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1.1 Introd

The glue o themati Ed by Uiyvasathain[1].
*h er or not there exists
a clique-insep: B with n jons of n different sizes,
so the glue operator is defi e e problem. Later, Promsakon|2] studies
colorability of the glued graphs. nds of the chrom; atic number and the edge-
chromatic number d d graphs L [ ‘ o chromatic number and the
edge-chromatic number o J-F 2 re obtained in [3] and [4]. This is
a motivation for us to _gﬂ*ﬁ_{* ed graphs. In section 1.2, we
show literatu ; ngs, edge colorings a Jtotal colorings. In

r el
section “f: a ‘ roperties of glued

graphs. In chnEr 2, we anal otal cnln&s of glued graphs for

some classes of gra‘;hs such as cycles, hipa&lf}e graphs , trees and complete graphs.

AN IR
any Moreover, there are some necessary conditions of graphs satisfving the
0¥ erRnE LIl b gl

In this thesis, we consider only a connected graph without loops and multiple
edges. V() and E((7) stand for the vertex set and edge set of a graph &,

respectively. The number of elements in V(G) is represented by n(G) and the



number of elements in E(G) is represented by e(G'). We use v, for a vertex and

use ¢; for an edge. We also use vyv; for the edge whose endpoints v; and v;.

1.2 Basic Properties of Color 28, Fdge-colorings and To-

Let [k] represeffthe set .4k} and we use ,L} as the set of k

colors. A k-cole¥ing of@ o 3 is \\:“} 16
proper if adjacent vertites have iffere: E\x\
/726 Y \\NN

T “\. east positive integer £

[k]. A k-coloring is
s k -colorable if it has
a proper k-colorig

such that G 15k

A k‘Edyf-‘ olori '.' f Era ( :I —+ Ik] A -‘f‘ﬁdgl’_h

coloring is proper df i Eﬁ edges | colors, A graph is k-edge-

colorable it it has a prope chromatic number \'(G) of

a graph (' is the least positiveintege Cthat 7 is k-edge-colorable.

A k-total rolori W V(GLU E(G) — [K]. A

k-total colol virfe m“
tv M ’

have different colors, di F" ent colors. A graph is

5, adjacent vertices

k-total colorabte’if it has a proper k-total coloring. Thetotal chromatic number

V'(67) 0! aph 5 is the lea.ﬁt. usmw in r k suth Lhat. G‘ is k-total colorable.

4 A WEAh
q 51’1 mmmmﬂﬂ mﬁm

we have A(G) + 1 < x"(G).

The Total Coloring Conjecture, introduced independently by Behzad|5] and

Vizing[6], states that for every graph G, y"(G) < A(G) + 2. It is known that for
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any graph G, \"(G) > A(G) + 1. A graph G is of type 1 if \"(G) = A(G) + 1
and fype 2 if ¥"(G) = A(G) + 2.

Remark 1.2.2. Let G be a zraph nd H be a subgraph of ;. Then
(a) x(H) < X(G), N
(b) X'(H) € X(G). "

(¢) X"(H) < X"(G).
Proposition 1.2, UG) > 3.

\ i were u, v € V(G). We
\ ""'.. sXUG) = 3. O

Proof. Since G
need 3 colors to |

Remark 1.2.4.

(a) X"(G) = x(6),
(b) X"(G) = X'(G)

Atm.al

ﬂuﬂ%ifl&l%lﬁ %I:Eln’lﬂ‘i

4R IR TN AR IRASY

Y sificient eondition for equality of y(G), \'(G) and x"(G).

2 il n 1s even,
Remark 1.2.5. x(C,) = x'(Cy) =

3 il nis odd.



3 if n=0 (mod 3).
Proposition 1.2.6. [7] \"(C}) =

4 otherwise.

Proposition 1.2.00\ (G5) = x(C),) \ Cy) 4f andonly if n =3 (mod 6).

s an odd cyele, we get
v(C,) =3 and

X(Cn) = X'(Ch) = |
Necessity. We will prove by con ‘-_;_:.;_ Assume that n £ 3 (mod 6). By the

x"(C,) = 3. Therefore,

'.“ E "h‘ |

division algorithm g =Bk, 6k 441, 6k 4 2,6k + 4 or 6k + 5 for some integer k.

Case 1. n =6k, 6k +20 .I’.t*'i"".:

Since €, is an even cycle, wi }_ However, \"(C,) > A(C,)+1=3.

. T
re

Then x(C, % g
Case 2. n i_ | .:‘1" '.
Since n is notdivis Y wen et ¥"(C,) = 4. By

Theorem 1.2.77% (Ca) < A(Ca)+1=3 and ¥"(Cy) = n hen x(Cn) # X" (Cn).

)N i B
ARARRABA I A Y

n if n 1s odd,
Proposition 1.2.12. [11] \"(K,) =

n+1 f n iseven



Proposition 1.2.13. If n is edd then x(K,) = Y'(K,) = \"(K,). Otherunse,
X(K,) = xX'(K,)+1=x"(K,) - 1.

Case 2. n is even

By Proposition 1.2 12
X)) = X"(K,
X(Ka) = X"(Ka) 4

However, \(,) = n. Thus
K.) = n-1. Thus
(W

Theorem 1.2.14 snol a e graph of even degree,
then x"(G) 281G \ \ ~=x'(G) + 1-

Proof. Case 1. G Q\ \ cle. By Theorem 1.2.7,
xwmamyﬁaar‘}_H wﬂ‘mwﬁwwfmﬁ
(). A \

Case 2. G is an odd cycle. By Remark | Ay (G) =2 X'(G) =2 x(6).

Case 3. G isva complete graph. If n s ¢ (I60). = WK,) = X"(K,) and

il 1 is even Ehemyirr=y" eposition 1.2.13. a

ey Brepg

The fnlluwigheu' o

of the chromatic ?mber the edge-chmmatlc mimber and the total chromatie

~H U AINYNTNYINS

Theorém 1.2.15. Let G be a _qraph with n vertices. x(G) = \'(G) = "{f"] if

AR AT ST EL

tion 1.2.13.

cient ¢ -:i itions for the equality

Necessity, Assume that y(G) = ¥(G) = {"(G). By Theorem 1.2.7 and Re-
mark 1.2.1, we get x(G) < A(G)+1 < \"(G). Then x(G) = A(G) +1 = x"(G).



Thus x(G) > A(G). From Theorem 1.2.7, & is an odd evele or a complete graph.
By Proposition 1.2.9 and Proposition 1.2.13, G is a cyele of length n = 3 (mod 6)

or a complete graph of order n wl

1.3 Basic Properties o

In this section ve some properties of glued

graphs. Let G . Let Hy and H, be

nontrivial connee ' ,‘ o such that H, = H,

with an isomorphismt [ #h 1 e :2 at Hy and H, with

\\h »
with G by identifyir j: ﬁ" ’ \

H, and Hy. Let H be the ¢opy of ,_ ‘2",‘ lued graph. We refer to
tads _-":"- naé

The glued graph of G, '{"L-; t th H, written Gl‘fj’GE, means that

.

from combining G,

somorphism f between

origin gfi:phs.

Lhere exist a subgrap ""“"'.'-"-""‘ff*:'.»'""’t.-""i"'_' ., of (5 and an isomorphism
f between Hyand H; such that 02702 and # is the copyiof 1, and 1, in the
resulting ‘M o

ing from Eng graphs Gy and G,

at any 1snmarph:c‘u aph H, = H, w1uepat to any of their isomorphism.

G0 ) T B -

,,I:'U;, ..., Uy ) denotes a cycle nn vertices vy. t’g .,y and F,,{uhvz .y Uy) de-

RIAN T HRIANEAY

Let Hy = K3(1,3,4) be a subgraph of Gy and Hy = Ks(a, b, ¢) be a subgraph

We denote (5 an arbitrs

b fd

of ¢y, Consider three isomorphisms f, g and h between H, and H,. as follows:

(1) =a,f(3)=b,J(4) = c,



\ Grﬂ}Gg
N H =yl

9 i different isomorphisms

The glued graphs between=G5 and © h respect to f.g and h are shown

.."!'="

in Figure 1.3,

]

_é_";.{ he different or the

Examp] E ;n "
IWever, that alllisomorphisms give the
a.l I
own in the next example.

same result.

same result as s

~FULIRE NN IR T-

sy

GG,
) Gy ur. ;H,

Figure 1.3.2: The results of glued graphs G; and G5 in different isomorphisms



Let Hy = K4(2.3,4) be a subgraph of GG and H. = Ky(a. b, ¢) be a subgraph
of 5. There are six isomorphisms between H; and H,. but all of them give the

same result as shown in a Figure re [ is arbitrary isomorphism between

Hy and H.

We first observe some basic p: pertmﬁhs in the following remark.
Remark 1.3.3.
L. The original ; / hisio Y

2. The graph gluing dogs not

‘bw,
m

S

/A% \
3. A glued graph bétween dis 4 f g \\'\
graph betweendonngeted grap is 3 ?\k::j

4 Ifue V(G)) d v B ) where Gy and G are graphs

1l _,, disconnected and a glued

and H is a clone o djacent in G;-ﬁﬁ'g_

A glued graph cou d be Hiple ol e graph. Clearly the graph gluing

of (; and '3 is not a simplegEph iF & 5 15 not a simple graph. If original

graphs are si lp]& ‘ s, it is not neces hei gl odd graph is a simple

graph. The] #phs to be simple is

Y

given in next theo nl r—; ple connected glued
graphs l <
Th

aﬁmmmﬂ:m i

no vertices u and v in H such that there are gdges ey € F(G,) ~Q(H) and

q R S VIR 1R E

Rmark 1.3.5. [2] Let Gy and G5 be nontrivial graphs.

Then A(GG:) < A(G)) + A(G,) — 1.

Theorem 1.3.6. Let Gy and (i be graphs. Then \"(GaGy) = max{\"(G)), y"(G2)}



Proof. Since Gy and G, are subgraphs of GGy, we get (7)) < "(G20,)
and \"(Ga) < X"(G1Ga). Then \"(G1+G2) > max{x"(G)), x"(G2)}- =

Theorem 1.3.7 (a) gives an nppe b of the chromatic number of glued

graphs in terms of the chromat nhe: il graphs and Theorem 1.3.7 (b)
shows an upper boun __ -‘-' r of glued graphs in terms of
the edge-chromatic number o riore, Theorem 1.3.8 shows
an upper bound ol phs when the clone is an

induced ﬂubgraﬁ- atic number of original

graphs.

Theorem 1.3.7.
(a) x(G12Gy) 3
(b) \'(G1Gy) 5

Theorem 1.3.8. [3] el f'r'r S 1 ana GI?G;; ‘a glued graph with
clone H. If H 1s an ind f"" subgraph, ‘:"G?} < x(Gy) + xlGa).

<

e
|

d¥

ﬂ'L!El’JVIEWI‘ﬁWEI’]ﬂ‘i
Qﬁ']ﬁﬁﬂ‘imﬂ‘iﬂ']’mﬂ'lﬁﬂ



2.1 Upp/ e Total tic Numbers of

o chromatic numbers,

the edge-chromatic numbers and the 1 omatie numbers of some classes of

Theorem 2.1.1. Let G _-,;:_,e,, If VUG +Gs) < AG1oGy) +2

- <a{c:1]+mc,}-1+2

ﬂuﬁﬁﬂﬂmﬁ%nmm
ARIANT? m UAANHNREL:

in terms of the total chromatic number of original graphs. Note that if graphs G

Remark 1.3.5,

and Gy with y"(G<G;) < A(GyoG,) + 2 satisly following conditions

(a) a vertex with maximum degree of G is glued to a vertex with maximum
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degree of Gy and the corresponding vertex in the clone has degree 1,
(b) GG and G5 are of type 1,

(¢) GGy is of type 2.

Then we have y"(G12Gs)

However. any two condi

\'(Gh) + X"(G2) —2We conjecture that u 1 Satisfies all of the above con-

ditions; hence, we haye

Conjecture 2.1.2 ] < x"(G1)+x"(G2)—

2.

We next tgyto pueve the conjectire irst, ¢ ering some classes of graph

such as cycles, biparti

2.2 Total Colorings of Glued Graphs of Cycles
A

In this section, we investigate the val 1 _bounds of the chromatic number,

the edge-chramatic niimbers and the ot beas of cveles and their

h- ;mm“——-—.—

glued grap v : : ,. ; satisfies the Total

sondition to be either of

Coloring Conjee _
i

| -
type 1 or of t 56 2 ﬂf g!ued graphs of cycles.

xR (N INRTE
ama»&mw@mwmaa

3 if n=0 (mod 3),
Proposition 2.2.3. [7] y"(C,) =

4  otherwise.
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A graph is saidsto 1 if it can be reduced

to a trivial graph legree at most s.

For example d and every planar graph

15 H-degenerated.

Theorem .' x(G) < s+ 1.

b 4 (ra 15 bipartite if

Propositior ‘V_
and only if G, 'E d Gy o

i |

d 1 are even,

‘ﬁﬁyﬁﬁﬁ%@w N9

e 1. m and n are EV? Cun&Equent.Iy, Cyn and C,, are hlpa:rt.lte By

q }m IR mIAL.

Smce CypeC, has at most 2 vertices with degree greater than 2, €, ¢, is a

2-degenerated graph. By Theorem 2.2.4, x(C,,<C;) < 3. Thus x(C,,«C,) =
3. ' O
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Let G be a connected graph. The line graph L(G') of G is the graph generated
from G by V(L(G)) = E(G) and for any two vertices e, f € V(L(G)). vertex

e and vertex [ are adjacent in L !]‘ and l:ml}' if edge e and edge f share a

common vertex in G, 1 we call G the root graph of H.

Wit/

gra 'lh

> \\\\

Since colorings of ghe | -Ef;, olorings of &, it follows

that the chromatigm er of gt lin ) uf (; al to the edge-chromatic

idads "‘..-:.l ’

number of .

Theorem 2.2.7. For ,.,;E-:;“# : s pCL) < 3.

Fmﬂ.ﬂ If 7_' ;-',?—_r:wf_ﬁ—_.jr:- B L e N Teeean—— n:-—::"_‘-'_ a i5s not a (::\r[:]ﬁ_
! jo
Case 1. Th& one of 2 "":';If' in the line graph of

|
1
{ |
2 i

I Since L(CpeCy) is

Ciu<eC, has degree at most 3. Hence A(L(C,,@C,)) <

neither an odd y@.lﬁr a comple Theurem 1.2.7 L(C,yaCy)) <
I NEAAS

Case ﬂl The clone of C’,.,¢C‘ is Pp. Let C‘m be a cycle with a vertex set

9 mmmvmm ﬁ,,

am:l an edge set {fy, fo...., fu} where f, = vy for ¢ = 1,2....,n -1 and
fu = vavy. Since the clone of Cm;l:ﬂ',, is P, without loss of generality, assume

that we glue u; to vy and us to va. Let [ E[Cmﬁcﬂj —+ [3] be an edge-coloring
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of c:,,,g»;c,. defined by

1 if x = ¢ where k is odd and k < n,

is even and k < m,

Then [ is a pra Thus x'(CpeCy) <

3 O
s an even cyele,

Theorem 2.2.8.

Proof. Case 1. C,aC, is deyele 1€ S an even cvele then \'(C,,2Cy) =

2. f CppeCy is ang
1

Case 2. Cya€l, ismot a cycle, Then MO, oCH =3 Hadce, \'(C,oC,) >
Yy,

A(CeC,,) o8 3. Consequently,

|

X’{C’m'@cﬂ} = _

Qﬁﬂ aNfnI

Figure 2.2.4: An edge-coloring of Cy>Cy when its clone is Ps.

Theorem 2.2.9. [14] Let G be a graph. Then \"(G) < [%ﬂ{ﬁ?]].l



15
Theorem 2.2.10. For a glued graph C,<oC,, \"(C,,<C,) < 4.

Proof. By Theorem 2.2.9, x"(Cyy () < [3A(CpCy)] = [2 x 3] = 4. 0

clone is P,

Band C,wCy = C = Cy.
MO Ch) = X"(C) = 3. If
=x"Cn)=4.

Proof. Case 1. C’mgﬁ;
If m=n = 0 (mod 3), by

m=n=1,2 (mod

Case 2. Cysnll, is not a cyele. Then ACUCF="3"JWs \"(C,,<C,) >

a(cmrpc,l} € 1 Mence X" (CudCh) =
| ’ e

4, 'I ] O

i shaoh b2 (e 131011 e
YRRtk il (1D

Theorem 2.2.13. [f the glued graph C,,@C, is a cycle and m = n = 1.2
(mod 3) then C,,@C, is of type 2. Otherunse, Cy,<C,, is of type 1.
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Proof. Case 1. C,<C, is not a cycle. Then A(C,<C,) = 3. By Theo-
rem 2.2.10, x"(C,,eC,) = 4 = A(CneC,) + 1. Hence, C,<C, is of type

1.

Case 2. CpaoC, is a cycles Then
a cycle and m = n = 0 (mo: cofen®P.3. we get ' (CpC,) =3 =
A(CraeCy)+1.
(mod 3), by Theorei;

Corollary 2.2.14
(a) CpeC, 15 of d only af Cy<t (a8 not a cycle or m # n or
m=n=0 (m
(b) CnoC is af tupé 2 Bf and il ,C.nwChy 18 @ Gycle and m = n = 1,2
(mod 3). '

Proof. It follows fromheorem 2% 12 and Thgorm 2.2.13. 0

Theorem 2.2.15. x" ,ﬁ;?'; £ Y€ (w) — 2. The equality holds if
P Ly

mn=10 .=_¢:,-'_“-_

- :
Proof. By Tlitare Siuce X" (Con). X"(Cn) > 3,

_ I
we get x"(Ch il' X"(Cn) =2 = 4. Then \"(CpC, 2 X(Cm) + X"(Cn) -
2. If myn = 0 (meth3), by Propositiofd22.3, x"(Cy) = v'(Cy) = 3. Thus

PR TP N B 1 Goco - -

Ik x(c) 2.

AR NLNAE,

In this section, we investigate the values or bounds of the chromatic numbers,

the edge-chromatic numbers and the total chromatic numbers of bipartite graphs
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and their glued graphs. Moreover, we prove that anv glued graph of bipartite

graphs satisfy the Total Coloring Conjecture.

FeT

""" 0\\\

Proposition 2.3.3. Bvt @ibestipariz hen x"(G) < A(G) + 2.

‘ ; ) 4o

Proof. Let G_be a hipafilefadti- i bat x"(G) < ¥(G) + X(G)
1

By Proposition 2.3.1 and Theorem 2.3.2 (G} — 2 and_ « (&) = A(G). Then

i -il.‘

X'(G) <A .,F-!',» 0

.,I :
i I

FI'L!EI’JVI g11N3
amammmmmmaa

Theorem 2.3.4. Let () and GGy be nontrinal graphs.

Then x(Gy2Ga) =2 of and only if x(Gy) =2 and x(G2) = 2.
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Proof. Sufficiency. Assume that y(Gy@G3) = 2. Since y(G)) < y(G6G,) = 2
and () is nontrivial, we get x(G;) = 2. Similarly, x(G,) = 2.
Necessity.  Assume that X{GI_, = 2 and x(Gy) = 2. Then G, and G, are

bipartite. By Proposition GGy i3 1130 bipartite.

Hence y(GG3) =2 O

Remark 2.3.5. Let Gyeand G5 be nontrivial bipastite graphs. Then (G a6Gy) =
2. ! \
Proof. Let G

' Proposition 2.2.5,
O

(<75 is bipartigh” \
Theorem 2.3.6. 11| & }
\ '[GI¢GQ} = A(G ().

Proof. Assume that & __* v are | p ;4 hs. By Proposition 2.2.5,

Theorem 2.3.7. If &) «

GG is also bipartite. By Propositior 2. \'(G1oGy) = A(Gy<Gy). 0

ies the Total Coloring

Gﬂﬂjﬂﬂ!ﬂrﬂ v T I:r'

Theurem * 3 ‘

, - i

FProof. Let Glﬂd (5 be bipartite graphs. By »“:f‘r’~ 2.2.5, Gil, is
bipartite. By Progosiion 2.3.3, \"(Go@)< A(GoG,) + 2. O
Thﬂu&lﬂﬂﬂiﬂﬂ’l ELQ < v
:-f’{Gz} =L

QRABIAIU URAINLNA. -&I

rem holds by Theorem 2.1.1.

Example 2.3.10. There are bipartite graphs Gy and G5 such that \"(G¢G,) =
y'(Gh) + x"(G2) — 2. We consider Cy,, €, where m,n = 0 (mod 6) and the clone



19

is an edge of them. Since m,n = 0 (mod 3), we get y"(C,,) = "(C,) = 3. By

Theorem 2.2.10, since C,,@C),, is not a cycle, we get "(C,,C,) = 4. Hence

Figure 2.3.3: Ciay aphs with \"(C,,«C,) =

X'(Cm) + X"(Cn) = 2

Figure 2.3.3 is an exai **33, of biparta s with \"(GG,) = ¥'(G)) +
X"(G2) — 2. Mor ; Example 2.3.11 shows a
glued grap ﬁf_ ] 3 J Furthermore, when

original Efaphgﬂ of type 2, a glued graph car mth ft.ype 1 or of type 2
as shown in E:-:a.n?le 2.3.12 and Example 2.3.13.

-ﬂw:l QYRR B B e

"{G’l £ 3 and \"(Gy) < 4. Bj Remark 1.2.1, x"{G’l] > A(GY) + 1 =3 and

0 mmmmwm e

When &, and G4 are of type 2, GG can be both of type 1 and tvpe 2 as

shown in Example 2.3.12 and Example 2.3.13.



Figure 2.3.4: B GGy s of type 2

Example 2.3.1 By Theorem 2.3.6, G,

and Gy are of type 3.6, GGy s of type

1.

Figure 2.3.5: Pcth Gy and Gy are of tvpe 2 while Gy <=5 is of type 1

el gﬂmﬂﬂ 0i.....
AT A N 08,

Cun_]e{:ture. It is an open problem to find a necessary and sufficient condition of

the glued graph of bipartite graphs be either of type 1 or of type 2.
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2.4 Total Colori

In this section, W the chromatic numbers,
the edge-chromatic numbers anc the 1 7 iromatic numbers of trees and their
glued graphs. Mory of trees satisfies the Total

Coloring Conjecture dnd nt condition to be either of

Thruug o -ebgraph on V(G) -
{1, 02, . ﬁf—..&l

Proposition gl. Lel T' be a nontrivial tree. Then 1”'

(a) x(T) =2,

. ﬁ’ gl mmw en

(c) x"(

ammﬁmmqwma t

(b) By Proposition 2.3.2, x'(T) = A(T).
(¢) If T has only one vertex, then \"(T) =1 = A(T)+ 1. If T is P,, then we

have Y"(T) = 3 = A(T) + 2. Assume that T is a tree with n vertices, where
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n > 3. Thus ﬂ{T) '

When n =3, we 't,:.- = P i.‘,':',:“-"-:...-" 5 e that Ty == ﬂ.{T] 41
| e ,
Assume that \"(T) = A(P}+1Hor all T vertices where k > 3. Let T be

: _ﬁ‘i}l""? r T) + 1. 1t suffices to show

a tree with &k + 1 vertic

that there is a‘proper total coloring from V(T)UE(T) TR)...,m}. Since T is
L7 X

a tree, T' :;yl e x which 15 adjacent

"

to v. ;I

Case 1. u is a verpx with maximum degreg. Then A(T-v)+1=A(T)=m-1.

e ISR T 8 e e

X'(T H¥) < A(T —v)+1 =m~—1. Then there is a proper total coloring

OV Rider btk b gy



coloring of T defined by

flz) if ze V(T -v)UE(T —v),

Then f' is a propertot {1, 2 m}-
Case 2. u is not'¢ !
A(T) +1 = meo i o A frcaibink vertices where k > 3, by induction
hypothesis, y" '
V(T—v)UE(T— T'—-v) = A(T) =

at most m—1 colorga

N

Y Then A(T-v)+1=

pper total coloring f ¢

nt to u in T —v. There is

a remaining colofin {8} 2.4, m} 84y r-Since m= A(T)+1 > 2+1 = 3, there is

a color which differs fro MUE(T) = {1,2,...

U E(T —v),

d

T
Then f' is a er total coloring from V(T)uw E(T)" ’l

W UHA TR hﬁiﬁiﬁ:
TR e A

{E} (TheT) =2,
(b) X'(TY®Ty) = A(TyT),

(¢) YT, isof type 1 unless Ty =T, = Py,

2,...,m}. Hence
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Proof. Propositia ees 1s a tree. Then this

theorem follow O

Remark 2.4.5. Coloring Conjecture.,

Theorem 2.4, Lef Tyfard T bé o “ :-h"'xa;' Y (T Ty) < X'(Th) +
X'(T2) = 1. The gqualily liolds if and o e A(Ty) + A(T:) — 1.

Proof. Let T; and#F, L€ trees H: ;

-t‘.:--- o
Y (TeT) = {Tt = by Proposition 2.4.1 (b),

£ :,r.g,, 4 ,,.ﬁ{:' -

Remark 1.3.5,

3 ‘___—-‘;;mgm—__-rr—--—rﬁ-r r". 241 (b).
7 A ) il

As shown .’! f (T2l =x(H)+ () — 1 if funl_r if A(TyaT;) =
A(Th) + A(Ty) - O

Th@ﬂﬂ’} REARHHIR < o

"{Tg} . The equality holds if .;md only if ﬁ{ﬂﬂ:’i“g] =A(T) + &{Tg) ~ 1 and

ammmmummmaﬂ

8 Proof. If Ty@T, = P, then T} =T, = P,. Since x"(P:) = 3, we get Y'(T}) =
X'(Tz) = x"(Ty=T,) = 3. Then x"(T}) + x"(T2) — 2 = 4 > \"(T)<T3). Assume
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that Ty<T, is not Py. Thus

Y'(MeT) = A(TyoT:) + 1, by Proposition 2.4.1,

. by Proposition 2.4.1.

by Remark 1.3.5,

f and only if A(T\2T;) =
0

As proof above, y"(F
A(T) + A(Ty) -

Example 2.4.8. Fig trees and their glued graph

y

making the e on 2.4.1 (c), we get

(T = 4,X"(E
X'(T) ~ 2.

o (TyoTy) = x"(Th) +

?¢-T °

ﬂum wmwmm
1A AHIATRURAD NG B

In this section, we investigate the values or bounds of the chromatic numbers,

the edge-chromatic numbers and the total chromatic numbers of complete graphs

and their glued graphs. Moreover, we prove that any glued graph of complete
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graphs satishies the Total Coloring Conjecture and give a necessary and sufficient

condition to be either of type 1 or of type 2 of glued graphs ol complete graphs.

Proposition 2.5.1. \(K,)

Figure 2.5 5 and 4 vertices

Proof. Proposition holds sin + ealh Ve idjacent to all remaining vertices.

O

V) g
@MJ a II,EJ NINLANS. ..o

amaﬂmm NI Y

n+1 if niseven.

Lemma 2.5.4. If a glued graph K, <K, is a simple graph, then A(K,,®K,) =

n(KyeokK,) —1.
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Figure 2.5.3; ‘“E‘*ﬂ-"h-’-—; of ]ﬁith 5 and 4 vertices
Proof. ﬁssume a simple graph. Then the clone of K, <K, isa
f texin t : of 4

complete graph, say. n gives the maximum
i+ 1n—r—1. Besides,

e EfGIET ﬂ[!{mgf{") e

degree. HencedA (/s
n(ngKn} = uf

n[Km;?’Kn] - 1. 0O

Theorem 2.5.5. - 15 satisfies the Total Coloring

Conjecture.

D

Proof. Let K, and K, _..-ll_'ﬁrr"‘ lete gr border m and n, respectively. Let
_n[f('m) |
X (K i) Bk sbgraph of i,

Py
& A(K)) +2, By Proposition 2.5.3,
£ e I,) — 142

ﬂﬁﬂ’&«%ﬂ%‘ﬁw BN T
q RAALNIAUNRIINLAAL..

Tot.al Coloring Conjecture. Next, Theorem 2.5.8 gives a necessary and sufficient
condition to be either of type 1 or of type 2 for a glued graph of complete graphs

by using Theorem 2.5.6 and Lemma 2.5.7.



28

A matching in a graph G is a set of edges with no shared endpoints. The

maximum size of matching of a graph (7 is denoted by o'(G)

Theorem 2.5.6. [16] Suppose the "L *f '- aph of order 2n and A(G) = 2n—1,
€)

then Y"(G) = 2n if @ ' _ };

»,

Lemma 2.5.7.
m=<r+4 - [ anid' ¢ if (i = ril : ) r) € ———

M- - o e A SRR : : 1
Proof.

m-<rt

s 2n-r) -rj+2{n-—r]<:m+n-r

AU 7 ﬂﬂ‘ﬂ‘ﬁﬂﬁﬂﬂ—'f
o B £ SR INIEL:,

then m‘*“Kn is of type 2. Otherwise, m“‘Ku is of type 1.

Proof. Let m > n and G = Kmﬁffﬁ.

Case 1. m+n —r is odd. By Proposition 2.5.3, ¥"(Knin—y) =m+n—r =
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A(Ksn-r) + 1. Since & is a subgraph of K, in-r and A(G) = A(K,in-r). we
get X"(G) < X" (Kmsn—r) = A(Kpin—r) +1 = A(G) + 1. Thus G is of type 1.

54, A(G)=n(G)—1=m+n—-r—1.

The complement of &, iy, ‘! nontrivial component, I, ;. ..
oo i

Then e(G) = (m — ) ﬁ.{“ Since ‘Miﬂ &'(G) = #n —r. Thus

e(G)+a'(G) = (1 ‘ e T L :?_";r“_] . by Lemma 2.5.7,

e(G)+d/(G) = (mn—r ) 2 g has “Gons 1ently, by Theorem 2.5.6,

(G) = (m—r)(n-

Case 2. m+n — r is even. Ey ,,h

G is of type 1. 1f 7
r)+ (n—r) n+m —r. Since
n+m-—r=n(Q

X'(G) < AG) + 2

Corollary 2.5.9.

. By Theorem 2.5.5,
ence, G is of type 2. O

2r—n

(a) mPfn is oftyp o ol if ¥ Y rm—r+2112—2r-—]'
(b) ngxn ts of type 2 f“'ﬁf s even and m < r+§;l—_lj—;-;_-n_—1.
Proof. They follow imum '5“ .%1 m 5 and Theorem 2.5.8. 0

Thmrem‘ '. ,in—ﬁ-- S T . T S e —-:.-‘

VKL “

.. j i ,-'eﬂm,ngl Hm=2,
ufK K, asKEandeq:K,,—K' i

we get the cloj

“mm Pevedy

" (KnwK,) < A(K,, q:-f + 2, by Theorem %505,

9 RAAGASUNRII VSRS

< X"(Kn) + X"(Ka) - 1, by Remark 1.2.1.

Proof. Since t
nee \"(Ky) = 3, we

Note that x"(K,,@K,) = X"(K,) + x"(K,) — 1 if a vertex with maximum

degree of K, is glued to a vertex with maximum degree of K, and the corre-
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sponding vertex in clone has degree 1, K, and I, are of type 1 and K@K, is

of type 2.

Assume that a vertex with masimum degree of K, is glued to a vertex with
maximum degree of K, and e correspo; g vertex in clone has degree 1 and
K,, and K, are of t w th e amiskebe ﬁ omplete graph, the clone is

K. Without loss ¢ AL =A8ince m > 3 and n > 3, we

get (n — 2)(2m — 2(2 )41 fi, héorein 2. 5.8, H'm{bﬁﬂ

\

Hence Y"(K,®K,) <
0

is of type 1.

X'(Km) + X" (6

Theorem 2.5.11. and only if m,n are

odd and the clon

Proof. Since we ; the clone is a complete

\ ’{:n?}cn}vf?. By Lemma 2.5.4,

graph, say K. By Theore 1 25 -n -
A JI[I{;H}?}I{u] = ﬁ[I{ﬂl;.t’Kn}-irl =

we have A(Km®HKn) = n( Lz
n{ngKﬂ RN O ) + 2 n(Kn@Kan) 41 =

m+n—r ;‘r_— L_r-"

Case 1. m and 2" (F,)—2 = m+n-2.
Ll

'T’

Then x"[K In) = X"(Kom) +x”{K ) — 2 if and only if

r}ﬁﬁlﬂﬁﬁﬂﬂ{wﬂﬁ” o

.hssum hat r = 2. Then m + g7 is odd. By&mllary 2.5.9, x"{ff ¢Kn} =

Q 1 e 3. m and n are even. By;mpnmmntﬁlqm :{]@ m+n >

X" [Km;‘:Kn} because r > 2.




CHAPTER III

3.1 Total Cel

A graph H isa mned graph of a graph G if G can be reduced to a graph
H by successiVe removaliof ve s with degree at most t. Among t-trimmed
graphs of G, the's

number of vertices

Example 3.1.1. A graph G'h oa lot's nmed gr phs but only one smallest

2-trimmed graph.

d

l
(&) " = 2-trir‘mmd ;raw o Thrlm 2-trimmed graph of €
I RGN -

ARIANAIANNIANIAE.

unless the smallest t-trimmed graph has one vertexz.

Proof. If the smallest trimmed graph of a graph G has only one vertex, then

it is unique up to isomorphism. Assume that the smallest trimmed graph of a
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graph G has more than one vertex. Let Hy and H; be the smallest t-trimmed
graphs of G. Let H,; be obtained from successive removal vertices vy, vq, ..., U,

respectively. Assume that H, # & the definition of {-trimmed graph, a

be the smallest number sich that o J=VHY). If j =1, let K =G.
Then Hy is a subgraphe®ls Upil>e2, let K= G — {v),v2,....v;,.1}. Since
Uiy Ugy ey Uiy @V . H is a subgraph of
K. Since dy (w s a t-trimmed graph

of G. 1t is a copffadidliof bcause Haus the small ~trimmed graph. Hence

Hl = H-; O
Lemma 3.1.3. Let € aph wath (@) = 2 and contan a vertexr v unth
degree 1. If x"(G TRA G —v)+ 1, then G is of
type 1.

Proof. Since-u has degreé 1, le . whieh is adjacent to v.
Assume thz rgﬂ_'.f:‘::?ffr—-“*"--—r ~ ) + 1. Since
A(G) = A( [i egree in G — v, Let
k = A(G) + I It suffices to show that there is a p oper total coloring from

“Hﬁﬁm&mwam S e

is a pr r total coloring f : Vf:‘ - v)U E(G —E—t [k]. Since d;.ﬂi} +1<

R IR IO

edges inci — v, there is a remaining color in [k], say r

k= A(G)+ 1 = 3, there is a color s which differs from f(u) and r. Let
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' V(G) U E(G) — [k] be a total coloring of a graph & defined by

f(z) if € V(G —v)UBE(G—u),

TR Bha
Then f' is a proper ts 'i-:- ..... g [ tD [.‘:]+ Hence 1“"[[;'} =
' 0

A(G) +1 and

Lemma 3.1.40 gl vertex wibth "‘\
y

My

\ G. If X"(G-v) <

x which is adjacent to

A(G = v)+2

Proof. Since v i
[G} + 2. It suffices to
) to [k].

v. Assume that y
show that thereis
Case 1. u is a verte
@) = A(G) +1 < A(G) +2.
Case 2. 1 is not a verLeJ; oA fee. in (7 — v.

- L
Hence A(G

iS a proper ‘-'-;F-‘; S—

FA(G — v) + 2, there
£
|2 Since dg_(u) +1 <

A(G —v)+1 (GY + stk 'j colors to color u and

i

edges incident to u in G — v, there is a remaining color in [k], say r. Since

RObAIN (031 I L
CUgERNE gl R

$ if z=w.

Then f' is a proper total coloring from V' (G') U E(G) to [k]. Hence y"(G) <
A(G) + 2.

O
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Lemma 3.1.5. Let v be a verter with degree 2 of a graph G. If \"(G — v) <
A(G = v) + 2 then X"(G) < A(G) + 2.

adjacent to v. ¥ —v)+ 2. If A(G) < 2, then

G is a path or a l: (85 me that A(G) > 3. Let
k= A(G) + 2. “is.a proper total coloring from
Case 1. u; or u 8 a dth maximum degree in G — v. Without loss of
generality, assume s - vertex with m: m degree in G — v. Then
v) < A(G —v)+ 2,
there is a prope  colori W 7 NUE(G= v) —+ [k — 1]. Since
de—o(uz) +1 < A(GFv) # P ” e at most k— 2 colors to color

p
1y and edges incident to 1w, l*{;w"; aining color in [k], say r.

Since A(G) > 3, we get k'& which differs from f(u,). f(us).r

and k. Let f': V(G) U E(G 1---1;.-&*' loring of a graph G defined by
Yo

O
ﬂ‘LlEl’J EJW?WEI’]ﬂ‘i

Then is a proper total culnm}f from V(G)U E (G] to [k].

IR AN

tﬂta] coloring f : V(G — v) U E(G — v) = [k]. Since dg_y(u,) +1 < A(G —v) =

A(G) = k = 2, we use at most k — 2 colors to color u; and edges incident to u,

in G — v. Then there are 2 remaining unused colors. Let one be r. Similarly for
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uy, there are 2 remaining colors. Pick the one which differs from r, say +'. Since

A(G) = 3, we get k = 5. Let s be a color which differs from f(u;), f(uz2),r and

Then f'is a propestots from. U E(G) to [k]. Hence x"(G) < k =

A(G) + 2 a
Theorem 3.1.8% I/ /@ glaph G*Nas d'2-trimmed graph H such that x"(H) <
A(H) + 2 then X", (C) 2 -inptint if @ graph G haes a 1-trimmed
graph K such that y () (G A(G) + 2.

Proof. Assume that a id graph H such that y"(H) <
A(H) + 2. Wit ] L [rom G by successive

-
removal ve ‘%“' H _d H, = G|V(H)U

{v,va, .. ,v,}ﬂ : [Hnﬁ A(H,) + 2.

Basie Step. By t.lE assumption, x"(Hg) < ﬂ[Hn] + 2.

;mmmm WEAME
A oo CrattalEILTataY I TEaP~y e

we get x"(G) < A(G) + 2.

An outerplanar graph is a graph with an imbedding in the plane such that

every vertex appears on the boundary of the exterior face.
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Theorem 3.1.8 shows that every outerplanar graph satisfies the Total Coloring

Conjecture.

Proposition 3.1.7. [9] Eve raph has a vertex of degree at most
2.

Theorem 3.1.84 For #vegy ouler ple ,'!'w L G ne have x"(G) < A(G) + 2.
Proof. By the fact#hat & subgraph of oute lans aph is an outerplanar graph

and Proposition 3.1.7/the { every outerplanar graph is

a trivial graph with one ve ihgraph satisfies the Total Coloring

Conjecture, by, Th atisfies the Total Coloring
Con_]ecture.r —— Y | O
Lemma 3.1.@&# G be a grapl AEY= 2 and '": taining a vertexr with

degree 1, say v. @- "G —v)= ﬁ[G—vbl then X"(G) = A(G) + 1.

ool £ ;J Wialol 235 i bief v e 1.

i be tm vertex which is adjacenh,to . Assume I;hat x"(G—-v) < ﬂ{G -v)+1.

QAN TTRAN TN IRY

Caae 1. uis a vertex with maximum degree in G—v. We get A(G-v) = A(G)—1.
Then A(G —v)+1=A(G)=k—1. Since y"(G —v) < A(G—v)+1, there is a
proper total coloring f: V(G —v)UE(G—v) — [k—1]. Since k—1= A(G) > 2.
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there is a color s which differs from f(u). Let f': V(G)U E(G) — [k] be a total

coloring of a graph & defined by

Then f'isa pm};.ﬂr j
Case 2. u isnot a vg
Then A(G —o)+ =A(G — v) + 1, there
is a proper totd & Since deg_(u)+1 <
A(G-v) = A(G)
to u in G — v, thereds afemaining colorin [k], say 7, Since k = A(G) +1 23,

there is a color whie! fers frow-f(u) and r, say 8. L L f: V(G)UE(G) — [k]

color u and edges incident

be a total coloring of

(G = F}i

d

1l
iy
Then f'isa prup? total coloring from V‘E?) U E(G) to [k]. Hence x"(G) < k =

“""FI‘IJEI’WIWI‘?WEI’]T]‘? )

} 2 15 a sufficient mndltmn in Lemma 3.1.9. Since G i l‘i connected,

0 mmﬁmmﬁﬁm Ny

Theorem 3.1.10. If a graph G has a 1 -trimmed graph K such that K 1s of type

1 then G is of type 1.
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Proof. Assume that a graph G has a I-trimmed graph K such that ("(K) =
A(K) + 1. Without loss of generality, let & be obtained from G by successive
removal vertices vy, vg_q, .. Uy espegtively. Let Ky = K and K, = G[V(K)U
{vi,v0,...,14}]. Let P(n  be the s

Basic Step. By the ass

Inductive Step.
. | = i 3.1.9 and the induction
t7 \kx\\.}\%“

hypothesis, y"(K; 4 ~ il s.\;‘: ion, we get \"(G) =
AlG)+1.

definition of 1-trimmegd

Lt . [P is of tvpe 1, 50 is G,

: \\\ tvpe 2 as illustrated in

Lemma 3.1.11. Letf6 be a-graph with-8(G).> 2 and v be a vertex with degree

In other wo
However, if ' is 0!

Example 3.1.13 and

LG = v) < A(G - vysetthen A(G) +1 for each positive integer
i |

Proof. Let ?_ L,‘f{’ x with degree 1 of
G. Since v

he %ex which is adjacent

to v. Assume Ll‘at (G —-v) € AG - u} +t. If t = 1, by Lemma 3.1.4,

AN

i "E‘ vertex
X

3 %ﬁ%ﬁ%ﬁﬁ YR NG B

is a proper total coloring f : V(G — v) U E(G — v) — [k]. Since dg_,(u) +1 <
AlG-v)+1 < A(G)+1 < k—1, we use at most k — 1 colors to color u and

edges incident to u in G — v, there is a remaining color in [k], say r. Since
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k= A(G) 4+t = 3, there is a color which differs from f(u) and r, say s. Let

' V(G)U E(G) -+ [k] be a total coloring of a graph G defined by

Then f"is a proper total colot " (7) .‘ k] Hence y"(G) < k =
A(G) +t. 0
Theorem 3.1.12.0f agraph/ G has-a V-trimned graph K such that x"(K) <
A(K) +t thea™"(G)

Proof. Assume fhat & graph G Tias a ed grpall K such that \"(K) <
A(K) + t. Without loss ‘ nerality, _‘ od from G by successive
removal vertices vg, Uge |, . P respect L o = K and K, = G[V(K)u
{vi,va,...,15}]. Let P(n) f e slater mat '(K,) = A(K,) + 1.

Basic Step. By 1l ity

Inductive ‘#-_“ e that y Lf"’-”u i < k. By the

1.11 and the induction

definition of 1- I : ﬂ
hypothesis, ,-} == Q{K-} +1t. By mathrmatiral ind1 ion, we get \"(G) =

N ‘lﬂEWI‘ﬁWﬂ’]ﬂ‘i D

E31 LetG

1.3. As the given proper total

ST Y

Cycles whose length are not divisible by 3 and complete graphs with even

e a graph as in Figure

vertices are of type 2 [T][11]. Fews other type 2 graphs are found. In 1992, Bor-

Liang Chen and Hung-Lin Fu found nonregular type 2 graphs [17]. Their results
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and Theorem 3.1.6 vie uction o vpe 2 graphs whose 1-trimmed graphs

are of type 2.

Figure 3.1.4: ‘2 graph which is ¢onsteucted by Chen and Fu[17]
Example 3.1.14. 3.1.4 and let & be a graph whose
the smallest 1-trimmed graph-K and A(K). Figure 3.1.5 shows an
example of s i___ -

V_m. Y )

Since K is grapli. G, X"(G) = "(K) =
I

A(K) + 2 = A(G) + 2. Since the smallest 1-trimmed-graph of a graph G in

SRR
ARAINIUFRTIBYA

Figure 3.1.5: A type 2 graph which has a 1-trimmed graph of type 2
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Theorem 3.1.15. Let G be a graph with A(G) = 2, Let K be a 1-trimmed
graph of type 2 of G. Then G 15 of type 1 1if and only if AlG) > A(K).

) > 2 and A a l-trimmed graph of ;. Assume

2
€ . s a subgraph of G, A(K) =

Nk 26 Also \"(G) > ¥"(K) =

that K is of type 2.
Necessity. Assume tha
A(G). Since K is of,
A(K)+2=A(G
Sufficiency. Assuu stained from successive
removal vertices vy, pectively },_ he smallest number such
that A(G — {v#h, .. 4 “A(G) I r 1 \*‘ .= 3, X"(G) < A(G)+1.
Assume that j > 27 Let | § L b and K= G — {v), vy, ...,v54}.
' | hof Ky, by Theorem 3.1.6,

, by Lemma 3.1.3, K, is

Since x"(K) = Al
we get \"(K) < A(K

of type 1. Since K, isal 'f?‘:"“* by heorem 3.1.10, G is of type

L TN )

:‘&"-_f I f Sy S Y P —-—--—n—r—!—l

Pro usitiﬁ 1.16. {fag @ broph K such that
? r_ " ‘ d

Y'(K) < A(K)+ -

J |

Proof. Assume th&t a graph G has a re lar 1-trimmed graph K such that

WA N0 .

Theorem 3.1.15, G is of type

QW']Nﬂ‘iﬂJﬂJWI'mEI’lﬁEI
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3.2 Trimmed Graphs and Glued Graphs

Remark 3.2.1. Let K be a l-trimmed graph of a connected graph . Then

there is a tree T such that K

Proof. Let a graph K b

Cﬂnnﬂ{:tedrahas, —

‘-, MY ik &.nmtﬂd graph G. Since G is
ree T Thus iafia=G: o

Remark 3.2.2. f‘r' ' ﬁ'\ " be a tre . Then G is a I-trimmed

N

graph of GoT.

Theorem 3.2.3. G is of type 1, so0 15

GoT.

Proof. Let G be a graph i 1 “he atr i '\ (7 is of type 1. Since G
is a I-trimmed graph of J_I,-}"‘ Theo 3.1.10. GT is of type 1. 0

A
| W
Theorem 3.2.4. Let GG be_a graph an a tree, if GG satisfies the Total

Coloring conjecture, so isC

Pmn'[ Let q-# ' a graph and Tt

jis a 1-tﬁm.ﬂ sraph 1.6, l_'¢T] < a{r:-ﬂ];
w1k LR
RASO AR TV T

Theorem 3.2.6. Let T be a tree and G a regular graph. If G # G and

'L::“_'# < A(G)+2. Since

X"(G) € A(G) + 2 then GoT is of type 1.



43

Proof. This theorem follows from the fact that G is a l-trimmed graph of G<T

and Proposition 3.1.16. (]

Theorem 3.2.7. Let (G be L g oh and T be a tree. If X"(G) < A(G) + t then

@tnmmed graph of GoT

and Theorem 3’ | . .ﬁ

Recall that fos : i\ \'
\\‘m \ N
NN

O

Theorem 3.2.8. ) < XNG) X" (T) -

2
#. o

Proof. Let G he'a graplyand 11 ‘ = Py then \"(T) = 3 and

[ __ #yb

GaT = G. Hence X" (G<] .}V'

not P,. Let & be an i

) — 2. Assume that T is

+ k.

X'(GeT) < &{G‘ __J by Theorem 3.2.7,

by Remark 1.3.5,

X

by Remark 1.2.1.

@uﬂ ANHNINEAOT, o

— 2 if and only if X"(GHT) - A(T) = 4G) — A(T) and QYGST) =

Q%%i\‘lﬂ‘ifu umwmaa

Praaf This theorem follows from the proof in Theorem 3.2.8.

Figure 3.2.1 and Figure 3.2.2 show a graph G and a tree 1" such that \"(G+T) =
X"(G)+x"(T) - 2.
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L
-

Figure 3. 13 when its clone is P,

As the proper 1 , we get Y"(K;) < 3.
Since \"(K3) = {." ‘ 3- imilarly, \"(Ky3) = 4 and
X"(Ky® Ky 3) = 5. Hence Wegety -r;,i;,;.; X"(Ks) + x"(J ) - 2.

; _'_..-*.. : '

Theorem & ] g _(G¢5'n] > n(G).

I":Fi

Proof. Assume that x"(G) < A(G)+2 and 1(G>C) 3 n(G) then G is a 2-

Then x"(G< ".I"'

trimmed graph oi;.(? . By Theorem 3” we get Y"(GeC) < A(GeC) +

ﬂuEI’EIVIEWI‘iWEI’lﬂ’i ;
’Qﬁ'lﬁ'ﬂﬂ‘imuﬁ']?ﬂmﬁﬂ



CHAPTER IV

CONCLUSIONS AND OPEN PROBLEMS

4.1 Cnncl“7 ]

In this section, we conel
Equality
the total chromiatic/mus
Let G be a graph fith i vértices, Thei 1(G) = () = v"(G) if and only if G
is €, where n =3 ‘

Upper bounds of | mbers of glued graphs

-
1. Let Gy and G, egr__,
X'(G) +X"(G.

= &( 1¢'Gﬂ+2 then )(”I:'G[QFGEJ <

2. Let G f = (G) + X'(T) - 2.

3. x"(c >Ca) < X" (Con

DRIk pa T
am&@f{t‘immmmmaa

2 if C,,=2=C,, is an even cycle.
2. X (CwCy) =

3 otherwise.
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3 ifCpeCyisacycleand m =n =0 (mod 3),
3. X"(CnC,) =

4 otherwise.

4. Any glued graph of -. es satishies the al Coloring Conjecture.

” and m =n = 1,2 (mod 3).
s not acycleorm=n=10
a cycle and m=n=1,2
(mo
Colorability of the gl “-'F':?-‘i'f'{ hs of nontr! ial bipartite graphs
and G, | :
1 X(GioGy) = W §asbidis

2. #{G; I 2} N ﬁe E -y .l""‘.

3. The gl I’,f Hﬁ oloring Conjecture.

4 x"(Gl 4 b ti

{ x"[

@ﬂ’ﬁ?ﬁﬁﬁw ET’W’] T
ANTRITIRINAINAE

3. TieT; isof type 1 unless T) =T, = P».

4. Any glued graph of trees satisfies the Total Coloring Conjecture.
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5 Y(TyaT:) < ¥(T))+x'(T:)—1. The equality holds if and only if A(T)<=75) =

P69 ) (s

6. X"(T1*Ty) < X"(Th) - \ {eA
ATy Ty) = AT+ A2

Colorability of the glued

1. Any glued grapk . tal Coloring Conjecture.

e Let ; then R,,,q:r}i

nrm>r+2—,;2:"-5:—

even and m < T+2“—"‘—"2_r;:l_] i

2. "(KnoKa) < y

3. ¥"(KnpokK,) = :{"{ f and only if m,n are odd and the

clone of K,

Colorability ':Hj tree T

. vicerid vio T )
AIE NSy
oL RSt N RY

5. If G is a type 2 graph, then G<7 is of type 1 if and only if A(G<T) >

A(G).



18

6. If G is a regular graph such that \"(G) < A(G) + 2 and GoT # G, then

G<T is of type 1.

Colorability of the glued graph of a graph i and a cycle (',
If \"(G) < A(G) + 2 and n(G:

Applications of 2-

1. If a graph-

1. If a grap A8 o Itrinuie grd such that (/) < A(K) + 2 then

2, If a graph @ has hat K s of type 1 then G is

of type 1.

B L R N > r————— T,

3. Let O% .men-‘“n-‘_w_n-.—-. ........ :.| T '_1_ ap]] of type 2 of

il )

4. Ifa graph éasa regular 1-trimmed graph K such tat Y"(K) € A(K)+2,

?TTJU’J]WEWI‘W g1

pen Problems

9 RAANNIRUNBAT NN

1. In Chapter 2, we obtained an upper bound of the total chromatic numbers

of glued graphs in terms of the total chromatic number of original graphs. Theo-
rem 2.1.1 states that for any graphs G, and G, if v"(G,2¢G,) < A(G,26G,) +2,
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then "(GGs) < Y'(Gy) + ¥"(G2) — 1. Note that if graphs &7, and G5 with
Y'(G2G3) < A(G)<Gy) + 2 satisfy following conditions

(a) a vertex with maximum degree is glued to a vertex with maximum

degree of GG, and the corresponding clnne has degree 1,

(¢) GGy is of ©
Then we have
ons yield y"(G,G;) <
all of the above con-

However, a

X"(Gy) + x"(Gg

ditions; hence, w

2. we have alread nt conditions to be either

of tvpe 1 or of type and complete graphs. It is
an open problem to find a ieient condition of the glued graph
of bipartite graph

3. In -f_ﬁ Lr ‘ 2-trimmed graph
/) < A(G) + 2. Itis

H of a graphg o) w
interested to prove that for each positive integer t > 3, there is a t-trimmed

f;‘:ﬁilﬂﬁml (6143 o

vields t at every planar graph satisfies the Total &lnrmg Gun_]ect.ur

ARIANN I 119988 Y
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A graph G is a triple consisting of a vertex set V((G), an edge set E(G). and a
relation that associates with each edge two vertices (not necessary to be distinet)

called its endpoints. The number of ¢

prnents in V(G) is represented by n(G) and

context. The marimun )G naxinum degree among the vertices
s denoted by 4(().

The comp G ofa siple graph is the simple graph with vertex set
‘ isjﬂint {possible empty)
A component ggaph 48 tr: Ioif i : i: ! _,’\ wise it is nontrivial. An

A path is a simple graph whose vi i-be ordered so that two vertices are

adjecent if : only if they are consecuti _cygleis a graph with an
equal numb' srtices and edges L{_"#"w around a circle

s

—
mmﬁﬂwmﬁfwmm -

graph whose vertices are pairwisg'adjacent; the (aabeled} complete th with

QBRI ARG LR B

q bipartite graph such that two vertices are adjacent if and only if they are in dif-

so that two ve peﬂ;unsecutive along the

ferent partite sets. When the set has size r and s, the (unlabeled) biclique is

denoted K, ,.
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A graph with no cycle is acyclic. A forest is an acvclic graph. A free is a

connected acyclic graph.

An outerplanar graph is a graph with an imbedding in the plane such that
L T

ar i or face

\)

every vertex appears on the. |
The line graph of Gyawritten L(G), isthe'sumple graph whose vertices are the

edges of G, with efreB(L(G)) when e and f havea common endpoint in G.

ﬁ:ﬁ-- pbtained by dele g a set of vertices. We

An induced -;-.-..- ] btained by dele
write G[T1 for @ — 1 / ‘ = s the subgraph of G induced

by T.

AU INENTNGINS
AR TUNN NGNS Y
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