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CHAPTER 1
INTRODUCTION

In [1], P. Chaoha introduced the notion of virtually nonexpansive selfmaps of
a metric space and proved that various types of nonexpansive maps are virtually
nonexpansive. Moreover, for any virtually nonexpansive map f, F/(f) is a retract
of C(f). Hence, we can predict some topological properties of F/(f) if we know
the properties of C'(f). In particular, it has been shown in [2] that, for certain
kinds of virtually nonexpansive maps, their convergence sets are star-convex and
hence their fixed point sets are contractible.

In this thesis, we will extend the notion of virtually nonexpansive maps to
virtually stable maps in a more general setting and explore some properties of

their convergence sets to obtain topological properties of their fixed point sets.



CHAPTER I1
PRELIMINARIES

In this chapter, we recall some basic terminology and concepts used throughout

the work. For more details, please consult [3], [4], [5], [6], [7], and [8].

Definition 2.1. Let X be a nonempty set and T a collection of subsets of X such
that

1. XeT,andp e T;
2. any union of members of T is also a member of T ;
3. any finite intersection of members of T is also a member of T .

Then T is called a topology on X, elements of T are called open sets of X,
and (X,7T) is called a topological space. Sometimes we omit specific mention
of T if no confusion will arise. A subset A of a topological space X is said to be

closed in X if the set X — A is open in X. And, for x € X, a neighborhood

of x is an open set containing x.

Definition 2.2. Let X be a nonempty set and B a collection of subsets of X such

that
1. for each x € X, there is U € B such that v € U;
2. forallU,V € B, if x € UNV, then there is G € B such thatx € G CUNV.

Then B is called a basis for a topology on X, and the set
{G C X :Vge G, U € Bsuch thatg € U C G}, denoted by < B >, is a topology

on X and we call it the topology generated by .



Given a subset A of a topological space X, the interior of A, denoted by
IntA. is defined as the union of all open sets contained in A, and the closure
of A, denoted by A, is defined as the intersection of all closed sets containing A.
Obviously, Int A is an open set and A is a closed set; furthermore, Int A C A C A.
If A is an open set, A = Int A; while if A is closed, A = A.

Definition 2.3. Let (X,7) be a topological space and Y a subset of X. Then
the collection Ty = {Y NU :U € T} is a topology on Y, and we call it the

subspace topology. In addition, (Y,7y) is called a subspace of X .
Definition 2.4. A metric on a set X is a function d : X x X — X such that
1. d(z,y) > 0 for all &,y € X, and the equality holds if and only if x = y;

2. d(z,y) = d(y,&) for all z,y € X;
3. d(z,y) +d(y, z) = d(z,2) for all x,y,z € X.

Given a metric d on X and z,y € X, d(z,y) is often called the distance
between x and y with respect to the metric d. Given € > 0, the set By(x,€) =
{y € X :d(z,y) < €} is called the ¢ — ball centered at x. Let 7; =
{G C X :Va € G,3e > 0suchthat By(a,e) € G}. Then 7, is a topology on X.
The topology 7, is called the topology induced by the metric d and (X, d) is
called a metric space. Sometimes we omit specific mention of d if no confusion

will arise.

Definition 2.5. A topological space (X, T) is said to be metrizable if there exists

a metric d on X such that T is a topology induced by d, and in this case we can

denote (X, T) by (X, d).

Example 2.6. The usual metric on R" is the metric d defined by

n

d(xz,y) = Z(mz —y;)?, forx = (z1,...,7,) and y = (y1, ..., yn) in R".

i=1
Definition 2.7. Let X and Y be topological spaces. We say that a function
f: X —Y is continuousat apoint x in X if for each neighborhood U of f(x)



there is neighborhood V' of x such that f(V) C U. If f is continuous at every
point x in A C X, then [ is said to be continuouson A. If f is continuous on

X, then we simply say that f is continuous.

Theorem 2.8 (Intermediate value theorem). Let f : R — R be continuous on a
closed interval [a,b] where a,b € R and a < b. If N is a real number between f(a)

and f(b), then there is ¢ € [a,b] such that f(c) = N.

Definition 2.9. Let X be a topological space and Y a nonempty subset of X.
We say that Y is connected if and only if there is no pair of subsets U, V' of X

such that
1. UUV =Y;
2.UNY #¢, and VDY # ¢;
3.UNV=¢, andUNV =¢.

Definition 2.10. Let X be a topological space and Y a nonempty subset of X.
We say that Y is path connected if for each pair of points x,y in'Y, there is a
continuous map f : [a,b] — X of some closed interval |a,b] in the real line into

the subspace Y of X such that f(a) = x and f(b) =y.
Remark 2.11. Let X be a topological space. Then the relation on X defined by
x ~yif x and y belong to the same (path-)connected subset of X

1s an equivalence relation. The equivalence classes of this relation are called the

(path—)components of X.

Theorem 2.12. Let X be a topological space. Then every connected component

of X s closed.

Theorem 2.13. Let X and Y be topological spaces, and f : X — Y a continuous
map. If A is a (path-)connected subspace of X, then f(A) is (path-)connected.



Definition 2.14. Let (X,dx) and (Y,dy) be metric spaces. A family F of con-
tinuous maps on X toY 1is said to be equicontinuous at x € X if for each € > 0,
there is § > 0 such that for everyu € X and f € F, dy(f(x), f(u)) < € whenever

dx(z,u) < 4.

Definition 2.15. A subset A of a topological space X is said to be dense in X
ifA=X.

Example 2.16. The set Q of all rational numbers is dense in the space R.

Definition 2.17. A subset A of a topological space X is called a Gs — set in X

if it is an intersection of a countable collection of open subsets of X.

Definition 2.18. Given a set X, we define a sequence in X to be a function
x : N — X. We often denote the value of x at i by x; rather than x(i), and denote
x itself by the symbol (x,,).

Definition 2.19. A sequence (x,) of real numbers is called a strictly increasing
sequence if x, < x,y1 for alln € N, and it is called a strictly decreasing sequence

if xp > xpy1 for allm € N.

Definition 2.20. Let X be a topological space. A sequence (x,) in X is said to
converge to a point y in X if for each neighborhood U of y, there is N € N such

that x, € U whenever n > N. We denote this by lim z, =y or x, — y.

Theorem 2.21. Let X and Y be topological spaces, and f: X — X a continuous

map. If (z,) is a sequence in X such that x, — 2’ for some ' € X. Then
f(@a) = f(@).

Definition 2.22 (Monotone convergence theorem). Let (x,,) be a strictly increas-
ing sequence or a strictly decreasing sequence in an interval [a, b] C R where a < b.

Then (x,) converges to some element in |a,b].

Definition 2.23. Let (X,d) be a metric space. A sequence (x,,) in X is said to
be a Cauchy sequence if for each € > 0, there is N € N such that d(z,, z,) < €

whenever n,m > N.



Definition 2.24. A metric space (X, d) is said to be complete if every Cauchy

sequence in X converges(to a point) in X.

Example 2.25. The space R with the usual metric is a complete metric space,

but its subspace Q is not.

Definition 2.26. A topological space X is called a Hausdorff space if for each
pair of distinct points x,y in X, there exist open sets U, and U, such that x € Uy,
ye Uy, and U, NU, = ¢.

Definition 2.27. Let X be a topological space such that one-point sets are closed
i X. Then X is said to be regular if for each pair of a point x € X and a
closed set B C X disjoint from x, there exist disjoint open sets containing x and

B, respectively.

Theorem 2.28 (Urysohn metrization theorem). Fvery reqular topological space

X with a countable basis is metrizable.

Definition 2.29. Let X be a topological space. We say that X is contractible
if there exist x € X and a continuous map H : X x [0,1] — X such that

1. H(y,0) =y for ally € X;
2. H(y,1)=x for ally € X.

Definition 2.30. Let X be a topological space and A C X. A retraction of X
onto A is a continuous map r: X — A such that r|a is the identity map of A. If

such a map r exists, we say that A is a retract of X.

Definition 2.31. Let X be a topological space and f: X — X a selfmap.

The convergence set of f is defined to be the set
C(f) = {x'€ X : the sequence (f"(z)) converges in X }

and the fixed point set of f is defined to be the set F(f) ={pe€ X : f(p) = p}.
We call p € F(f) a fixed point of f. If p € F(f), then we define
Co(f) ={z € X : f*(z) — p}. Moreover, for each x € C(f), the continuity of f

implies that



f(lim f*(x)) = lim f(f"(z)) = lim f"(z).

n—o0 n—oo n—oo

That is lim f"(x) € F(f) and hence we naturally obtain a well-defined map

n—oo

[ C(f) = F(f) given by f>*(x) = nll_{& f"(x) for each x € C(f).

Note that for a Hausdorff space X, a continuous selfmap f : X — X and a
fixed point p, F/(f) is closed in X, but C(f) and C,(f) need not be closed in X.
For example, consider the map ¢ : R — R defined by g(x) = —® for all z € R, and
the map h : R — R defined by A(z) = 22 for all z € R. Then C(g) = (—1,1] and
Co(h) = (=1,1). Since we always have f*°(z) = z for any € F(f), the map f*
will be a retraction whenever it is continuous. Moreover, when f°° is continuous,
any retraction from a superset of C'(f) onto F(f) that satisfies a certain condition

is simply a continuous extension of f*° by the following theorem.

Theorem 2.32. Let X be a topological space and f : X — X a continuous
selfmap. Suppose [ is continuous and R : C(f) — F(f) is any retraction. If
Rof=R, then R= .

Proof. See Theorem 1.1 in [1]. O

Definition 2.33. Let (X,d) be a metric space, and f : X — X a continuous

selfmap.
e f is called nonexpansive if d(f(x), f(y)) < d(z,y) for any x,y € X.

e f is called quasi — nonexpansive if d(f(x),p) < d(x,p) for any x € X
and p € F(f).

e f s called asymptotically nonexpansive if there is a sequence (ky) of
real numbers converging to 1 such that d(f™(x), f"(y)) < knd(x,y) for any
x,y € X andn € N .

e f s called asymptotically quasi — nonexpansive if there is a sequence
(kn) of real numbers converging to 1 such that d(f"(x),p) < kpd(z,p) for
anyz € X, p€ F(f) andn € N.



e f is called virtually nonexpansive if {f™ :n € N} is equicontinuous on

c(f)-
e f is called periodic if f* = 1x for some n € N.

o f is called recurrent if for each € > 0 there exists n € N such that for all

re X, d(f*(x),x) <e.
Notice that

1. Nonexpansive maps, quasi-nonexpansive maps and asymptotically nonex-

pansive maps are asymptotically quasi-nonexpansive;
2. Periodic maps are recurrent.

Theorem 2.34. An asymptotically quasi-nonexpansive map is virtually nonez-

Pansive.
Proof. See Theorem 1.9 in [1]. O

Definition 2.35. A topological R — linear space V is a vector space (V,+, )
over a topological field R which is endowed with a Hausdorff topology such that,
the vector addition + : 'V x V. — V' and scalar multiplication - : R x V — V are

continuous functions.

Definition 2.36. Let V' be a topological R-linear space, v € V and A a nonempty
subset of V.. We define A—v={a—v:a€ A}.

Definition 2.37. Let V' be a topological R-linear space, X a nonempty subset of

Vo and zg € X. We say that X is xg — star — convex if for each v € X,

{te + (1 —t)zp:t €[0,1]} C X



Definition 2.38. /2] Let X be a 0-star-convexr subset of a topological R-linear
space, [ : X — X and ¢ : [0,1] — [0,1] continuous selfmaps. We will call f a

¢ — homogeneous map, if for each t € [0,1] and x € X,

fltz) = o) f ().

Proposition 2.39. Let X be a 0-star-convex subset of a topological R-linear space,

and f : X — X a non-constant ¢-homogeneous map. Then we have the followings:
1. ¢(st) = @(s)o(t) for all s, t € [0, 1],
2. {0,1} C F(¢),
3. 0e F(f).

Proof. See Proposition 2.4 in [2]. O

Theorem 2.40. Let X be a 0-star-convex subset of a topological R-linear space,
and f: X — X a ¢-homogeneous map with C(¢) = [0,1]. Then C(f) is 0-star-

conver.

Proof. See Theorem 2.5 in [2]. O



CHAPTER III
VIRTUALLY STABLE MAPS

From now on, if not otherwise state, X is a nonempty Hausdorff space and

f: X — X a continuous selfmap.

Definition 3.1. A fized point x of [ is said to be virtually f — stable if for each
netghborhood U of x, there exists a strictly increasing sequence of natural numbers
(kn) and a neighborhood V' of x satisfying f (V) C U for alln € N. We simply
call f virtually stable if every fived point of f is virtually f-stable.

Definition 3.2. A fized point x of f is said to be uniformly virtually f — stable
if there exists a strictly increasing sequence of natural numbers (k,) such that for
each neighborhood U of x, there exists a neighborhood V of x with f* (V) C U
for allm € N. We simply call f uniformly virtually stable if every fized point
of [ is uniformly virtually f-stable with respect to the same (k).

Notice that a map f whose every fixed point is uniformly virtually f-stable
may not be uniformly virtually stable, and any uniformly virtually stable map
is virtually stable. Moreover, it is easy to see that a periodic map is uniformly

virtually stable while a virtually nonexpansive map is uniformly virtually stable.

Proposition 3.3. A recurrent selfmap of a metric space is always uniformly vir-

tually stable.

Proof. Let (X, d) be a metric space and f : X — X a recurrent map. Since f is

recurrent, the set
{keN:d(f*(),z) < Lforallz € X}

is infinite for each n € N. Hence there is a strictly increasing sequence of natural

numbers (k,) such that d(f*(z),2) < & for all z € X and n € N. Let = € F(f),



m € N and y € By(z, m) We will show that f*»(By(z, m)) C By(z, )

for all n > 2(m+1). For each n > 2(m+1), d(f* (y),z) < d(f*(y),y)+d(y,x) <

1
_+ (m+1) < 2(m+1)+ (m+1)

exists a neighborhood U of z such that f*(U) C By(z, L) for i = 1,...,2m + 1.
Hence, By(z )ﬂU)

< ;- Since f*i is continuous for i = 1, ..., 2m+1, there

NU is a neighborhood of z such that f*(By(x

» 2(m+1) +1 ) ) 2(m+1

By(x, %) for all n € N. We have that x is uniformly virtually f-stable with respect

to (k,) and f is uniformly virtually stable with respect to (k,) as desired. O

The next example shows that there exists a virtually stable map (indeed a

periodic map) that is not virtually nonexpansive.

Lemma 3.4. Suppose X is a topological space whose topology is generated by a

basis A. If every element of A is closed in X, then X is reqular.

Proof. Let F be a closed subset of X and = € F°. Then there exists P € A such
that x € P C F°. By assumption P is open and closed, it follows that P and P¢

are disjoint neighborhoods of x and F', respectively. Hence X is regular. ]

Example 3.5. Let A = {[p,q) CR: p,g € Qandp < q} and f : R — R be
defined by f(x) = —z for all x € R.

We will show that (R, < A >) is metrizable by showing that A is a countable
basis for a topology on R, and (R, < A >) is reqular. Clearly, A is countable. For
each r € R, there exist p,q € Q such that p <r < gq; i.e., v € [p,q) € A. For each
x € [p1,q1) N [p2,q2), where [p1,q1), [p2, q2) € A, we have x € [p1,q1) N [pa, q2) =
[maz{p1,p2}, min{q,q}) € A. Thus A is a countable basis for a topology on R.
Clearly, one-pointed sets are closed. Let [p,q) € A and x ¢ [p,q).

If x € (—o0,p), then there exist a,b € Q such that a < x < b < p; i.e.,
x € |a,b) C (—o0,p).

If x € [q,00), then there exists ¢ € Q such that x < ¢; i.e., x € [g,¢) C [q,00).
Therefore, | ,q)c is open and, by Lemma 3.4, (R, < A >) is reqular. By Urysohn
metrization theorem, (R, < A >) is metrizable.

It is clear that f is periodic and hence recurrent. Thus f is uniformly virtu-

ally stable. We will prove that f is not virtually nonexpansive by showing that
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{f™:n € N} is not equicontinuous at 0. Let E € A be a neighborhood of 0 and
k € E for some k € RY. Let g € QF. Since f>""(k) = —k & [0,q) for alln € N,
fPHUE) € 10,q) for alln € N. Thus {f™ : n € N} is not equicontinuous at 0.

The next theorem guarantees that f* is always a retraction of C'(f) onto F'(f)

whenever X is regular and f is virtually stable.

Theorem 3.6. Suppose X be a reqular space and f a wvirtually stable selfmap.
Then f : C(f) = F(f) is continuous and hence F(f) is a retract of C(f).

Proof. Let x € C(f) and U a neighborhood of f*°(x) in F(f). Since X is regular,
so is F'(f). Then, there is a neighborhood W of f*°(z) in X such that

WNF(f) CWnNE(f) CU. Now, by virtual stability, there exist a neighborhood
V of f*(z) in X and a strictly increasing sequence (k,,) of positive integers such
that f* (V) C W for all n € N. Since V is a neighborhood of f*(x), there is
N € Nsuch that f¥(z) € V. Let K = f~¥(V)NC(f). Then K is a neighborhood
of z in C(f) such that

) = { tim f(@) a € K}
= {Jm f"(f¥@) - w € K}
c {1m f(z):z e VO]
—{lim f*(@):zevnc()}
CWNE(f)
(.
Thus f* is continuous and F(f) is a retract of C(f). O

To explore the connectedness of convergence sets and fixed point sets of vir-

tually stable maps, we begin with Corollary 3.7.

Corollary 3.7. Let X be a reqular space. If f is virtually stable and C(f) is
(path-)connected, then F(f) is (path-)connected.
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Proof. By Theorem 3.6, f : C(f) — F(f) is continuous. Then F(f) is
(path-)connected by Theorem 2.13. O

Corollary 3.8. Let X be a regular space and f virtually stable. If F\(f) is a finite

set, then C(f) is disconnected.

Proof. Let F(f) be a finite set. Since X is a Hausdorff space, F'(f) is disconnected.
If X is a finite set, then we are done. Now we consider the case that X is an infinite
set. Suppose that C(f) is connected. By Theorem 3.6, F'(f) is connected, which

is a contradiction. Hence, C'(f) is disconnected. O

The next example show that if f is not virtually stable, then the condition

F(f) is a finite set does not guarantee that C'(f) is disconnected.

Example 3.9. Consider [ : Rf — R} defined by f(z) = 2. It is easy to show
that 1 is not a virtually f-stable fized point, C(f) = [0,1], and F(f) = {0,1}.

By considering the next example, we will face the fact that although f is
nonexpasive, neither C(f) nor F(f) must be connected. Moreover, C,(f), where

p € F(f), may not be connected.

Example 3.10. Let L = R* — {(0,0),(0,1),(0,—1)} and L be equiped with the
usual metric. Now we consider the map g : L — L defined by

(_xay)a ny<oa
g(zyy) = , for all (z,y) € L.

(=2,—y), fy>0
It is easy to obtain the results that g is nonexpansive,
Clg) ={(z,y) e L:x =0}, Flg) ={(z,y) € L:z=0and y <0},
and Cay)(9) = {(0,9), (0, —y)} for all (z,y) € F(g).

The next theorem provides sufficient conditions that can guarantee the con-

nectedness of convergence sets.

Theorem 3.11. Let f : X — X be a continuous map satisfying one of the

following conditions:
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1. Cy(f) is connected for all p € F(f),

2. for each component A of C(f) there is hy € N such that
(A NA#g.

If F(f) is connected, then C(f) is connected.

Proof. Let f satisfies (1) and F(f) is connected. Suppose on the contrary that
C(f) is not connected. Then F(f) C A for some component A of C(f) and there
exists component B of C(f) such that BNA = ¢. Let x € B. Then 7}1—{20 fYz)=p
for some p € F(f). Since C,(f) N A # ¢ and C,(f) N B # ¢, then C,(f) is not
connected. This contradicts to the assumption.

Assume that (2) is true and F(f) is connected. Since F(f) is connected,
F(f) C A for some component A of C(f). Suppose that C'(f) is not connected.
Hence, there exists the component B of C(f) such that BN A = ¢. Since
' (B)NB # ¢ and f"#(B) is connected, we get that f*"2(B) C B for all n € N.
Since lim f*'7(z) = lim f"(x) € F(f) € C(f) for all z € B and, by Theorem
2.12, B is closed in C(f), we have nhjgo Frepr nangO fs(z) € B for all z € B.
Hence F(f) N B # ¢, which is a contradiction. ]

Lemma 3.12. Let f : X — X be continuous. If C,(f) is path connected for all
p € F(f) and F(f) is path connected, then C(f) is path connected.

Proof. Suppose on the contrary that C'(f) is not path connected. Then F(f) C A
for some path component A of C'(f) and there exists path component B of C(f)
such that BN A = ¢. Let x € B. Then nh_}rrolof”(x) = p for some p € F(f).
Since Cy(f) N A # ¢ and C,(f) N B # ¢, then C,(f) is not path connected. This

contradicts to the assumption. ]

Some properties of convergence sets of virtually stable maps can be seen in

the following results.
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Lemma 3.13. For each x € X, we have x € C(f) if and only if the sequence

(f™(x)) has a subsequence (f™(x)) converging to a fixed point of f and
sup {ngy1 —ng - k € N} < oc0.

Proof. (=)Obvious.
(<)Let sup {ngy1 —ng 1k € N} =h and 1 <17 < h. Suppose klim [ (x) =
p € F(f). Since f is continuous, we have p = fi(p) = fz(khm [ (x)) =

]}Lrgo ™ (z). To show that f(x) — p, we let U be a neighborhood of p. Since
Jim. e (z) = p and Jim [ (x) = p, there exists N € N such that f™(z) € U
and f™(x) € U for all L > N. Let j > nyy1. Then there exists > N + 1 such
that nyi1 < npw < j <ng.. Hence j =n. + s for some 0 < s < h and we have
fi(z) € U for all j > nynyq. O

Theorem 3.14. Let p be a uniformly virtually f-stable fized point with respect to
(kn) and x € X. Suppose there exist r,h € N with k,.,; = k; + h;i € N. Then

x € C,(f) if and only if there exists a sequence of natural numbers (r,) such that
for each n € N there exists m € N with

Tn = Kiym-1+71 — ki, Vi € N and f™(z) — p.

Proof. (=) Since f*(z) — p, f**(z) — p. By the assumption, k; + h = k;,, for
all © € N. Hence k; + nh = ki (,—1), + h for all « € N. By letting, r,, = nh and
m = (n—1)r + 1, we are done.

(<) To show that f"(x) — p, let U be a neighborhood of p. Then there exists
a neighborhood V of p such that f* (V) C U for all n-.€ N. Since f™(z) — p,
there exists NV € N such that f7~(x) € V. Thus f™**i(z) € U for all i € N. By
the assumption, there exists M € N such that k; +ry = k1 +1r for all ¢ € N.
Then f*tm (%) € U forall i > M. Hence f**r(x) — p. Since kiynr = ki + nh
for all : > 0, n > 0, we have ki1 — knryi = ki1 — k; for all 1 <7 <r and
n > 0. Thus sup {k,11 — Kk, :n € N} =sup {k,s1 — k,: 1 <n <r}. By Lemma
3.13, f*(z) — p. O
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Corollary 3.15. Suppose (X, d) is a metric space, f is virtually nonexpansive,
x € X and p € F(f). Then, v € C,(f) if and only if (f"(z)) has a subsequence
converging to p. Hence, C,(f) = {z € X : d(O(f,z),p) = 0}, where O(f,x) =
{f"(x) :n e N}.

Proof. All notations follow Theorem 3.14. Since f is virtually nonexpansive, we
can set k, = n for alln € N, h = 1 and r = 1. Let (r,) be any strictly
increasing sequence of natural numbers such that f™(x) — p and n’ € N. Then
T =i+ (ry =11+ 1) =147 —i = ki\(r,—r41)-1 + 71 — k; for all i € N. Hence
we get the result by Theorem 3.14. ]

Theorem 3.16. Suppose (X, d) is a metric space, p is a uniformly virtually f-
stable fixed point with respect to the sequence (nh) for some h € N and

x € Cy,(f). Then for each ¢ > 0, there exists 6 > 0 with f*"(Bgy(z,5)) C
Ba(f™(z),€) for all n € N.

Proof. Let € > 0. By uniformly virtual stability, there exists » € (0, §) such that,
for each n € N, f™(By(p,r)) C Ba(p,§). Since x € C,(f), there exists N € N
such that f™(z) € By(p,r) for all n > N. By the continuity of f" ..., fN" there
exists § > 0 such that fN(By(x,8)) C Ba(p,r) and f*(By(x,6)) C By(f™(z),€)
for n < N. Thus, for each n € N and y € By(x,d), we consider the following 2
cases:

Casel: n < N.
By the property of § above, we have f™*(Bgy(x,0)) C By(f™(z),€).

Case2:n > N.

Suppose n = N + ¢ for some ¢ € N. Then

d(f"" (), £ (@)= d(f ) f T ()

< d(fN M), p) +d(p, fNE ().

Since fN(x), fN"(y) € Ba(p,r), d(f™ " (y),p) < § for each n € N.
Thus d(fO " (z), p) +d(p, [N "(y)) < §+ £ = e. Hence, we get the result. [
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The next theorem generalizes Theorem 1.2 in [2].

Theorem 3.17. Suppose (X,d) is a complete metric space and f is uniformly
virtually stable with respect to the sequence (nh) for some h € N. Then C(f) is a
Gs-set.

Proof. By Theorem 3.16, for every x € C(f) and m € N, there exists d,,,, > 0
such that ™" (By(x,0pm)) C Ba(f™ (@), L) for every n € N. Let K =

Mimen Usec(p) Ba(®,0z,m). Clearly, K is a Gs-set. We will show that K = C(f).
It is clear that C(f) C K. To show that K C C(f), we let k € K and n € N.
Then there exist & € C(f) and d,4, > 0 such that d(k,z) < 0,4,. Hence,
d(fm™(k), f™(z)) < & for all m € N. Since z € C(f), there is p, € F(f) and
N, € N such that d(f™"(z),p,) < & for all m > N,. Then d(f™(k),pn) <
d(fm™(k), fm(z)) + d(f™ (@), pn) < 3= + 3z = 3 for every m > N,, and
AR, () < d P R), ) + s TRR)) < o + o = L for all

m/,m > N,. Hence, (f"*(k))nen is a Cauchy sequence and (k) — p’ for some
p € X. We will prove that p’ € F(f) by showing that p, — p’. Let n € N and
[ > n. Then d(f™"(k),p) < 5 for all m > N. Since f™(k) — p/, there is M; € N
such that M; > N; and d(f*"(k),p') < 5. Hence,

d(pr,p) < d(pi, P2 (k)) + d(F90(R), p) < 5497 = 1 < .
Since F'(f) is closed, p' € F(f). By Lemma 3.13, k € C(f). O

Corollary 3.18. Let (X, d) be a complete metric space and f virtually nonexpan-
sive. Then C(f) is a Gs-set.

Theorem 3.19. Suppose (X, d) is a complete metric space and f is assymptoti-

cally nonexpansive. Then C(f) is closed.

Proof. To show that C(f)is closed, let x € X and (x,,) be a sequence in C(f) such
that x,, — x. We will show that (f™(x)) is a Cauchy sequence. Let m € N. Since
f is assymptotically nonexpansive, there exists K > 1 such that d(f"(y), f"(z)) <
Kd(y, z) for alln € N and y, 2 € X. Since z,, — z, there exists M € N such that
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d(x,2p) < 77— Since € C(f), (f*(xar)) is a Cauchy sequence. Hence there
exists M’ € N such that d(f"(zn), f*(zm)) < 5 for all b,k > M.
Then, for h,k > M’,

(" (), £4(2)) < (7 ), farn) el ), 7)) + (o), £4(a)

] J,
AU INENTNYINS
ARIANTAUNM TN



CHAPTER IV
APPLICATION TO
»-HOMOGENEOUS MAPS

In this chapter, we will investigate some properties of ¢-homogeneous maps,
their convergence sets, and their fixed point sets. We begin this chapter by ex-

tending some notions introduced in [2].

Definition 4.1. Let X be an xg-star-convex subset of a topological R-linear space,
and f: X — X and ¢ : [0,1] — [0,1] continuous selfmaps. We will call f a

¢ — homogeneous map with respect toxo, if for each t € [0,1] and x € X

[tz + (1 —t)xo) = ¢() f(z) + (1 — &(t)) 0.

Example 4.2. Note that C is a topological R-linear space. So it is certainly 1-star-
convez. Consider f : C — C defined by f(z) = |z — 11*+1. Then f(tz+(1—t)) =
(tz+ (1 —t))= 141 = |tz — t+1 = 2|z — 1)P+1 = (|]a— 1P +1)+(1—¢3) =
t2f(z) + (1 — *). Hence, f is a ¢p-homogeneous map with respect to 1 where
¢ :10,1] — [0,1] is a continuous selfmap defined by ¢(x) = z* for all z € [0, 1].

Example 4.3. Let A,B € R and A # 1. Since R is a topological R-linear space,
it is certainly %—star—conveaﬁ. Consider f : R — R defined by f(x) = Az + B.

Then f is a ¢-homogeneous map with respect to % where ¢ 1s the identity map.

Example 4.4. Consider f : RE — RS defined by f(z) = 2. It is easy to show
that f is a g-homogeneous map with respect to 0 where ¢(t) =1, f is not virtually

stable, C'(f) = [0,1], and F(f) ={0,1} which is not 0-star-convez.
From Definition 4.1, notice that

1. When 27 = 0, the definition coincides with ¢-homogeneous map in [2];
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2. If ¢ is the identity map, then F(f) is zo-star-convex;

3. Although ¢ is the identity map and X is a topological R-linear space, f

need not be linear.

Example 4.5. Since R is a topological R-linear space, it is certainly 1-star-convex.
Consider f : R — R defined by f(x) = |z — 1|+ 1. We have that f(tz+(1—1)) =
ltx + (1 —t) = 1|+l =tle—=1|+1=t|z — l|+t—t+1=t(lz — 1|+ 1)+ (1—¢) =
tf(z)+ (1 —1t) forallt € [0,1]. Then f is a ¢p-homogeneous map with respect to
1. But f is not linear since f(1—1) = f(0) =2#4 = f(1) + f(-1).

Example 4.6. Recall that L*([—1,1]) is a topological R-linear space. So it is
0-star-convez. Consider T : L*([—1,1]) — L?([—1,1]) defined by

1(7)(e) = [ [ (Ft)dy
4
It is easy to show that T s a ¢p-homogeneous map with respect to 0.

Let g be the identity map on [—1,1]. Then —g € L*([-1,1]) and

T(g+ (- 9))(%)2\//6 y—y)’dy =0, but

(T(g) + T(- \// dy+\// e

Hence, T is not linear.

From now on, let X be an xg-star-convex subset of a topological R-linear space,
f:X — X and ¢ : [0,1] — [0,1] continuous selfmaps. Furthermore, we define

[ X=zxg— X —=x¢by f(z)= f(z+ x5) — xo for all x € X —xy.

Lemma 4.7. Let f : X — X be a ¢-homogeneous map with respect to xo. Then
1 X—xg — X—xg is a p-homogeneous map, C(f")+xo = C(f), and F(f')+xy =
F(f).

Proof. We will show that f’ is a ¢-homogeneous map. Clearly, X — xq is an
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0-star-convex set. Let t € [0,1] and € X — xy. Then

f'(tx) = f(tw + x0) — 0o
= f(t(z +20) + (1 —t)x0) — T0
= (6(t)f(z + o) + (L= ¢(t))m0) — o
= @(t)(f(z + z0) =)

To show that C(f’) +z¢ = C(f), we observe that (f/)"(z) = (f")" ' (f(x + xo) —
zo) = (f)"2(f*(x + ®p) — %) = ... = [T + x) — T for all z € X — zy and
n > 2. Hence, for each x € X —z, we have x € C(f’) if and only if x +z € C(f).
Moreover, by the definition of f’, x € F(f’) if and only if z + zo € F(f). O

Lemma 4.8. If f : X — X is a non-constant ¢-homogeneous map with respect

to xo, we have the followings:
1. d(st) = ¢(s)o(t) for all's,t € [0,1];
2. {0,1} C F(9¢),
3. xo € F(f);

4. If p(x) =0, then x = 0;

5. If o(x) =1, then x = 1;
6. ¢is a strictly increasing function;
7. C(¢) = [0,1].

Proof. By Lemma 4.7, f'is a ¢-homogeneous map. Then (1), (2), and the fact that

0 € F(f") are results from Proposition 2.39. Again, by Lemma 4.7, zq € F(f).
We will show (4). By (2), t = sup {z € [0,1] : ¢(x) =0} < 1 exists. Since

¢ is continuous, ¢(t) = 0. Suppose on the contrary that ¢ > 0. Then, by (1),

B(t) = p(VtVt) = p(v/1)d(V/t). Since v/t > t, we have v/t > 0. Hence, 0 = @(t) =
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d(V/1)p(+/t) > 0, which is a contradiction.

We will prove (5). It is similar to (4) that there exists
t =inf {x € [0,1] : ¢(x) = 1} such that ¢(t) = 1. Suppose on the contrary that
t < 1. Since t* < t, ¢(t*) < 1. Then 1 = @(t)p(t) = ¢(t?) < 1, which is a
contradiction.

To show (6), let s,t € [0,1] be such that s <#. Then 7 <1, s0 ¢(7) < 1. We

t
get that ¢(s) = ¢(t(3)) = o(t)o(3) < o(t).

To show (7), let € [0,1]. If z = ¢(x), we are done. If z < ¢(x), then for each
n €N, ¢"(z) < ¢""'(z) by (6). We obtain that (¢"(z)) is a strictly increasing
sequence in [0, 1]. The monotone convergence theorem guarantees that z € C'(¢).

If ¢(z) < x, we get that (¢™(x)) is a strictly decreasing sequence in [0, 1]. Again,
we have z € C(¢). O

Theorem 4.9. Let f : X — X be a ¢p-homogeneous map with respect to xo. Then

C(f) is xg-star-convexr.

Proof. 1f f is a constant function, we are done. Otherwise, by Theorem 2.40 and
Lemma 4.8, C(f’) is 0-star convex. Moreover, by Lemma 4.7, C(f) = C(f’) + xo.

Hence, C(f) is xo-star-convex. O

The next example shows that the fixed point set of a ¢-homogeneous map with

respect to xg need not be xy-star-convex.

Example 4.10. Consider g : Ry — Ry defined by g(x) = 2. It is easy to show
that g is a ¢-homageneous map with respect to 0 where ¢(t) = t*, C(g) = [0, 1],
and F(g) = {0, 1} which is not 0-star-convex.

The next theorem improves and generalizes Theorem 3.3 in [2].

Theorem 4.11. If f : X — X s a virtually stable ¢p-homogeneous map with
respect to xg that fizes more than one point, then ¢(t) =t for all t € [0, 1].

Proof. By the assumption and Lemma 4.8, there is 1 € F(f)—{xo}. Suppose on
the contrary that there exists ¢y € (0,1) such that ¢(ty) # to. Then we consider

the following 2 cases:



23

Casel : ¢(ty) > to.

By Lemma 4.8, 0 € F(¢). Thus sup {t € [0,%) : ¢(t) =t} exists. Let ¢’ =
sup {t € [0,%y) : ¢(t) =t}. Since F(¢) is closed, ¢’ must be a fixed point. Then
o(t") =t < ty < ¢(ty). By intermediate value theorem and the property of
t', there exists t; € (t',to) such that ¢(t') =t < t; < ¢(t1) = to. Similarly,
there exists to € (t,t1) such that ¢(t') =t/ < to < ¢(t2) = t;. By continuing
this process, we obtain, for each n € N, there exists ¢, € (¢ ¢,-1) such that
ot =t <t, <o(t,) =ty1 and ¢"(t,) = to. Hence, (t,) is a strictly decreasing
sequence in [, tp]. By monotone convergence theorem, there exists t’ € [t/, (]
such that t,, — t”. Since ¢ is continuous, ¢(t") = ¢(n1£§o(t”)) = 7}13)10 o(tn) =
Tim -y = t". Therefore, t” = . Because z; € F(f) and t' € F(¢), we
have f(t'zy + (1 — t)xo) = o(t') f(x1) + (1 — ¢(t')z9 = t'm1 + (1 — t')x0, that is
t'x1+ (1 —1t)xo € F(f). Moreover, t'zy + (1 —t')zo # ¢(to)z1 + (1 — P(ty)) o since
¢(to) > t' and x; # . Then there is a neighborhood U of t'z1+(1—t')x such that
o(to)xrr + (1 — ¢(to))xo ¢ U. We will show that the fixed point t'zy + (1 — ')z
is not virtually f-stable and obtain a contradiction. Since ¢, — t', we have
thry + (1 — tp)xg — t'ay + (1 — t)xg. It follows that, for each neighborhood
V' of t'zy + (1 — t')xo, there exists N € N such that ¢,z + (1 —t,)zo € V for
all n > N. Then ¢(to)zy + (1 — @(to))zo = " (tn)xy + (1 — " (t,))w0 =
[ty + (1 = t,)xe) € (V) for all n > N. Thus, f**(V) can not be a
subset of U for each n > N. Hence, U is a neighborhood of 'z + (1 —t")zo having
the property that for all neighborhood V' of #'x; + (1 — ')z, there is no strictly
increasing sequence of natural numbers (k,,) that f* (V) C U forall n € N.

Case2 : ¢(tg) < to.

By Lemma 4.8, 1 € F(¢). We can let ¢’ = inf {t € (to, 1] : ¢(t) =t} € F(¢).
It is similar to case 1 that there exists a strictly increasing sequence (t,) in [to, t']
such that t, — ¢ and ¢"(t,) = to for all n € N. Moreover, by imitating the
process in case 1, we obtain a contradiction that f is not virtually stable.

Hence, ¢(t) =t for all t € [0, 1]. O
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Corollary 4.12. If f : X — X is a virtually stable ¢-homogeneous map with

respect to xo, then F(f) is xq-star-conver.

Proof. If f has only one fixed point, then we are done. Otherwise, by Theorem
4.11, we immediately have f(tz + (1 —t)zo) = tf(z) + (1 —t)zo =t + (1 — )z
for all t € [0,1] and « € F(f). Therefore F(f) is x¢-star-convex as desired. O
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