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CHAPTER 1

PRELIMINARIES

ab

for all a, be S%

ean a subsemigroup of §

lgroup S is a union of

subgroups of S and S contaj’ 53U ; ~idempotent, then S is a group.
A .semigr S okl } group if 8 is

a union of subgroups : 2 : .otents of S forms

a left [right] zeroﬂubsemigroup of S. Hence g ery left [right] zero

semigroup is wﬁﬁﬁ\ﬂﬁﬂ {W mﬂ-?n that a left

[right] group contains a zero element is trivial.
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any elem@nt of S. Extend the given binary operation on S to one in
SuU{0} by defining 00 = 0a = a0 = O for all a € S. Then sui{ol} is

a semigroup with zero 0. Let

S if S has a zero element and contains more than
one element,

su{o} otherwise.




A semigroup S is said to admit a ring structure if there exists

an operation + on S° such that (5" k) is a ring where . is the

operation of i

For a set A, let [Al denote the cardinality of A.

/zhe power set of A and let

A hyperoperation ulg -----n- p on a nonempty set H is

For a set A, let P(A)

P*(A) = p(A)N {4}.

A hypergroupo 575 e (H,0) coc ting of a nonempty set
H together with a hyp for o-on .. We all usually write H

instead of (H,o) when ghefe /i r e C blguity.

Let (H,o) be a Hyr upoid o empty subsets A, B of H,

let

and let Aox = Aol An element e of H

of (H, o) if x e (xoe)ﬂ(ﬂx) for all x € H.

A hypergroupoﬂ ﬂﬂﬂ%ﬂlﬂ?mﬂ? Example 1 on

page 9 as an ékample. element e of H is called a scalar identity
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of (H,o0),ftheneis the unique identity of (H,0). To prove this, let e

is called an identi

be a scalar identity and f an identity of (H,o). Since f is an identity
of (H,o0), we have that e € eof. It follows from the fact that e is
a scalar identity of (H,o0), we get eof = {f}. Then e € {f} which

implies that e = f.



The hyperoperation o of a hypergroupoid (H,o) is said to be
commutative if xoy = yox for all x, y € H and it is said to be associative
if (xoydoz: = xo(yoz) for all x, y, 2 £ H.

A semihypergroup is a hypergroupoid (H,o) such that the

hyperoperation o is associative. A semihypergroup (H,o) is called

a hypergroup if Hox = xoH

contain an identity.

€ H. A hypergroup need not
ypergroups is given in Example 3,

page 11. A nohempty subset-K of+d h C H is said to be a

ol oup under the hyperoperation of H.

An element x 3 s e Pergroup ©) is said to be an inverse

subhypergroup of H

of an element y in (Hg6)/if fhere e ddentity e of (H,o) such
that e € (xoy)n(yxj Fiedf ve [I ‘@ ¢ .ontains at least one
f A W
identity of (H,o0). Thg 39_{2:5@ n ity of a semihypergroup (H,o0) is
S et A 1
an inverse of itself since e ‘H o ery identity e of (H,o0).

#
¢

Example 4 on page 12 shows t ient of a hy'pergroub containing

some identities

‘\! has at least one

ﬂ inverse in H.
BB :\/1:1e 123 AT o
AN A N8, .

A hyperg

identity and every mement of H has at least

canonica ypergroup 1s a commutative reve

which has a scalar identity and every element has a unique inverse.
Hence a hypergroup (H,o0) is a canonical hypergroup if and only if
1. (H,o0) is commutative,
2. (H,o) has a scalar identity,

3. every element of H has a unique inverse in (H,o) and
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4., for a, x, y € H, y € aox implies x € a'oy where a' denotes
the unique inverse of a in (H,o0).
Throughout the paper, the notation x' will denote the unique ir;verse of
the elemé.nt x in a canonical hypergroup. Observe that every abelian
group is a canonical hypergroup.

Example 4 on pagel2 show

t an inverse of an element of
a hypergroup containing a need not be unique. A

subhypergroup of a canon

shown by Example 5 o(

ot be canonical. This is

The operations + ang

and multiplication g We shaﬂ usually write ‘A instead

of (A,+,.) whe there‘ﬂno d:gter of/ambiguity.

Let ( +uﬂ’3 Me mm l’almtjtity of the
hypergroup_ (A,+) which_is_the g.e o of the“semigroup ( s usually
called t eﬁg ainim Aﬁ,’j gngjsylsé:ﬂdenoted by OC.

By an identity of the hyperring (A,+,.), we mean an identity of the
semigroup (A,.) which is usually denoted by 1. For x, y € A and n a

.05
positive integer, let X denote the unique inverse of x in the canonical

hypergroup (A,+), xy denote x.y and x denote xx...x (n times). It then

follows easily that,
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2. (x') = % For all x-¢ A;

| 1
3. xy=¢(Cxy) =xy for all x; y € A and

4. x y =%y for all x, y & A 3

A commutative hyperring A is a hyperring such that xy = yx

for “all %X, v g A,

A commutative hy a hyperintegral domain

1f ‘for Xx,Vy e A XY =

A commutative is. ‘ed a hyperfield if
(A~ {0},.) is a group '
A nonempty su .) is called a

~ subhyperring of (A,+,. under the same addition

and multiplication of ( 2 canonical subhypergroup

of the hypergroup (A,+ ;toup of the semigroup (A,.).

A subhyperring of a hyperring A need mot contain the zero of A. See
: WA

Example 6 on page 1€

—

A nonemptr ' "'J is called a left

[right] hyperideal E A if 118 as‘uypergrouﬂf the hypergroup

s 1
called a hyperi A in is bo t and a right hyperideal
o/

QA IUNANIAL, ...

if for ‘m, y e A, xy e I-dimplies x € & or 'y.€ 1.

A hyperideal I of a hyperring A is called a maximal hyperideal

if I # A and for a hyperideal K of A, I_C_K(_;A implies I = K or K = A.

A hyperring A in which x2 = x for all x € A is called a

Boolean hyperring.




Let A be a hyperring and I a hyperideal of A. Then the
following statements hold :
(1) 0% 1.
1

(2) For every x e I, x €1I.

(3) For any x, y € A, either (x.+ I)N(y + I) = ¢ or

Let A/I = ‘hen A/I becomes a hyperring under
the addition and the ‘ h ¢ 2fined as - 3

(x ‘AN TNz ¢ x + y}

and
for all'x, y e As s its zero and for
Xx e A, x + I is the unique ° '“ == + I under addition. The

hyperring A/I is e hyperring A.

Let A and " b B is called

o(x) + 9(y) and mxy) = ¢(x)9(y) for all

%, 3 k. @I{EI Wgwﬁfwmﬁﬁaﬂg of @, denoted

a homomorphism if Eﬂx +y) =

by ker ¢ is d

A 1-1 honq)mor;:lsm ﬂ OEOEE is m:J an womorghism. If there

exists a 1-1 homomorphism of A into B, then A is said to be embedded
in B. The hyperring A is said to be isomorphic to the hyperring B,
written by A ~ B if there is an isomorphism of A onto B.

If I is a hyperideal of a hyperring A, then the map ¢ : A = A/I

- defined by ¢(x) = x + I'(x € A) is an onto homomorphism.




A semigroup S is said to admit a hyperring structure if there

exists a hyperoperation + on s® such that (S°,+,.) is a hyperriﬁg where
. is the operation of s®. Note that if a semigroup S admits a ring
structure, then S admits a hyperring structure.. The converse is not

generally true. By Example 7 on pagel8, the multiplicative semigroup

|

[0,1] admits a hyperring struc ut it is known from [6] that it

does not admit a ring s &e 8 on page 21, every grc,up‘
admits a hyperring st &1

admits a ring strucy

symmetric group of d

etric group of degree n

_ Hence for n > 3, the
tructure which does not
- admit a ring structurg -I:'i
The following
and hyperrings. Include — Zample, we point out some of its

important properties.

Example 1. Let A bt-a-nonecupty-

SR \V11e1 11731 10

properties :
¢ @/
RN
5 or X, y € A, x and y are inverses of each other in (A,o0).

The hypergroup (A,o0) is usually called a total hypergroup.

Example 2. Let (G,.) be a group with identity e and N a normal subgroup

of G. Define

xoy = Nxy




¥
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for all x, y € G. Since N is a normal subgroup of G, we have that for

XYy 26

(x0y)oz U (aoz) = U Naz = NNxyz = Nxyz
aexoy aeNxy
and 3
xo(yoz) = U (xob) =4 b = NxNyz = Nxyz.

beyoz

Moreover for x € G,

1]
C &

Gox
geG
and
xoG = U (
geG

Therefore (xoy)oz € G and Gox = G = x0G for

all x € G. Hence (G,o0 lis hypergroup has the
following important properties
E= L= .l“'..!k,-f

(1) N is

h hypergroup (G,o0).
(2) For e,

inverses of x in (G,0).

From (1) and (2), wemave that i 18 abelian ﬁhen (G,0) is canonical

if and only i

s UL .
AL DR 1P AN

Smi ook )N(e oe) Nee ﬂNe e = Ne ﬂe Ne = Ne ‘hie N s pEce N
is normal in (G,.), so N = Ne = Ne*. Thus e* € N. This proves that
N is the set of all identities c¢f (G,0) as required.

To prove (2), let x ¢ G. Let y € Nx;l. Then xy, yx € N, so

xyyx € N. By (1), xyyx is an identity of (G,0). Since xy, yx e N, it
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follows that Nxyyx = Nyx and xyyxN = xyN which imply that

xyyx € NyxxyN = (yox)MN(xoy). Therefore y is an inverse of x.
Conversely, let z be an inverse of x in (G,0). Then there exists an
element u in N such that u e (xo0z)N(zox), so u € NxzMNzx. Therefore
N = Nzx which implies that zx € N. Thus z = ze = zxx = € - Hence

Nx-l is the set of all inverses

Example 3. For each x,

where min{x,y} denoted f 3 ‘ tt of ix,y}. Then ([0,®),0)
ly from the definition

of the hyperogerati [ *\ \ e [0,x),

1fx$y,

If'% > ys

Hence [0,x)ox = xi i Uyw) = LU, 0) for all x €10, ®). Then for

x, v € [0,0), we hawe

: [ch) ifs(Sy,
[k g oy

‘“ﬁuﬂ Hﬂ LIRS
SR SN NYNA Y

o(xoy) = xolx,0) = [x,a)  1f x = ¥,

and

xoy = {y} Ry
which imply that

(xox)oy = xo(xoy) W sseeissee L)
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for all x, y € [0,o). In particular, (xox)ox = xo(xox) for all

x € [0,0). It then follows from (*) and the commutativity of o on [0,=)

that for x, y € [0,x),

(yox)ox = (xoy)ox = xo(xo0y) = (xo0x)oy = yo(xox)’
and
(xoy)ox
By the definition of for distinct elements

(xo0y)oz =

Now, we have that

for all x, y, z € [0,=)
[O N cn)OX

Hence ([0,),0)
For any x s, we 0,8) and xo(x + 1) = {x},

so x + 1 ¢ xo(x + 1). 2 Hence for x € 0 ®, X is not an identity of

e hypergroﬂ éu E}’J ‘ﬂ{]lﬂ ‘Ejo‘w IQJ ’qaﬂ\‘jmenmy.
Eﬁ%ﬁﬁaﬂnsmmﬁmﬁ g

follo'
o e a b C
e {e) {a} {b} {c}
a {a} {b,c} H {a,b,c}
b {b} {a,b,c} H H
c {c} H H H




13

It follows from the first row and the first column of the table that
eox = h} = Xoe : eeevescsce (*)

for all x e H. Note that the hyperoperation o is not commutative on H
since aoc = {a,b,c} but coa = H. Since the union of the sets in each

row or of the sets in each column is equal to H, we have that

e

t for 2 oy zide HobE

at least one of them is_ e -'“'”* {yo 70z). We have from the

given table that for -4 by \ Since coa = cob = coc = H

for:all x ¢ H. Itiis

b
1]

H = xo(yoz) for all

and aob = bob = cob hat \\

x,y, z s Hx{el.

'h"i’}‘:l

s anniainses NRR)

N

-
1 .<ﬁ

~
|

for all x, y, z ¢ H. ), (H,0) is a hypergroup

@

having e as a scalar iden 'f_.ahg,% the/ group (H,0) has the following

properties :

Vi
1~ The elenﬂ\t

belong to any of the ng aoe, aoa, and aoc.

BB BRINENS

beb = boc = cob coc = H. Thus an inverse of b is notyunique and so

ARIRININURNINYTAL

Example 5. Let H = {e, a, b, c, d}. Define the hyperoperation o on H

se ﬁ (H,0) since e does not

as follows :
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o e a b c d
e f 1t fa} {b} (e} {a}
& LR el e Sded
v a8 fa,b) ENe) H
c {c} H Hx{el {c,d} {c,d}
d [4f g ’,yi {c,d} {c,d}
W
Observe that the hype ' —:‘/’Qe on H. From the first

row and the first col

.......... (1)
for all x € H. C '1;£ o gets ich row or of the sets
in each column is e

for all x € H. at for x, y, z € H, at least

one of them is e i The following

]

{ab} if x,e{ab)m

g g,
mwﬁa{ﬁnﬁmﬂmqmﬁ 3

X0y = yox a,b} and y € {c,d}.

statements are

(vi) (H~{el)ox = xo(H~{e}) = H for all x's H~ {el.

Hence for x, y, z € H~{e}, we have from (i) and (ii), respectively that

(xoy)oz = {a,b} = xo(yoz) $f %, ¥, z ¢ {a;b}

and
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(x0y)oz = {c,d} = xo(yoz) . if x, y, z € {c,d},

and if exactly two elements of x, y and z are in either {a,b} or {c,d},

then from (i) - (vi), we get
(xoy)oz = H = xo(yoz).

Now, we obtain

(xoy)oz. selBbuem s B2

for all x; vy, 2 ¢ Hs “(H,0) is a hypergroup

having e as a scalar i nique inverse of e in

(H,0). Since ee H = x € Hx{c} and

e ¢ cox for all x e c are unique inverses

of each other in (H,o e unique inverses of each

other in (H,o0). For x , he uhique inverse of x in (H,o0).

To show that ( let x, y, z € H be such
" 1 1 1
that x e -yozs If x'= e e € Y0 80 2 =y € yoe=yo0ox. If

y = e, then x € _,A‘ y ox& ' If 'z = ‘e,

then x = y and hen ore we prove that if

v - . B
gand z is e, then 2z € y ox

A“me wﬂwﬁ"w Y19

at least one of x,

fiiiléﬁﬁ K ) ‘Eﬁu’ﬁ’i’a ARy "

Bl i vl .
y ox =y oa = b n e araa: HE)
{a,bl} if iy oy

{a,b} ity = d.

\
1f y € {c,d}, it follows from the table and a € yoz that z = a or

1
z=b. By (¥), zeyoa=yox.

017577
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Case 2 : x =b. Then

=
=
o
[}
’.U'

Yox=yj'6b = - ﬁ Seisisrsni PR

)
o
[
(=3
Fh

«
L[}
o
.

If y € {c,d}, from b € yo _ aor z=b. By (%),

1
z €y ob =y ox.

Case 3 : x = c. Imilar to that of Case 1.

Case 4 : x

[
o
.

imilar to that of Case 2.

From (i), {a,b} is
a subhypergroup of ( aandf  . v 1dent1ties of this
subhypergroup. 1p of (H,0) which is not

canonical.

Example 6. ’_,'. CiIC 1Y PELVPCL LAV @ Ol fia JdF y Ollows H

ﬂ‘ﬂ ’mﬂW‘J‘WE?’]ﬂ‘i

{1}

AR aﬂ 30 ummma ek

Then (23,0) is a commutative hypergroupoid. It follows from the first row

and the fifst column of the table that
OOX = {x} = XOO R R (1)

for-all x € 23. Since the union of the sets in each row or of the sets

in each column is equal to 23, we have that
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2301( = 23 = x023 cese e s secse (2)

for all x € Z;. It is clearly seen from (1) that for x, y, z e 2,,
if at least one of them is 0, then (x e y) ez=xo (y e z). The
following statements are obtained easily from the table :

{x} for all x ¢ z,.

7>\ {0} and x # y.
é@) that

(1) x e x

(ii) xoy=z3

- Hence for x, y, 2z €

Hence

L AGSPUMRIC &

for all x, y, z € Z;. £3), (23,0) is a hypergroup

having 0 as a scalar L'e 2 =2 e 1 and 0 is

notanelementof'y "o T 2003nd202 we

have that 1 and 2 ar% unique inverses of each other in (2 ,e). For

e FL U TRENTHY ARG o o

0—01= and2 Ay

TRARY ﬂﬁm A 14543 ﬁ B be ouch

that x eyoz. If ‘%203 thenOeyoz,soz=y eyoO yox.

If y=0, thenx e0e z=1{z}, soz=xe0ex=0ex=1y e x.

1
If 2z = 0, then x =y and hence z =0 e y ¢ y =y e x. Therefore we

g T
prove that if at least one of x, y and z is 0, then z e y e x.

Assume that x, y, z ¢ 23\{0}. Then
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p
2, ifx=1andy=1,

i {1} if x=1andy =2,

y‘x = < e eccccccae (*)
{2} ifx=2andy-=1,
L23 if x = 2 and y = 2.

If x =il and. -y 2 2; fromxeyoz,wehavethatz=l. ILf ix= 2

4 1
andy=1,fromxeyoz,, ? =2. By (*¥*), zeyeo x.
Hence (23,0) is™ ,‘_; ica up and {1} is a canonical

subhypergroup of (2,,0) which dogs nc Sa— ontain 0.

Next, we sha plication . on 2

(e
distributive over e e (x.z) for all

R LZE 23. Let y ‘- ) rom the given table
that if at least onefof y _7 z, 7 0 \ Ay e z) = (x.7) o (x.2).
If %, ¥, 2 € 23\{0}, 4o . . _w get

x.(y.® z)

This proves that ?" 3 R 4 X, ¥, 2 € Z,.

Py 3,0,-mis a hyperfield.

,,,perﬁ::“:aummmm |-y B

Since (2\{0} «) i n abe

A Tt e L u) e

Example 7. For each x, y € [0,1], define

{max{x,y}} if x # vy,

[0,x] if x =y

where max{x,y} denotes the maximum element of {x,y}. Then ([0,1],e)
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is a commutative hypergroupoid. It follows easily from the definition

of the hyperoperation e on [0,1] that for x, y € [0,1],

1{y} if x < y,
[Ox]ey y e [0,x] =
[0,x] if x2>y.

Hence [0,1] ¢ x = x @ [0,1] = [0,1] for all x e [0,1]. Then for

Xy e -[0,1], we get ' /

sad 1 x < Y,

(xex)ey=

70

{k' \Q:\\ 1t % S5y
%
xe (xe ’ f ey,
d‘h.ﬂ
. X >y
which imply that e

b o 2

(xox) ® PPERCEUPILA (3L - 1

for all x, ye [ x e (x ® x) for all

=e [0;2}. T¢ the _Fl o : Emmutativity of e on

[0,1] that for x, y € [0 X1,

<y~x>~xﬂ%ﬂf¢'|‘lﬁlﬂ‘iﬂ§ﬂ=&nﬂ‘i “ye xow
Q‘m&Nﬂ‘iﬁu URIANYA Y

(xeoey)ex=(yex)ex=xe (y e x).

By the definition of e on [0,1], we have that for distinct elements

x, y and z in [0,1],
(x @ y) ez = {max{x,y,z}} = xe (y o z).
Now, we obtain

(xey)ez = xeo (ye 2z)
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for all x, y, z € [0,1]. Hence ([0,1],e) is a hypergroup.
Since 0 @ x = {x} = x @ 0 for all x € [0,1], O is a scalar
identity of the hypergroup ([0,1],e). Since 0 ¢ [0,x] = x & x for all

x € [0,1], we have that for x € [0,1], x is an inverse of x in ([0,1],e).

Since 0 is the scalar identity of ([0,1],e), O is the unique inverse
s the unique inverse of x in
“) £xey (= {max{x,y}}).

we of x in ([0,1],e).
Hence x' = x for all 3 9531 \\\ ‘
To show tha _ 8) isl \ et x, y, 2. £.00.2]

of 0 in ([0,1],e). For x €
([0,1],e) since for ev ’

For x = [0,1], let x°

we have Each case

rt
<
)
rt
"

]
N
]
L2}
™
]

«

]
N
.

gives z €y @ x as fo

X =y > “:

z>yg>zem 7,x11 =y e x 21y o x,
ﬂuﬁﬁiﬁ‘*ﬂﬁf WA ™
TIRTIM TN T

MNext, we shall show that x.(y & z) = (x.y) e (x.z) for all

"
I

»
A

»
]

x, ¥, z € [0,1] where . is the usual multiplication on [0,1]. Le'f.

x, ¥, 2 & [0,1]. Then

{x.2} = (x.y) o (x.2) if y < z,

x.(y © z) = x.[0,y] = [0,x.y] = (x.y) e (x.2) if y

1]
N

{x.y} = (x.y) e (x.2) ' 3y g




21

Hence ([0,1],e,.) is a hyperring with identity 1. éince for
x, 5 8 tO,l], x.y = 0 implies x = 0 or y = 0, it follows that
([0,1],e,.) is a hyperintegral domain and {0} is a proper prime
hyperideal of ([0,1],e,.). The hyperriné ([0,1],e,.) is not a hyperfield

since ((0,1],.) is not a group. Also, [0,1) is a maximal hyperideal

Example 8. Let (G,y .| For x " e G, define

Then (G°,+) is a commutdti & Hypergr

T T, (%)
Vg I
J)

a group. First, we-claimmhat for distinct

U ANENTNYNT

for all x € G°. N = 6° for all

x € G since (G,.) is

(a+aWsd = 6% = A+ (a+b')=; segyreees (60
e ABAGIATUIBIINGINY

D (0 + b)U( + b)
{(b}rU(e®~b})

(]

G

énd
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a+ (a+ b) a + {a,bl

= (a + a)U(a +b)

= (& {ahula,b}
- 8
Hence (a +'a) +b=Gi=m g barb)
To show that + is asso iative on G°, let x., Y552 € A N

om (*) that

Q Y, 2€G. If x=y=2z,
x+(y+z) since + is

least one of x, y and
(x+y)+2z=x+(y
(x &

then (x + y) + z =

commutative on G°. itinct, we get

= x+(y+z)

It follows fﬂ-u ilaa mﬂ‘% ﬁ%ﬂﬂ«ﬂ:ﬁ that if exactly

two elements of x, y and z arefequal, thea (x + y) + =x + (y + 2).
o pﬁﬁﬂ&ﬁ&ﬁim NWJQ mm&m ..

ForxeG if x = 0 thenG frxiw G 40 - Gandif'x;éO
then G° + x D(x + x)U(0 + x) = (c°{xhHu {x} = G°. Then

G°+x=x+G°=G°fora11xeG°.

Now, we have that (G°,+) is a hypergroup and 0 is the scalar
identity of (G°,+). It follows from the definition of + on G° that for

x,yt—:Go,Oex+yifandonlyifx=y. HenceforxeGo,kis
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1
the unique inverse of x in (G°,+). For x € G°, let x denote the unique
inverse of x in (G°,+).

To show that (Go,-!-) is reversible, let x, y, z € G° be such

1 | 1
that x €y + 2. If x=0, thenO0O€y+2,802z=y €y +0=y5 + x.
' 1 '. . 7
If y=0, then x € 0+ 2z =1z}, soz=x€e0+x=y + x. Tfiz = 0;

then x =y, soz=0¢ey + Therefore we prove that if at

least one of x, y and z en’ Assume that x, y, z € G.

Gase 1 1 vy = z. : z Goqnefore x # z, and so

z e {z,x} =2+ x

Case 2 : y # z. °\{y} =y +y. 1If

= ]
Xx =y, then z e y ze{y,xl=y+x=y +x.
Hence (G°,+

Next, we shal A = (x.y) + (x.2z) and

(y + z).x = (y.x) + (z. e 6°. It is clear from (%)
that if at least one o hen x.(y + z) = (x.y) + (x.2)

and (y + z).x = ’Ei € G. If y =z, then

G- g

=x(G

ﬂumnﬂmwmm

awwmmmuﬁnwmaa

= (x.y) + (x.2)

and similarly, (y + 2).x = (y.x) + (z.x). If y £ z, then x.y # x.z,
and hence

x.(y: 4 2)

x.{y,z'}

{x.y,x.z} »

(x.y) + (x.2)
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and similarly, (y + z).x = (y.x) + (z.x).
Hence (G°,+,.) is a hyperring.

Remark : We have from Example 8 that every grouﬁ admits a hyperring

structure.

Let X be a set. all transformation of X is a map from
a subset of X into X. flotmation of X is the partial
transformation of X »'mis denoted by 0. For

I(Van )t

‘J""I'

.ai fﬁ"

o and B and B

I(VanAB)a-l ,VQ a-l qunAB
denote the restritﬁi o ( "~ and VaNAB,
respectively. Thea P_ em] v "‘*‘ 1y as its zero and

identity, respecti\ﬂy where 1

is the 1denti map on X. The

Observe that (Vu NAB)B C VB.
si”ﬁﬁm‘ﬁﬁﬂa%ﬁ ﬂ m H?"Je’“g““p 2

" Let IX be the set of all 1-1 partial transformations of X.

Then IX is a subsemigroup of PX and it is called the 1-1 partial

transformation semigroup or the symmetric inverse semigroup on X.

By a transformation of X, we mean a map of X into itself.

Let ’1‘x be the set of all transformations.of X. Then TX is

a subsemigroup of PX with identity lx-and it is called the full

transformation semigroup on X. Let
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Gx = the symmetric group on X,

MX = the set of all 1-1 transformations of X
and

Ex” = the set of all onto transformations of X.

Then MX and Ex are subsemigroups of Tx containing GX'

Fora e Ty, x € X, « o be ;:l at x if (xa)a-l = {x}.

o is said to- ' he set

For a € TX,

{x e X| o is not 1-1

. w be the set of all almost
1-1 transformations y M igroup of T containing

0 if X~\Va is finite.

Mx (see [10]).

For a € TX’

Let AEx be the set of f{uations of X. Then AE

X
is a subsemigroup of Ty cg ?v?~f,:? ' & 1'\0 e X

The shift of a', on o of X is defined to be
the set

S((!) = .._ 2

almost identical if
1

A partial transforma

the shift of a is f nite. Let

« FHHY ‘F’Iﬁ%‘ﬁ A G oot
sm'f] B AFI A HAGRH BB o

WX = the set of all almost identical 1-1 partial transformations

~ and

of X.

Then UX’ Vx and Wx are subsemigroups of Px, ‘1‘x and IX’ respectively.

Let
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'CPx % the set of all constant paftial transformations of X
(including 0)
and
CTx = the set of all constant transformations of X.

Then CPx and CTx are subsemigroups of Px and Tx, respectively.

 Auginnineans
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