CH = {}^{-}CH_{2}^{-}CH_{2}^{-}C = {}^{-}C_{3}^{-}CH$

Isoflavanones are much rarer than isoflavones, though the number of known naturally occurring examples continues to grow. Padmakastein (116) from the bark of the Indian plant Prunus puddum Roxb. ex Brand (Rosaceae) was the first natural example of this class. Kievetone (113) is one of four isoflavonoid compounds found in fungal or virus-infected French bean, Phaseolus vulgaris Linn. Lespedeol A (114) isolated from Lespedeza homoloba Nakai is an unusual isoflavanone containing geranyl substituents. It is noteworthy that an inordinate proportion of the natural isoflavanones possess oxygenation at the 2'-position in ring B (Dewick, 1982, 1988; Wong, 1975).

3.6.3 Rotenoids

Rotenoid is a general name for a class of isoflavonoid compound containing an extra carbon atom in an additional heterocyclic ring. They have in common the four-ring chromanochroman system (118) as the basic structural unit. The system is derived in nature by oxidative cyclization of a 2'-methoxyisoflavone. A considerable amount of variation in the oxidation levels of this ring system encountered in nature are treated in three subdivisions: rotenoids (119), dehydrorotenoids (120) and 12 a-hydroxyrotenoids (121) (Dewick, 1982, 1988).

chromanochroman

(118)

rotenoid

(119)

dehydrorotenoid

(120)

12 a-hydroxyrotenoid

(121)

3.6.4 Pterocarpans

Pterocarpans contain coumaranochroman, a tetracyclic ring system, derived from the basic isoflavonoid skeleton by an ether linkage between the 4 and 2' positions. However, the systematic numbering of pterocarpan (122) rather than that for simple isoflavonoids is used (Dewick, 1988).

pterocarpan (coumaranochroman)

(122)

Pterocarpan	Substituent positions									
	1	2	3	6а	7	8	9	10		
edulenol (123)	OCH.	°C ₅	ОН	-		_	OCH	-		
ficifolinol (124)	-	"C _s	ОН	-	-	*C ₅	ОН	-		
lespedezin (125)	-	-	ОН		-	-	ОН	, C		
lespein (126)	-	-	ОН	°C ₅	-	-	ОН	°C _s		
medicarpin (127)	-		ОН	-	-	-	OCH	-		
philenopteran (128)	-/	-	ОН	-	OCH	5	ОН	осн		
variablin (129)	-	-	OCH	ОН	-	-	OCH	-		

Explanation of symbols :

$${}^{2}C_{5} = {}^{-CH} {}^{2}CH = {}^{C} {}^{-CH} {}^{3}$$
 ${}^{C}C_{10} = {}^{-CH} {}^{2}CH = {}^{C} {}^{-CH} {}^{2}CH {}^{2}CH {}^{2}C = {}^{C} {}^{-CH} {}^{3}$
 ${}^{C}C_{10} = {}^{-CH} {}^{2}CH = {}^{C} {}^{-CH} {}^{2}CH {}^{2}CH {}^{2}CH {}^{2}CH {}^{3}CH {}^{3}$

This class may be subdivided into pterocarpans (122), 6a-hydroxypterocarpans (130) and 6a,11a-dehydropterocarpans or pterocarpenes (131) (Dewick, 1982)

6a-hydroxypterocarpan

(130)

pterocarpene

(6a, 11a-dehydropterocarpan)

(131)

The majority of natural pterocarpans isolated have arisen from phytoalexin studies, using fungal or abiotically stressed plant tissues, and the number of examples continues to grow, making this the second large group of isoflavonoids after the isoflavones (Dewick, 1988).

The pterocarpans are widely distributed in leguminous plants both as heartwood and bark constituents, and also in young tissue challenged by microorganisms, since many function as phytoalexins. The 6a-hydroxypterocarpan, variablin (129) is isolated from Dalbergia spruceana Benth. after fungal infection (Dewick, 1982; Wong, 1975).

Recent developments in pterocarpan chemistry have included not only the discovery of new compounds but also the recognition of the existence of variants of the pterocarpanoid theme. It is interesting to note that medicarpin (127) is now undoubtedly the most common of natural pterocarpans since it functions as a phytoalexin in tissues of many legumes. A wide variety of substitution patterns is encountered, but 3,9- and 3,8,9-oxygenation patterns predominate, and 1-oxygenated compounds are relatively uncommon. Unusual geranyl substituent has been found in lespedezin (125) from Lespedeza homoloba Nakai bark. Lespein (126), also isolated from this plant represents the first example of 6a-alkylated pterocarpan (Dewick, 1982; Wong, 1975).

3.6.5 Isoflavans

Isoflavans (132) represent the most reduced of the isoflavonoid modifications (Wong, 1975).

isoflavan

(132)

Isoflavan	Substituent positions							
	5	6	7	8	2'	3'	4.	6'
bryaflavan (133)	-	ОН	ОН		OCH	ОН	OCH ₃	-
duartin (134)	-	-	ОН	OCH	OCH	ОН	OCH	-
equol (135)	_	-	ОН	-	-	- 1	ОН	-
laxifloran (136)	7)-/	219/1	ОН		OCH	OCH _a	OH ·	-
licoricidin (137)	ОН	°C s	OCH	-	ОН	"C _s	ОН	-
lonchocarpan (138)	756	1.21	ОН		OCH a	OCH	OH.	OCH 3
mucronulatol (139)	-	-	ОН	-	OCH	ОН	OCH	-
vestitol (140)		-	ОН	_	ОН		OCH	1

Explanation of symbol:

For many years this class was examplified in nature by only one compound, the animal metabolite equol (135) which now is the simplest natural isoflavan. It is undoubtely produced by degradation of simple isoflavones such as formononetin (104) and daidzein (102) obtained in the diet. Equol has also been shown to occur in human urine, and its origin is assigned to isoflavonoid components of soya-based foods. Every plant-derived isoflavan, however, contains a 2'-oxygen substituent, as well as 7,4'-oxygenation. This feature has been associated with possible biosynthetic derivation by reduction of pterocarpans (Dewick, 1982, 1988; Wong, 1975).

Isoflavans often function as phytoalexins, and many of new structures reported have been isolated during antifungal screens. Typically, the isoflavan phytoalexins are simple hydroxy/methoxy-substituted structures. 5-Oxygenation is a rare feature in isoflavan structures (Dewick, 1982). The examples of this class are duartin (134), mucronulated (139) and vestited (140) which all occur in various Brazilian woods of the Dalbergia and Machaerium genera. Laxifloran (136) and lonchocarpan (138) occur together with the pterocarpan, philenoptera (128), in the African plant Lonchocarpus laxiflorus Guill. & Perr. (Wong, 1975).

3.6.6 Quinone Derivatives

3.6.6.1 Isoflavonequinone

Bowdichione (141) is the only example of this class. It was isolated from the heartwood of *Bowdichia nitida* Spruce, ex Benth. (Dewick, 1982).

bowdichione

(141)

3.6.6.2 Isoflavanquinones

Three isoflavanquinones,

abruquinones-A, -B, and -C (143, 144, 145) from Abrus precatorius Linn. root and amorphaquinone (146) from Amorpha fruticosa Linn. root are recently reported examples of this isoflavonoid class, to be added to the previously known claussequinone (147) and mucroquinone (148) (Dewick, 1982).

isoflavanquinone

(142)

Isoflavanquinone	Substituent positions							
100. Tavanqui mone	6	7	8	3.	4 '			
abruquinone A (143)	OCH	OCH	-	OCH ₃	осн			
abruquinone B (144)	OCH	OCH	OCH	OCH a	осн			
abruquinone C (145)	ОН	OCH	OCH	OCH _a	OCH			
amorphaquinone (146)	-	ОН	OCH	OCH _a	OCH			
claussequinone (147)	-	он	ОН	-	осн			
mucroquinone (148)	PINS	ОН	OCH	-	OCH			

3.6.6.3 Pterocarpenequinones

Two purple pterocarpenequinones,

bryaquinone (149) and 4-deoxybryaquinone (150) have been isolated in small amounts from the heartwood of Bryaebenus DC. along with a number of pterocarpenes (Dewick, 1982).

$$H_3$$
CO CH_3

bryaquinone; R = OH

(149)

4-deoxybryaquinone; R = H

(150)

3.6.7 3-Aryl-4-hydroxycoumarins

3-aryl-4-hydroxycoumarin
(151)

The 3-aryl-4-hydroxycoumarins (151) have not been found outside the genus Derris and Millettia. All of these compounds known have 5-methoxy substituents thus favouring the coumarin tautomer rather than the 2-hydroxyisoflavone form (Fig. 2.2) (Dewick, 1982, 1988; Wong, 1975).

Figure 2.2 Tautomerism of 3-aryl-4-hydroxycoumarins

3.6.8 3-Arylcoumarins

For many years, only six naturally occurring examples of this class of isoflavonoids have been found. Glycycoumarin (152) isolated from stem and root of Glycyrrhiza uralensis Fisch. ex DC. was the most recent report (Dewick, 1988).

Glycycoumarin

(152)

3.6.9 Isoflav-3-enes

isoflav-3-ene

Isoflav-3-ene	Su	s		
rsoriav o ene	7	2'	3,	4.
haginin A (154)	ОН	OCH	осн	он
haginin B (155)	ОН	OCH	-	ОН
sepiol (156)	он	ОН	ОН	OCH

Isoflav-3-enes (153) have been known chemically for many years, being synthesized by dehydration of isoflavanols or by controlled acid treatment of pterocarpans. They are, however, very reactive, especially in solution, and this is presumably why their existence as natural products has not been established until recently. As techniques for the isolation and characterization of natural products improve, these labile compounds are being found more frequently. Three examples of this class are haginins-A, -B (154, 155) and sepiol (156) (Dewick, 1982, 1988).

3.6.10 Coumestans

The highest oxidation level possible for the isoflavonoid skeleton is represented by the coumaranocoumarin structure (157), for which the trivial name coumestan has come into general use (Wong, 1975).

coumestan (coumaranocoumarin)

(157)

Coumestan	Substituent positions								
Commessan	1	2	3	4	7	8	9		
lucernol (158)	1.4	ОН	ОН	-	-	-	ОН		
psoralidin (159)	-24	"C _s	ОН	-	-	-	ОН		
sativol (160)	_	-	OCH	ОН			ОН		
trifoliol (161)	-	-	ОН	-	ОН	-	OCH		
wedelolactone (162)	ОН	-	OCH	-	-	ОН	ОН		

Explanation of symbol:

Coumestans are widely distributed. Wedelolactone (162) was reported to be the first example of a natural coumestan. Since then over twenty additional compounds bearing this ring system have been isolated from various leguminous plants (Dewick, 1982; Wong, 1975).

3.6.11 \alpha-Methyldeoxybenzoins

Angolensin (163) remained the sole example of this class of natural product for a quarter of a century, but 2-methylangolensin has since been extracted from heartwood of Pericopsis elata (Harms) van Meeuwen where it occurs together with angolensin (163). The latter examples which isolated from Pterocarpus angolensis DC. heartwood and co-occur with angolensin are 4-methylangolensin and 4-cadinylangolensin (Dewick, 1982).

angolensin

(163)

3.6.12 2-Arylbenzofurans

2-Arylbenzofurans (164) mostly co-occur in leguminous plants with isoflavonoids having related substitution patterns. Their possible derivation from the isoflavonoid skeleton is via loss of C-6 from a coumestan, or by a sequence in which the benzofuran moiety is obtained from the acetate-derived ring, rather than the shikimate-derived ring. The only biosynthetic data favour the latter process in the case of vignaturan (170). Pterofuran (168) from Pterocarpus indicus Willd. was first to be isolated and was found to co-occur with

formononetin (104), and angolensin (163). Ambofuranol (165) from buds of Neorautanenia amboensis Schinz was the first example of a 2-arylbenzofuran with an oxygen substituent on the heterocyclic ring (Dewick, 1982, 1988).

2-arylbenzofuran
(164)

2-arylbenzofuran	Substituent positions								
	3	5	6	2'	3'	4.	5'		
ambofuranol (165)	OCH	°C ₅	ОН	ОН	-	OCH			
isopterofuran (166)	199 81	145	ОН	OCH	OCH	ОН	-		
licobenzofuren (167)	ОН	OCH	OCH,	-	-	ОН	°C _s		
oterofuran (168)	รณ	11 M	ОН	OCH	ОН	OCH	-		
sainfuran (169)		ОН	OCH,	OH -	-	OCH,	-		
vignafuran (170)	_	-	OCH _a	OCH	n-	ОН	_		

Explanation of symbol:

3.6.13 Isoflavanol

Ambanol (171) is the only known naturally occurring isoflavanol. It was isolated from the root of Neorautanenia amboensis Schinz (Dewick, 1982).

ambanol

(171)

3.6.14 Coumaronochromones

For many years, only a single example of the coumaronochromone (172) class of isoflavonoid has been recognized. This is lisetin (173), isolated from Piscidia erythrina Linn. It is remarkable therefore to now be albe to add six new structures to the group. One was isolated from seeds of Millettia auriculata Bak., and the others were found in roots of white lupin, Lupinus albus Linn. In both Millettia and Lupinus, these coumaronochromones are known to co-occur with structurally analogous 2'-hydroxyisoflavone derivatives, and it is likely that the 2'-hydroxyisoflavones could be their biosynthetic precursors. Indeed, 2'-hydroxyisoflavones may be cyclized

to the corresponding coumaronochromones using a variety of oxidizing agents, and selenium dioxide is a recently reported reagent for this conversion (Dewick, 1982, 1988).

coumaronochromone

(172)

Coumaronochromone	Substituent positions							
	5	6	7	3'	4'	5'		
lisetin (173)	ОН	-	ОН	°C _s	ОН	OCH		
Iupinalbin A (174)	ОН	-	ОН	-	ОН	-		
lupinelbin B (175)	ОН	°C _s	ОН	190	ОН	-		

Explanation of symbol:

4. Biosynthesis of Flavonoids

4.1 General Aspects

The biosynthesis of flavonoids is unique in that the two aromatic rings arise via different pathways. The phenylpropane residue (ring B and carbon atoms 2,3 and 4) derives from p-coumaric acid which is formed via the shikimate pathway. Ring A, on the other hand, is basically formed by a head-to-tail condensation of three acetate units. Those were deduced from feeding experiments with radioactively labelled compounds (Goodwin and Mercer, 1983; Hahlbrock and Grisebach, 1975).

4.2 Formation of Chalcones

All classes of flavonoids are biosynthetically closely related, with a chalcone being the first common intermediate (Fig. 2.3). It is demonstrated

naringenin chalcone

caffeoyl-Co A

(176)

(177)

feruloy1-Co A

(178)

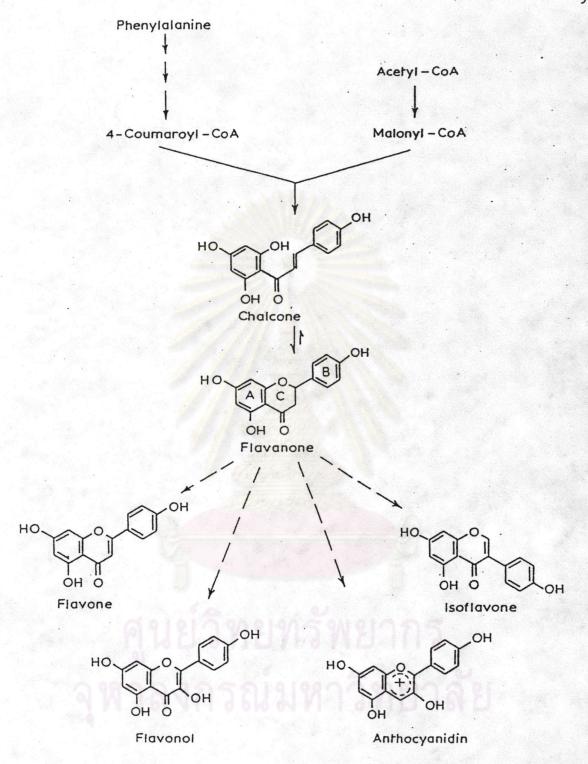


Figure 2.3 Scheme illustrating the position of the chalcone as the first common intermediate in the biosynthesis of all class of flavonoid.

that Co A esters of malonic acid and 4-coumaric acid are the best substrates for chalcone synthase which is the first enzyme of the true flavonoid pathway to give naringenin chalcone (169). However, caffeoyl-Co A (170) or feruloyl-Co A (171) could also be accepted to substitute for the latter material, albeit less effectively (Dewick 1986, 1988; Ebel and Hahlbrock, 1982; Heller, 1986). The sequence of reactions are shown in Fig. 2.4 which was deduced from the occurrence of several side products of the chalcone synthase reaction with the partially purified enzymes from parsley and Haploppus (Ebel and Hahlbrock, 1982).

4.3 Isomerization of Chalcone

Cyclization of the chalcone, naringeninchalcone (176) to the (2S)-flavanone naringenin (179) is
catalysed in vivo by the enzyme chalcone isomerase, but the
isomerization is difficult to assay because spontaneous
cyclization occurs at the alkaline pH optimum of the enzyme
(Dewick 1986). Chalcone isomerase was the first isolated
enzyme of flavonoid metabolism. The enzyme has no co-factor
requirements and catalyzes the stereo-specific formation of
the 6-membered heterocyclic ring of flavanones from the
corresponding chalcones. (Ebel and Hahlbrock, 1982;
Hahlbrock and Grisebach, 1975). The stereochemistry of the
reaction has been studied using a chalcone deuterated in
the α position as substrate. The resulting flavanone had
the S-configuration at C-2 and the deuterium took up the

Figure 2.4 Scheme illustrating the proposed mechanism of action of chalcone synthase from parsley.

equatorial position at C-3 (A. Fig. 2.5). On the other hand, when the reaction was carried out in D_2 0 with unlabelled substrate, the deuterium occupied the axial position at C-3 (B, Fig. 2.5). This means that cyclization is formally a cis addition to the α , β -double bond (Goodwin, 1983).

- Figure 2.5 Stereochemistry of the reaction catalysed by chalcone-flavanone isomerase.
 - A = Reaction proceeds in H_2O with the chalcone labelled at the α -carbon atom with deuterium.
 - B = Reaction proceeds in D₂0 with unlabelled chalcone.

4.4 Modification at Ring C

4.4.1 Oxidation Reactions in Ring C

It was demonstrated that protein extracts from parsley cells catalysed the oxidation of naringenin to the corresponding flavone, apigenin, in the presence of Fe2+, 2-oxoglutarate and possibly ascorbate as cofactors. The same protein extract, in the presence of these cofactors, also catalysed the 3-hydroxylation of naringenin to the dihydroflavonol, dihydrokaempferol and oxidation of dihydrokaempferol to kaempferol. The proposed sequence of reactions which would be in agreement with the experimental data thus far obtained is shown in Fig. 2.6. According to the cofactor requirement, the soluble enzymes belongs to the class of 2-oxoglutarate-dependent dioxygenases. A typical one is (2S)-flavanone 3-hydroxylase which convert flavanone precursors by 3-hydroxylation into dihydroflavonols, the important intermediates in the biosynthetic sequences to other flavonoid derivatives. This enzyme has high stereospecificity and a rather narrow substrate specificity because (2S)-naringenin (179) is converted by the enzyme into (2R, 3R)-2, 3-dihydrokaempferol (180), but (2R)-naringenin is not an acceptable substrate. Similarly, (2S)-eriodictyol (181) was transformed into (2R,3R) 2,3-dihydroquercetin (182), though the (2S)-3',4',5'-trioxygenated flavanone, 2,3-dihydromyricetin (183) was not metabolized (Dewick, 1988; Ebel and Hahlbrock, 1982).

Figure 2.6 Conversion by 3-hydroxylation, 3'-hydroxylation and oxidation of naringenin to various substituted flavones, dihydroflavonols, flavonols and anthocyanidins by cell-free extracts from Petroselinum hortense Hoffm. cell cultures (a), Haplopappus gracilis A. Gray cell cultures (b), flowers of Matthiola incana R. Br. (c) and flowers of Antirrhinum majus Linn. (d).

(2S)-naringenin, R=H

(179)

(181)

(2R,3R)-2,3-dihydrokaempferol,R=H

(180)

(2S)-eriodictyol, R=OH (2R,3R)-2,3-dihydroquercetin,R=OH (182)

(2S)-2,3-dihydromyricetin

(183)

In contrast to the studies with the enzyme from parsley cells, oxidation of flavanones to flavones in flowers extracts from Antirrhinum majus Linn. was catalysed enzyme activity in the microsomal fraction, flavone synthase II, which required NADPH as co-substrate. flavone synthase II is now known from several sources, eg. hybrida Voss, Taraxacum officinale Weber and osmotically stressed cells of soybean (Glycine max Merr.); it differs from the flavone synthase I from cell cultures of

parsley (Petroselinum crispum Linn.), which is a soluble Fe²⁺-and 2-oxoglutarate-dependent dioxygenase. Flavone synthase II from soybean has an absolute requirement for NADPH and 02 and is inhibited by CO, cytochrome C, and a number of inhibitors of cytochrome P-450. This suggests that flavone synthase II is a cytochrome-P-450-dependent mono-oxygenase. A hypothetical 2-hydroxyflavanone intermediate (184) has been proposed (Fig. 2.7). The flavone synthase II preparation from soybean also converted (2S)-eriodictyol (181) into luteolin (22), but would not accept

Figure 2.7 The hypothetical flavone synthesis

(2R)-naringenin as substrates. It is of special interest that the same transformation can be mediated by two different tissue specific enzyme systems. However, in both cases, flavonol is formed from dihydroflavonol by action of a 2-oxoglutarate-dependent dioxygenase (dewick, 1989; Ebel and Hahlbrock, 1982; Heller, 1986).

Anthocyanidins represent a further group of flavonoids that are derived from dihydroflavonols via flavan-3,4-diols (leucoanthocyanidins). The stereochemistry

pelargonidin (14), R=H cyanider (9), R=OH

Fig. 2.8 Anthocyanidin synthetic pathway from dihydroflavonol

R.Br. was shown to be 2,3-trans-3,4-cis by demonstrating the conversion of (+)-dihydrokaempferol (180) into 2,3-trans-3,4-cis-leucopelargonidin (185) (Fig.2.8) by an enzyme extract from the flowers. The reaction was NADPH-dependent, although NADH could function as a less effective cofactor. The 3'-hydroxy- and 3',5'-dihydroxy-analogues, (+)-dihydroquercetin (182) and (+)-dihydromyricetin (183) were also reduced by the enzyme, though less efficiently than (+)-dihydrokaempferol (180) (Dewick, 1986). The violet colour of flowers of Hedysarum carnosum Desf. is attributable to the presence of the anthocyanidin malvidin (13), whereas

malvidin (13)

white or violet-spotted mutants are deficient in this compound, containing colourless flavonols instead. These derive by dehydrogenation of the dihydroflavonol intermediates. The accumulation of flavonoid derivatives in mutants of H. carnosum Desf. has been shoen to be controlled by genes relating to one or other of the two processes that are involved in the biosynthesis of anthocyanidins, i.e. the conversion of dihydroflavonols into flavan-3,4-diols and then of flavan-3,4-diols into anthocyanidins (Dewick, 1988).

Chalcones are precursors of aurones and studies with cell-free systems from Cicer indicated that a peroxidase-like enzyme is involved, and that the course of the reaction may be that indicated in Fig. 2.9.

Figure 2.9 Proposed mechanism for the conversion of chalcones into aurones catalysed by a peroxidase-like enzyme (= movement of a single electron in the direction indicated; = movement of an electron pair in the direction indicated; H = hydrogen radical abstracted under the catalytic influence of the enzyme.)

4.4.2 Reduction Reactions in Ring C

Flavan-3,4-diols (leucoanthocyanidins) and flavan-3-ols (catechins) arise, by successive reduction steps from dihydroflavonols. The double reduction step has now been demonstrated with an enzyme preparation from maturing grains of barley (Hordeum vulgare Linn.). A soluble NADPH-dependent reductase converted (+)-2,3-dihydroquercetin (182) into the (2R, 3S, 4S)-flavan-3,4-diol, (+)-2,3-trans-3,4-cis-leucocyanidin (186) but was strongly inhibited by the product of the reaction. A second, less-active NADPH-dependent reductase catalysed the reduction of (+)-2,3-trans-3,4-cis-leucocyanidin (186) to (+)-catechin (187) (Fig.2.10) (Dewick, 1988).

Figure 2.10 Biosynthetic pathway of catechin

(188)

4.5 Secondary Modifications

4.5.1 Hydroxylation

The basic pattern of hydroxylation is illustrated by consideration of the structure of naringenin chalcone (176). The hydroxylation pattern which is most frequently encountered in ring A (C-2',4',6', chalcone numbering) is that which is expected from its polyketide origin. Although the basic pattern is widespread compounds with the hydroxyl missing at C-5 (flavonoid numbering) are known, particularly in the Leguminosae; an example is fisetin (27) from Rhus spp. Genetic studies

fisetin (27)

suggest that the removal of the C-5 hydroxyl group probably occurs at the polyketide stage and certainly at the chalcone stage at the latest because the presence of the gene controlling the removal results in all flavonoids being equally affected. Furthermore, tracer studies have shown that in normal plants 5-deoxychalcones give rise only to 5-deoxyflavonoids. Flavonoids with additional hydroxyl groups in ring A are also known; for example, galetin [OH at C-6 (188)] and hibiscetin [OH at C-8 (189)] from Galega

and Hibiscus, respectively. In contrast to the removal of OH from C-5, the addition at C-6 and C-8 appears to take place after chalcone formation (Goodwin and Mercer, 1983).

In ring B, hydroxylation at C-4' is almost universal, indicating that P-coumaric acid is the usual precursor of the phenylpropane residue of flavonoids. The most frequently occuring structural modification of flavonoid aglycones are hydroxylation and subsequent methylation in the 3' and 5' positions of ring B. Two different ways leading to B-ring oxygenated flavonoids have been discussed:

- (i) incorporation of already substituted hydroxycinnamic acid derivatives or
- (ii) hydroxylation and methylation at the C stage.

The synthesis of 3'-hydroxynaringenin (eriodictyol) (181) from caffeoyl-CoA (177) can be catalysed under certain assay conditions in vitro by chalcone synthase. If this compound were synthesized in sufficient amounts in vivo and accepted as substrate for flavone and flavonol formation, the 3'-hydroxyl group would not need to be introduced at a later stage. However, investigations with cell-free extracts from cell cultures of Haptopappus gracilis A. Gray and parsley and flowers of Matthiola incana R.Br. and Antirrhinum majus Linn. demonstrated the presence of a 3'-hydroxylase in microsomal fractions which required NADPH as a cofactor. That is in agreement with the early tracer experiments with buckwheat which had shown that 4-coumaric but not caffeic acid is incorporated into quercetin (34). Hydroxylation at C-3' of the aromatic ring occurs at the flavonoid level, but is not restricted to any particular oxidation state of flavonoid skeleton. Thus a microsomal broadspectrum flavonoid 3'-mono-oxygenase from seedling of maize (Zea mays Linn.) has been observed to 3'hydroxylate the flavanone naringenin (179), the flavonol kaempferol (30), and the flavone apigenin (20), giving eriodictyol (181), quercetin (34), and luteolin (22) respectively. Kaempferol (30) was found to be the best substrat, followed by apigenin (20) and naringenin (179). The 3'-hydroxylase activity is partially inhibited by CO in the presence of 0, as well as by cytochrome C and NADP; and requires O and NADPH, suggesting that the enzyme is a cytochrome P-450-type mono-oxygenase. Enzyme preparation

from the flowers of *Verbena hybrida* Voss catalyse the hydroxylation of ring B of flavanones and dihydroflavonols in both the 3'- and 5'-positions. This enzyme is also localized in the microsomal fraction, and requires NADPH as cofactor. The enzyme hydroxylates eriodictyol (181) and

$$HO \longrightarrow HO \longrightarrow R$$
 $OH \longrightarrow OH$
 $OH \longrightarrow OH$
 $OH \longrightarrow OH$
 $OH \longrightarrow OH$

naringenin (179), R=H
dihydrokaempferol (180), R=OH

eriodictyol (181),R=H
dihydroquercetin (182),R=OH

$$\begin{array}{c} OH \\ OH \\ OH \\ HO \end{array}$$

(190), R=H dihydromyricetin (183), R=OH

Figure 2.11 Hydroxylation in ring B.

dihydroquercetin (182) in the 5'-position, giving (190) and dihydromyricetin (183) respectively, and gave mixtures of eriodictyol (181) and (190) or dihydroquercetin (182) and dihydromyricetin (183) when naringenin (179) or dihydrokaempferol (180) were used as substrates (Fig. 2.11) (Dewick, 1984, 1988; Ebel and Hahlbrock, 1982; Heller, 1986).

4.5.2 O-Methylation

Many O-methylated flavonoids are known, and there is no doubt that the methylation step occurs later in the biosynthetic sequence because of the observation that feruloy1-CoA, (3-methylcaffeoy1-CoA), (178) is a poor substrate for chalcone synthase. The reaction is catalysed by conventional methyl transferases with Sadenosylmethionine as the methyl donor but the enzymes are specific for hydroxyls in different positions. For example, Chrysosplenium americanum Schwein. ex Hook., four from distinct enzymes for individual hydroxyl positions of quercetin and derivatives was separated and characterized (Goodwin and Mercer, 1983; Heller, 1986). Flavones and flavonols were methylated more efficiently than flavanones and dihydroflavonols. The question of whether methylation preceeds glucosylation in the biosynthesis of methylated flavonoid glycosides cannot be answered unambiguously. As with the parsley 3'-O-methyltransferase, both luteolin and its 7-0-glucoside were efficient substrates of the soybean 3'-O-methyltransferase. On the other hand, quercetin 3-Oglucoside and 3-0-rutinoside (rutin) were methylated at lower rates than quercetin (Ebel and Hahlbrock, 1982).

4.5.3 O-Glycosylation

It is most likely that glycosylation occurs subsequent to all other substitutions and modifications of the flavonoid ring structure. UDP-sugars are frequently the donor substrates for these reactions. In irradiated parsley cell culture, apiin and flavonol 3,7-bis-glucosides are formed by sequential glycosylation steps as indicated in Fig. 2.12.

The first reaction of this sequence (No.8) is identical for flavone and flavonols and is catalysed by UDP-glucose:flavone/flavonol 7-0-glucosyltransferase. The enzyme has a broad specificity for several flavone, flavonol and flavanone aglycones, but does not glucosylate various other phenolic compounds, including isoflavones and cyanidin. Quercetin 3-0-glucoside is not further glucosylated in the 7-0-position. This suggests that the reaction sequence for the 7-0- and 3-0-glucosylation of flavonols in parsley is as indicated in Fig. 2.12 (Ebel and Hahlbrock, 1982; Heller, 1986).

The second glucosylation of flavonols is catalysed by UDP-glucose: flavonol 3-0-glucosyltransferase (Fig. 2.12, No.9), which exhibits a strict positional specificity and catalyses the 3-0-glucosylation of a number of flavonols, including quercetin 7-0-glucoside (Ebel and hahlbrock, 1982).

Figure 2.12 Scheme illustrating the sequence of reactions of the flavone and flavonol glycoside pathways. The enzyme marked by numbers are listed in Table 2.4. SAM, S-adenosyl-L-methionine; SAH, S-adenosyl-L-homocysteine.

Table 2.4 List of enzymes mentioned in Fig. 2.12.

Key to No.

Enzyme

in Fig. 2.12

No.	11	Acetyl-Co A carboxylase
No.	2	Chalcone synthase
No.	3	Chalcone isomerase
No.	4	Flavonoid 3-hydroxylase
No.	5	Flavonoid oxidase
No.	6	Flavonoid 3'-hydroxylase
No.	7	S-Adenosyl-L-methionine:flavonoid 3'-O-
		methyltransferase
No.	8	UDP-Glucose: flavonoid 7-0-glucosyltransferase
No.	9	UDP-Glucose: flavonol 3-0-glucosyltransferase
No.	10	UDP-Apiose/UDP-xylose synthase
No.	11	UDP-Apiose: flavone 7-0-glucoside 2"-0-
		apiosyltransferase
No.	12	Malonyl-Co A:flavonoid 7-0-glycoside
		malonyltransferase
No.	13	Malonyl-Co A:flavonol 3-O-glucoside
		malonyltransferase

Further glycosylation of the sugar moiety of flavonoid glucosides occurs in the biosynthesis of apiosylglucosides (Fig. 2.12, No.10,11). UDP-apiose synthase catalyses the NAD*-dependent conversion of UDP-D-glucuronate to give UDP-apiose. Transfer of the apiosyl residue from UDP-apiose to flavone 7-O-glucosides is catalysed in parsley by UDP-D-apiose:flavone 7-O-glucoside 2"-O-apiosyltransferase (Fig. 2.12, No.11). The enzyme is specific for UDP-apiose as glycosyl donor and acts on 7-O-glucosides of a variety of flavones, flavanones and isoflavones, but does not accept flavonol 7-O- or 3-O-glucosides, flavonoid aglycones or free glucose as substrates (Ebel and Hahlbrock, 1982).

Several enzymic reactions in crude extracts catalysing the formation of flavonol glycosides from the corresponding aglycones and sugar nucleoside diphosphates have been reported. These enzymes were shown to be specific glycosyltransferases (Dewick, 1984; Ebel and Hahlbrock, 1982).

4.5.4 C-Glycosylation

Though C-glycosides are found predominantly emongst the flavones, earlier feeding experiments had indicated that flavanones might act as precursors of flavone C-glycosides, whereas flavones themselves were not incorporated. From subsequent enzymic studies, it was shown that C-glucosyltransferase

preparation from seedling of buckwheat (Fagopyrum esculentum Moench) catalyse the transfer of glucose from UDP-glucose or ADP-glucose to 2-hydroxynaringenin, an intermediate, giving a mixture of C-glucosides (Dewick, 1989; Goodwin and Mercer, 1983).

4.5.5 C-Alkylation

c-Methylated flavonoids are relatively rare and no biosynthetic studies have been reported. Isoprenylation at carbon atom is also encountered in some sixty flavonoids. Although nothing is known of the mechanism of isoprenylation in flavonoids, it can reasonably be assumed that, as in terpene biosynthesis, isopentenyl pyrophosphate is the substrate for a specific prenyl transferase (Goodwin and Mercer, 1983).

4.6 Isoflavonoids

Isoflavonoids are formed in nature from flavonoid $C_6 - C_3 - C_6$ precursors, but, during the biosynthesis, the shikimate-derived aromatic ring migrates from C-2 to the adjacent carbon, C-3. Tracer experiments with [14 COOH]-, $[\alpha^{-14}$ C]- and $[\beta^{-14}$ C] phenylalanine showed labelling patterns in formononetin produced by red clover indicated in Fig. 2.13. These patterns are consistent with an aryl migration. The migration is catalysed by the enzyme isoflavone synthase which is a mono-oxygenase, requiring NADPH and molecular oxygen as cofactors. The enzyme activity has a half-life of only about 10 minutes at 30°C,

[14C] substrate (L-phenylalanine)	Labelling pattern in the isoflavone, formononetin
$\begin{array}{c} H_2 C \longrightarrow \\ HO - \overset{\bullet}{C} & NH_2 \\ HO \longrightarrow H \end{array}$	HO OCH ₃
H ₂ C HO-C H	HO OCH ₃
H ₂ C — NH ₂	HO OCH ₃

Figure 2.13 Pattern of labelling in the isoflavone, formonometin, produced in red clover from different $^{14}\text{C-labelled}$ species of L-phenylalanine (\bullet = ^{14}C)

and transforms the flavanone substrates (2S)-naringenin (179) or (2S)-liquiritigenin (191) into the isoflavones genistein (105) or daidzein (102), respectively. A hypothetical pathway via epoxidation of the enol form of the flavanone has been proposed (Fig. 2.14). Futher substitution of the basic isoflavonoid skeleton and modification of the oxidation level in the heterocyclic ring are then responsible for the production of the wide variety of natural isoflavonoid structrues.

(2S)-naringenin

(179) R = OH

(2S)-liquiritigenin

(191) R = H

genistein (105)

R = OH

daidzein (102)

R = H

Figure 2.14 A hypothetical pathway of isoflavone synthesis

A S-adenosylmethionine: isoflavone-4'-O-methyltransferase from cell suspension cultures of Cicer arietinum Linn. catalysed the 4'-methylation of daidzein (102) and

daidzein (102) R=H genistein (105) R=OH

formononetin (104) R=H biochanin A (101) R=OH

genistein (105) to formononetin (104) and biochanin A (101), respectively (Dewick, 1982, 1985, 1988, 1989; Ebel and Hahlbrock, 1982; Goodwin and Mercer, 1983; Hahlbrock and Grisebach, 1975).

From feeding experiments, the formation of the pterocarrpans, medicarpin (194) and maackiain (198) from the isoflavone, formononetin (104) has been deduced as shown in Fig. 2.15. Hydroxylase enzymes that catalyse 2'hydroxylation of formononetin (104) to (192) and 3'hydroxylation of formononetin (104) to calycosin (195) have been demonstrated in microsomal fractions from chickpea (Cicer arietinum Linn.) cell suspension cultures that had been challenged with yeast-extract elicitor. The enzyme activity appeared concomitantly with the accumulation of pterocarpans, required NADPH and 0 as cofactors and also hydroxylated biochanin A (101) to the corresponding 2'- and 3'-hydroxylated isoflavones. Hydroxylation of biochanin A (101) was in fact rather more efficient than hydroxylation of formononetin (104), though no pterocarpans derived from biochanin A (101) are synthesized in Cicer arietinum Linn. Daidzein (102) and genistein (105) were poor substrates. In some experiments, only 3'-hydroxylation was observed, and this suggestes that two distinct hydroxylases are involved. Occasionally, the methylenedioxy-derivative ψ -baptigenin (196) was isolated from incubations with formonometin, demonstrating the next step of sequence to maackiain (198) (Dewick, 1989).

Figure 2.15 Biosynthesis pathway of pterocarpan.

The biosynthesis of pterocarpans involves a sequence of reduction steps prior to cyclization, and initially isoflavones are reduced to isoflavanones. Yeastextract-challenged cell suspension cultures of Cicer arietinum Linn. have yielded a soluble isoflavone oxidoreductase that catalyses the reduction of 2'-hydroxyformononetin (192) to vestitone (193). The enzyme was unstable, required NADPH as cofactor, and was specific for isoflavones that contain a 2'-hydroxyl group. Thus whilst 2'-hydroxy-\psi-baptigenin (197) also served as a substrate, daidzein (102), genistein (105), formononetin (104), biochanin A (101), and calycosin (195) were not converted. Again, these results support the proposed sequence to medicarpin (194) and maackiain (198) (Fig. 2.15). Feeding experiments have also indicated that 6a-hydroxy-pterocarpans are derived by direct hydroxylation of the pterocarpan skeleton (Dewick, 1989).

Prenylation of isoflavonoid molecules generally seems to occur late in the biosynthetic sequence, after modified skeletons have been produced from the isoflavone precursors. Phaseollidin (200) has been shown to be an intermediate between (199) and phaseollin (201) in stressed tissues of bean (Phaseolus vulgaris Linn.). A dimethylallyltransferase from a microsomal fraction of bean cell suspension cultures that had been treated with a yeast-extract elicitor has now been identified. This enzyme catalysed the 10-prenylation of (+)-(199) to give

phaseollidin (200). Using dimethylallyl diphosphate as the prenyl donor, though it was not completely specific for the pterocarpan (199). Medicarpin (194) and the coumestan coumestrol were also prenylated, though the products have not been identified (Dewick, 1989).

(199) phaseollidin (200)

phaseollin

(201)

C. Distribution of Flavonoids in the Genus Sophora

1. Flavones

Table 2.5 Distribution of flavones in the genus Sophora.

Flavone	Substitution	Botanical Origin	Plant Part	Reference
Apigenin	5-OH	S. secundiflora Lag.	leaves	Makboul and Abdel-Baky
	7-OH	ex DC.		(1984)
	4'-OH			
Apigenin 7-0-glucoside	5-0H	S. secundiflora Lag.	leaves	Makboul and Abdel-Baky
	7-0-glucosyl	ex DC.		(1984)
	4'-OH	S. tetraptera J. Mill.	leaves	Markham (1973)
Apigenin-7-0-	5-0H	S. prostrata J. Buch.	leaves	Markham (1973)
rhamnosylglucoside	7-0-(rhamnosyl,	S. tetraptera J. Mill.	leaves	Markham (1973)
	glucosyl)	เขาการ์ทร	เกล้	21
	4'-OH			
Apigenin-7-0-	5-0H	S. tetraptera J. Mill.	leaves	Markham (1973)
rhamnosylglucoside-	7-0-(rhamnosyl,			
4'-0-glucoside	glucosyl)			
	4'-0-glucosyl			

Table 2.5 (Continue)

Flavone	Substitution	Botanical Origin	Plant Part	Reference
Bayin	7-0H	S. subprestrata Chun	roots	Shirataki et al.
	8-glucosyl	et TC. Chen	75	(1986)
7,4°-Dihydroxyflavone	7-0H	S. prostrata J. Buch.	leaves	Markham (1973)
	4'-OH	S. tetraptera J. Mill.	leaves	Markham (1973)
7,4'-Dihydroxyflavone- 7-O-glucoside	7-0-glucosyl	S. tetraptera J. Mill.	leaves	Markham (1973)
7,4'-Dihydroxyflavone-	7-0-(rhamnosyl,	S. prostrata J. Buch.	leaves	Markham (1973)
7-0-rhamnosylglucoside	glucosyl)	S. tetraptera J. Will.	leaves	Markham (1973)
Diosmin	5-0H 7-0-(rhamnosyl,	S. microphylla Ait.	flowers	Briggs et al. (1960)
	glucosyl)	S. viciifolia Hance	-	Plouvier (1966)
	4'-0CH ₃	w.		
Lucenin-2	5-OH	S. microphylla Ait.	leaves	Markham (1973)
	6-glucosyl	S. prostrata J. Buch	leaves	Markham (1973)
	7-0H	มหาวทย		
	8-glucosyl			
	з'-ОН			
	4'-OH			

Table 2.5 (Continue)

Flavone	Substitution	Botanical Origin	Plant Part	Reference
Luteolin	5-OH	S. prostrata J. Buch.	leaves	Markham (1973)
	7-0H	S. tetraptera J. Mill.	leaves	Markham (1973)
	з'-ОН		in the	
	4'-OH			
Luteolin-7-0-glucoside	5-OH	S. angustifolia Sieb et	leaves	Nakaoki et al.
	7-0-glucosyl	Zucc.		(1955)
	3'-OH	S. tetraptera J. Mill.	leaves	Markham (1973)
	4'-OH			
Luteolin-7-0-	5-OH	S. prostrata J. Buch.	leaves	Markham (1973)
rhamnosylglucoside	7-0-(rhamnosyl,	S. tetraptera J. Mill.	leaves	Markham (1973)
	glucosyl)			
	3,-OH			
	4'-OH	9		
Rhamnosylisovitexin	5-OH	S. microphylla Ait.	leaves	Markham (1973)
	6-(rhamnosyl,			
	glucosyl)	ทรัพยาก	5	
	7-OH	HOUD HI	9	
	4'-OH	เหกริทย	nas	
Rhamnosylvitexin	5-OH	S. microphylla Ait.	leaves	Markham (1973)
	7-ОН			
	8-(rhamnosyl,			
	glucosyl)			

Table 2.5 (Continue)

Flavone	Substitution	Botanical Origin	Plant Part	Reference
Sophoraflavone A	7-0H	S. subprostrata Chun	roots	Shirataki et al.
	8-(rhamnosyl, glucosyl)	et TC. Chen		(1986)
	4'-OH			
Sophoraflavone B	7-0H	S. subprostrata Chun	roots	Shirataki et al.
	4'-0-glucosyl	et TC. Chen		(1986)
7,3',4'-Trihydroxyflavone	7-0H	S. prostrata J. Buch.	leaves	Markham (1973)
	3'-OH	S. tetraptera J. Mill.	leaves	Markham (1973)
	4'-OH			
7,3',4'-Trihydroxyflavone-	7-0-glucosyl	S. tetraptera J. Mill.	leaves	Markham (1973)
7-0-glucoside	3OH			70
	4'-OH			
7,3',4'-Trihydroxyflavone-	7-0-(rhamnosyl,	S. prostrata J. Buch.	leaves	Markham (1973)
7-0-rhamnosylglucoside	glucosyl)	S. tetraptera J. Mill.	leaves	Markham (1973)
	3,-OH			
	4'-OH	ารพยากร		
Vicenin-2	5-OH	S. prostrata J. Buch.	leaves	Markhan (1973)
	6-glucosyl	S. tetraptera J. Mill.	leaves	Markham (1973)
	7-0H			
	8-glucosyl			
	4'-OH			

2. Flavonols

Table 2.6 Distribution of flavonols in the genus Sophora.

Flavonol	Substitution	Botanical Origin	Plant Part	Reference
5-Deoxyksempferol	7-0H	S. secundiflora Lag.	leaves	Hasan et al. (1987)
	4'-OH	ex DC.		
Fisetin	7-OH	S. secundiflora Lag.	leaves	Hasan et al. (1987)
	3'-OH	ex DC.		
	4'-OH	7 355		
soanhydroicaritin	5-OH	S. angustifolia Sieb	roots	Komatsu et al. (1970d
	7-0CH ₃	et Zucc.		
	8-isoprenyl ¹	20 San 510		
	4'-OH	I SHELL		
sorhamnetin	5-OH	S. japonica Linn.	buds	Ishida et al. (1989)
	7-0H	MAN LAYI		
	3'-0CH _s			
	4'-OH			

Table 2.6 (Continue)

Flavonol	Substitution	Botanical Origin	Plant Part	Reference
Isorhemnetin-3- rutinoside	3-0-(rhamnosyl, glucosyl)	S. japonica Linn.	buds	Kimura and Yamada
	5-0H 7-0H 3'-0CH ₃ 4'-0H			
Kaempferol	5-0H 7-0H	S. japonica Linn.	fruits	Akhmedkhodzhaeva et al. (1986)
	4*-OH	S. secundiftors Lag. ex	leaves	Makboul and Abdel- Baky (1984)
Kaempferol-3,?- diglycoside	3-0-glucosyl 5-0H 7-0-glucosyl 4'-0H	S. japonica Linn.	fruits	Akhmedkhodzhaeva et al. (1986)
Kaempferol-3-0-	3-0-(rhamnosyl,	S. japonica Linn.	buds	Kimura and Yamada
rhamnoglucoside	glucosyl) 5-OH 7-OH 4'-OH	S. secundifiora Lag.	leaves	(1984) Makboul and Abdel- Baky (1984)
Kaempfero1-3-0- rhamnoside	3-0-rhamnosyl 5-0H 7-0H	S. secundiftora Lag. ex	leaves	Makboul and Abdel- Baky (1984)

Table 2.6 (Continue)

Flavonol	Substitution	Botanical Origin	Plant Part	Reference
Kushenol C	5-0H 7-0H	S. flavescens Ait.	roots	Wu et al. (1985a)
	8-lavanduly1 ²			
	2°-0H			
	4'-OH			90.00
Kushenol G	5-0H	S. flavescens Ait.	roots	Wu et al. (1985b)
	7-0H			
	8-lavandulyl hydrate			n i
	2*-OH			
	4'-OH			
5-0-Methylkushenol C	5-OCH ₉	S. flavescens Ait.	-	Yaki et al. (1989)
	7-0H			
	8-lavanduly12			
	2'-OH			
	4'-OH			
3-Methoxyquercetin	3-0CH ₃	S. secundifiora Lag.	leaves	Hasan et al. (1987)
	5-0H	ex DC.		
	7-0H	100000000	180	
	3'-OH	IN 19 ME	616	
	4'-OH			
Moranhydroicaritin	5-OH	S. angustifolia Sieb	roots	Komutsu et al.
	7-OH	et Zucc.		(1970d)
	8-isoprenyl ¹			
	4'-OH			

Table 2.6 (Continue)

Flavonol	Substitution	Botanical Origin	Plant Part	Reference
Quercetin	5-OH 7-OH	S. japonica Linn.	buds fruits	Ishida et al. (1987) Akhmedkhodzhaeva
	3'-OH 4'-OH	S. secundifiora Lag.	leaves	et al. (1986) Makboul and Abdel- Baky (1984)
Quercetin-3-0- galactoside	3-0-galactosyl 5-0H 7-0H 3'-0H	S. tetraptera J. Mill.	leaves	Reyes et al. (1988)
Rutin	3-0-(rhamnosyl, glucosyl) 5-0H 7-0H 3'-0H	S. japonica Linn.	buds, flowers, leaves, pericarps, seeds, small	Balbaa et al. (1974)
	เสงกรณ์	S. prodanii E. Anders		Takeda et al. (1977) Pislarasu and Safta- Nistorica (1968)
		S. secundif!ora Lag. ex ex DC. S. tetraptera J. Mill.	leaves	Makboul and Abdel- Baky (1984) Reyes et al. (1988)

Table 2.6 (Continue)

Flavonol	Substitution	Botanical Ori	gin Plant Part	Reference
Sophoraflavonoloside	3-0-(glucosyl, glucosyl)	S. japonica Lin	n. fruits	Szabo et al. (1967)
	5-OH			
	7-0H			
	4'-OH			
5,7,4'-Trihydroxyflavone -3-rhamnodiglucoside	3-0-(rhamnosyl, glucosyl, glucosyl)	S. japonica Lin	n	Ho et al. (1984)
	5-0H			
	7-OH			
	4'-OH			

3. Chalcones

Table 2.7 Distribution of chalcones in the genus Sophora.

Chalcone	Substitution	Botanical Origin	Plant Part	Reference
6-[3-(2',4'-Dihydroxyphenyl)	2-ОН	S. subprostrata	roots	Kyogoku et al.
scryloy13-7-hydroxy-2,2-	4-0H	Chun et TC. Chen		(1973d)
dimethyl-8-(3-methyl-2-	3'			
buteny1)-2#-benzopyran	4'			
	5'-isoprenyl	5		
	6'-0H			
Isoliquiritigenin	4-0H	S. tomentosa Linn.	aerial	Komatsu et al.
	2'-OH	พยกล	part	(19 78a)
	4'-OH	71 LJ 11)		
Kuraridin	2-OH	S. angustifolia	roots	Hatayama and Komatsu
	4-0H	Sieb et Zucc.		(1971)
	2'-OH			
	3'-lavandulyl ²			
	4'-OH			
	6,-0CH ³			

Table 2.7 (Continue)

Chalcone	Substitution	Botenical Origin	Plant Part	Reference
Kuraridinol	2-0H	S. flavescens Ait.	roots	Kyogoku et al. (1973a)
	4-OH			
	2*-OH	1000		
	3'-lavandulyl hydrate			
	4*-OH			
	6,-OCH			
Kushenol-D	2-0CH _a	S. flavescens Ait.	roots	Wu et al. (1985a)
	4-0H			
	2'-0CH ₃			
	4*-OH			
	5'-lavandulyl ²			
	6'-OH	7.00	10 THE	
Sophoradin	3-isopreny1 t	S. subprostrata Chun	roots	Komatsu et al. (1970b)
	4-0H	et TC. Chen		
	5-isoprenyl ¹	67		
	2'-OH	1591817	15	
	3'-isoprenyl			
Q 18	4'-OH	19877999		

Table 2.7 (Continue)

Chalcone	Substitution	Botanical Origin	Plant Part	Reference
Sophoradochromene	3 4 0	S. subprostrate Chun et TC. Chen	roots	Komatsu et al. (1970c)
	5-isopreny1 ¹ 2'-OH 3'-isopreny1 ¹			
Xanthohumol	4-0CH ₃	S. angustifolia Sieb	roots	Komatsu et al. (1970d)
	2'-OH 3'-isopreny1 ¹ 4'-OH	et Zucc.		
	6'-OCH ₃			

4. Flavanones

Table 2.8 Distribution of flavanones in the genus Sophora.

Flavanone	Substitution	Botanical Origin	Plant Part	Reference
4',7-dihydroxy-6,8-bis (3-methy1-2-buteny1) flavanone	6-isoprenyl ¹ 7-OH 8-isoprenyl ¹	S. subprostrata Chun et TC. Chen	roots	Kyogoku et al. (1973c)
2-(2',4'-dihydroxyphenyl) -8,8-dimethyl-10-(3- methyl-2-butenyl)	4'-OH 6 7 0	S. subprostrata Chun et TC. Chen	roots	Kyogoku et al. (1973d)
-8H-pyrano[2,3-d]	8-isoprenyl ¹ 2'-OH 4'-OH	ารัพยาก	9	
Euchrestaflavanone A	5-OH 7-OH 8-isoprenyl 3'-isoprenyl 4'-OH	S. moorcroftiana Benth, ex Baker	162	Mizuno et al. (1989

Table 2.8 (Continue)

Flavanone	Substitution	Botanical Origin	Plant Part	Reference
2-[(7'-Hydroxy-2',2'-	7-0H	S. subprostrata Chun	roots	Kyogoku et al. (1973c)
dimethy1-2H-benzopyran) -6'-y1]-7-hydroxy-8- (3-methy1-2-buteny1) chroman-4-one	8-isopreny1 ¹ 2'-OH 4' 5'	et TC. Chen		
2-[{3'-Hydroyxy-2',2'- dimethyl-8'-(3-methyl -2-butenyl)}chroman-6'-yl]- 7-hydroxy-8-(3-methyl-2- butenyl)chroman-4-one	7-OH 8-isopreny1 3'-isopreny1 4' 6	S. subprostrata Chun et TC. Chen	roots	Kyogoku et al. (1973b)
2-[{2'-(1-hydroxy-1- methylethyl)-7'-(3- methyl-2-butenyl)-2',3'- dihydrobenzofuran}-5'-yl]- 7-hydroxy-8-(3-methyl-2-	7-OH 8-isopreny1 3'-isopreny1 4, 0	S. subprostrata Chun et TC. Chen	roots	Kyogoku et al. (1973b)
butenyl)chroman-4-one Isobavachin	7-OH 8-isoprenyl ¹ 4'-OH	S. alopecuroides Linn. S. tomentosa Linn.	roots aerial part	Yusupova et al. (1984) Konatsu et al. (1978b)

Table 2.8 (Continue)

Flavanone	Substitution	Botanical Origin	Plant Part	Reference
Isokurarinone	5-0H 7-0H	S. flavescens Ait.	roots	Kyogoku et al. (1973a)
	8-lavanduly1 ²			
	2'-0CH			
	4'-OH			
I soxanthohumol	5-OCH	S. angustifolia Sieb	roots	Konatsu et al. (1970d)
	7-0H	et Zucc.		
	8-isoprenyl ⁱ			
	4*-OH			
Kurarinol	5-OCH ₃	S. flavescens Ait.	roots	Kyogoku et al. (1973a)
	7-0H			
	8-lavandulyl hydrate ³			
	2'-OH		0	
	4'-OH			
Kurarinone	5-OCH _a	S. angustifolia Sieb	roots	Hatayama and Komatsu
	7-0H	et Zucc.	ns.	(1971)
	8-lavandulyl ²	FF 6 FF U	10	
	2*-OH	กเหาวิท	เกล้	<u>ei - </u>
	4'-OH	OIVI 1 0 FI	B 10.	U
Kushenol A	5-0H	S. flavescens Ait.	roots	Wu et al. (1985a)
	7-0H			
	8-lavanduly1 ²			
	2'-OH			

Table 2.8 (Continue)

Flavanone	Substitution	Botanical Origin	Plant Part	Reference
Kusheno1-B	5-OH 6-isoprenyl ¹ 7-OH	S. flavescens Ait.	roots	Wu et al. (1985a)
	8-lavanduly1 ² 2'-OH			
Kushenol E	4'-OH 5-OH 6-isoprenyl ¹	S. flarescens Ait.	roots	Wu et al. (1985b)
	7-OH 8-isoprenyl ¹ 2'-OH			
	4'-OH			
Kushenol F	5-0H	S. alopecuroides Linn.		Batirov et al. (1985)
(norkurarinone,	6-lavandulyl ² 7-OH 2'-OH	S. angustifolia Sieb et Zucc.	roots	Hatayama and Komatsu (1971) Shirataki et al. (1988)
	4'-OH	S. flarescens Ait.	roots	Wu et al. (1985b)
Liquiritigenin	7-0H 4'-0H	S. secondiftora DC.	16 16	Minhaz et al. (1976)
Neokurarinol	5-0CH _s 7-0H	S. flavescens Ait.	roots	Kyogoku et al. (1973a)
	8-lavandulyl hydrate ³ 2'-OCH ₃ 4'-OH			

Table 2.8 (Continue)

Substitution	Botanical Origin	Plant Part	Reference
5-OH 7-OH 8-lavandulyl hydrate 2'-OH	S. flavescens Ait.	roots	Kyogoku et al. (1973a)
4'-0H 5-0H 7-0H	S. tomentosa Linn.	roots	Bruno and Savona
4'-0H 5-0H	S. moorcroftiana	roots	Shirataki et al. (1983) Shirataki et al. (1988)
8-isoprenyl ¹	S. tomentosa Linn.	aerial part	Komatsu et al. (1978b) Shirataki et al. (1985)
5-0H 7-0H 8-lavandulyl ² 2'-0H	S. moorcroftiana Benth. ex Baker	roots	Shirataki et al. (1988)
4'-OH	MUSHE] ୀରଃ	
	7-OH 8-lavandulyl hydrate 2'-OH 4'-OH 5-OH 7-OH 8-geranyl 4'-OH 5-OH 7-OH 8-isoprenyl 4'-OH 5-OH 7-OH 8-lavandulyl 2'-OH	7-OH 8-lavandulyl hydrate 2'-OH 4'-OH 5-OH S. tomentosa Linn. 7-OH 8-geranyl 4'-OH 5-OH S. moorcroftiana Benth. ex Baker 8-isoprenyl 5-OH S. moorcroftiana Benth. ex Baker 8-isoprenyl 5-OH S. moorcroftiana Benth. ex Baker 8-lavandulyl 2'-OH	7-OH 8-lavanduly1 hydrate 2'-OH 4'-OH 5-OH 5-OH S. tomentosa Linn. roots 7-OH 8-gerany1 4'-OH 5-OH S. moorcroftiana roots 7-OH 8-isopreny1 S. tomentosa Linn. aerial 4'-OH 5-OH S. moorcroftiana roots Renth. ex Baker 8-isopreny1 S. moorcroftiana roots part 7-OH Senth. ex Baker 8-lavanduly1 2'-OH

Substitution	Botanical Origin	Plant Part	Reference
5-0H 7-0H 8-isopreny1 ¹ 2'-0H	S. moorcroftiana Benth. ex Baker	-	Mizuno et al. (1989)
4° 0 OH OH			
5-ОН	S. moorcroftiana	-	Mizuno et al. (1989))
7-OH 8-lavandulyi ² 2'-OH	Benth. ex Baker		
4: OH OH OH	1 WEITE WITTE	ร าลัย	
7-OH 8-isoprenyl ¹ 3'	S. subprostrata Chun et TC. Chen	roots	Komatsu et al. (1970c)
	5-OH 7-OH 8-isopreny1 2'-OH 4'-O 5'-OH 7-OH 8-lavanduly1 2'-OH 4'-O 5'-OH 7-OH 8-isopreny1 3'-OH	5-OH 7-OH 8-isopreny1 2'-OH 4'-OH 5-OH 7-OH S. moorcroftiana Benth. ex Baker 8-lavanduly1 2'-OH 4'-OH OH 7-OH 8-isopreny1 3'-OH S. subprostrata Chun et TC. Chen	5-OH 7-OH 8-isopreny1 2'-OH 5-OH 5-OH 7-OH 8-lavanduly1 2'-OH 5-OH 7-OH 8-isopreny1 5-OH 7-OH 8-isopreny1 5-OH 7-OH 8-isopreny1 8-isopreny1 7-OH 8-isopreny1 8-isopreny1 7-OH 8-isopreny1 7-OH 8-isopreny1 7-OH 8-isopreny1 7-OH 8-isopreny1 7-OH 8-isopreny1

Table 2.8 (Continue).

Flavanone	Substitution	Botanical Origin	Plant Part	Reference
Sophoranone	7-ОН	S. subprostrata Chun	roots	Komatsu et al. (1970b)
	8-isoprenyl ¹	et TC. Chen		
	3'-isoprenyl		. Pos	
	4'-OH			
	5'-isoprenyl			
2',4',7-Trihydroxy-	6-isoprenyl ¹	S. subprostrata Chun	roots	Kyogoku et al. (1973d)
6,8-bis(3-methyl-	7-OH	et TC Chen		
2-butenyl)flavanone	8-isoprenyl ¹		17.6	
	2'-OH			
	4'-OH			
Vexibidin	5-OH	S. alopecuroides Linn.	roots	Batirov et al. (1985)
	6-lavanduly1 ²			
	7-0H	{		
	2'-0CH ₃			
	4'-OH			

5. Dihydroflavonols

Table 2.9 Distribution of dihydroflavonols in the genus Sophora.

Dihydroflavonol	Substitution	Botanical Origin	Plant Part	Reference
Kushenol H	5-OCH ₃ 7-OH 8-lavandulyl hydrate ³ 2'-OH 4'-OH	S. flavescens Ait.	roots	Wu et al. (1985b)

Table 2.9 (Continue)

Dihydroflavonol	Substitution	Botanical Origin	Plant Part	Reference
Kushenol I	5-0CH ₈	S. flarescens Ait.	roots	Wu et al. (1985b)
	8-lavandulyl ² 2'-OH			
	4'-OH			
Kushenol J	7-0-(xylosyl, glucosyl) 4'-0CH	S. flavescens Ait.	roots	₩u et al. (1985c)
Kushenol K	5-OCH ₃	S. flavescens Ait.	roots	₩u et al. (1985c)
	8-lavandulyl hydrate ³			
	2'-OH 4'-OH			
Kushenol L	5-OH	S. flavescens Ait.	roots	Wu et al. (1985c)
	6-isoprenyl ¹ 7-OH	İ		
	8-isoprenyl ¹ 2'-OH	รัพยาร	5	
	4'-OH	too O Son o		
Kushenol W	5-OH 6-isoprenyl ¹	S. flavescens Ait.	roots	Wu et al. (1985c)
	7-0H			
	8-lavanduly1 ²			
	2'-0H 4'-0H			

Table 2.9 (Continue)

Dihydroflavonol	Substitution	Botanical Origin	Plant Part	Reference
Kushenol N (epimeric to kushenol I at C-3)	5-OCH _s 7-OH 8-lavandulyl ²	S. flavescens Ait.	roots	Wu et al. (1986)
Addition 7 80 0 07	2'-OH 4'-OH			
Sophorono1	5-0H 7-0H	S. tomentosa Linn.	serial part	Komatsu et al. (1978b)
	2'-OCH ₃		roots	Delle Monache et al.

6. Isoflavonoids

6.1 Isoflavones

Table 2.10 Distribution of isoflavones in the genus Sophora.

Substitution	Botanical Origin	Plant Part	Reference
5-OH	S. japonica Linn.	roots	Komatsu et al. (1976a)
7-ОН	1200	wood	Takeda et al. (1977)
4'-0CH ₈	S. mollis R. Grah	wood	Jain and Koul (1972)
5-OH	S. japonica Linn.	wood	Takeda et al. (1977)
7-0-(glucopyranosyl, glucopyranosyl) 4'-0CH	รัพยาส	15	
5-0H 7-0-(xylosyl, glucosyl) 4'-0CH	S. japonica Linn.	wood	Takeda et al. (1977)
7-0H 4'-0H	S. subprostrata Chun et TC. Chen	roots	Kyogoku et al. (1973b)
	5-OH 7-OH 4'-OCH 5-OH 7-O-(glucopyranosyl) 4'-OCH 5-OH 7-O-(xylosyl, glucosyl) 4'-OCH 7-O-(xylosyl, glucosyl) 4'-OCH 7-OH	5-OH 7-OH 4'-OCH 5. mollis R. Grah 5-OH S. japonica Linn. 7-O-(glucopyranosyl) 4'-OCH 5-OH S. japonica Linn. 7-O-(xylosyl, glucosyl) 4'-OCH 7-O-(xylosyl, glucosyl) 4'-OCH 7-OH S. subprostrata Chun	5-OH 7-OH 4'-OCH 5. mollis R. Grah wood 5-OH 7-O-(glucopyranosyl) 4'-OCH 5. japonica Linn. wood 7-O-(glucopyranosyl) 4'-OCH 7-O-(xylosyl, glucosyl) 4'-OCH 7-OH S. japonica Linn. wood 7-O-(xylosyl, glucosyl) 4'-OCH 7-OH S. japonica Linn. roots

Table 2.10 (Continue)

Isoflavone	Substitution	Botanical Origin	Plant Part	Reference
5,4'-Dihydroxyisoflavone- 7-diglucorhamnoside	5-0H 7-0-(glucosyl, glucosyl, rhamnosyl)	S. japonica Linn.	-	Ho et al. (1984)
	4'-OH			
5,7-Dihydroxy-3',4'-	5-OH	S, japonica Linn.	roots	Komatsu et al.
methylenedioxyisoflavone	7-0H			(1976a)
	3'-0		W. T.	
	4'-0			
Formononetin	7- <mark>0</mark> H	S. flavescens Ait.	roots	Kyogoku et al. (1973a)
	4'- <mark>0CH₃</mark>	S. tomentosa Linn.	aerial	Komatsu et al. (1978a)
	CACA-SE		part	
Genistein	5-OH	S. japonica Linn.	fruits	Szabo et al. (1967)
	7-0H	S. subprostrata	roots	Komatsu et al. (1970a)
	4'-OH	Chun et TC. Chen		
Genistein-7-p-D-	5-OH	S. japonica Linn.	-	Ho et al. (1984)
cellobioside	7-0-(glucosyl, glucosyl)	เพยาก	3	
0	4'-OH		روا	
Genistein-7-0-	5-0H	S. pachycarpa		Sattikulov et al.
xyloglucoside	7-0-(xylosyl, glucosyl) 4'-0H	С.А.Иау		(1983)
3'-Hydroxyformononetin	7-ОН	S. moorcroftiana	roots	Shirataki et al.
(calycosin)	3'-OH	Benth, ex Baker		(1988)
	4'-0CH	S. secondiftora DC.	-	Minhaz et al. (1976)

Table 2.10 (Continue)

Isoflavone	Substitution	Botanical Origin	Plant Part	Reference
Irisolidone	5-OH	S. japonica Linn.	roots	Komatsu et al. (1976a)
	6-0CH _a		wood	Takeda et al. (1977)
	7-0H	1//4		
	4'-0CH ₃			
Irisolidone-7-0-	5-OH	S. japonica Linn.	wood	Takeda et al. (1977)
glucoside	6-OCH ₃			
	7-0-glucosyl			
	4'-OCH _B			
Kushenol O	7-0-(xylosyl, glucosyl)	S. flavescens Ait.	roots	Wu et al. (1986)
	4'-OCH _B			
Licoisoflavone A	5-OH	S. moorcroftiana	roots	Mizuno et al. (1989)
	7-0H	Benth. ex Baker		
	2'-ОН	399		
	3'-isoprenyl ¹			
	4'-OH	0		
Licoisoflavone B	5-0H	S. moorcroftiana	roots .	Shirataki et al. (1988)
	?-OH	Benth. ex Baker		
	2'-OH		2.9	
	3:	MISTE		
	4'			
⁹ ratensein	5-OH	S. japonica Linn.	wood	Takeda et al. (1977)
	7-0H			
	3OH			
	4'-0CH ₃			

Table 2.10 (Continue)

Isoflavone	Substitution	Botanical Origin	Plant Part	Reference
Sissotrin	5-0H 7-0-glucosyl 4'-0CH	S. japonica Linn.	wood	Takeda et al. (1977)
Sophorabioside	5-0н	S. japonica Linn.	fruits	Szabo et al. (1967)
	7-OH	S. tomentosa Linn.	-	Farkas et al. (1968)
	4'-0-(rhamnopyranosyl, glucopyranosyl)			Farkas et al. (1968)
Sophoraisoflavone A	5-OH	S. moorcroftiana	roots	Shirataki et al. (1988)
	7-0H 2, 0 3, 4,-0H	Benth. ex Baker		
Sophoricoside	5-OH	S. japonica Linn.	fruits	Szabo et al. (1967)
	7-0H	Jor yopeniou brain	114103	52850 00 811 (13017
	4'-0-glucosyl			
Wighteone	5-OH 6-isoprenyl ¹	S. tomentosa Linn.	7	Mizuno et al. (1989)
	7-0H 4'-0H	หาวิทย	าลั	

Note: 1. isoprenyl =

6.2 Isoflavanones

Table 2.11 Distribution of isoflavanones in the genus Sophora.

Substitution	Botanical Origin	Plant Part	Reference
5-0H 6-isoprenyl ¹ 7-0H	S. tomentosa Linn.	aerial part roots	Komatsu et al. (1978b) Shirataki et al. (1983)
2'-OCH ₉ 3'-isoprenyl ¹ 4'-OH			L. Nie
5-0H 7-0H 2'-0CH _g	S. tomentosa Linn.	กร ยาลั	Delle Monache et al.
4' 0			
	5-OH 6-isopreny1 7-OH 2'-OCH 3'-isopreny1 4'-OH 5-OH 7-OH	5-OH 5. tomentosa Linn. 6-isoprenyl ¹ 7-OH 2'-OCH _s 3'-isoprenyl ¹ 4'-OH 5-OH 5-OH 7-OH 2'-OCH _s	5-OH 5. tomentosa Linn. 6-isoprenyl ¹ 7-OH 2'-OCH _s 3'-isoprenyl ¹ 4'-OH 5-OH 5-OH 2'-OCH _s

Table 2.11 (Continue)

Isoflavanone	Substitution	Botanical Origin	Plant Part	Reference
Secondifloran	3-0H 7-0H 2'-0H 3'-0H 4'-0CH _B	S. secondiftora DC.		Minhaz et al. (1977)
Sophoraisoflavanone A	5-OH 7-OH 2'-OCH ₃ 3'-isopreny1 ¹ 4'-OH	S. tomentosa Linn.	serial part	Komatsu et al. (1978b)
Sophoraisoflavanone B	5-OH 6-isopreny1 7-OH 2'-OH 4'-OCH 5'-isopreny1	S. franchetiana Dunn	roots	Komatsu et al. (1981a)

Note: 1. isoprenyl =

6.3 Pterocarpans

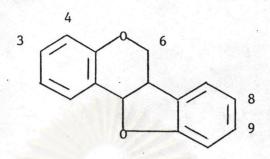


Table 2.12 Distribution of pterocarpans in the genus Sophora.

Pterocarpan	Substitution	Botanical Origin	Plant Part	Reference
Anhydropisatin (flewichapparin-B)	3-0CH ₃	S. japonica Linn.	roots	Komatsu et al. (1976a)
Kushenin	3-0H 8-0CH _s 9-0H	S. flavescens Ait.	roots	Wu et al. (1985a)

Table 2.12 (Continue)

Pterocarpan	Substitution	Botanical Origin	Plant Part	Reference
Maackiain	3-0H 8-0 9-0	S. angustifolia Sieb et Zucc.	callus tissue	Furuya, and Ikuta (1968)
		S. japonica Linn.	leaves	Vanetten et al. (1983) Komatsu et al. (1976a) Shibata and Nishikawa
		S. moorcroftiana Benth.	wood	(1963) Takeda et al. (1977) Shirataki et al. (1988)
		ex Baker S. subprostrata Chun et TC. Chen	roots	Komatsu et al. (1970a)
	3	S. tetraptera J. Mill.	bark,	Briggs et al. (1975)
	เล็กิท	S. tomentosa Linn.	serisl part	Komatsu et al. (1978a)
Medicarpin	3-0H	S. japonica Linn.	leaves	Vanetten et al. (1983)
4-Methoxymaackiain	3-0H 4-0CH ₃ 8-0 9-0	S. franchetiana Dunn	roots	Komatsu et al. (1981b)

Table 2.12 (Continue)

Pterocarpan	Substitution	Botanical Origin	Plant Part	Reference	
Pterocarpin	3-0CH ₂	S. angustifolia Sieb et Zucc.	callus tissue	Furuya and Ikuta (1968)	
	9-0	S. japonica Linn. S. subprostrata Chun et TC. Chen	- roots	Mizuno et al. (1989) Shibata and Mishikawa (1963)	
		S. tomentosa Linn.	-	Mizuno et al. (1989)	
Sophojaponicin	3-0-glucopyranosyl 8-0 9-0	S. japonica Linn.	roots	Shibata and Nishikawa	
Sophoracarpan A	3-0H 6-0CH ₃	S. tomentosa Linn.	aerial part	Kinoshita et al. (1986)	
Sophoracarpan B	3-0H 6-0CH ₃ 9-0	S. tomentosa Linn.	aerial part	Kinoshita et al. (1986)	
Sophorapterocarpan A	3-0H 8-isoprenyl ¹ 9-0H	S. franchetiana Dunn	roots	Komatsu et al. (1981a)	
Trifolirhizin	3-0-glucosyl 8-0 9-0	S. alopecuroides Linn. S. flavescens Ait. S. subprostrata Chun et TC. Chen	roots - roots	Yasupova et al. (1984) Yai et al. (1989) Shibata and Nishikawa (1963)	

Table 2.12 (Continue)

Pterocarpan	Substitution	Botanical Origin	Plant Part	Reference
Trifolirhizin-6'- monoacetate	3-0-(scetyl, glucosýl) 8-0 9-0	S. subprostrata Chun et TC. Chen	roots	Komatsu et al. (1976b)

6.4 Isoflavan

Table 2.13 Distribution of isoflavan in the genus Sophora.

Isoflavan	Substitution	Botanical Origin	Plant Part	Reference
Unanisoflavan	7-0H	S. secondiftora DC.	- 0	Minhaz et al. (1976)
	2'-OCH ₃	มทาวทา		
	3,-OH			
	4'-0CH ₃			
	5'——			

6.5 Coumestans

Table 2.14 Distribution of counsestans in the genus Sophora.

Coumestan	Substitution	Botanical Origin	Plant Part	Reference
Medicagol	3-ОН	S. japonica Linn.	-	Komatsu et al. (1978a)
	8-0	S. moorcroftiana Benth.	roots	Shirataki et al. (1988)
		S. tomentosa Linn.	serisl part	Komatsu et al. (1978a)
Sophoracoumestan A	3-OH	S. franchetiana Dunn	roots	Komatsu et al. (1981a)
Sophoracoumestan B	9 0 3-OH	S. franchetiana Dunn	roots	Komatsu et al. (1981b)
Jophol Boodmestell B	4-0CH ₃	5. Tranchettana bum	roots	nometsu et al. (1981D)
	9-0			

6.6 2-Arylbenzofurans

Table 2.15 Distribution of 2-arylbenzofurans in the genus Sophora.

2-Arylbenzofuran	Substitution	Botanical Origin	Plant Part	Reference
2-(2',4'-Dihydroxyphenyl) -5,6-methylenedioxybenzofuran	5-0	S. tomentosa	aerial	Kometsu et al. (1978a)
-5, 0-seeing tened toxy benzor aren	2'-OH	Linn.	part	
2-(2'-Hydroxy-4'-methoxyphenyl)-	5—0	S. tomentosa	serial	Komatsu et al. (1978a)
5,6-methylenedioxybenzofuran	6-0	Linn.	part	
	2'-OH 4'-OCH	1918J 71	19	
Sophorafuran A	5-0	S. franchetiana	roots	Komatsu et al. (1981b)
	6-0	Dunn		
	2'-OH			
	3'-OCH _B			
	4'-OH			