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CHAPTER I 

 

INTRODUCTION 
 

1.1 Introduction 

Photopolymers with photocrosslinkable groups have been paid much attention 

for a few decades because of a variety of applications in the field of microlithography, 

printing materials, liquid crystalline display (LCD) and non-linear optical materials 

[1-2]. Photopolymers are imaging compositions based on polymers, oligomers, and 

monomers which can be selectively polymerized or crosslinked upon exposure by 

light radiation such as ultra-violet light. For final use, they are made into different 

forms including film/sheet, liquid, and solution which find outlets in printing plates, 

imaging, stereolithography and photoresists. A popular use of photopolymers is as 

photoresists which are used to make integrated circuits, flat panel displays, printed 

circuits, chemically milled parts, microelectromechanical systems (MEMS).  

In photoresist application, photosensitive polymers are required to have α, β-

unsaturated carbonyl groups or unsaturated double-bond either in the backbone or in 

pendant position. Generally, photoresists are classified into two groups, positive 

resists and negative resists. If the irradiated portions of substrate become soluble to 

the photoresist developer and unexposed area is insoluble to the photoresist developer, 

these polymers are addressed as negative photoresists. In positive resists, the 

photochemistry brings about an enhancement of the solubility or of dissolution rate 

and it is the irradiated areas that are removed by the developer.  

In fact, there are a number of commercially available photosensitive polymers. 

However, they cannot fulfill industrial requirements. For instance, commercially 

negative resists based on diazo salts and oxides, diazo formaldehyde resins, cinnamate 

polyesters and chalcone polymers have been used extensively, nevertheless, these 

resists are not inherently benign and often contain toxic starting materials, 

intermediates, and products. Some were coated by volatile organic solvents, such as, 

1-methyl-2-propyl acetate, that could generate green house gases to the environment. 
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Therefore, the need for environmentally friendly photoresists, especially completely 

water-soluble, are strongly desired. 

Coumarins were used in this research because they have α, β-unsaturated 

carbonyl groups. Poly(vinyl alcohol) was used for support material because it is a 

water-soluble which can be able to form as good film. This research will prepare 

poly(vinyl alcohol) containing coumarin derivatives to study solubility and negative 

resists application.  

 

1.2 Objectives of the research work 

This study aims to synthesis of negative resists and investigate solubility and 

photoresist process. 

 

1.3 Scope of the research work 

 1. Synthesis of 5,7-dihydroxy-4-methylcoumarin 

 The synthesis will be performed via Pechman reaction but acceptable method 

using oxalic acid liquid as acid catalyst will be used. 

 
OH

OH
H3C OEt

O O oxalic acid O
EtOH

HO

OHO

OH  
Scheme 1 The synthesis of 5,7-dihydroxy-4-methylcoumarin 

 

 2. Synthesis of monoalkoxy-4-methylcoumarin 

 The synthesis will be performed via substitution reaction with octhyl bromide 

and butyl bromide using potassium carbonate as base. 
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O ORO

OH

O OHO

OH

K2CO3

O OHO

HO

K2CO3
O ORO

HO

O OHO

OR

+
RBr

RBr

RBr = Br

Br  
Scheme 2 The synthesis of monoalkoxycoumarin compounds 

  

 3. Alkylation of 5,7-dihyrdroxy-4-methylcoumarin, 6,7-dihydroxy-4-

methylcoumarin, and monoalkoxy-4-methylcoumarin with 1,3-dibromopropane. Ether 

linkages will be constructed as Scheme 3 shown below. 

 

O

HO

HO O O

HO

O OBrBr Br

K2CO3

O ORO

OH

O ORO

HO

K2CO3

Br Br

K2CO3

Br Br
O OHO

OR

K2CO3

Br Br

O ORO

OBr

O OO

OR

Br

O ORO

OBr

K2CO3

Br Br
O OHO

OH

O OO

OH

Br O OHO

OBr

+

 
Scheme 3 Treament of coumarin derivatives with 1,3-dibromopropane  
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 4. Synthesis of poly(vinyl alcohol) containing coumarin or alkoxy coumarins      

OH OH

O OH

O

O

O
R

R= OH, octoxy, butoxy

O OOBr

R

 
Scheme 4 Preparation of poly(vinyl alcohol) containing coumarins 

 

 5. Study solubility and negative photoresist application  

 

 



   
 

 

CHAPTER II 

 

THEORY AND LITERATURE REVIEWS 
 

2.1 Coumarins 

Coumarin (2H-1-benzopyran-2-one) and its derivatives are well known 

heterocycles containing oxygen which are widely used in drugs and dyes. Recently, 

they have been paid much attention for their fluorescent properties and physiological 

activities because of their high photostability and quantum yield of 

photoluminescence and variable emission wavelength continuously throughout the 

visible spectrum. The dimerization of coumarin and its derivatives would produce 

various different signals on UV-visible, fluorescent, NMR and mass spectra [3]. 

Reports found in the literature for coumarin polymers are of great interest. 

Coumarin-photo-cross-linkable side chain liquid crystalline polymer (SCLP) was 

reported to have electro-optical properties and ability to induce structure that can be 

useful in manufacturing information storage devices and nonlinear optical devices 

[4-6]. Polymeric and oligomeric coumarins were prepared for photomemory and 

photoactive surface application [7-8]. Tian’s group reported oligomeric coumarin 

derivatives by linking coumarins to cyclic tetrasiloxanes that their substitution at the 

3 position of coumarin group displayed mesomorphic properties [9]. A wide range of 

polymers containing coumarin moieties such as polyamide, polyester, hyperbranched 

and fully aromatic has received much interest in publishing and patenting for the use 

as electroluminescent devices [10-11]. It was also found that certain polymers 

prepared from coumarinyl-oxy ethyl methacrylate could form liquid crystal 

orientation layers. The photo-cross-linking of the polypeptides containing coumarins 

were studied as the potentially biodegradable crosslinked materials. At present, many 

researchers still continue to synthesize new and useful photosensitive coumarin-

based polymers and investigate their potential application.  
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2.1.1 Synthesis of coumarins 

 Several methods were used for synthesis of coumarin namely Pechmann, 

Perkin, Knoevenagel, Reformatsky, and Wittig reactions. Nevertheless, the 

Pechmann reaction is used for the synthesis of coumarins because of reaction 

condition and good yields.  Several acid catalysts are applied for the Pechmann 

reaction such as sulfuric acid. However, these acid catalysts have drawback like use 

of excess catalyst (sulfuric acid: 10 equiv.), unwanted side-product,and longer 

reaction time, The acid catalyst used in the Pechmann reaction is oxalic acid under 

solvent-free reaction condition [12]. 

R

OH

COOEt
O+ R

O Oacid as catalyst

 
Scheme 5 Pechmann reaction of phenols 

 

2.1.2 Pechmann condensation mechanism 

Coumarins can be formed via Pechmann condensation. Phenols reacted β-keto 

ester to give aryl ester. Finally, cyclization generate the coumarin.  

OHHO

OH

+
EtO

O O OHO

OH

O

O
OHO

OH

O

O
H

H

H+ H

OHO

OH

O

OHH+ HO

OH

O OH

H OH

HO

OH

O OH

OH

H+

HO

OH

O OHO

OH

O O

OH2

H

 
Scheme 6 Mechanism of Pechmann reaction 

 

A Michael addition leads to the formation of the coumarin. This addition is 

followed by rearomatisation. Finally, acid-induced elimination of water gives the 

product. 
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2.2 SN2 reaction 

2.2.1. The rate of SN2 reaction 

Carbon-bromide bond causes alkyl bromides to undergo substitution reaction. 

The rate of a nucleophilic substitution depends on the concentrations of both reagents. 

If the concentration of alkyl bromide or nucleophile in the reaction is doubled, the rate 

of the substitution reaction will be doubles. If the concentrations of both reactants are 

doubled, the rate of the reaction will be quadruples [13]. 

RBr  +  -OH ROH  +  Br-
 

Scheme 7 Substitution between alkyl bromide and hydroxide 

The relationship between the rate of a reaction and the concentration of the 

reactants can be written as a rate law showed below. 

Rate = k[alkyl bromide] [nucleophile] 

 The rate of this reaction depends on the concentration of two reagents.  

 

2.2.2. The mechanism of SN2 reaction 

the mechanism for an SN2  reaction is a concerted reaction,  which takes place 

in a single step. The nucleophile attacks the carbon bearing the leaving group and 

displaces the leaving group. 

Relative reactivities of alkyl halides in an SN2 reaction 

Methyl halide > 1 alkyl halide > 2 alkyl halide > 3 alkyl halide 

While the nucleophile approaches the backside of the carbon of methyl bromide, the 

carbon-hydrogen begins to move away from the nucleophile. 

-OH Br BrHO HO Br-

 
Scheme 8 Inversion of configuration of SN2 reaction 

The carbon is penta coordinate when the nucleophile is closer to the carbon 

and the bromide moves away from it. Finally, the bond between the carbon and the 

nucleophile is formed and the bond between the carbon and bromide is broken.   
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2.2.3. The effect of the solvent on nucleophilicity 

When a nucleophile is placed in a protic solvent, the ion is solvated. The 

solvent arrange themselve to point partially positive charged toward the negative 

charge molecule. This interaction is called an ion-dipole interaction. The nucleophile 

would increase reactivity in a non polar solvent because there are no ion-dipole 

interactions between the ion and the solvent. However, ions are insoluble in non polar 

solvents. They can dissolve in aprotic polar solvents such as dimethyl formamide 

(DMF), dimethylsulfoxide (DMSO).  

 

2.3 Poly(vinyl alcohol) (PVA) 

Poly(vinyl alcohol) is a commercial polymer. It has good solubility, film 

forming, and miscibility properties. In addition, it can be modified due to OH 

functional groups in the backbone [14].  

 

2.4 Negative photoresist 

Negative resist behave in the opposite positive resist.  When it exposures to 

the UV light, the negative resist becomes crosslinkable. Therefore, the negative resist 

remains on the surface. The solvent developer removes only the unexposed substrate. 

Figure 1 indicated the pattern generated from the negative resist [15]. 

 

 

 

Figure 1 Negative photoresist process [15]    
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O OOO O O

n

CV

O OOO O O

n

CF

2.5 Literature review 

In 2004, Trenor et al. [16] used sunlight to irradiate coumarin that dissolved in 

alcohol. The result of coumarin after irradiated was increasing the melting point 

higher than the original one. They studied four different structure of dimer irradiated 

from coumarin at different reaction condition. These are four possible dimer forms 

from UV irradiated of coumarin. These dimers were formed via [2π+2π] 

cycloaddition reaction to form cyclobutane ring. The result of these coumarins had 

only three products:the syn head-to-head dimer, the anti head-to-head, and the syn 

head-to-tail dimer. At the high concentration, coumarin reacted with ground-state and 

formed syn head-to-head dimer. At the low concentration, the anti head-to-head was 

formed. 

In 2006, Barberis et al. [17] reported the two new poly(fluorenediylvinylene)s 

(CV and CF) with coumarin moieties. These polymers could be dissolved in organic 

solvent such as tetrahydrofuran. Thin film of CV and CF expressed the maximum 

photoluminescence emission intensity at 475 nm and 585 nm, respectively. Both of 

them showed the interesting optical properties. 

 

 

 

 

 

Figure 2 The chemical structure of poly(fluorenediylvinylene)s (CV and CF) 

In 2006, Trakhtenberg et al [18] reported water-soluble photopolymers can be 

useful environmentally benign negative photoresists. This water-soluble polystyrene 

copolymer, vinylbenzylthymine-vinylphenylsulfonate (VBT-VPS) can be coated on 

several substrates including plastics such as polyethylterephthalate. The cross-linking 

and immobilization of the photoresists has been derived from a simple photochemical 

transformation that occurs in nature (2 + 2 photodimerization of thymine). 

In 2007, Feng et al. [19] demonstrated the novel fluorescence poly(7-(4-

(acryloyloxy)butoxy)coumarin) which was prepared via the reversible addition 

fragmentation chain transfer (RAFT) polymerization. The coumarin units exhibiting 
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in this polymer could undergo [2+2] cycloaddition reaction under UV irradiation in 

tetrahydrofuran. It was found that the maximum UV-visible absorption of polymer at 

322 nm decreased after irradiation under UV light due to the disruption of aromaticity 

of the coumarin. 

In 2007, Wang et al [14] reported the success of synthesizing a new kind of 

water soluble poly(vinyl alcohol) containing 4-methyl-7-(2,3-epoxypropoxy)coumarin 

(PVA-MEC). The film forming ability of this polymer is as good as poly(vinyl 

alcohol). In addition, PVA-MEC exhibited the excellent linear relation between 

relative fluorescence intensity and temperature in the range of 0-60 oC and its highest 

intensity of fluorescence was shown at mass concentration of 4.0% at 382 nm. 

Accordingly, this research study is focused on the search of a new kind of 

polymeric material bearing coumarin moiety. Two different linkages between 

polymer backbone and coumarin moietys, ether and carbon-carbon linkages will be 

investigated. The synthesized polymers will sequentially be explored for their optical 

property in the application of photoresist. 



   
 

 

CHAPTER III 

 

EXPERIMENTAL 
 

3.1 Chemicals 

3.1.1 Reagents 

1. Oxalic acid (CARLO ERBA) was used as received. 

2. Phloroglucinol (SIGMA-ALDRICH) was used as received. 

3. Ethyl acetoacetate (ALDRICH) was used as received. 

4. Potassium carbonate (CARLO ERBA) was used as received. 

5. Octyl bromide (MERCK) was distilled prior to use. 

6. Butyl bromide (SIGMA-ALDRICH) was distilled prior to use. 

7. 6,7-Dihydroxy-4-methylcoumarin (SIGMA) was used as received. 

8. 1,3-Dibromopropane (SIGMA-ALDRICH) was used as received. 

9. Poly(vinyl alcohol) 70,000-100,000 (SIGMA) was used as received. 

10. Sodium ethoxide (ALDRICH) was used as received. 

11. Magnesium sulfate anhydrous (CARLO ERBA) was used as received. 

12. Silica gel, 70-230 mesh, 60 Ao (MERCK) was used as received. 

13. Hydrochloric acid (CARLO ERBA) was used as received. 

14. Sodium chloride (PROGOLF) was used as received. 

 

3.1.2 Solvents 

1.  Ethanol (commercial) was distilled prior to use. 

2.  N, N-Dimethylformamide (CARLO ERBA) was used as received. 

3. Ethyl acetatate (ZEN POINT) was distilled prior to use. 

4. Hexane (ZEN POINT) was distilled prior to use. 

5. Acetone (commercial)  was distilled prior to use. 

6. Chloroform (LAB-SCAN) was used as received. 

7. Dimethylsulfoxide (CARLO ERBA) was used as received.  

8. Chloroform-d (MERCK) was used as received. 

9. Dimethylsulfoxide-d6 (WILMAD LABGLASS) was used as received. 
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10. Dichlromethane (commercial) was distilled prior to use. 

 

3.2Instruments and equipments 

3.2.1 Nuclear magnetic resonance (NMR) spectrometer 

Proton nuclear magnetic resonance (1H-NMR) spectra were obtaine in 

deuterated chloroform (CDCl3) or deuterated sulfoxide (DMSO-d6) using a Bruker® 

AVANCE 400 MHz NMR spectrometer. Chemical shifts (δ) are reported in parts per 

million (ppm) relative to the residual protonated solvent signal as a reference. 

3.2.2 Infrared spectrometer 

ATR-IR spectra were obtained by a Nicolet 6700 FTIR spectrometer. 

3.2.3 Mass spectrometer 

The HRMS (ESI) mass spectra were recorded from Bruker microTOF LC 

mass spectrometer.  

3.2.4 UV-visible spectrophotometer 

UV Absorption spectra were obtained by a HP 8453 UV/VIS spectrometer. 

3.2.5 Melting point  

Melting points were obtained by a Melt-Temp. 

 

3.3 Synthesis of 5,7-dihydroxy-4-methylcoumarin [12] 

Phloroglucinol (1.98 g, 15.7 mmol) and ethyl acetoacetate (2.00 ml, 15.7  

mmol) were added to  around round bottom flask to reflux with oxalic acid (0.34 g,  

2.7 mol). The mixture was stirred for 2 hour. The mixture was cooled to room 

temperature and poured in cold water to stir. The precipitated product was filtered by 

vacuum filtration, washed with water and dried. The product was crystallized from 

ethanol.  

Yield 73%, yellow solid, m.p. 284-286 oC, 1H-NMR (400 MHz, DMSO-d6)  δ 

10.51 (s, 1H, -OH), 10.30 (s, 1H, -OH), 6.23 (s, 1H, Ar-H), 6.14 (s, 1H, Ar-H), 5.82 

(s, 1H, =CH), 2.48 (s, 3H, -CH3), ATR-FTIR (neat) 3414, 1662, 1616, 1576, mass 

(ES/MS): m/z: 215.0062 [obtained M+Na]+, UV-Vis (EtOH) λmax 324 nm. 
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3.4 Alkyltion reaction with alkyl bromides [20] 

3.4.1 Synthesis of 5,7-dibutoxy-4-methylcoumarin, 7-butoxy-5-hydroxy-4-

methylcoumarin, and 5-butoxy-7-hydroxy-4-methylcoumarin 

5,7-Dihydroxy-4-methylcoumarin (0.89 g, 4.6  mmol) was combined with 

butyl bromide (0.50 mL, 4.7 mmol) and potassium carbonate (0.64 g, 4.6 mmol) in 10 

mL dimethylformamide. The mixture was refluxed and stirred for 12 hours. Then 10 

mL of 2M hydrochloric acid was added to the reaction. The reaction was then 

extracted with ethylacetate, and washed with water two times. The crude product was 

separated by column chromatography using 2:8 ethylacetate:hexane as eluent to 

obtain 3 different products. 

5,7-Dibutoxy-4-methylcoumarin:Yield 17%, white solid, m.p. 69-70 oC, 1H-

NMR (400 MHz, CDCl3)  δ 6.40 (s, 1H, Ar-H), 6.27 (s, 1H, Ar-H), 5.93 (s, 1H, 

=CH), 3.98 (t, J = 6 Hz, 4H, -2CH2), 2.54 (s, 3H, -CH3), 1.79 (m, 4H, -2CH2), 1.50 

(m, 4H, 2CH2), 0.98 (t, J = 5 Hz, 6H, -2CH3), ATR-FTIR (neat) 2956, 1703, mass 

(ES/MS): m/z: 327.1440 [obtained M+Na]+, UV-Vis (EtOH) λmax 326 nm. 

7-Butoxy-5-hydroxy-4-methylcoumarin:Yield 2%, white solid, m.p. 167-169 
oC, 1H-NMR (400 MHz, CDCl3-DMSO-d6)  δ 7.04 (s, 1H, OH), 6.32 (s, 1H, Ar-H), 

6.22 (s, 1H, Ar-H), 5.89 (s, 1H, =CH), 3.88 (t, J = 6 Hz, 2H, -CH2), 2.54 (s, 3H, -

CH3), 1.70 (m, 2H, -CH2), 1.41 (m, 2H, CH2), 0.90 (t, J = 7 Hz, 3H, -CH3), ATR-

FTIR (neat)  3159,2951 1677, mass (ES/MS): m/z: 271.0871 [obtained M+Na]+, UV-

Vis (EtOH) λmax 322 nm. 

5-Butoxy-7-hydroxy-4-methylcoumarin:Yield 5%, white solid, m.p. 185-187 
oC, 1H-NMR (400 MHz, CDCl3-DMSO-d6)  δ 9.70 (s, 1H, OH), 6.18 (s, 1H, Ar-H), 

6.05 (s, 1H, Ar-H), 5.63 (s, 1H, =CH), 3.80 (t, J = 8 Hz,  2H, -CH2), 2.32 (s, 3H, -

CH3), 1.62 (m, 2H, -CH2), 1.32 (m, 2H, CH2), 0.79 (t, J = 6 Hz,  3H, -CH3), ATR-

FTIR (neat)  3296,2935, 1678, mass (ES/MS): m/z: 271.0821 [obtained M+Na]+, UV-

Vis (EtOH) λmax 326 nm. 
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3.4.2 Synthesis of 5,7-dioctoxy-4-methylcoumarin, 5-hydroxy -4-methyl-7-

octoxycoumarin and 7-hydroxy-4-methyl-5-octoxycoumarin 

Following the same procedure as section 3.4.1 using 5,7-dihydroxy-4-

methylcoumarin (0.56 g, 2.9 mmol), octyl bromide (0.50 mL, 2.9 mmol), and 

potassium carbonate (0.41 g, 3.0 mmol), 3 different products were obtained. 

5,7-Dioctoxy-4-methylcoumarin:Yield 13%, white solid, m.p. 48-50 oC, 1H-

NMR (400 MHz, CDCl3)  δ 6.40 (s, 1H, Ar-H), 6.27 (s, 1H, Ar-H), 5.94 (s, 1H, 

=CH), 3.98 (t, J = 6 Hz,  4H, -2CH2), 2.55 (s, 3H, -CH3), 1.82 (m, 4H, -2CH2), 1.45 

(m, 4H, 2CH2), 1.29 (m,16H, 2CH2CH2CH2CH2), 0.89 (t, J = 6 Hz,  6H, -2CH3), 

ATR-FTIR (neat) 2915, 1713, mass (ES/MS): m/z: 439.2478 [obtained M+Na]+, UV-

Vis (EtOH) λmax 322 nm. 

5-Hydroxy-4-methyl-7-octoxycoumarin:Yield 14%, white solid, m.p. 154-156 
oC, 1H-NMR (400 MHz, CDCl3-DMSO-d6)  δ 9.62 (s, 1H, OH), 6.41 (s, 1H, Ar-H), 

6.34 (s, 1H, Ar-H), 5.98 (s, 1H, =CH), 3.96 (t, J = 6 Hz,  2H, -CH2), 2.63 (s, 3H, -

CH3), 1.78 (m, 2H, -CH2), 1.44 (m, 2H, CH2), 1.30 (m, 8H, CH2CH2CH2CH2), 0.90 

(t, J = 7 Hz,  3H, -CH3), ATR-FTIR (neat)  3088,2915, 1667, mass (ES/MS): m/z: 

327.1284 [obtained M+Na]+, UV-Vis (EtOH) λmax 323 nm. 

7-Hydroxy-4-methyl-5-octoxycoumarin:Yield 15%, white solid, m.p. 158-160 
oC, 1H-NMR (400 MHz, CDCl3-DMSO-d6)  δ 9.68 (s, 1H, OH), 6.32 (s, 1H, Ar-H), 

6.16 (s, 1H, Ar-H), 5.76 (s, 1H, =CH), 3.87 (t, J = 6 Hz,  2H, -CH2), 2.44 (s, 3H, -

CH3), 1.73 (m, 2H, -CH2), 1.36 (m, 2H, CH2), 1.19 (m, 8H, CH2CH2CH2CH2), 0.80 

(t, J = 6 Hz, 3H, -CH3), ATR-FTIR (neat)  3338,2920, 1678, mass (ES/MS): m/z: 

327.1304 [obtained M+Na]+, UV-Vis (EtOH) λmax 322 nm. 

 

3.4.3 Synthesis of 6,7-dibutoxy-4-methylcoumarin and 7-butoxy-6-

hydroxy-4-methylcoumarin 

Following the same procedure as section 3.4.1 using 6,7-dihydroxy-4-

methylcoumarin (0.89 g, 4.6 mmol), butyl bromide (0.50 mL, 4.7 mmol), and 

potassium carbonate (0.64 g, 4.6 mmol), 2 different products were obtained. 

6,7-Dibutoxy-4-methylcoumarin:Yield 9%, yellow solid, m.p. 76-78 oC, 1H-

NMR (400 MHz, CDCl3)  δ 6.96 (s, 1H, Ar-H), 6.81 (s, 1H, Ar-H), 6.14 (s, 1H, 
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=CH), 4.04 (t, J = 6 Hz, 4H, -2CH2), 2.38 (s, 3H, -CH3), 1.84 (m, 4H, -2CH2), 1.53 

(m, 4H, 2CH2), 0.99 (t, J = 7 Hz, 6H, -2CH3), ATR-FTIR (neat) 2925, 1708, mass 

(ES/MS): m/z: 327.1419 [obtained M+Na]+, UV-Vis (EtOH) λmax 343 nm. 

7-Butoxy-6-hydroxy-4-methylcoumarin:Yield 24%, yellow solid, m.p. 157-

159 oC, 1H-NMR (400 MHz, CDCl3-DMSO-d6)  δ 7.08 (s, 1H, Ar-H), 6.79 (s, 1H, 

Ar-H), 6.15 (s, 1H, =CH), 5.71 (s, 1H, OH), 4.10 (t, J = 7 Hz, 2H, -CH2), 2.35 (s, 3H, 

-CH3), 1.84 (m, 2H, -CH2), 1.52 (m, 2H, CH2), 0.99 (t, J = 7 Hz, 3H, -CH3), ATR-

FTIR (neat)  3175, 2956, 1667, mass (ES/MS): m/z: 271.8080 [obtained M+Na]+, 

UV-Vis (EtOH) λmax 345 nm. 

 

3.4.4 Synthesis of 6,7-dioctoxy-4-methylcoumarin and 6-hydroxy-7-

octoxy-4-methylcoumarin 

Following the same procedure as section 3.4.1 using 6,7-dihydroxy-4-

methylcoumarin (0.58 g, 3.0 mmol), octyl bromide (0.50 mL, 2.90 mmol) and 

potassium carbonate (0.41 g, 3.0 mmol), 2 different products were obtained. 

6,7-Dioctoxy-4-methylcoumarin:Yield 17%, yellow solid, m.p. 57-58 oC, 1H-

NMR (400 MHz, CDCl3)  δ 6.89 (s, 1H, Ar-H), 6.74 (s, 1H, Ar-H), 6.06 (s, 1H, 

=CH), 3.96 (t, J = 6 Hz, 4H, -2CH2), 2.31 (s, 3H, -CH3), 1.78 (m, 4H, -2CH2), 1.42 

(m, 4H, 2CH2), 1.22 (m,16H, 2CH2CH2CH2CH2), 0.82 (t, J = 7 Hz, 6H, -2CH3), 

ATR-FTIR (neat) 2915, 1739, mass (ES/MS): m/z: 439.2546 [obtained M+Na]+, UV-

Vis (EtOH) λmax 343 nm. 

6-Hydroxy-4-methyl-7-octoxycoumarin:Yield 39%, white solid, m.p. 116-118 
oC, 1H-NMR (400 MHz, CDCl3-DMSO-d6) δ 7.11 (s, 1H, Ar-H), 6.82 (s, 1H, Ar-H), 

6.18 (s, 1H, =CH), 5.70 (s, 1H, OH), 4.12 (t, J = 6 Hz, 2H, -CH2), 2.38 (s, 3H, -CH3), 

1.88 (m, 2H, -CH2), 1.49 (m, 2H, CH2), 1.31 (m, 8H, CH2CH2CH2CH2), 0.99 (t, J = 

6 Hz, 3H, -CH3), ATR-FTIR (neat)  3287, 2915, 1683, mass (ES/MS): m/z: 327 

[obtained M+Na]+, UV-Vis (EtOH) λmax 346 nm. 
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3.5 Alkylation reaction with 1,3-dibromopropane 

3.5.1 Synthesis of 5,7-di(3′-bromo)propoxy-4-methylcoumarin, 5-hydroxy-

4-methyl-7-(3′-bromo)propoxycoumarin and 7-hydroxy-4-methyl-5-(3′-

bromo)propoxycoumarin  
5,7-Dihydroxycoumarin (0.38 g, 2.0 mmol) was combined with 1,3-

dibromobutane (0.20 mL, 2.0 mmol) and sodium ethoxide (0.132 g, 2.0 mmol) in 5 

mL dimethylsulfoxide. The mixture was refluxed and stirred for 20 hours. Then 10 

mL of 2M hydrochloric acid was added to the reaction. The reaction was then 

extracted with ethylacetate, and washed with water two times. The crude product was 

separated by column chromatography using 2:8 ethylacetate:hexane as eluent to 

obtain 3 different products 

5,7-Di(3′-bromo)propoxy-4-methylcoumarin:Yield 8%, yellow solid, m.p. 74-

76 oC, 1H-NMR (400 MHz, CDCl3)  δ 6.46 (s, 1H, Ar-H), 6.33 (s, 1H, Ar-H), 5.97 (s, 

1H, =CH), 4.16 (t, J = 6 Hz, 4H, -2CH2), 3.60 (t, J = 6 Hz, 4H, -2CH2), 2.53 (s, 3H, -

CH3),  2.40 (p, 4H, 2CH2), ATR-FTIR (neat) 2925, 1708, mass (ES/MS): m/z: 

434.760 [obtained M]+, UV-Vis (EtOH) λmax 321 nm. 

5-Hydroxy-4-methyl-7-(3′-bromo)propoxycoumarin:Yield 3%, white solid, 

m.p. 174-176 oC, 1H-NMR (400 MHz, CDCl3)  δ 9.70 (s, 1H, OH), 6.40 (s, 1H, Ar-

H), 6.24 (s, 1H, Ar-H), 5.82 (s, 1H, =CH), 4.10 (t, J = 6 Hz, 2H, -CH2), 3.53 (t, J = 6 

Hz, 2H, -CH2), 2.45 (s, 3H, -CH3),  2.32 (p, 2H, CH2), ATR-FTIR (neat) 3159, 1662, 

mass (ES/MS): m/z: 336.2378 [obtained M+Na]+, UV-Vis (EtOH) λmax 321 nm. 

7-Hydroxy-4-methyl-5-(3′-bromo)propoxycoumarin:Yield 5%, white solid, 

m.p. 188-190 oC, 1H-NMR (400 MHz, CDCl3)  δ 7.83 (s, 1H, OH), 6.98 (s, 1H, Ar-

H), 6.72 (s, 1H, Ar-H), 6.03 (s, 1H, =CH), 4.11 (t, J = 6 Hz, 2H, -CH2), 3.58 (t, J = 6 

Hz, 2H, -CH2), 2.50 (s, 3H, -CH3),  2.32 (p, 2H, CH2), ATR-FTIR (neat) 3287,2945, 

1662, mass (ES/MS): m/z: 336.9739 [obtained M+Na]+, UV-Vis (EtOH) λmax 325 nm. 
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3.5.2 Synthesis of 6,7-di(3′-bromo)propoxy-4-methylcoumarin and 6-

hydroxy -4-methyl-7-(3′-bromo)propoxycoumarin  

Following the same procedure as section 3.5.1 using 6,7-dihydroxy-4-

methylcoumarin (0.19 g, 1.0 mmol), 1,3-dibromopropane (0.1 mL, 1.0 mmol), and 

sodium ethoxide (0.07 g, 1.0 mmol), 2 different products were obtained. 

6,7-Di(3′-bromo)propoxy-4-methylcoumarin:Yield 8%, yellow solid, m.p. 79-

80 oC, 1H-NMR (400 MHz, CDCl3)  δ 7.03 (s, 1H, Ar-H), 6.86 (s, 1H, Ar-H), 6.17 (s, 

1H, =CH), 4.19 (t, J = 6 Hz, 4H, -2CH2), 3.64 (t, J = 6 Hz, 4H, -2CH2), 2.40 (s, 3H, -

CH3),  2.36 (p, 4H, 2CH2), ATR-FTIR (neat) 2956, 1723, mass (ES/MS): m/z: 

434.715 [obtained M]+, UV-Vis (EtOH) λmax 331 nm. 

6-Hydroxy-4-methyl-7-(3′-bromo)propoxycoumarin:Yield 7%, white solid, 

m.p. 164-166 oC, 1H-NMR (400 MHz, CDCl3)  δ 7.11 (s, 1H, Ar-H), 6.85 (s, 1H, Ar-

H), 6.17 (s, 1H, =CH), 5.53 (s, 1H, OH),  4.29 (t, J = 6 Hz, 2H, -CH2), 3.59 (t, J = 6 

Hz, 2H, -CH2), 2.39 (p, 2H, CH2),  2.36 (s, 3H, -CH3),  ATR-FTIR (neat) 3200, 

2930,1688, mass (ES/MS): m/z: 336.9736 [obtained M+Na]+, UV-Vis (EtOH) λmax 

345 nm. 

 

3.5.3 Synthesis of 7-butoxy-4-methyl-5-(3′-bromo)propoxycoumarin 

Following the same procedure as section 3.5.1 using 7-butoxy-5-hydroxy-4-

methylcoumarin (0.06 g, 0.2 mmol), 1,3-dibromopropane (0.02 mL, 0.2 mmol), and 

sodium ethoxide (0.02 g, 0.2 mmol), 7-butoxy-4-methyl-5-(3′-

bromo)propoxycoumarin was obtained. 

7-Butoxy-4-methyl-5-(3′-bromo)propoxycoumarin:Yield 44%, white solid, 

m.p. 71-73 oC, 1H-NMR (400 MHz, CDCl3)  δ 6.43 (s, 1H, Ar-H), 6.28 (s, 1H, Ar-H), 

5.96 (s, 1H, =CH), 4.14 (t, J = 6 Hz, 2H, -CH2), 3.99 (t, J = 6 Hz, 2H, -CH2),  3.60 (t, 

J = 6 Hz, 2H, -CH2), 2.55 (s, 3H, -CH3), 2.33 (p, 2H, CH2), 1.83 (m, 2H, -CH2), 1.54 

(m, 2H, CH2), 0.99 (t, J = 7 Hz, 3H, -CH3), ATR-FTIR (neat) 2951,1731, mass 

(ES/MS): m/z: 370.642 [obtained M+Na]+, UV-Vis (EtOH) λmax 322 nm. 
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3.5.4 Synthesis of 5-butoxy-4-methyl -7-(3′-bromo)propoxycoumarin 

Following the same procedure as section 3.5.1 using 5-butoxy-7-hydroxy-4-

methylcoumarin (0.15 g, 0.6 mmol), 1,3-dibromopropane (0.06 mL, 0.6 mmol), and 

sodium ethoxide (0.04 g, 0.6 mmol), 5-butoxy-4-methyl-7-(3′-

bromo)propoxycoumarin was obtained. 

5-Butoxy-4-methyl-5-(3′-bromo)propoxycoumarin:Yield 64%, white solid, 

m.p. 83-84 oC, 1H-NMR (400 MHz, CDCl3)  δ 6.37 (s, 1H, Ar-H), 6.25 (s, 1H, Ar-H), 

5.88 (s, 1H, =CH), 4.10 (t, J = 6 Hz, 2H, -CH2), 3.93 (t, J = 6 Hz, 2H, -CH2),  3.53 (t, 

J = 6 Hz, 2H, -CH2), 2.47 (s, 3H, -CH3), 2.33 (p, 2H, CH2), 1.72 (m, 2H, -CH2), 1.44 

(m, 2H, CH2), 0.92 (t, J = 7 Hz, 3H, -CH3), ATR-FTIR (neat) 2956,1708, mass 

(ES/MS): m/z: 340.671 [obtained M+Na]+, UV-Vis (EtOH) λmax 322 nm. 

 

3.5.5 Synthesis of 4-methyl-7-octoxy-5-(3′-bromo)propoxycoumarin  

Following the same procedure as section 3.4.1 using 5-hydroxy-4-methyl-7-

octyoxycoumarin (0.08 g, 0.26 mmol), 1,3-dibromopropane (0.04 mL, 0.39 mmol), 

and potassium carbonate (0.027 g, 0.19 mmol), 4-methyl-7-octoxy-5-(3′-

bromo)propoxycoumarin was obtained. 

4-Methyl-7-octoxy-5-(3′-bromo)propoxycoumarin:Yield 35%, white solid, 

m.p. 42-43 oC, 1H-NMR (400 MHz, CDCl3)  δ 6.37 (s, 1H, Ar-H), 6.21 (s, 1H, Ar-H), 

5.89 (s, 1H, =CH), 4.08 (t, J = 6 Hz, 2H, -CH2), 3.92 (t, J = 6 Hz, 2H, -CH2),  3.53 (t, 

J = 6 Hz,  2H, -CH2), 2.49 (s, 3H, -CH3), 2.27 (p, 2H, CH2), 1.78 (m, 2H, -CH2), 1.41 

(m, 2H, CH2), 1.22 (m, 8H, CH2CH2CH2CH2), 0.82 (t, J = 7 Hz, 3H, -CH3), ATR-

FTIR (neat) 2919,1718, mass (ES/MS): m/z: 449.1061 [obtained M+Na]+, UV-Vis 

(EtOH) λmax 322 nm. 

 

3.5.6 Synthesis of 4-methyl-5-octoxy-7-(3′-bromo)propoxycoumarin  

Following the same procedure as section 3.4.1 using 7-hydroxy-4-methyl-5-

octoxycoumarin (0.11 g, 0.4 mmol), 1,3-dibromopropane (0.04 mL, 0.4 mmol), and 

potassium carbonate (0.05 g, 0.4 mmol), 4-methyl-5-octoxy-7-(3′-

bromo)propoxycoumarin was obtained. 
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4-Methyl-5-octoxy-7-(3′-bromo)propoxycoumarin:Yield 38%, white solid, 

m.p. 47-48 oC, 1H-NMR (400 MHz, CDCl3)  δ 6.37 (s, 1H, Ar-H), 6.25 (s, 1H, Ar-H), 

5.89 (s, 1H, =CH), 4.10 (t, J = 6 Hz, 2H, -CH2), 3.92 (t, J = 6 Hz, 2H, -CH2),  3.53 (t, 

J = 6 Hz, 2H, -CH2), 2.47 (s, 3H, -CH3), 2.32 (p, 2H, CH2), 1.73 (m, 2H, -CH2), 1.39 

(m, 2H, CH2), 1.39 (m, 8H, CH2CH2CH2CH2), 0.89 (t, J = 7 Hz, 3H, -CH3), ATR-

FTIR (neat) 2924,1713, mass (ES/MS): m/z: 449.1056 [obtained M+Na]+, UV-Vis 

(EtOH) λmax 323 nm. 

 

3.6 Procedure for preparation of poly(vinyl alcohol) containing coumarins [14] 

1 mole of repeating unit poly(vinyl alcohol) (PVA) and 10 %mole sodium 

ethoxide was added to DMSO. This mixture was heated to 80 °C with continuous 

magnetic stirring until a clear solution was obtained. Then, 2%mol coumarin 

dissolved in dimethylsulfoxide was added by dropwise and stirred for 2 h at room 

temperature. The yellow solution was allowed to dialysis against water. The water 

was changed 5 times. Dialysis solution was dried by freeze-dry process 

3.6.1 PVA containing 5-hydroxy-4-methyl-7-(3′-bromo)propoxycoumarin 

Procedure was followed employing PVA 0.20 g (4.8 mmol), sodium ethoxide 

0.03 g (0.5 mmol and 5-hydroxy-4-methyl-7-(3′-bromo)propoxycoumarin 0.03 g (0.1 

mmol) to give PVA containing 5-hydroxy-4-methyl-7-(3′-bromo)propoxycoumarin as 

white solide. 1H-NMR (400 MHz, CDCl3)  δ 6.30 (s, 1H, Ar-H), 6.23 (s, 1H, Ar-H), 

5.89 (s, 1H, =CH), 4.90-1.00 (-CH2-CH-OH of PVA backbone), UV-Vis (EtOH) λmax 

323 nm. 

 

3.6.2 PVA containing 7-hydroxy-4-methyl-5-(3′-bromo)propoxycoumarin 

Procedure was followed employing PVA 0.07 g (1.6 mmol), sodium ethoxide  

0.01 g (0.2 mmol and 7-hydroxy-4-methyl-5-(3′-bromo)propoxycoumarin 0.01g (31.9 

µmol) to give PVA containing 7-hydroxy-4-methyl-5-(3′-bromo)propoxycoumarin as 

white solide. 1H-NMR (400 MHz, CDCl3)  δ 6.29 (s, 1H, Ar-H), 6.26 (s, 1H, Ar-H), 

5.88 (s, 1H, =CH), 4.90-1.00 (-CH2-CH-OH of PVA backbone), UV-Vis (EtOH) λmax 

325 nm. 
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3.6.3 PVA containing 7-butoxy-4-methyl-5-(3′-bromo)propoxycoumarin 

Procedure was followed employing PVA 0.20 g (4.5 mmol), sodium ethoxide 

0.03 g (0.4 mmol and 7-butoxy-4-methyl -5-(3′-bromo)propoxycoumarin 0.03 g (0.1 

mmol) to give PVA containing 7-butoxy-4-methyl -5-(3′-bromo)propoxycoumarin as 

white solide. 1H-NMR (400 MHz, CDCl3)  δ 6.52 (s, 1H, Ar-H), 6.43 (s, 1H, Ar-H), 

5.97 (s, 1H, =CH), 4.90-1.00 (-CH2-CH-OH of PVA backbone), UV-Vis (EtOH) λmax 

323 nm. 

 

3.6.4 PVA containing 5-butoxy-4-methyl-7-(3′-bromo)propoxycoumarin 

Procedure was followed employing PVA 0.20g (4.5 mmol), sodium ethoxide 

0.03 g (0.4 mmol) and 5-butoxy-4-methyl -7-(3′-bromo)propoxycoumarin 0.03 g (0.1 

mmol) to give PVA containing 5-butoxy-4-methyl -7-(3′-bromo)propoxycoumarin as 

white solide. 1H-NMR (400 MHz, CDCl3)  δ 6.52 (s, 1H, Ar-H), 6.46 (s, 1H, Ar-H), 

5.97 (s, 1H, =CH), 4.90-1.00 (-CH2-CH-OH of PVA backbone), UV-Vis (EtOH) λmax 

322 nm. 

 

3.6.5 PVA containing 4-methyl-7-octoxy-5-(3′-bromo)propoxycoumarin 

Procedure was followed employing PVA 0.31 g (7.1 mmol), sodium ethoxide 

0.05 g (0.7 mmol) and 4-methyl-7-octoxy-5-(3′-bromo)propoxycoumarin 0.06 g (0.1 

mmol) to give PVA containing 4-methyl-7-octoxy-5-(3′-bromo)propoxycoumarin as 

white solide. 1H-NMR (400 MHz, CDCl3)  δ 6.56 (s, 1H, Ar-H), 6.49 (s, 1H, Ar-H), 

5.99 (s, 1H, =CH), 4.90-1.00 (-CH2-CH-OH of PVA backbone), UV-Vis (EtOH) λmax 

323 nm. 

 

3.6.6 PVA containing 4-methyl-5-octoxy-7-(3′-bromo)propoxycoumarin 

Procedure was followed employing PVA 0.21 g (4.7 mmol), sodium ethoxide 

0.03 g (0.5 mmol and 4-methyl-5-octoxy-7-(3′-bromo)propoxycoumarin 0.04 g (0.09 

mmol) to give PVA containing 4-methyl-5-octoxy-7-(3′-bromo)propoxycoumarin as 

white solide. 1H-NMR (400 MHz, CDCl3)  δ 6.55 (s, 1H, Ar-H), 6.47 (s, 1H, Ar-H), 
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5.99 (s, 1H, =CH), 4.90-1.00 (-CH2-CH-OH of PVA backbone), UV-Vis (EtOH) λmax 

322 nm. 

3.7 Photoresist test 

10 % w/v PVA containing coumarins in DMSO were coated onto glass slide. 

The film was dried in oven at 80 °C for 1 h. Then the film coated on glass slide was 

irradiated with a I-line UV lamp 365 nm through a patterned mask for 2 minutes. 

Then the film was immerged in hot water for 2-6 minutes so as to remove the non-

cross-linked polymer. The dried UV-exposed films were imaged by microscope 

instrument.  

 

 



   
 

 

CHAPTER IV 

 

RESULTS AND DISCUSSION 
 

4.1 Synthesis of 5,7-dihydroxy-4-methylcoumarin 

 The reaction of phloroglucinol and ethyl acetoacetate was carried out in the 

presence of 15%mol oxalic acid. After the reaction was completed, the isolation of the 

product was performed by precipitation from ethanol and water.  

 

O OHO

OH

OHHO

OH

OEt

O O HO
OH

O

O

80 oC, 2h
+

5,7-Dihydroxy-4-methylcoumarin

Compound 1  
Scheme 9 Pechmann reaction between phloroglucinol and ethyl acetoacetate with 

oxalic acid as catalyst  

 

 Figure A1 revealed the signal of methyl group at δ 2.48 (s,3H). The signal of 

olefinic proton was detected at δ 5.82 (s,1H). Two signals belonging to aromatic 

proton were observed at δ 6.23 (s,1H) and 6.14 (s,1H). The signal of two hydroxy 

protons were observed at 10.51 (s,1H) and 10.30 (s,1H). This 1H NMR spectrum 

confirmed that the product was 5,7-dihydroxy-4-methylcoumarin (Compound 1) with 

73% yield. 

 

4.2 Alkylation of 5,7-dihydroxy-4-methylcoumarin with alkyl bromides 

The alkylation of Compound 1 with alkyl bromides was carried out. 

Considering the nucleophilic substitution of Compound 1, there are two possibilities 

according to the available hydroxy groups which can be substituted by alkyl bromide. 

Under basic condition, there two can undergo phenolic anions. Both of anions are 

stable because of their resonance structures as indicated in Scheme 10. 
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O OHO
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O

-H+

-H+
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O OHO

O

Compound 1

 
Scheme 10 Resonance structures of 5,7-dihydroxy-4-methylcoumarin anions   

 

4.2.1 Alkylation of 5,7-dihydroxy-4-methylcoumarin with butyl bromide 

When Compound 1 was treated with 1 equivalent butyl bromide, 3 different 

products were obtained as shown in Scheme 11.  

 
OHO

OH

O
K2CO3, DMF

ORO

OR

O

Compound 2a

+

Compound 1

ORO

OH

O

Compound 2b

OHO

OR

O

Compound 2c

R = butyl group

Br

Compound 2a = 5,7-Dibutoxy-4-methylcoumarin
Compound 2b = 7-Butoxy-5-hydroxy-4-methylcoumarin
Compound 2c = 5-Butoxy-7-hydroxy-4-methylcoumarin

+ +

 
Scheme 11 Alkylation of 5,7-dihydroxy-4-methylcoumarin with butyl bromide 

 

The structures of these three products were elucidated by IR and UV spectra. 

The IR spectra and UV spectra at 1703 cm-1 (Figures B2-B4) and 324 nm (Figures 

C2-C4) were coumarin characteristic peak. It should be pointed out that TLC and 

column chromatography showed three types of products occurred in this reaction. 

Surprisingly, two monoalkoxy coumarins had the same 1H-NMR. The differentiation 

can be performed by NOE difference technique. 
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NOE difference spectrum resulting from irradiation of H-6 

 

 
 

NOE difference spectrum resulting from irradiation of H-8 

 

Figure 3 NOE difference spectrum of 7-butoxy-5-butoxy-4-methylcoumarin 
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NOE difference spectrum resulting from irradiation of H-6 

 

 
 

NOE difference spectrum resulting from irradiation of H-8 

 

Figure 4 NOE difference spectrum of 5-butoxy-7-butoxy-4-methylcoumarin 
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Figure 3 is the 7-butoxy-5-hydroxy-4-methylcoumarin. The significant 

enhancement of the signal of the -OCH2- at δ 3.8 was observed upon irradiation of 

hydrogen-6 and hydrogen-8 as revealed in Figure 3a and b, respectively. In contrast, 

the irradiation of the hydrogen-8 of Compound 2c did not result in an NOE on -

OCH2- as shown in Figure 4b [21-22]. These two figures are different and can be 

assigned to be 7-butoxy-5-hydroxy-4-methylcoumarin (Compound 2b) and 5-butoxy-

7-hydroxy-4-methylcoumarin (Compound 2c). 

 

4.2.2 Alkylation of 5,7-dihydroxy-4-methylcoumarin with octyl bromide 

When compound 1 was treated with 1 equivalent octyl bromide, 3 different 

products were obtained as showed in Scheme 12. 

 

Compound 3a = 5,7-Dioctoxy-4-methylcoumarin
Compound 3b = 7-Octoxy-5-hydroxy-4-methylcoumarin
Compound 3c = 5-Octoxy-7-hydroxy-4-methylcoumarin

OHO

OH

O
K2CO3, DMF

ORO

OR

O

Compound 3a

+

 Compound 1

ORO

OH

O

Compound 3b

OHO

OR

O

Compound 3c

R = octyl group

Br
+ +

 
Scheme 12 Alkylation of 5,7-dihydroxy-4-methylcoumarin with octyl bromide 

 

The structures of these three products were elucidated by IR and UV spectra. 

The IR spectra and UV spectra at 1713 cm-1 (Figures B5-B7) and 322 nm (Figures 

C5-C7) were coumarin characteristic peak. It should be pointed out that TLC and 

column chromatography showed three types of products occurred in this reaction. 

Surprisingly, two monoalkoxy coumarins had the same 1H-NMR. The differentiation 

can be performed by NOE difference technique. 
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NOE difference spectrum resulting from irradiation of H-6 
 
 

 
 

NOE difference spectrum resulting from irradiation of H-8 
 
 

Figure 5 NOE difference spectrum of 5-hydroxy-4-methyl-7-octoxycoumarin 
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NOE difference spectrum resulting from irradiation of H-6 

 

 
 

NOE difference spectrum resulting from irradiation of H-8 
 
 

Figure 6 NOE difference spectrum of 5-hydroxy-4-methyl-7-octoxycoumarin 
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Figure 5 is the 7-octoxy-5-hydroxy-4-methylcoumarin. The significant 

enhancement of the signal of the -OCH2- at δ 3.9 was observed upon irradiation of 

hydrogen-6 and hydrogen-8 as revealed in Figure 5a and b, respectively. In contrast, 

the irradiation of the hydrogen-8 of Compound 3c did not result in an NOE on -

OCH2- as shown in Figure 6b. These two figures are different and can be assigned to 

be 7-octoxy-5-hydroxy-4-methylcoumarin (Compound 3b) and 5-octoxy-7-hydroxy-

4-methylcoumarin (Compound 3c). In conclusion, the alkylation of 5,7-dihydroxy-4-

methylcoumarin with either butyl bromide or octyl bromide afforded two 

monoalkoxycoumarins and one dialkoxycoumarin as exhibited in Table 1. 

 

Table 1 5,7-Dihydroxy-4-methylcoumarin alkylated with alkyl bromides 

coumarin Alkyl bromides products %yields mp 

2a 17 69-70 

2b 2 167-169 

 

2c 5 185-187 

3a 13 48-50 

3b 14 154-156 

 

 

 

compound 1 
 

3c 15 158-160 

 

4.3 Alkylation of 6,7-dihydroxy-4-methylcoumarin with alkyl bromides 

The alkylation of 6,7-dihydroxy-4-methylcoumarin (Compound 4) was carried 

out. Considering the nucleophilic substitution of Compound 4, two hydroxy groups on 

Compound 4 is different from Compound 1. There is one factor causing 7-hydroxy of 

Compound 4 to be much stronger acid than 6-hydroxy of Compound 4. The conjugate 

base of the 7-hydroxy group is more stable than the conjugate base of the 6-hydroxy 

group. When 7-hydroxy loses a proton, the electrons are delocalized as shown in 

Scheme 13. While 6-hydroxy loses a proton, it could not have any resonance form. 

OHO

OH

O

Br

Br
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Scheme 13 Resonance structure of 6,7-dihydroxy-4-methylcoumarin anions 

 

4.3.1 The Alkylation of 6,7-dihydroxy-4-methylcoumarin with butyl 

bromide  

When 6,7-dihydroxy-4-methylcoumarin was treated with 1 equivalent butyl 

bromide, 2 different products were obtained as shown in Scheme 14  

 

Compound 5a = 6,7-Dibutoxy-4-methylcoumarin
Compound 5b = 7-Butoxy-6-hydroxy-4-methylcoumarin

OHO O
K2CO3, DMF

ORO O

Compound 5a

+
ORO O

Compound 5b

R = butyl group

Br

Compound 4

HO RO HO
+

 
Scheme 14 Alkylation of 6,7-dihydroxy-4-methylcoumarin with butyl bromide 

 

The structures of these two products were elucidated by IR UV. The IR 

spectra and UV spectra at 1708 cm-1 (Figures B8-B9) and 343 nm (Figures C8-C9) 

were coumarin characteristic peak. It should be pointed out that TLC and column 

chromatography showed two types of products occurred in this reaction.  
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NOE difference spectrum resulting from irradiation of H-5 
 

 
 

NOE difference spectrum resulting from irradiation of H-8 
 

Figure 7 NOE difference spectrum of 7-butoxy-6-hydroxy-4-methylcoumarin 
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Figure 7 is the 7-butoxy-6-hydroxy-4-methylcoumarin. The significant 

enhancement of the signal of the -OCH2- at δ 3.9 was observed upon irradiation of 

hydrogen-8 as revealed in Figure 7b. This figure can be assigned to be 7-octoxy-5-

hydroxy-4-methylcoumarin (Compound 5b). 

 

4.3.2 The Alkylation of 6,7-dihydroxy-4-methylcoumarin with octyl 

bromide  

When 6,7-dihydroxy-4-methylcoumarin was treated with 1 equivalent octyl bromide, 

2 different products were obtained as shown in Scheme 15. 

 

Compound 6a = 6,7-Dioctoxy-4-methylcoumarin
Compound 6b = 7-Octoxy-6-hydroxy-4-methylcoumarin

OHO O
K2CO3, DMF

ORO O

Compound 6a

+
ORO O

Compound 6b

R = octyl group

Br

Compound 4

+
RO HOHO

 
Scheme 15 Alkylation of 6,7-dihydroxy-4-methylcoumarin with octyl bromide 

 

The structures of these two products were elucidated by IR and UV spectra. 

The IR spectra and UV spectra at 1739 cm-1 (Figures B10-B11) and 343 nm (Figures 

C10-C11) were coumarin characteristic peak. It should be pointed out that TLC and 

column chromatography showed two types of products occurred in this reaction.  
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NOE difference spectrum resulting from irradiation of H-5 

 

 
NOE difference spectrum resulting from irradiation of H-8 

Figure 8 NOE difference spectrum of 6-hydroxy-4-methyl-7-octoxycoumarin 
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Figure 8 is the 7-octoxy-6-hydroxy-4-methylcoumarin. The significant 

enhancement of the signal of the -OCH2- at δ 4.1 was observed upon irradiation of 

hydrogen-8 as revealed in Figure 8b. This figure can be assigned to be 5-hydroxy-7-

octoxy -4-methylcoumarin (Compound 6b). 

 

Table 2 6,7-Dihydroxy-4-methylcoumarin alkylated with alkyl bromides 
 

Coumarin Alkyl bromide Products %yields mp 

5a 9 76-78  

5b 24 157-159 

6a 17 57-58 

 

 

 

Compound 4 

 

6b 39 116-118 

 
 
4.4 Alkylation with 1,3-dibromopropane  

4.4.1 Monoalkoxy-4-methylcoumarins 

 Compound 2a, 3a, 5a, 6a contain dialkoxy group. Therefore, these compounds 

could not undergo further alkylation reaction with 1,3-dibromopropane. The coumarin 

derivatives, Compound 2b, 2c, 3b, 3c, 5b, and 6b, were reacted with 1,3-

dibromopropane in order to create the linkage in next step. The reactions of 

Compound 5b and 6b did not occur, probably due to the steric effect of alkoxy group 

at position 7. Figures A17-A20 revealed the significant signals of (3′-bromo)propoxy 

group approximately at δ 4.14 (t, 2H), 3.60 (t, 2H) and, 2.33 (p, 2H). These 1H-NMR 

spectra confirmed the expected products are Compound 2b, 2c, 3b and 3c as detailed 

in Table 3. 

 
OR1

R2

O OR3

R4

O

Br Br+

Compound 2b : R1 =butoxy R2 = hydroxy
Compound 2c : R1 = hydroxy R2 = butoxy
Compound 3b : R1 = octoxy R2 = hydroxy
Compound 3c : R1 = hydroxy R2 = octoxy

Compound 2'b : R3 = butoxy R4 = (3'-bromo)propoxy
Compound 2'c : R3  = (3'-bromo)propoxy R4 = butoxy
Compound 3'b : R3  = octoxy R4 = (3'-bromo)propoxy
Compound 3'c : R3  = (3'-bromo)propoxy R4 = octoxy  

Scheme 16 Alkylation of monoalkoxy-4-methylcoumarin with 1,3-dibromopropane 
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Table 3 Monoalkoxy-4-methylcoumarin alkylated with 1,3 dibromopropane 
 

1,3-Dibromopropane Coumarins Base Products %Yields mp 
2b NaOEt 2′b 44 71-73
2c NaOEt 2′c 64 83-84
3b K2CO3 3′b 38 42-43
3c K2CO3 3′c 35 47-48
5b NaOEt,K2CO3 - - - 

 

6b NaOEt,K2CO3 - - - 
 

4.4.2 5,7-Dihydroxy-4-methylcoumarin and 6,7-dihydroxy-4-

methylcoumarin  

In addition, Compound 1 and Compound 4 were separately treated by 1,3-

dibromopropane. The reaction of Compound 1 afforded 5,7-di(3′-bromo)propoxy-4-

methylcoumarin (Compound 1′a), 5-hydroxy-4-methyl-7-(3′-bromo)propoxycoumarin 

(Compound 1′b) and 7-hydroxy-4-methyl-5-(3′-bromo)propoxycoumarin (Compound 

1′c). For Compound 4, only 6,7-di(3′-bromo)propoxy-4-methylcoumarin (Compound 

4′a), 6-hydroxy-4-methyl-7-(3′-bromo)propoxycoumarin (Compound 4′b) were 

obtained. These results can be explained in the same mechanism as described in 

section 4.2 and 4.3. Table 4 exhibited the yields and melting point of all products. 

 
OHO

OH

O NaOEt, DMSO
OR5

R6

O

Br Br+

Compound 1 Compound 1'a R5 = (3'-bromo)propoxy R6 = (3'-bromo)propoxy
Compound 1'b R5 = (3'-bromo)propoxy R6 = hydroxy
Compound 1'c R5 = hydroxy R6 = (3'-bromo)propoxy

OHO O NaOEt, DMSO
OR7 O

Br Br+

Compound 4 Compound 4'a R7 = (3'-bromo)propoxy R8 = (3'-bromo)propoxy
Compound 4'b R7 = (3'-bromo)propoxy R8 = hydroxy

HO R8

 
 

Scheme 17 Alkylation of 5,7-dihydroxy-4-methylcoumarin  and 6,7-dihydroxy-4-
methylcoumarin with 1,3-dibromopropane 
 
 
 
 
 

Br Br
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Table 4 5,7-Dihydroxy-4-methylcoumarin and 6,7-dihydroxy-4-methylcoumarin  

alkylated with 1,3-dibromopropane 

 
1,3-Dibromopropane  Coumarins   products %yields mp 

1′a 7.9 69-70 

1′b 3.2 167-169 

 

 

Compound 1

1′c 4.9 185-187 

4′a 8.3 48-50 

 

 

 

 
 

 

Compound 4
4′b 6.9 154-156 

 
4.5 Preparation of poly(vinyl alcohol) containing coumarin derivatives 

4.5.1 Synthesis and characterization of poly(vinyl alcohol) containing 

coumarin derivatives 

OH OH
O OH

Ocoumarins

Compound 1'b R9 =(3'-bromo)propoxy R10 = H R11 = hydroxy
Compound 1'c R9 = hydroxy R10 = H R11 = (3'-bromo)propoxy
Compound 2'b R9 =butoxy R10 = H R11 = (3'-bromo)propoxy
Compound 2'c R9 =(3'-bromo)propoxy R10 = H R11 = butoxy
Compound 3'b R9 =octoxy R10 = H R11 = (3'-bromo)propoxy
Compound 3'c R9 =(3'-bromo)propoxy R10 = H R11 = octoxy
Compound 4'b R9 =(3'-bromo)propoxy R10 = hydroxy R11 = H

O OR9

R10
R11

+ NaOEt, DMSO

 
Scheme 18 Synthesis of poly(vinyl alcohol) containing coumarin derivatives 
 
 7 coumarin derivatives with (3′-bromo)propoxy group were used in the 

synthesis of poly(vinyl alcohol) containing coumarin derivatives. The reaction was 

carried out in the presence of sodium ethoxide for two hours. The isolation of the 

product was performed by using dialysis tube against water and freeze drying. It was 

found that the reaction of Compound 4′b could not occur because no additional signal 

other than signals belonging to PVA in the 1H-NMR spectrum of the material after 

freeze drying. It is possible that self nucleophilic substitution can occur readily than 

the reaction with PVA as shown in Scheme 19. The (3′-bromo)propoxy group was at 

the position 7 which was next to hydroxyl group at position 6.  

Br Br
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Scheme 19 Proposed mechanism for side reaction of 6-hydroxy-4-methyl-7-(3′-
bromo)propoxycoumarin 
 

The other 6 coumarin derivatives were reacted with PVA and gave the 

corresponding products. The presence of coumarin in the product was a set of signals 

at 6.30 (s,1H), 6.23 (s1H), and 5.89 (s,1H) as shown in Figures A21-A26. These 1H-

NMR spectra confirmed that all 6 products are PVA containing coumarin derivatives. 

 
4.5.2 Determination of coumarin content incoperated into PVA  

 Coumarins have chromophore UV absorption of wavelength at 323 nm as 

shown in Figure 9.  
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Figure 9 UV spectra of coumarin and PVA containing coumarin 

 

Therefore, the coumarin content in PVA can be determined by UV-visible 

spectrum. The coumarin content in each product was determined by UV-visible 

spectroscopy using the calibration curves of 3 coumarins as shown in Figures E1-E3. 

Table 5 shows the coumarin content incoperated in PVA. 
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Table 5 Coumarin content in poly(vinyl alcohol) 

In feed (%mole) % mole of coumarin content* 

2%mole Compound 1′b 0.235 
2%mole Compound 1′c 0.248 
2%mole Compound 2′b 0.332 
2%mole Compound 2′c 0.314 
2%mole Compound 3′b 0.338 
2%mole Compound 3′c 0.283 

* % mole of coumarin per repeating PVA unit 

4.6 Poly(vinyl alcohol) containing coumarin derivatives as a photoresist 

6 PVA containing coumarin derivatives were investigated for being used as 

photoresist by irradiation through the photoresist mask, as shown in Figure 10, and 

developing in hot water to observe the patterns. 

 

 
 

Figure 10 The feature of the photoresist mask 

 

After irradiation with UV light at 365 nm for 2 minutes, all 6 colorless films 

looked the same. However, in the following step, the development in hot water for 2 

minutes, PVA containing 5-hydroxy-4-methyl-7-(3′-bromo)propoxycoumarin and 

PVA containing 7-hydroxy-4-methyl-5-(3′-bromo)propoxycoumarin were all 

dissolved while the mask patterns were observed for the other 4 films as shown in 

Figure 11.  
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a) PVA containing 7-butoxy-4-methyl-5-(3′-bromo)propoxycoumarin  

b) PVA containing 5-butoxy-4-methyl-7-(3′-bromo)propoxycoumarin 

c) PVA containing 4-methyl-7-octoxy-5-(3′-bromo)propoxycoumarin 

d) PVA containing 4-methyl-5-octoxy-7-(3′-bromo)propoxycoumarin 

Figure 11 Microscope images (x25) of poly(vinyl alcohol) containing 

alkoxycoumarins after developing in hot water 
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It can be seen that good patterns of one mask unit were developed from the 

films of PVA containing 7-butyl-4-methyl-5-(3′-bromo)propoxycoumarin (Figure 11 

a)  and PVA containing 5-butyl-4-methyl-7-(3′-bromo)propoxycoumarin (Figure 11 

b). In case of PVA containing 4-methyl-7-octoxy-5-(3′-bromo)propoxycoumarin  and 

PVA containing 4-methyl-5-octoxy-7-(3′-bromo)propoxycoumarin ( Figure 11 c and 

d), both patterns of one mask unit were also observed but longer development of 6 

minutes in hot water was required. The explanation could be due to the existence of 

longer alkoxy substituents, comparing to the previous two types of PVA, caused their 

poor solubility in hot water. Accordingly, these two polymers could not dissolve 

readily and then contaminated on the patterns. The results indicated that the alkoxy 

substituents of coumarin moiety have much influence on the photocrosslinking upon 

irradiation. This was confirmed by no photodimerization occurred in these two cases. 

It was probably due to the unavailability of molar volume of these polymers which 

caused the restricted coumarin mobility upon irradiation.  

Accordingly, PVA containing 7-butyl-4-methyl-5-(3′-

bromo)propoxycoumarin and PVA containing 5-butyl-4-methyl-7-(3′-

bromo)propoxycoumarin could be served as the acceptable negative photoresist.  
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CHAPTER V 
 

CONCLUSION AND RECOMMENDATIONS 
 

5.1 Conclusion 

  The synthesis of poly(vinyl alcohol) containing coumarins was focused during 

the course of this research. In alkylation step, it was founded that hydroxy groups of 

6,7-dihydroxy-4-methylcoumarin on aromatic ring have different selectivity. In 

contrast, 5,7-dihydroxy-4-methylcoumarin, both of hydroxy groups have the same 

reactivity. In photoresist test, poly(vinyl alcohol) containing 7-butoxy-4-methyl-5-(3′-

bromo)propoxycoumarin and poly(vinyl alcohol) containing 5-butoxy-4-methyl-7-(3′-

bromo)propoxycoumarin have good patterns after developing by hot water because 

they could be more soluble than poly(vinyl alcohol) containing 4-methyl-7-octoxy-5-

(3′-bromo)propoxycoumarin and poly(vinyl alcohol) containing 4-methyl-5-octoxy-7-

(3′-bromo)propoxycoumarin which have long alkoxy chain. Therefore, there is 

problem in developing with hot water.  

 

5.2 Recommendations 

  

• 4 poly(vinyl alcohol) containing alkoxycoumarins need to be improved in 

surface adhesion. 
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Appendix A 
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Figure A1 1H-NMR spectrum of 5,7-dihydroxy-4-methylcoumarin 
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Figure A2 1H-NMR spectrum of 5,7-dibutoxy-4-methylcoumarin 
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Figure A3 1H-NMR spectrum of 7-butoxy5-hydroxy-4-methylcoumarin 
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Figure A4 1H-NMR spectrum of 5-butoxy-7-hydroxy-4-methylcoumarin 

 
Figure A5 1H-NMR spectrum of 5,7-dioctoxy-4-methylcoumarin 
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Figure A6 1H-NMR spectrum of 5-hydroxy-4-methyl-7-octoxycoumarin 
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Figure A7 1H-NMR spectrum of 7-hydroxy-4-methyl-5-octoxycoumarin 
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Figure A8 1H-NMR spectrum of 6,7-dibutoxy-4-methylcoumarin 
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Figure A9 1H-NMR spectrum of 7-butoxy-6-hydroxy-4-methylcoumarin 
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Figure A10 1H-NMR spectrum of 6,7-dioctoxy-4-methylcoumarin 
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Figure A11 1H-NMR spectrum of 6-hydroxy-4-methyl-7-octoxycoumarin 
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Figure A12 1H-NMR spectrum of 5,7-di(3′-bromo)propoxy-4-methylcoumarin 
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Figure A13 1H-NMR spectrum of 5-hydroxy-4-methyl-7-(3′-

bromo)propoxycoumarin  
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Figure A14 1H-NMR spectrum of 7-hydroxy-4-methyl-5-(3′-

bromo)propoxycoumarin  
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Figure A15 1H-NMR spectrum of 6,7-di(3′-bromo)propoxy-4-methylcoumarin 
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Figure A16 1H-NMR spectrum of 6-hydroxy-4-methyl-7-(3′-bromo)propoxy 

coumarin  
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Figure A17 1H-NMR spectrum of 7-butoxy-4-methyl-5-(3′-bromo)propoxy-coumarin 
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Figure A18 1H-NMR spectrum of 5-butoxy-4-methyl-7-(3′-bromo)propoxycoumarin 
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Figure A19 1H-NMR spectrum of 4-methyl-7-octoxy-5-(3′-bromo)propoxycoumarin 

ppm (f1)
1.02.03.04.05.06.07.08.09.0

1.00

1.04
1.07

2.29
2.17

2.14

3.36

2.16

2.27

2.40
8.70

3.55

 
Figure A20 1H-NMR spectrum of 4-methyl-5-octoxy-7-(3′-bromo)propoxy coumarin 
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Figure A21 1H-NMR spectrum of PVA containing 5-hydroxy -4-methyl-7-(3′-

bromo)propoxy-coumarin 
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Figure A22 1H-NMR spectrum of PVA containing 7-hydroxy-4-methyl-5-(3′-

bromo)propoxy-coumari 

ppm (f1)
1.02.03.04.05.06.07.08.09.0

1.00

2.46

 
Figure A23 1H-NMR spectrum of PVA containing 7-butoxy-4-methyl-5-(3′-

bromo)propoxycoumarin 
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Figure A24 1H-NMR spectrum of PVA containing 5-butoxy-4-methyl-7-(3′-

bromo)propoxycoumarin 
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Figure A25 1H-NMR spectrum of PVA containing 4-methyl-7-octoxy -5-(3′-

bromo)propoxycoumarin 
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Figure A26 1H-NMR spectrum of PVA containing 4-methyl-5-octoxy -7-(3′-

bromo)propoxycoumarin 
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Appendix B 

 
Figure B1 FTIR spectrum of 5,7-dihydroxy-4-methylcoumarin 

 
Figure B2 FTIR spectrum of 5,7-dibutoxy-4-methylcoumarin 

 

 
Figure B3 FTIR spectrum of 7-butoxy-5-hydroxy-4-methylcoumarin 
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Figure B4 FTIR spectrum of 5-butoxy-7-hydroxy-4-methylcoumarin 

 

 
Figure B5 FTIR spectrum of 5,7-dioctoxy-4-methylcoumarin 

 
 

Figure B6 FTIR spectrum of 5-hydroxy-4-methyl-7-octoxy coumarin 
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Figure B7 FTIR spectrum of 7-hydroxy-4-methyl-5-octoxycoumarin 

 

 
Figure B8 FTIR spectrum of 6,7-dibutoxy-4-methylcoumarin 

 

 
Figure B9 FTIR spectrum of 7-butoxy-6-hydroxy-4-methylcoumarin 
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Figure B10 FTIR spectrum of 6,7-dioctoxy-4-methylcoumarin 

 
Figure B11 FTIR spectrum of 6-hydroxy-4-methyl-7-octoxycoumarin 

 

 
Figure B12 FTIR spectrum of 5,7-di(3′-bromo)propoxy-4-methylcoumarin 
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Figure B13 FTIR spectrum of 5-hydroxy-4-methyl-7-(3′-bromo)propoxycoumarin 

 
Figure B14 FTIR spectrum of 7-hydroxy-4-methyl-5-(3′-bromo)propoxycoumarin 

 
Figure B15 FTIR spectrum of 6,7-di(3′-bromo)propoxy-4-methylcoumarin 
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Figure B16 FTIR spectrum of 6-hydroxy-4-methyl-7-(3′-bromo)propoxycoumarin 

 
Figure B17 FTIR spectrum of 7-butoxy-4-methyl-5-(3′-bromo)propoxycoumarin 

 
Figure B18 FTIR spectrum of 5-butoxy-4-methyl-7-(3′-bromo)propoxycoumarin 
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Figure B19 FTIR spectrum of 4-methyl-7-octoxy-5-(3′-bromo)propoxycoumarin 

 

 
Figure B20 FTIR spectrum of 4-methyl-5-octoxy-7-(3′-bromo)propoxycoumarin 
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Appendix C 
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Figure C1 UV absorption spectrum of 5,7-dihydroxy-4-methylcoumarin 
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Figure C2 UV absorption spectrum of 5,7-dibutoxy-4-methylcoumarin 
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Figure C3 UV absorption spectrum of 7-butoxy-5-hydroxy-4-methylcoumarin 
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Figure C4 UV absorption spectrum of 5-butoxy-7-hydroxy-4-methylcoumarin 
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Figure C5 UV absorption spectrum of 5,7-dioctoxy-4-methylcoumarin 
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Figure C6 UV absorption spectrum of 5-hydroxy-4-methyl-7-octoxycoumarin 
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Figure C7 UV absorption spectrum of 7-hydroxy-5-octoxy-4-methylcoumarin 
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Figure C8 UV absorption spectrum of 6,7-dibutoxy-4-methylcoumarin 
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Figure C9 UV absorption spectrum of 7-butoxy-6-hydroxy-4-methylcoumarin 
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Figure C10 UV absorption spectrum of 6,7-dioctoxy-4-methylcoumarin 
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Figure C11 UV absorption spectrum of 6-hydroxy-4-methyl-7-octoxycoumarin 
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Figure C12 UV absorption spectrum of 5,7-di(3′-bromo)propoxy-4-methylcoumarin 
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Figure C13 UV absorption spectrum of 5-hydroxy-4-methyl-7-(3′-
bromo)propoxycoumarin 
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Figure C14 UV absorption spectrum of 7-hydroxy-4-methyl-5-(3′-
bromo)propoxycoumarin 
 

0

0.2

0.4

0.6

0.8

1

190 210 230 250 270 290 310 330 350 370 390

Wavelength (nm)

Ab
so

rb
an

ce λmax = 331 nm

 
Figure C15 UV absorption spectrum of 6,7-di(3′-bromo)propoxy-4-methylcoumarin 
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Figure C16 UV absorption spectrum of 6-hyroxy-4-methyl-7-(3′-bromo)propoxy 
coumarin 
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Figure C17 UV absorption spectrum of 7-butoxy-4-methyl-5-(3′-
bromo)propoxycoumarin 
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Figure C18 UV absorption spectrum of 5-butoxy-4-methyl-7-(3′-
bromo)propoxycoumarin 
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Figure C19 UV absorption spectrum of 4-methyl-7-octoxy-5-(3′-
bromo)propoxycoumarin 
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Figure C20 UV absorption spectrum of 4-methyl-5-octoxy-7-(3′-
bromo)propoxycoumarin 
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Appendix D 

 
Figure D1 Mass spectrum of 5,7-dihydroxy-4-methylcoumarin 

 

 
Figure D2 Mass spectrum of 5,7-dibutoxy-4-methylcoumarin 

 

 
Figure D3 Mass spectrum of 7-butoxy-5-hydroxy-4-methylcoumarin 
 

   
Figure D4 Mass spectrum of 5-butoxy-7-hydroxy-4-methylcoumarin 
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Figure D5 Mass spectrum of 5,7-dioctoxy-4-methylcoumarin 

 

 
Figure D6 Mass spectrum of 5-hydroxy-4-methyl-7-octoxycoumarin 
 

 
Figure D7 Mass spectrum of 7-hydroxy-4-methyl-5-octoxycoumarin 

 

 
Figure D8 Mass spectrum of 6,7-dibutoxy-4-methylcoumarin 
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Figure D9 Mass spectrum of 7-butoxy-6-hydroxy-4-methylcoumarin 

 

 
Figure D10 Mass spectrum of 6,7-dioctoxy-4-methylcoumarin 
 

 
Figure D11 Mass spectrum of 6-hydroxy-4-methyl-7-octoxycoumarin 

 
Figure D12 Mass spectrum of 5,7-di(3′-bromo)propoxy-4-methylcoumarin 
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Figure D13 Mass spectrum of 5-hydroxy-4-methyl-7-(3′-bromo)propoxycoumarin 

 

 
Figure D14 Mass spectrum of 7-hydroxy-4-methyl-5-(3′-bromo)propoxycoumarin 
 

 
Figure D15 Mass spectrum of 6,7-di(3′-bromo)propoxy-4-methylcoumarin 
 

 
Figure D16 Mass spectrum of 6-hydroxy-4-methyl-7-(3′-bromo)propoxycoumarin 
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Figure D17 Mass spectrum of 7-butoxy-4-methyl-5-(3′-bromo)propoxycoumarin 

 
Figure D18 Mass spectrum of 5-butoxy-4-methyl-7-(3′-bromo)propoxycoumarin 

 
Figure D19 Mass spectrum of 4-methyl-7-octoxy-5-(3′-bromo)propoxycoumarin 

 
Figure D20 Mass spectrum of 4-methyl-5-octoxy-7-(3′-bromo)propoxycoumarin 
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Appendix E 
 

Calibration curves 
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Figure E1 Calibration curve of 5,7-dihydroxy-4-methylcoumarin 
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Appendix F 
 

   
NOE difference spectrum resulting from irradiation of H-6 

 
NOE difference spectrum resulting from irradiation of H-8 

Figure F1 NOE difference of 7-hydroxy-4-methyl-5-(3′-bromo)propoxycoumarin 
 
 

 
NOE difference spectrum resulting from irradiation of H-5 

Figure F2 NOE difference of 6-hydroxy-4-methyl-7-(3′-bromo)propoxycoumarin 
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