CHAPTER III

TRANSFORMATION SEMIGROUPS ADMITTING HYPERRING STRUCTURE

In [9], standard trg-;li nation semigroups admitting ring

structure were characterized. The of this chapter is to

.-‘

characterize such standard igroups admitting
hyperring structure. 'qe other transformation

semigroups admittin

First, we .potat s of the bllowing transformation

semigroups. For a

PX ‘"= the trans oy ‘?‘Q migroup on X,
Tx =
I o semigroup on X (the

o = ehipyiti >0

CP the traasformation semigroup of all constant partial

ﬂ hatdeohdflant ¥ 3 dieidoddl 2

the transformdtion semigroup of all cdnstant

qwﬁmmmuw’nwmaﬂ

UX the transformation semigroup of all almost identical
partial transformations of X,

\' = the transformation semigroup of all almost identical
transformations of X,

WX = the transformation semigroup of all almost identical

1-1 partial transformations of X,
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MX = the transformation semigroup of all 1-1 transformations
of X,

Ex = the transformation semigroup of all onto transformations
ofiiX,

AMx = the transformation semigroup of all almost 1-1

AEx = sformation & i all almost onto
For conven/ 3 the p: vofs of some theorems in
this chapter, the £ v ;E," are required : Let X be a set.

For a nonempty sub enote the constant

partial transformati range {x} and for

a, b € X, let (a,b) b_-t i-f:; ' “defined by

‘Observe that

ﬁ‘ﬂﬁv‘l ‘i’Wﬂ"l‘ n3
snma NI UTATNgNa

The following results obtained from [9] show that each of
the transformation semigroups PX’ TX’ IX’ G, CPx, UX’ VX’ Wo, Mx
and Ex is almost never the multiﬁlicative structure of any ring :

(I) If X is a set and S is any one of P_, T., I.. CP

X’ x’ x! X’ Ux’

Vx or WX’ then S admits a ring structure if and only if IXI <y B
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(II) If X is a set and S is any one of Gy, My or Ey, then S
admits a ring structure if and only if IX| < 2.

Although hyperrings are a generalization of rings, the following
two theorems show that (I) also holds for the case of admitting

hyperring structure.

Theorem 3.1. If X is a se : one of P X’ CPy, Ux or
Wys then S admits a h : nd only if | X| < 1.

Proof :: Let( 1 U, or W

X’ X %

Assume that ' yperring structure under an

addition +. To prov _ ﬁ:yij s€ 7§}s is false. Then
|X| > 1. Thus there
{a} , {al
a
Then a{a}l e ({a} + {
a a
{al {a} + {a} {a} =
a a b a

hat a # b. Therefore

b? {b}a e’ .‘: ":ﬁ" t:;’h ;_S. Let a € {a} + {a}
at laly ){a}

so we have that a{a}a = {a}a.

This implies that'e {a}

From a € {a}&1 + a} + {a} ). Since

(ab (b + {a})e s {aa

e @Y Wmfm LI
'3 “’a '}@aﬂﬁmWﬁwmﬁar ki

proves

+ {a {a} + {a}b, it follows

The converse is obvious since S = {0} if |X| = O and if
|X| = 1, then s = {d,lx} which is (isomorphic to) 2z, under

multiplication.
#

Theorem 3.2. If X is a set and S is any one of TX’ VX’ AMX or AEx,

then S admits a hyperring structure if and only if IXI <. 1s
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Proof : Let X be a seF and S = Tx, Vx, AMX’ or AEX.

Assume that S admits a hyperring structure under an addition
+. To prove that |X| < 1, assume that |X| # 0. Let a, b € X. Define
a,B : X- X by

A{a if x € {a,b},

Xa

and

Then o, B € S. Sinc € /e ‘ e, 6 , ba)u=aa=baand

xaz = (xa)a = xa for £ a. Since
a(Ba) = (aBda = ba = gh, Bad) L (ha¥e d x(Ba) = (xB)a = xa
for x ¢ X\{a,b}, we ] be the inverse of a
in the hypergroup (S~ ,+ 2 so 0 e (¢ + Y)a =

a2 + Y0 = @ + YO. ;;.: ue inverse of o in (8°,+), it

follows that v = o + Y, @ = Ba and

Y = ya. But Ba y and have 0eB + v.

Therefore o = B siﬂ o is the unique inversemf v in (8%,+). By

)y BN ﬂfﬂﬁﬁ'ﬁ » s
ARANTRAAIRIIA B -

nontrivi.al right zero semigroup does not admit a hyperring structure.

Theorem 3.3. For a set X, CTX admits a hyperring structure if and

only if |X| < 1.

Proof : Since for a, b € X, xax.b = xb, it follows that

CTX is a right zero semigroup. By Corollary 2.7(2), CTx‘ admits
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a hyperring structure if and only if ICTXI = 1l. But ICTXI = 1 if
and only if IXI < 1, so the theorem is proved.
#
Since every group admits a hyperring structure (see the remark

of Chapter I, >page 24), the following theorem is obtained.

Theorem 3.4. For a set X, G

We know that i X-is-a fihite-setywihen My = Ey = Gy. Therefore
it follows from Theorems8.4 tha T any ’ et X and for S = My or E,
if X is finite, the It is natural
to ask whether this ¢ . 1vow:lng theorem tells
us that this convers hich will be used to
prove the theorem is t X, the center of
the group GX is trivial f’ '
Theorem 3.5. 1If X ig one of Mx or Ex, then S
admits a hyperri ‘ A ‘finlte.

Proof : LeDX be a set and S

=Mxor .

et > : _
ASS“FI ny int y‘fw ﬂrjﬂgjmder an addition
+. To show “ s nite, suppose on e contrary that X is
=

WP (el RO (D

0 e (1X + a)B =B + oB and 0 ¢ B(]‘X + a) = B + Ba. Therefore aB
and Ba are both inverses of B in (S°,+). It then follows that

aB = Ba. This proves that af = Ba for all B € S. Since Gxg S,

(x,xa) € S for all x € X. Then a(x,xa) = (x,xa)a for all x € X.

For x € X, x(a(x,xa)) = x and x((x,xa)a) = xa.z. It follows that

a.z = 1X which implies that a € Gx. Therefore o is an element in
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the center of GX' Since X is infinite, o= lx. Thus 0 € 1x + 1x and
hence 0 € B + B for all B € S.

. Let a, b € X be such that a # b. Since X is infinite,
|x] = |Xx ~{a,b}|, so there exist a 1-1 map y from X onto X ~ {a,b}

and a map A from X ~N{a,b} onto X. Extend A to ¥ : X = X by defining

¥ e E; and (a,b)u = u.

+ Y= v(a,b) + vly =

v((a,b) + 1), we havewtd e0 e &,b wSince 1, is the unique
X 2° 9 X

since a # b.
i = (a,b)u + 1w =

((a,b) + 1 )u, it foljow, This implies that
X

(a,b) = lx which is a donfradit
Hence X is fihil .
Fines

The converse follows - fact mentioned above.

#
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