

CHAPTER I

PRELIMINARIES

A semigroup S is called a <u>left</u> [right] <u>zero</u> <u>semigroup</u> if ab = a [ab = b] for all a, b ϵ S.

A semigroup S with zero 0 is called a Kronecker semigroup if

$$ab = \begin{cases} a & \text{if } a = b, \\ 0 & \text{if } a \neq b \end{cases}$$

for all a, b ϵ S.

By a <u>subgroup</u> of a semigroup S, we mean a subsemigroup of S which is also a group. Note that if a semigroup S is a union of subgroups of S and S contains a unique idempotent, then S is a group.

A semigroup S is said to be a <u>left</u> [right] group if S is a union of subgroups of S and the set of all idempotents of S forms a left [right] zero subsemigroup of S. Hence every left [right] zero semigroup is a left [right] group. It is clearly seen that a left [right] group which contains a zero element is trivial.

Let S be a semigroup and let 0 be a symbol not representing any element of S. Extend the given binary operation on S to one in $S \cup \{0\}$ by defining 00 = 0 a = a0 = 0 for all a ϵ S. Then $S \cup \{0\}$ is a semigroup with zero 0. Let

$$S^{\circ} = \begin{cases} S & \text{if S has a zero element and contains more than} \\ & \text{one element,} \end{cases}$$

$$S \cup \{0\} & \text{otherwise.}$$

A semigroup S is said to <u>admit a ring structure</u> if there exists an operation + on S^O such that (S^O,+, \cdot) is a ring where \cdot is the operation of S^O.

For a set A, let A denote the cardinality of A.

For a set A, let P(A) denote the power set of A and let $P^*(A) = P(A) \setminus \{\phi\}$.

A <u>hyperoperation</u> or a <u>multioperation</u> o on a nonempty set H is a mapping of H \times H into P*(H).

A <u>hypergroupoid</u> is a system (H,o) consisting of a nonempty set H together with a hyperoperation o on H. We shall usually write H instead of (H,o) when there is no danger of ambiguity.

Let (H,o) be a hypergroupoid. For nonempty subsets A, B of H,

$$AoB = \bigcup_{\substack{a \in A \\ b \in B}} (aob)$$

and let $Aox = Ao\{x\}$ and $xoA = \{x\}oA$ for all $x \in H$. An element e of H is called an identity of (H,o) if $x \in (xoe) \cap (eox)$ for all $x \in H$. A hypergroupoid can have more than one identity. See Example 1 on page 9 as an example. An element e of H is called a scalar identity of (H,o) if $xoe = eox = \{x\}$ for all $x \in H$. If e is a scalar identity of (H,o), then e is the unique identity of (H,o). To prove this, let e be a scalar identity and f an identity of (H,o). Since f is an identity of (H,o), we have that e $x \in A$ entry from the fact that e is a scalar identity of (H,o), we get eof = $x \in A$ which implies that $x \in A$ which implies that $x \in A$ is an identity of $x \in A$ which implies that $x \in A$ which

The hyperoperation o of a hypergroupoid (H,o) is said to be $\underline{\text{commutative}}$ if xoy = yox for all x, y ϵ H and it is said to be $\underline{\text{associative}}$ if (xoy)oz = xo(yoz) for all x, y, z ϵ H.

A <u>semihypergroup</u> is a hypergroupoid (H,o) such that the hyperoperation o is associative. A semihypergroup (H,o) is called a <u>hypergroup</u> if Hox = xoH = H for all x & H. A hypergroup need not contain an identity. An example of such hypergroups is given in Example 3, page 11. A nonempty subset K of a hypergroup H is said to be a <u>subhypergroup</u> of H if K forms a hypergroup under the hyperoperation of H.

An element x of a semihypergroup (H,o) is said to be an inverse of an element y in (H,o) if there exists an identity e of (H,o) such that e ε $(xoy) \cap (yox)$, that is, $(xoy) \cap (yox)$ contains at least one identity of (H,o). Then every identity of a semihypergroup (H,o) is an inverse of itself since e ε eoe for every identity e of (H,o). Example 4 on page 12 shows that an element of a hypergroup containing some identities need not have an inverse.

A hypergroup H is said to be <u>regular</u> if H has at least one identity and every element of H has at least one inverse in H.

A regular hypergroup (H,o) is said to be <u>reversible</u> if for x, y, $z \in H$, $x \in yoz$ implies $z \in uox$ and $y \in xov$ for some inverse u of y and for some inverse v of z in (H,o).

A <u>canonical</u> <u>hypergroup</u> is a commutative reversible hypergroup which has a scalar identity and every element has a unique inverse.

Hence a hypergroup (H,o) is a canonical hypergroup if and only if

- 1. (H,o) is commutative,
- 2. (H,o) has a scalar identity,
- 3. every element of H has a unique inverse in (H,o) and

4. for a, x, y ϵ H, y ϵ aox implies x ϵ a oy where a denotes the unique inverse of a in (H,o).

Throughout the paper, the notation x will denote the unique inverse of the element x in a canonical hypergroup. Observe that every abelian group is a canonical hypergroup.

Example 4 on page 12 shows that an inverse of an element of a hypergroup containing a scalar identity need not be unique. A subhypergroup of a canonical hypergroup need not be canonical. This is shown by Example 5 on page 13.

A hyperring is a system (A,+,.) such that

- 1. (A,+) is a canonical hypergroup,
- (A,.) is a semigroup in which the scalar identity O of
 (A,+) is a zero of (A,.) and
- 3. x.(y + z) = x.y + x.z and (x + y).z = x.z + y.z for all $x, y, z \in A$.

The operations + and \cdot of a hyperring $(A,+,\cdot)$ are called the <u>addition</u> and <u>multiplication</u> of A, respectively. We shall usually write A instead of $(A,+,\cdot)$ when there is no danger of ambiguity.

Let $(A,+,\cdot)$ be a hyperring. The scalar identity of the hypergroup (A,+) which is the zero of the semigroup (A,\cdot) is usually called the zero of the hyperring $(A,+,\cdot)$ and it is usually denoted by 0. By an identity of the hyperring $(A,+,\cdot)$, we mean an identity of the semigroup (A,\cdot) which is usually denoted by 1. For x, y ϵ A and n a positive integer, let x denote the unique inverse of x in the canonical hypergroup (A,+), xy denote x.y and x^n denote xx...x (n times). It then follows easily that

- 1. 0' = 0,
- 2. (x')' = x for all $x \in A$,
- 3. x'y = (xy)' = xy' for all x, y ϵ A and
- 4. x'y' = xy for all $x, y \in A$.

A commutative hyperring A is a hyperring such that xy = yx for all x, y ϵ A.

A commutative hyperring A is called a <u>hyperintegral</u> <u>domain</u> if for x, y ϵ A, xy = 0 implies x = 0 or y = 0.

A commutative hyperring (A,+,.) is called a <u>hyperfield</u> if $(A \setminus \{0\},.)$ is a group.

A nonempty subset B of a hyperring (A,+,.) is called a <u>subhyperring</u> of (A,+,.) if B forms a hyperring under the same addition and multiplication of (A,+,.), that is, B is a canonical subhypergroup of the hypergroup (A,+) and B is a subsemigroup of the semigroup (A,.). A subhyperring of a hyperring A need not contain the zero of A. See Example 6 on page 16 as an example.

A nonempty subset I of a hyperring (A,+,.) is called a <u>left</u> [right] <u>hyperideal</u> of A if I is a subhypergroup of the hypergroup (A,+) and $AI \subseteq I$ [IA $\subseteq I$]. A nonempty subset I of a hyperring A is called a <u>hyperideal</u> of A if it is both a left and a right hyperideal of A.

A hyperideal I of a hyperring A is called a <u>prime</u> <u>hyperideal</u> if for x, y ϵ A, xy ϵ I implies x ϵ I or y ϵ I.

A hyperideal I of a hyperring A is called a <u>maximal hyperideal</u> if I \neq A and for a hyperideal K of A, I \subseteq K \subseteq A implies I = K or K = A.

A hyperring A in which $x^2 = x$ for all $x \in A$ is called a Boolean hyperring.

Let A be a hyperring and I a hyperideal of A. Then the following statements hold :

- (1) 0 E I.
 - (2) For every x ε I, x ε I.
- (3) For any x, y ϵ A, either (x + I) \cap (y + I) = ϕ or x + I = y + I.

Hence I is a subhyperring of A and for x, y ϵ A, x ϵ y + I if and only if x + I = y + I.

Let $A/I = \{x + I \mid x \in A\}$. Then A/I becomes a hyperring under the addition and the multiplication defined as follows:

$$(x + I) + (y + I) = \{z + I \mid z \in x + y\}$$

and

$$(x + I) \cdot (y + I) = xy + I$$

for all x, y ϵ A. The hyperring A/I has I as its zero and for $x \epsilon$ A, x' + I is the unique inverse of x + I under addition. The hyperring A/I is called a quotient hyperring of the hyperring A.

Let A and B be hyperrings. A map φ : A \rightarrow B is called a homomorphism if $\varphi(x + y) = \varphi(x) + \varphi(y)$ and $\varphi(xy) = \varphi(x)\varphi(y)$ for all x, $y \in A$. If φ is a homomorphism of A into B, the kernel of φ , denoted by ker φ is defined by

$$\ker \varphi = \{x \in A \mid \varphi(x) = 0\}.$$

A 1-1 homomorphism of A onto B is called an <u>isomorphism</u>. If there exists a 1-1 homomorphism of A into B, then A is said to be <u>embedded</u> in B. The hyperring A is said to be <u>isomorphic</u> to the hyperring B, written by A \sim B if there is an isomorphism of A onto B.

If I is a hyperideal of a hyperring A, then the map $\phi: A \to A/I$ defined by $\phi(x) = x + I \cdot (x \in A)$ is an onto homomorphism.

A semigroup S is said to admit a hyperring structure if there exists a hyperoperation + on S° such that (S°,+,.) is a hyperring where . is the operation of S°. Note that if a semigroup S admits a ring structure, then S admits a hyperring structure. The converse is not generally true. By Example 7 on page 18, the multiplicative semigroup [0,1] admits a hyperring structure but it is known from [6] that it does not admit a ring structure. By Example 8 on page 21, every group admits a hyperring structure. By [9], the symmetric group of degree n admits a ring structure if and only if $n \le 2$. Hence for $n \ge 3$, the symmetric group of degree n admits a hyperring structure which does not admit a ring structure.

The following examples give various examples of hypergroups and hyperrings. Included in each example, we point out some of its important properties.

Example 1. Let A be a nonempty set. Define

xoy = A

for all x, $y \in A$. Then (A,o) is a hypergroup with the following properties :

- 1. For $x \in A$, x is an identity of (A,o).
- 2. For x, y ϵ A, x and y are inverses of each other in (A,o). The hypergroup (A,o) is usually called a <u>total</u> hypergroup.
- Example 2. Let (G,.) be a group with identity e and N a normal subgroup of G. Define

for all x, y ϵ G. Since N is a normal subgroup of G, we have that for x, y, z ϵ G,

$$(xoy)oz = \bigcup_{a \in xoy} (aoz) = \bigcup_{a \in Nxy} Naz = NNxyz = Nxyz$$

and

$$xo(yoz) = \bigcup_{b \in yoz} (xob) = \bigcup_{b \in Nyz} Nxb = NxNyz = Nxyz.$$

Moreover for $x \in G$,

$$Gox = \bigcup_{g \in G} (gox) = \bigcup_{g \in G} Ngx = NGx = Gx = G$$

and

$$xoG = \bigcup_{g \in G} (xog) = \bigcup_{g \in G} Nxg = NxG = NG = G.$$

Therefore (xoy)oz = xo(yoz) for all x, y, z ϵ G and Gox = G = xoG for all x ϵ G. Hence (G,o) is a hypergroup. This hypergroup has the following important properties:

- (1) N is the set of all identities of the hypergroup (G,o).
- (2) For each $x \in G$, Nx^{-1} is the set of all inverses of x in (G,o). From (1) and (2), we have that if G is abelian, then (G,o) is canonical if and only if $N = \{e\}$.

To prove (1), let a ε N. Then Na = N = aN. Thus for each $x \varepsilon G$, $x \varepsilon Nx = Nx \cap xN = Nax \cap xaN = Nax \cap Nxa = (aox) \cap (xoa)$. Hence a is an identity of (G,o). Let e^* be an identity of (G,o). Then $e \varepsilon (eoe^*) \cap (e^*oe) = Nee^* \cap Ne^* e = Ne^* \cap e^* Ne = Ne^* \cap e^* N = Ne^*$ since N is normal in (G, .), so $N = Ne = Ne^*$. Thus $e^* \varepsilon N$. This proves that N is the set of all identities of (G,o) as required.

To prove (2), let $x \in G$. Let $y \in Nx^{-1}$. Then xy, $yx \in N$, so $xyyx \in N$. By (1), xyyx is an identity of (G,o). Since xy, $yx \in N$, it

follows that Nxyyx = Nyx and xyyxN = xyN which imply that $xyyx \in Nyx \cap xyN = (yox) \cap (xoy)$. Therefore y is an inverse of x. Conversely, let z be an inverse of x in (G,o). Then there exists an element u in N such that u $\in (xoz) \cap (zox)$, so u $\in Nxz \cap Nzx$. Therefore N = Nzx which implies that $zx \in N$. Thus $z = ze = zxx^{-1} \in Nx^{-1}$. Hence Nx^{-1} is the set of all inverses of x.

Example 3. For each x, y ϵ $[0,\infty)$, define

$$xoy = \begin{cases} \{\min\{x,y\}\} & \text{if } x \neq y, \\ [x,\infty) & \text{if } x = y \end{cases}$$

where $\min\{x,y\}$ denotes the minimum element of $\{x,y\}$. Then $([0,\infty),o)$ is a commutative hypergroupoid. It follows easily from the definition of the hyperoperation o on $[0,\infty)$ that for x, $y \in [0,\infty)$,

$$[x,_{\infty}) \circ y = y \circ [x,_{\infty}) = \begin{cases} [x,_{\infty}) & \text{if } x \leq y, \\ \{y\} & \text{if } x > y. \end{cases}$$

Hence $[0,\infty)$ ox = xo $[0,\infty)$ = $[0,\infty)$ for all x ε $[0,\infty)$. Then for x, y ε $[0,\infty)$, we have

$$(xox)oy = [x, \infty)oy =$$

$$\begin{cases} [x, \infty) & \text{if } x \leq y, \\ \{y\} & \text{if } x > y \end{cases}$$

and

$$xo(xoy) = \begin{cases} xox = [x, \infty) & \text{if } x < y, \\ xo[x, \infty) = [x, \infty) & \text{if } x = y, \\ xoy = \{y\} & \text{if } x > y \end{cases}$$

which imply that

$$(xox)oy = xo(xoy) \qquad \dots (*)$$

for all x, y ε $[0,\infty)$. In particular, (xox)ox = xo(xox) for all $x \varepsilon [0,\infty)$. It then follows from (*) and the commutativity of o on $[0,\infty)$ that for x, y $\varepsilon [0,\infty)$,

$$(yox)ox = (xoy)ox = xo(xoy) = (xox)oy = yo(xox)$$

and

$$(xoy)ox = (yox)ox = xo(yox).$$

By the definition of o on $[0,\infty)$, we have that for distinct elements x, y and z in $[0,\infty)$,

$$(xoy)oz = {min{x,y,z}} = xo(yoz).$$

Now, we have that

$$(xoy)oz = xo(yoz)$$

for all x, y, z ϵ $[0,\infty)$ and for x ϵ $[0,\infty)$,

$$[0,\infty)ox = [0,\infty) = xo[0,\infty).$$

Hence $([0, \infty), 0)$ is a hypergroup.

For any $x \in [0, \infty)$, we have $x + 1 \in [0, \infty)$ and $xo(x + 1) = \{x\}$, so $x + 1 \notin xo(x + 1)$. Hence for $x \in [0, \infty)$, x is not an identity of the hypergroup $([0, \infty), o)$, that is, $([0, \infty), o)$ has no identity.

Example 4. Let H = {e, a, b, c}. Define the hyperoperation o on H
as follows:

0	е	а	Ъ	c
е	{e}	{a}	{b}	{c}
а	{a}	{b,c}	Н	{a,b,c}
Ъ	{b}	{a,b,c}	Н	н
С	{c}	Н	Н	H

It follows from the first row and the first column of the table that

$$eox = \{x\} = xoe$$
 (*)

for all $x \in H$. Note that the hyperoperation o is not commutative on H since $aoc = \{a,b,c\}$ but coa = H. Since the union of the sets in each row or of the sets in each column is equal to H, we have that

$$Hox = H = xoH$$
 (**)

for all x ε H. It is clearly seen from (*) that for x, y, z ε H, if at least one of them is e, then (xoy)oz = xo(yoz). We have from the given table that for x, y ε H \sim {e}, b, c ε xoy. Since coa = cob = coc = H and aob = bob = cob = H, we get that (xoy)oz = H = xo(yoz) for all x, y, z ε H \sim {e}. Hence

$$(xoy)oz = xo(yoz)$$
 $(***)$

for all x, y, z ϵ H. From (*), (**) and (***), (H,o) is a hypergroup having e as a scalar identity and the hypergroup (H,o) has the following properties:

- 1. The element a of H has no inverse in (H,o) since e does not belong to any of the sets ace, aca, boa and acc.
- 2. b and c are both inverses of b and c since bob = boc = cob = coc = H. Thus an inverse of b is not unique and so is an inverse of c.

Example 5. Let H = {e, a, b, c, d}. Define the hyperoperation o on H
as follows:

0	е	а	Ъ	С	d
e ·	{ e}	{a }	{ b}	{ c}	{ d}
a	{a}	{a,b}	{a,b}	Н	H √ {e}
ь	{b}	{a,b}	. {a,b}	H \ {e}	н
с	{c}	Н	H \ {e}	{c,d}	{c,d}
d	{d}	H \ {e}	н	{c,d}	{c,d}

Observe that the hyperoperation o is commutative on H. From the first row and the first column, we have that

for all $x \in H$. Since the union of the sets in each row or of the sets in each column is equal to H, it follows that

$$Hox = H = xoH \qquad \dots (2)$$

for all $x \in H$. We have easily from (1) that for x, y, $z \in H$, at least one of them is e implies that (xoy)oz = xo(yoz). The following statements are obtained easily from the table :

- (i) $xoy = \{a,b\}$ if $x, y \in \{a,b\}$.
- (ii) $xoy = \{c,d\}$ if $x, y \in \{c,d\}$.
- (iii) $\{a,b\}_{ox} = xo\{a,b\} = H$ if $x \in \{c,d\}$.
- (iv) $\{c,d\}_{OX} = xo\{c,d\} = H$ if $x \in \{a,b\}$.
- (v) $H \setminus \{e\} \subseteq xoy = yox$ if $x \in \{a,b\}$ and $y \in \{c,d\}$.
- (vi) $(H \setminus \{e\})$ ox = xo $(H \setminus \{e\})$ = H for all x' ϵ H \ $\{e\}$.

Hence for x, y, z ϵ $\dot{H} \setminus \{e\}$, we have from (i) and (ii), respectively that

$$(xoy)oz = {a,b} = xo(yoz)$$
 if x, y, z $\epsilon {a,b}$

and

$$(xoy)oz = \{c,d\} = xo(yoz)$$
 if x, y, z $\epsilon \{c,d\}$,

and if exactly two elements of x, y and z are in either $\{a,b\}$ or $\{c,d\}$, then from (i) - (vi), we get

$$(xoy)oz = H = xo(yoz).$$

Now, we obtain

$$(xoy)oz = xo(yoz) \qquad \dots (3)$$

for all x, y, z \in H. From (1), (2) and (3), (H,o) is a hypergroup having e as a scalar identity. Then e is the unique inverse of e in (H,o). Since e \in H = aoc = coa, e \notin aox for all x \in H\{c} and e \notin cox for all x \in H\{a}, we have that a and c are unique inverses of each other in (H,o). Similarly, b and d are unique inverses of each other in (H,o). For x \in H, let x denote the unique inverse of x in (H,o).

To show that (H,o) is reversible, let x, y, $z \in H$ be such that $x \in yoz$. If x = e, then $e \in yoz$, so $z = y' \in y'oe = y'ox$. If y = e, then $x \in eoz = \{z\}$, so $z = x \in eox = e'ox = y'ox$. If z = e, then x = y and hence $z = e \in y'oy = y'ox$. Therefore we prove that if at least one of x, y, and z is e, then $z \in y'ox$.

Assume that x, y, z ϵ H $\{e\}$.

Case 1: x = a. Since a' = c, b' = d, c' = a and d' = b, we have from the table that

y'ox = y'oa =
$$\begin{cases} H & \text{if } y = a, \\ H \setminus \{e\} & \text{if } y = b, \\ \{a,b\} & \text{if } y = c, \\ \{a,b\} & \text{if } y = d. \end{cases}$$
 (*)

If $y \in \{c,d\}$, it follows from the table and a ϵ yoz that z = a or z = b. By (*), $z \in y'$ oa = y' ox .

Case 2 : x = b. Then

$$y = y = 0$$

$$y = y = 0$$

$$\{a,b\} \quad \text{if } y = a,$$

$$\{a,b\} \quad \text{if } y = b,$$

$$\{a,b\} \quad \text{if } y = c,$$

$$\{a,b\} \quad \text{if } y = d.$$

If $y \in \{c,d\}$, from $b \in yoz$, we have that z = a or z = b. By (**), $z \in y'$ ob = y' ox.

Case 3: x = c. The proof of this case is similar to that of Case 1.

Case 4: x = d. The proof of this case is similar to that of Case 2.

Hence (H,o) is a canonical hypergroup. From (i), {a,b} is a subhypergroup of (H,o) and a and b are both identities of this subhypergroup. Then {a,b} is a subhypergroup of (H,o) which is not canonical.

Example 6. Define the hyperoperation \bullet on \mathbb{Z}_3 as follows:

•	0	1	2
0	{0}	{1}	{2}
1	{1}	{1}	Z ₃
2	{2}	z ₃	{2}

Then (\mathbf{Z}_3, \bullet) is a commutative hypergroupoid. It follows from the first row and the first column of the table that

$$0 \oplus x = \{x\} = x \oplus 0$$
(1)

for all $x \in \mathbb{Z}_3$. Since the union of the sets in each row or of the sets in each column is equal to \mathbb{Z}_3 , we have that

for all $x \in \mathbb{Z}_3$. It is clearly seen from (1) that for x, y, $z \in \mathbb{Z}_3$, if at least one of them is 0, then $(x \oplus y) \oplus z = x \oplus (y \oplus z)$. The following statements are obtained easily from the table:

- (i) $x \cdot x \cdot x = \{x\}$ for all $x \in \mathbb{Z}_3$.
- (ii) $x \oplus y = \mathbb{Z}_3$ if x, $y \in \mathbb{Z}_3 \setminus \{0\}$ and $x \neq y$.

Hence for x, y, z $\in \mathbb{Z}_3$ {0}, we have from (i) that

$$(x \oplus x) \oplus x = \{x\} = x \oplus (x \oplus x)$$

and if at least two elements of x, y and z are distinct, then from (i), (ii) and (2), we get

$$(x \oplus y) \oplus z = Z_3 = x \oplus (y \oplus z).$$

Hence

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$
(3)

for all x, y, z \in \mathbb{Z}_3 . From (1), (2) and (3), (\mathbb{Z}_3 , \oplus) is a hypergroup having 0 as a scalar identity. Since 0 \in \mathbb{Z}_3 = 1 \oplus 2 = 2 \oplus 1 and 0 is not an element of any of the sets 1 \oplus 0, 1 \oplus 1, 2 \oplus 0 and 2 \oplus 2, we have that 1 and 2 are unique inverses of each other in (\mathbb{Z}_3 , \oplus). For x \in \mathbb{Z}_3 , let x' denote the unique inverse of x in (\mathbb{Z}_3 , \oplus). Note that 0' = 0, 1' = 2 and 2' = 1.

To show that $(\mathbf{Z}_3, \mathbf{\oplus})$ is reversible, let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{Z}_3$ be such that $\mathbf{x} \in \mathbf{y} \in \mathbf{z}$. If $\mathbf{x} = \mathbf{0}$, then $\mathbf{0} \in \mathbf{y} \in \mathbf{z}$, so $\mathbf{z} = \mathbf{y}' \in \mathbf{y}' \in \mathbf{0} = \mathbf{y}' \in \mathbf{x}$. If $\mathbf{y} = \mathbf{0}$, then $\mathbf{x} \in \mathbf{0} \in \mathbf{z} = \{\mathbf{z}\}$, so $\mathbf{z} = \mathbf{x} \in \mathbf{0} \in \mathbf{x} = \mathbf{0}' \in \mathbf{x} = \mathbf{y}' \in \mathbf{x}$. If $\mathbf{z} = \mathbf{0}$, then $\mathbf{x} = \mathbf{y}$ and hence $\mathbf{z} = \mathbf{0} \in \mathbf{y}' \in \mathbf{y} = \mathbf{y}' \in \mathbf{x}$. Therefore we prove that if at least one of \mathbf{x} , \mathbf{y} and \mathbf{z} is $\mathbf{0}$, then $\mathbf{z} \in \mathbf{y}' \in \mathbf{x}$.

Assume that x, y, z $\epsilon \mathbb{Z}_{3} \{0\}$. Then

$$y' \oplus x = \begin{cases} \mathbb{Z}_3 & \text{if } x = 1 \text{ and } y = 1, \\ \{1\} & \text{if } x = 1 \text{ and } y = 2, \\ \{2\} & \text{if } x = 2 \text{ and } y = 1, \\ \mathbb{Z}_3 & \text{if } x = 2 \text{ and } y = 2. \end{cases}$$
 (*)

If x = 1 and y = 2, from $x \in y \oplus z$, we have that z = 1. If x = 2 and y = 1, from $x \in y \oplus z$, we have that z = 2. By (*), $z \in y \oplus x$.

Hence (\mathbf{Z}_3, \bullet) is a canonical hypergroup and $\{1\}$ is a canonical subhypergroup of (\mathbf{Z}_3, \bullet) which does not contain 0.

Next, we shall show that the usual multiplication \cdot on \mathbb{Z}_3 is distributive over \oplus , that is, $x \cdot (y \oplus z) = (x \cdot y) \oplus (x \cdot z)$ for all x, y, $z \in \mathbb{Z}_3$. Let x, y, $z \in \mathbb{Z}_3$. It is clear from the given table that if at least one of x, y and z is 0, then $x \cdot (y \oplus z) = (x \cdot y) \oplus (x \cdot z)$. If x, y, $z \in \mathbb{Z}_3 \setminus \{0\}$, then from (i) and (ii), we get

$$x.(y \oplus z) = \begin{cases} \{x.y\} = (x.y) \oplus (x.z) & \text{if } y = z, \\ \mathbb{Z}_3 = (x.y) \oplus (x.z) & \text{if } y \neq z. \end{cases}$$

This proves that $x.(y \oplus z) = (x.y) \oplus (x.z)$ for all $x, y, z \in \mathbb{Z}_3$. Since $(\mathbb{Z}_3 \setminus \{0\},.)$ is an abelian group, $(\mathbb{Z}_3, \oplus,.)$ is a hyperfield.

Since $l \oplus l = l$ and $l \cdot l = l$, $\{l\}$ is a subhyperring of the hyperfield $(\mathbf{Z}_3, \oplus, \cdot)$ which does not contain 0. The map $\phi: \mathbf{Z}_3 \to \mathbf{Z}_3$ defined by $\phi(\mathbf{x}) = l$ for all $\mathbf{x} \in \mathbf{Z}_3$ is a homomorphism from the hyperfield $(\mathbf{Z}_3, \oplus, \cdot)$ into itself but $\phi(0) \neq 0$. Observe that $\ker \phi = \phi$.

Example 7. For each x, $y \in [0,1]$, define

$$x \oplus y = \begin{cases} \{\max\{x,y\}\} & \text{if } x \neq y, \\ [0,x] & \text{if } x = y \end{cases}$$

where $\max\{x,y\}$ denotes the maximum element of $\{x,y\}$. Then ([0,1], \oplus)

is a commutative hypergroupoid. It follows easily from the definition of the hyperoperation \oplus on [0,1] that for x, y ϵ [0,1],

$$[0,x] \oplus y = y \oplus [0,x] = \begin{cases} \{y\} & \text{if } x < y, \\ [0,x] & \text{if } x \ge y. \end{cases}$$

Hence $[0,1] \oplus x = x \oplus [0,1] = [0,1]$ for all $x \in [0,1]$. Then for x, $y \in [0,1]$, we get

$$(x \oplus x) \oplus y = [0,x] \oplus y = \begin{cases} \{y\} & \text{if } x < y, \\ [0,x] & \text{if } x \ge y. \end{cases}$$

and

$$x \oplus (x \oplus y) = \begin{cases} x \oplus y = \{y\} & \text{if } x < y, \\ x \oplus [0,x] = [0,x] & \text{if } x = y, \\ x \oplus x = [0,x] & \text{if } x > y \end{cases}$$

which imply that

$$(x \oplus x) \oplus y = x \oplus (x \oplus y)$$
 (*)

for all x, y ϵ [0,1]. In particular, $(x \oplus x) \oplus x = x \oplus (x \oplus x)$ for all $x \epsilon$ [0,1]. It then follows from (*) and the commutativity of θ on [0,1] that for x, y ϵ [0,1],

$$(y \oplus x) \oplus x = (x \oplus y) \oplus x = x \oplus (x \oplus y) = (x \oplus x) \oplus y = y \oplus (x \oplus x)$$
 and

$$(x \oplus y) \oplus x = (y \oplus x) \oplus x = x \oplus (y \oplus x).$$

By the definition of \oplus on [0,1], we have that for distinct elements x, y and z in [0,1],

$$(x \oplus y) \oplus z = \{ \max\{x, y, z\} \} = x \oplus (y \oplus z).$$

Now, we obtain

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$

for all x, y, z ϵ [0,1]. Hence ([0,1], \bullet) is a hypergroup.

Since $0 \oplus x = \{x\} = x \oplus 0$ for all $x \in [0,1]$, 0 is a scalar identity of the hypergroup $([0,1], \oplus)$. Since $0 \in [0,x] = x \oplus x$ for all $x \in [0,1]$, we have that for $x \in [0,1]$, x is an inverse of x in $([0,1], \oplus)$. Since 0 is the scalar identity of $([0,1], \oplus)$, 0 is the unique inverse of 0 in $([0,1], \oplus)$. For $x \in (0,1]$, x is the unique inverse of x in $([0,1], \oplus)$ since for every $y \in [0,1] \setminus \{x\}$, $0 \not\in x \oplus y$ (= $\{\max\{x,y\}\}\}$). For $x \in [0,1]$, let x' denote the unique inverse of x in $([0,1], \oplus)$. Hence x' = x for all $x \in [0,1]$.

To show that ([0,1], \oplus) is reversible, let x, y, z ϵ [0,1] be such that x ϵ y \oplus z. Since

$$y \oplus z = \begin{cases} \{\max\{y,z\}\} & \text{if } y \neq z, \\ [0,y] & \text{if } y = z, \end{cases}$$

we have that x = y > z, x = z > y, x < y = z or x = y = z. Each case gives $z \in y \oplus x$ as follows:

$$x = y > z \Longrightarrow z \in [0,x] = y \oplus x = y' \oplus x,$$
 $x = z > y \Longrightarrow z \in \{\max\{y,x\}\} = y \oplus x = y' \oplus x,$
 $x < y = z \Longrightarrow z \in \{\max\{y,x\}\} = y \oplus x = y' \oplus x \text{ and}$
 $x = y = z \Longrightarrow z \in [0,y] = y \oplus x = y' \oplus x.$

This proves that $([0,1], \oplus)$ is a canonical hypergroup.

Next, we shall show that $x.(y \oplus z) = (x.y) \oplus (x.z)$ for all x, y, $z \in [0,1]$ where \cdot is the usual multiplication on [0,1]. Let x, y, $z \in [0,1]$. Then

$$x.(y \oplus z) = \begin{cases} \{x.z\} = (x.y) \oplus (x.z) & \text{if } y < z, \\ x.[0,y] = [0,x.y] = (x.y) \oplus (x.z) & \text{if } y = z, \\ \{x.y\} = (x.y) \oplus (x.z) & \text{if } y > z. \end{cases}$$

Hence ([0,1], \oplus ,.) is a hyperring with identity 1. Since for x, $y \in [0,1]$, $x \cdot y = 0$ implies x = 0 or y = 0, it follows that ([0,1], \oplus ,.) is a hyperintegral domain and {0} is a proper prime hyperideal of ([0,1], \oplus ,.). The hyperring ([0,1], \oplus ,.) is not a hyperfield since ((0,1],.) is not a group. Also, [0,1) is a maximal hyperideal of ([0,1], \oplus ,.) since [0,1) is a subhypergroup of ([0,1], \oplus) and [0,1].[0,1) \subseteq [0,1).

Example 8. Let (G,.) be a group. For x, y $\in G^{\circ}$, define

$$x + y = \begin{cases} \{x\} & \text{if } y = 0, \\ \{y\} & \text{if } x = 0, \\ G^{\circ} \setminus \{x\} & \text{if } x = y \neq 0, \\ \{x,y\} & \text{if } x \neq y, x \neq 0 \text{ and } y \neq 0. \end{cases}$$

Then $(G^{\circ},+)$ is a commutative hypergroupoid and

$$0 + x = \{x\} = x + 0$$
 (*)

for all $x \in G^{\circ}$. Note that $G^{\circ} = G \cup \{0\}$ and $G^{\circ} \cdot x = x \cdot G^{\circ} = G^{\circ}$ for all $x \in G$ since (G, \cdot) is a group. First, we claim that for distinct elements $a, b \in G$,

$$(a + a) + b = G^{0} = a + (a + b).$$
 (**)

Let a, b ϵ G be such that a \neq b. Then

$$(a + a) + b = (G^{\circ} \setminus \{a\}) + b$$

 $\supseteq (0 + b) \cup (b + b)$
 $= \{b\} \cup (G^{\circ} \setminus \{b\})$
 $= G^{\circ}$

and

$$a + (a + b) = a + \{a,b\}$$

= $(a + a) \cup (a + b)$
= $(G^{\circ} \setminus \{a\}) \cup \{a,b\}$
= G° .

Hence $(a + a) + b = G^{0} = a + (a + b)$.

To show that + is associative on G° , let x, y, $z \in G^{\circ}$. If at least one of x, y and z is 0, it follows from (*) that (x + y) + z = x + (y + z). Now, assume that x, y, $z \in G$. If x = y = z, then (x + y) + z = (x + x) + x = x + (x + x) = x + (y + z) since + is commutative on G° . If x, y and z are all distinct, we get

$$(x + y) + z = \{x,y\} + z$$

$$= (x + z) \cup (y + z)$$

$$= \{x,z\} \cup \{y,z\}$$

$$= \{x,y,z\}$$

$$= \{x,y\} \cup \{x,z\}$$

$$= (x + y) \cup (x + z)$$

$$= x + \{y,z\}$$

$$= x + (y + z).$$

It follows from (**) and the commutativity of + on G^{O} that if exactly two elements of x, y and z are equal, then $(x + y) + z = G^{O} = x + (y + z)$. This proves that (x + y) + z = x + (y + z) for all x, y, z $\in G^{O}$.

For $x \in G^{\circ}$, if x = 0, then $G^{\circ} + x = G^{\circ} + 0 = G^{\circ}$ and if $x \neq 0$, then $G^{\circ} + x \supseteq (x + x) \cup (0 + x) = (G^{\circ} \setminus \{x\}) \cup \{x\} = G^{\circ}$. Then $G^{\circ} + x = x + G^{\circ} = G^{\circ}$ for all $x \in G^{\circ}$.

Now, we have that $(G^{\circ},+)$ is a hypergroup and 0 is the scalar identity of $(G^{\circ},+)$. It follows from the definition of + on G° that for x, $y \in G^{\circ}$, $0 \in x + y$ if and only if x = y. Hence for $x \in G^{\circ}$, x is

the unique inverse of x in $(G^{\circ},+)$. For $x \in G^{\circ}$, let x' denote the unique inverse of x in $(G^{\circ},+)$.

To show that $(G^{\circ},+)$ is reversible, let x, y, $z \in G^{\circ}$ be such that $x \in y + z$. If x = 0, then $0 \in y + z$, so $z = y' \in y' + 0 = y' + x$. If y = 0, then $x \in 0 + z = \{z\}$, so $z = x \in 0 + x = y' + x$. If z = 0, then x = y, so $z = 0 \in y' + y = y' + x$. Therefore we prove that if at least one of x, y and z is 0, then $z \in y' + x$. Assume that x, y, $z \in G$.

Case 1: y = z. Then $x \in z + z = G^{\circ} \{z\}$. Therefore $x \neq z$, and so $z \in \{z,x\} = z + x = y + x = y' + x$.

Case 2: $y \neq z$. Then $x \in y + z = \{y,z\}$ and $z \in G^{\circ}\{y\} = y + y$. If x = y, then $z \in y + y = y' + x$. If x = z, then $z \in \{y,x\} = y + x = y' + x$. Hence $(G^{\circ},+)$ is a canonical hypergroup.

Next, we shall show that x.(y+z) = (x.y) + (x.z) and (y+z).x = (y.x) + (z.x) for all x, y, $z \in G^0$. It is clear from (*) that if at least one of x, y and z is 0, then x.(y+z) = (x.y) + (x.z) and (y+z).x = (y.x) + (z.x). Assume that x, y, $z \in G$. If y=z, then

$$x.(y + z) = x.(y + y)$$

$$= x.(G^{\circ} \setminus \{y\})$$

$$= x.G^{\circ} \setminus \{x.y\}$$

$$= G^{\circ} \setminus \{x.y\}$$

$$= (x.y) + (x.y)$$

$$= (x.y) + (x.z)$$

and similarly, $(y + z) \cdot x = (y \cdot x) + (z \cdot x)$. If $y \neq z$, then $x \cdot y \neq x \cdot z$, and hence

$$x.(y + z) = x.\{y,z\}$$

= $\{x.y,x.z\}$
= $(x.y) + (x.z)$

and similarly, $(y + z) \cdot x = (y \cdot x) + (z \cdot x)$.

Hence (G°,+,.) is a hyperring.

Remark : We have from Example 8 that every group admits a hyperring structure.

Let X be a set. A partial transformation of X is a map from a subset of X into X. The empty transformation of X is the partial transformation of X with empty domain and it is denoted by 0. For a partial transformation α of X, the domain and range of α are denoted by $\Delta\alpha$ and $\nabla\alpha$, respectively. Let P_X be the set of all partial transformations of X (including 0). For $\alpha, \beta \in P_X$, define the product $\alpha\beta$ as follows: If $\nabla\alpha \cap \Delta\beta = \phi$, let $\alpha\beta = 0$. If $\nabla\alpha \cap \Delta\beta \neq \phi$, let $\alpha\beta = (\alpha \mid (\nabla\alpha \cap \Delta\beta)\alpha^{-1})^{(\beta} \mid \nabla\alpha \cap \Delta\beta)$ (the composition of the maps

By a $\underline{\text{transformation}}$ $\underline{\text{semigroup}}$ on X, we mean a subsemigroup of P_X .

Let I_X be the set of all 1-l partial transformations of X. Then I_X is a subsemigroup of P_X and it is called the 1-l partial transformation semigroup or the symmetric inverse semigroup on X.

By a $\underline{\text{transformation}}$ of X, we mean a map of X into itself.

Let T_X be the set of all transformations of X. Then T_X is a subsemigroup of P_X with identity 1_X and it is called the \underline{full} $\underline{transformation}$ $\underline{semigroup}$ on X. Let

 G_{X} = the symmetric group on X,

 M_{X} = the set of all 1-1 transformations of X

and

 E_{χ} = the set of all onto transformations of X.

Then M_X and E_X are subsemigroups of T_X containing G_X .

For $\alpha \in T_X$, $x \in X$, α is said to be $\underline{1-1}$ at x if $(x\alpha)\alpha^{-1} = \{x\}$. For $\alpha \in T_X$, α is said to be $\underline{almost} \ \underline{1-1}$ if the set $\{x \in X \mid \alpha \text{ is not } 1-1 \text{ at } x\}$ is finite. Let AM_X be the set of all almost 1-1 transformations of X. Then AM_X is a subsemigroup of T_X containing M_Y (see [10]).

For $\alpha \in T_X$, α is said to be <u>almost onto</u> if $X \setminus \nabla \alpha$ is finite. Let AE_X be the set of all almost onto transformations of X. Then AE_X is a subsemigroup of T_X containing E_X (see [10]).

The <u>shift</u> of a partial transformation α of X is defined to be the set

$$S(\alpha) = \{x \in \Delta \alpha \mid x\alpha \neq x\}.$$

A partial transformation α of X is said to be almost identical if the shift of α is finite. Let

 $\mathbf{U}_{\mathbf{X}}^{}$ = the set of all almost identical partial transformations of \mathbf{X} ,

 ${
m V}_{
m X}$ = the set of all almost identical transformations of X and

 W_{X} = the set of all almost identical 1-1 partial transformations of X.

Then $\mathbf{U}_{\mathbf{X}}$, $\mathbf{V}_{\mathbf{X}}$ and $\mathbf{W}_{\mathbf{X}}$ are subsemigroups of $\mathbf{P}_{\mathbf{X}}$, $\mathbf{T}_{\mathbf{X}}$ and $\mathbf{I}_{\mathbf{X}}$, respectively. Let

 CP_{X} = the set of all constant partial transformations of X (including 0)

and

 ${
m CT}_{
m X}$ = the set of all constant transformations of X. Then ${
m CP}_{
m X}$ and ${
m CT}_{
m X}$ are subsemigroups of ${
m P}_{
m X}$ and ${
m T}_{
m X}$, respectively.

ศูนยวิทยทรัพยากรจุฬาลงกรณ์มหาวิทยาลัย