

CHAPTER 6

DESIGN CURVES FOR THAI FISHING VESSELS

From 1958 to 1986, Thailand built a large volume of fishing vessels mainly in woods. The size of the boats has been increasing steadily. Table (6.1) show the number of vessels built during the prescribed period classified by length over all (LOA) and the year built. Note that there was no boat less than 10.0 metres being built anymore and vessels over 40.0 metres in length have rarely been built.

Fortunately that the author has been engaged into fishing business since 1977. He has been visiting many boatyards and fishermen of the eastern and southern parts of Thailand. Information and raw data on fishing vessels are readily obtained apart from huge data supplied from fishery department.

To provide more pictures on the fishing industry, Table (6.2) and (6.3) give more information on the location of boatbuilding and kinds of main engines used.

For serious readers, [39;78] provides a good background on general aspects of fishing vessels' statistics.

Total number of fishing vessels is 4217. This report does not include the offset tables of these boats.

The author has been working out, by means of statistics, with the vessels'line plans and other particulars. The results come up by using boat length as a classified factor. Graphical representation of fishing vessels are plotted in Fig. (6.1) through Fig. (6.22). Hence main particulars of the vessels could be easily visualized. This gives the whole pictures of Thai fishing boat fleet. One main point of interests is that any naval architect could use this information to design traditional Thai fishing boats currently in used and time saving in the design process can be reduced enormously.

The purpose of doing so is to construct a family of design curves for Thai fishing boats.

Anyone who is interested in this field, should attempt to study further especially in view of the design and powering aspects.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

TABLE 6.1

THAI" FISHING VESSELS BUILT DURING 1958-1985

TOTAL		30	9	7	ж	ır	α	33		8 6		121	116	111	162	117	201	405	311	251	190	363 ;	613	408	113		09	136	1/1	200	45 .	4217
	.>40	1	1			_	-	+	-	+	+	_	-	+						4		7	T	-	4	T						· w
	40				_			1												Į.			"	7 -	4	1						Ŋ
Ī	39							T													7											7
	38						1												-													Н.
	37						1											-		-	4											.2
	36																	0	2 2	-	4											r.
	35																	-	1 -	-					-						_	. E
	34	1														~		0	7 -	1 -		-		,	7)	-						10
	33														П			,	7 -	1 0	2	ŕ	-						-			. ∞
	32															-	_	1 0	2	7					- (7						<u>ი</u>
	31																	0	ח נו	0 -	1 .	4									4	11
	30														7			1					-	-		-	2					13
	29													2	2	0	1	1 0	7 0	7 1	2				m		7					21.
	.28													2	2	1		1 0	7 1	0	4 ,	-1 .0	m ·	ro l	5	_						38.
	27												٠.	4	1		-	-1 -	-1 0	7		7 . 0	m	2	F)	- -	_	1	_	<u> </u>	_	42.
(m) KOJ	26		_	_	-	_	_	-	-	2			1	11	13	-	-		7)	0	-1 (7			175	-	-	2	2	_	_	94
. 9	.25				_				7		-	5	4	5	12	1	1	7 1	9	2	ט נ	7 .1		-	7	-	-	2	7	_	· m	6 114
	24			-	_	1		7	4	2	7	10	9	16	15	a	1 0	- 0	20 1	2			-	<u> </u>	2	-	_	8	77	7		186
	23				_	-	7	_	2		9	13	0	5	13	1	5 1		13	7			70	44	. 25	4	_	τυ		- ω	٦.	4 205
	22	-		_	-	7		7	m	7	21	14	4	9	-	-									32	ω	4	14	0	0	9	374
	21	~	-	1		-	_	-	10	13	18	21	5	17	<u> </u>		-	-		-	-					5	7	16	25	19	16	1 497
4 14	20	00	"	1	- -	_	-	7	3	8	4	12	00	12	1		77	22	36	33	30	13	34		58	5 17	2	22	3 30	5 26	-	1 501
	13	ľ	<u> -</u>	- -	-	-	-	_		2		12	15		-	_								126	88	26		21	. 38	15		607 661
	7	-	-		-	-	_	1 1	3 1	2 4	3 5	7 17	-	+	-	-			80	-		-	0 45	3 52	42	27	3 17	8. 30	9 28.	. 20	-	
2	17	-	-	-	-	-	_	_			_	_	22	-	-	-	-		36	40			30	23	12	10		_	-	-	-	273 303
	16	-	1 -[-	-	-	-	7	_	1 1	2 3	8	7	ω.	-	-	-	-	-	99 9		3 19	4 16	117	4 16	7 8	4	1 1	8	1 2	2 2	-	113 2
	15		-		+	-		_		_	-	-	-	-	-	- -		-	26	17	\dashv	+	7	-	-		-	-	-	-	-	62 11
	3 14			-		7	_	1	7	2	1	2 1	-	-		- -	-	1 3	1 8	1 4	7	1 1	3 7	9	2 4	1 -1	1 3	1	-	-	-	
	13	-	-	-	-			0		_	-		-	-	+	-	-	7		ď	-	-	-		-			2	-	-	-	16 19
	12		7	_	-			_	-	-	-	-	+	1 -	-	-	-	2	-		-	2 2	2	<u>м</u>	'n		2	-	\vdash	-	-	
	-	-	-	-	-		_		-	-	-	-	-	-	-	-	-	.,	-	1	-	.,,		1	_		1	+	-	-	-	4 13
	10		+	-			_	_	-	-	-	+		-	-	-	-	-	-	_		-	_	_		-	-	-	-	-	-	-
	70		-	-	_	_	_	_	-	-	-	-	-	-	-	-	-	_		_	-			_	-	-	+	+	+	-	-	-
	YEAR		1958	1959	1960	1961	1962	1963	1964	1965	9901	1300	130/	1968	1969	. 0761	1971	1972	1973	1974	1975	1976 .	1977	1978	1979	1980	1981	1001	1902	1903	1984	TOTAL

TABLE (6.2) LOCATION OF FISHING BOATBUILDING YARDS

PROVINCE	NUMBER OF BOA	T BUILDING & REPA	AIRING YARDS	*
	BUILDING	BUILD/REPAIR	REPAIRING	TOTAL
1. TRAD	15	6	2	23
2. CHANTRABURI	2	1 ,	3	6
3. RAYONG	9	. A-A-A-	5	14
4. CHOLBURI	5	2	7	14
5. CHACHURGSAO	2	- 4	2	4
6. SAMUTPRAKARN	14	10	5	29
7. SAMUTSAKORN	36	14	6	56
8. SAMUTSONGKRAM	16	9	5	30
9. PETCHBURI	8	1	4	13
10. PRACHUABKIRIKUN	9	1	3	13
11. CHUMPORN	1	9,4460mh 4	5	6
12. SURATHANI	1	5	2	8
13. NAKORNSRIDHUMRAJ	10	7	13	30
14. SONGKLA	1	_	5	6
15. PATTANI	5	2	4	11
16. NARATHIWAT	N.A.	N.A.	N.A.	N.A.
17. RANONG	N.A.	1919159	6	7
18. PUNGHA	N.A.	N.A.	N.A.	N.A.
19. PHUKET	N.A.	2	4	6
20. KRABI	N.A.	N.A.	N.A.	N.A.
21. TRUNG	N.A.	1	2	3
22. SATOOL	1 .	N.A.	4	5
23. BANGKOK	7	25	6	38
TOTAL	142	87	93	322

SOURCE : FISHERY DEPARTMENT

AND FIELD SURVEY

TABLE 6.3

```
*******************
```

Eureka: The Solver, Version 1.0

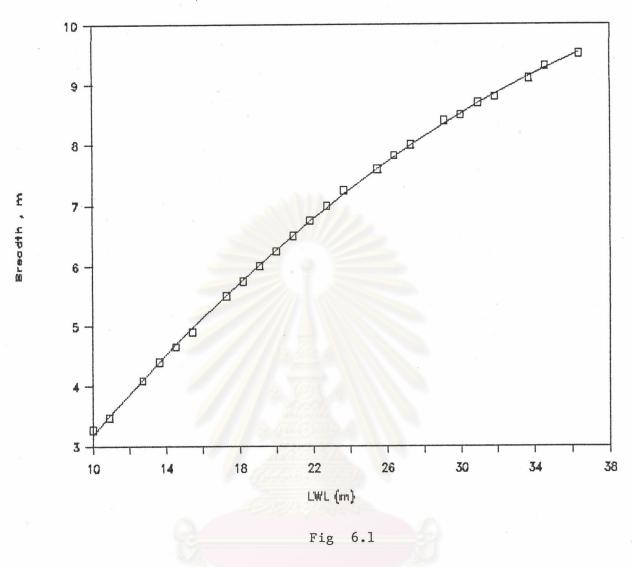
 127

```
; This example demonstrates Eureka's ability to find
; values for constants in a function that make the
; function best fit empirical data. Because the equation
; file includes a $ substlevel = 0 directive, Eureka will
; perform a Least Squares Fit to find the function (of
; the required form) that best matches the points
; x, (f(x) given.
; In this example, the function is
        f(x) := EXP(a * x^N + B)
; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
f(x) := A+B*x+C*x^2
f(10.0) = 3.28
f(10.9) = 3.48
f(12.75) = 4.1
f(13.65) = 4.4
f(14.56) = 4.65
f(15.47) = 4.9
f(17.3) = 5.5
f(18.2) = 5.75
f(19.1) = 6
f(20) = 6.25
f(20.93) = 6.5
f(21.84) = 6.75
f(22.75) = 7
f(23.65) = 7.25
f(25.48) = 7.6
f(26.39) = 7.82
f(27.3) = 8
f(29.12) = 8.4
f(30) = 8.5
f(30.95) = 8.7
f(31.85) = 8.8
f(33.67) = 9.1
f(34.58) = 9.3
f(36.4) = 9.5
```

Solution:

Variables Values

A = -.72970760


B = .43269095

C = -.0041500847

\$ substlevel = 0

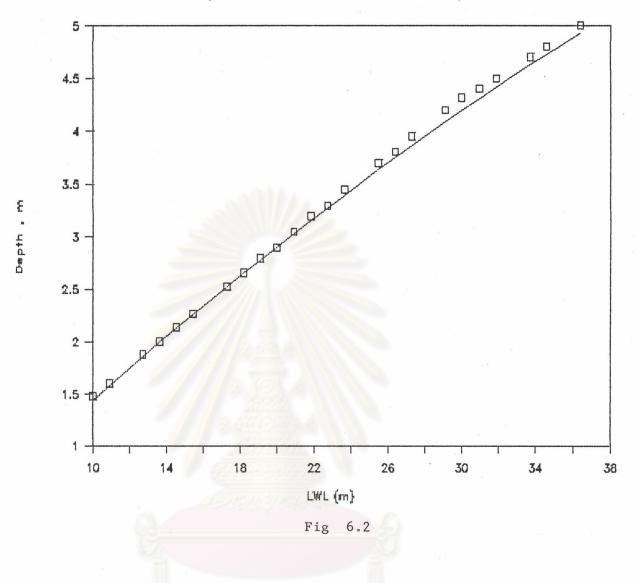
Maximum error is .097806585

Graph between LWL vs Breadth

ศูนยวิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

```
***********************
Eureka: The Solver, Version 1.0
Name of input file: A:\FIT13
**********************
       ; This example demonstrates Eureka's ability to find
       ; values for constants in a function that make the
       ; function best fit empirical data. Because the equation
       ; file includes a $ substlevel = 0 directive, Eureka will
       ; perform a Least Squares Fit to find the function (of
       ; the required form) that best matches the points
       ; x, (f(x) given.
        ; In this example, the function is
               f(x) := EXP(a * x^N + B)
       ; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
       f(x) := A+B*x+C*x^2
       f(10.0) = 1.48
       f(10.9) = 1.60
        f(12.75) = 1.88
        f(13.65) = 2.00
        f(14.56) = 2.14
        f(15.47) = 2.27
        f(17.3) = 2.53
        f(18.2) = 2.66
        f(19.1) = 2.80
        f(20) = 2.90
        f(20.93) = 3.05
        f(21.84) = 3.20
        f(22.75) = 3.30
        f(23.65) = 3.45
        f(25.48) = 3.70
        f(26.39) = 3.80
        f(27.3) = 3.95
        f(29.12) = 4.20
        f(30) = 4.32
        f(30.95) = 4.40
        f(31.85) = 4.50
        f(33.67) = 4.70
        f(34.58) = 4.80
        f(36.4) = 5.00
        $ substlevel = 0
 ***********************
         Solution:
                      Values
          Variables
```

Variables Values


A = -.20423092

B = .17308342

C = -.00080143043

Maximum error is .053015572

Graph between LWL vs Depth

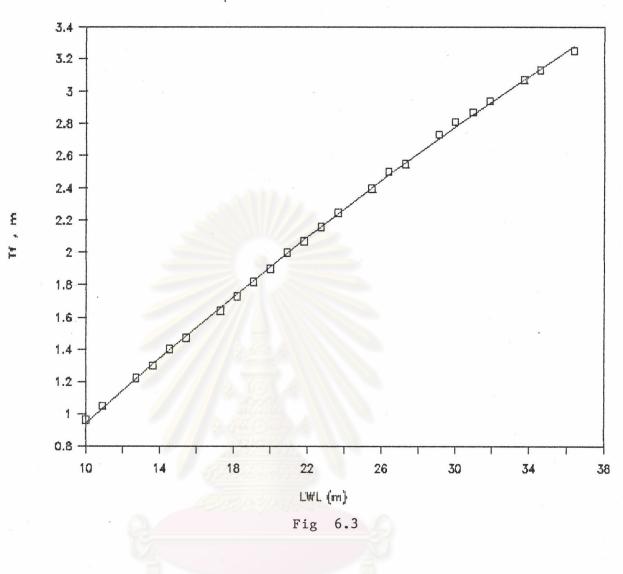
ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

131

Eureka: The Solver, Version 1.0

```
; This example demonstrates Eureka's ability to find
; values for constants in a function that make the
; function best fit empirical data. Because the equation
; file includes a $ substlevel = 0 directive, Eureka will
; perform a Least Squares Fit to find the function (of
; the required form) that best matches the points
; x, (f(x) given.
; In this example, the function is
        f(x) := EXP(a * x^N + B)
; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
f(x) := A+B*x+C*x^2
f(10.0) = 0.96
f(10.9) = 1.05
f(12.75) = 1.22
f(13.65) = 1.30
f(14.56) = 1.40
f(15.47) = 1.47
f(17.3) = 1.64
f(18.2) = 1.73
f(19.1) = 1.82
f(20) = 1.90
f(20.93) = 2.00
f(21.84) = 2.07
f(22.75) = 2.16
f(23.65) = 2.25
f(25.48) = 2.40
f(26.39) = 2.50
f(27.3) = 2.55
f(29.12) = 2.73
f(30) = 2.81
f(30.95) = 2.87
f(31.85) = 2.94
f(33.67) = 3.07
 f(34.58) = 3.13
f(36.4) = 3.25
 $ substlevel = 0
```

Solution:


Variables Values

A = -.13603374

B = .11294541

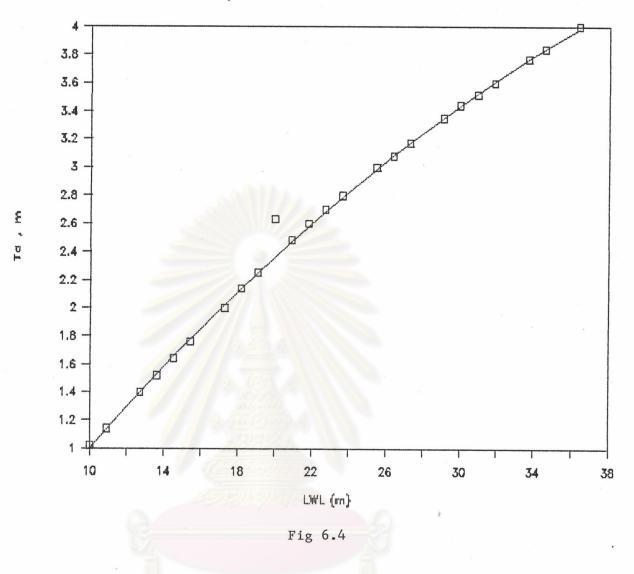
C = -.00052465854

Maximum error is .030027521

ศูนยวิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

```
; This example demonstrates Eureka's ability to find
; values for constants in a function that make the
; function best fit empirical data. Because the equation
; file includes a $ substlevel = 0 directive, Eureka will
; perform a Least Squares Fit to find the function (of
; the required form) that best matches the points
; x, (f(x) given.
; In this example, the function is
        f(x) := EXP(a * x^N + B)
; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
f(x) := A+B*x+C*x^2
f(10.0) = 1.02
f(10.9) = 1.14
f(12.75) = 1.40
f(13.65) = 1.52
f(14.56) = 1.64
f(15.47) = 1.76
f(17.3) = 2.00
f(18.2) = 2.14
f(19.1) = 2.25
f(20) = 2.36
f(20.93) = 2.48
f(21.84) = 2.60
f(22.75) = 2.70
f(23.65) = 2.80
f(25.48) = 3.00
f(26.39) = 3.08
f(27.3) = 3.17
f(29.12) = 3.35
f(30) = 3.44
f(30.95) = 3.52
f(31.85) = 3.60
f(33.67) = 3.77
f(34.58) = 3.84
f(36.4) = 4.00
$ substlevel = 0
```

Solution:


Variables Values

A = -.63545024

B = .17751764

C = -.0013871832

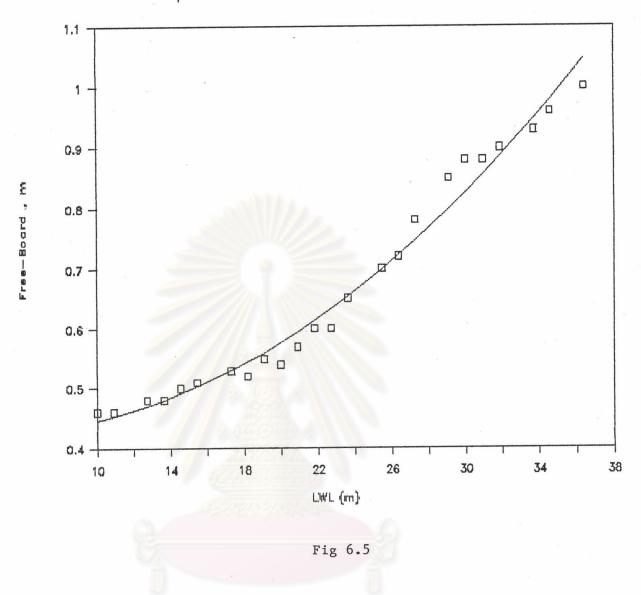
Maximum error is .020434825

์ คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

```
Eureka: The Solver, Version 1.0
```

```
; This example demonstrates Eureka's ability to find
; values for constants in a function that make the
; function best fit empirical data. Because the equation
; file includes a $ substlevel = 0 directive, Eureka will
; perform a Least Squares Fit to find the function (of
; the required form) that best matches the points
; x, (f(x) given.
: In this example, the function is
        f(x) := EXP(a * x^N + B)
; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
f(x) := A+B*x+C*x^2
f(10.0) = 0.46
f(10.9) = 0.46
f(12.75) = 0.48
f(13.65) = 0.48
f(14.56) = 0.50
f(15.47) = 0.51
f(17.3) = 0.53
f(18.2) = 0.52
f(19.1) = 0.55
f(20) = 0.54
f(20.93) = 0.57
f(21.84) = 0.60
f(22.75) = 0.60
f(23.65) = 0.65
f(25.48) = 0.70
f(26.39) = 0.72
f(27.3) = 0.78
f(29.12) = 0.85
f(30) = 0.88
f(30.95) = 0.88
f(31.85) = 0.90
f(33.67) = 0.93
f(34.58) = 0.96
f(36.4) = 1.00
$ substlevel = 0
```

Solution:


```
Variables Values

A = .43128735

B = -.0044404371

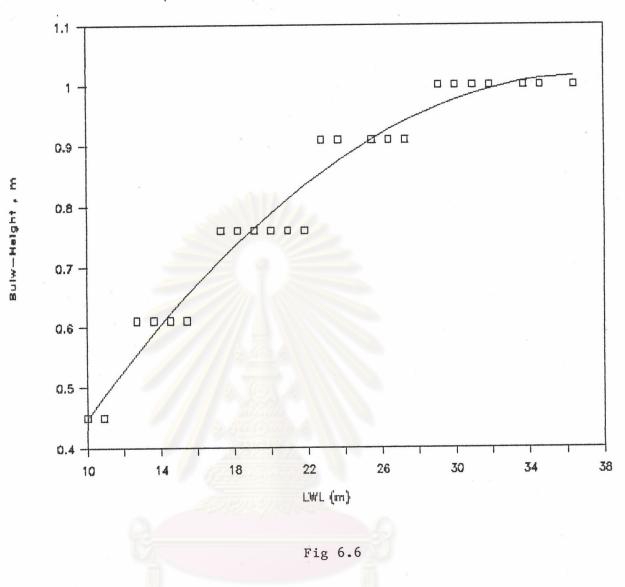
C = .00058588135
```

Maximum error is .054632546

คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

```
*************************
Eureka: The Solver, Version 1.0
Name of input file: A:\FIT17
***********************
       ; This example demonstrates Eureka's ability to find
       ; values for constants in a function that make the
       ; function best fit empirical data. Because the equation
       ; file includes a $ substlevel = 0 directive, Eureka will
       ; perform a Least Squares Fit to find the function (of
       ; the required form) that best matches the points
       ; x, (f(x) given.
       ; In this example, the function is
              f(x) := EXP(a * x^N + B)
       ; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
       f(x) := A+B*x+C*x^2
       f(10.0) = 0.45
       f(10.9) = 0.45
       f(12.75) = 0.61
       f(13.65) = 0.61
       f(14.56) = 0.61
       f(15.47) = 0.61
       f(17.3) = 0.76
       f(18.2) = 0.76
       f(19.1) = 0.76
       f(20) = 0.76
       f(20.93) = 0.76
       f(21.84) = 0.76
       f(22.75) = 0.91
       f(23.65) = 0.91
       f(25.48) = 0.91
       f(26.39) = 0.91
       f(27.3) = 0.91
       f(29.12) = 1.00
       f(30) = 1.00
       f(30.95) = 1.00
       f(31.85) = 1.00
       f(33.67) = 1.00
       f(34.58) = 1.00
       f(36.4) = 1.00
       $ substlevel = 0
*************************
```

Solution:


Variables Values

A = -.047685362

B = .057172979

C = -.00076918018

Maximum error is .074084624

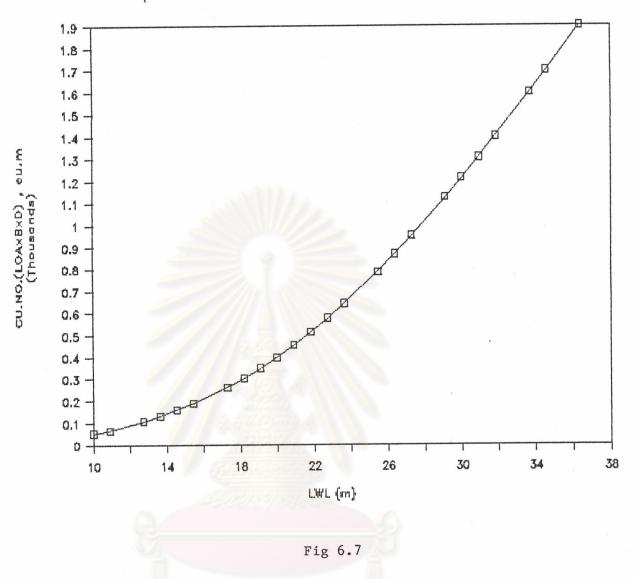
์ ศูนยวิทยทรัพยากร หาลงกรณ์มหาวิทยาลัย

```
***********************
Eureka: The Solver, Version 1.0
Name of input file: A:\FIT18
***********************
       ; This example demonstrates Eureka's ability to find
       ; values for constants in a function that make the
       ; function best fit empirical data. Because the equation
       ; file includes a $ substlevel = 0 directive, Eureka will
       ; perform a Least Squares Fit to find the function (of
       ; the required form) that best matches the points
       ; x, (f(x) given.
       ; In this example, the function is
              f(x) := EXP(a * x^N + B)
       ; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
       f(x) := A+B*x+C*x^2+d*x^3+E*x^4
       f(10.0) = 53.0
       f(10.9) = 66.0
       f(12.75) = 108.0
       f(13.65) = 131.0
       f(14.56) = 160.0
       f(15.47) = 190.0
       f(17.3) = 263.0
       f(18.2) = 304.0
       f(19.1) = 353.0
       f(20) = 400.0
       f(20.93) = 456.0
```

f(15.47) = 190.0 f(17.3) = 263.0 f(18.2) = 304.0 f(19.1) = 353.0 f(20) = 400.0 f(20.93) = 456.0 f(21.84) = 514.0 f(22.75) = 578.0 f(23.65) = 644.0 f(25.48) = 788.0 f(26.39) = 870.0 f(27.3) = 953.0 f(29.12) = 1126.0 f(30) = 1217.0 f(30.95) = 1307.0 f(31.85) = 1400.0 f(33.67) = 1600.0

\$ substlevel = 0

f(34.58) = 1700.0f(36.4) = 1900.0



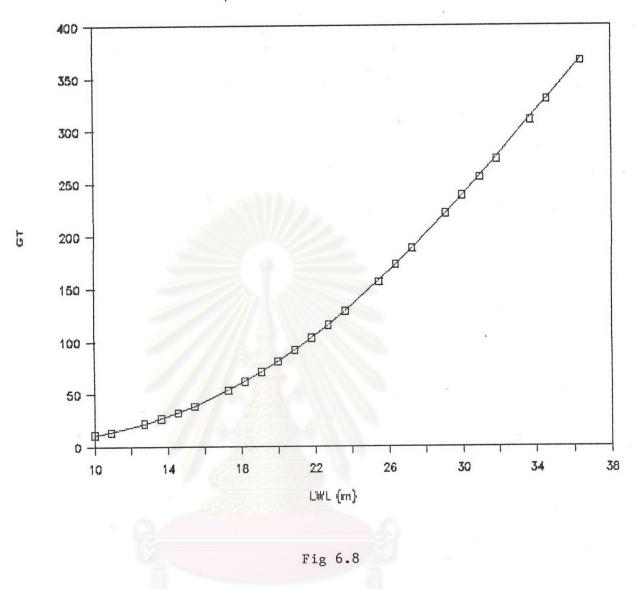
Solution:

Vari	ables	Values					
Α	=	-76.160194					
В	=	21.032352					
C	=	-2.1523850					
D	***	.15174370					
E	=	0018549928					

Maximum error is 4.8005339

Graph between LWL vs CU.NO.(LOAxBxD)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย


```
*************************
Eureka: The Solver, Version 1.0
                                                                       141
Name of input file: A:\FIT19
**********************
       ; This example demonstrates Eureka's ability to find
       ; values for constants in a function that make the
       ; function best fit empirical data. Because the equation
       ; file includes a $ substlevel = 0 directive, Eureka will
       ; perform a Least Squares Fit to find the function (of
       ; the required form) that best matches the points
       ; x, (f(x) given.
       ; In this example, the function is
               f(x) := EXP(a * x^N + B)
       ; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
       f(x) := A+B*x+C*x^2+D*x^3+E*x^4
       f(10.0) = 10.93
       f(10.9) = 13.57
       f(12.75) = 21.94
       f(13.65) = 26.76
       f(14.56) = 32.42
       f(15.47) = 38.51
       f(17.3) = 53.42
       f(18.2) = 61.53
        f(19.1) = 71.23
        f(20) = 80.85
        f(20.93) = 91.86
        f(21.84) = 103.41
        f(22.75) = 115.63
        f(23.65) = 128.36
        f(25.48) = 156.65
        f(26.39) = 172.78
        f(27.3) = 188.20
        f(29.12) = 221.24
        f(30) = 238.34
        f(30.95) = 255.55
        f(31.85) = 273.10
        f(33.67) = 309.67
        f(34.58) = 329.61
        f(36.4) = 366.74
        $ substlevel = 0
```

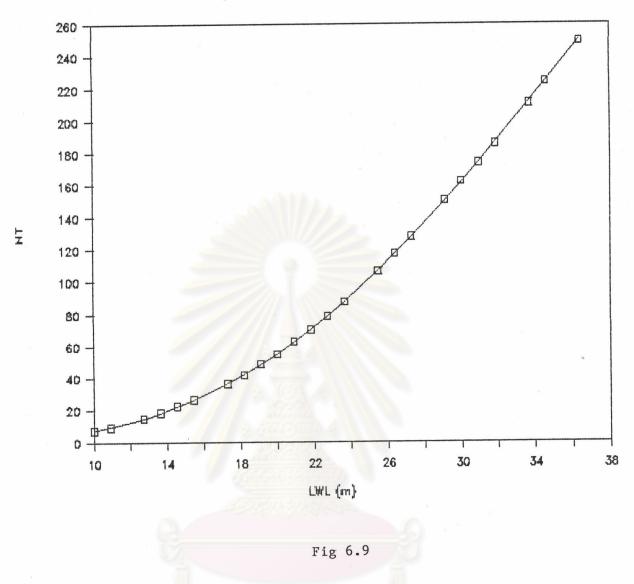
Solution:

Variables		Values
A	=	38267806
В	=	.86677978
C .	=	16655328
D	=	.022165816
E	=	00029221199

Maximum error is .84635763

ศูนยวิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

```
*************************
Eureka: The Solver, Version 1.0
Name of input file: A:\FIT110
*********************
       ; This example demonstrates Eureka's ability to find
       ; values for constants in a function that make the
       ; function best fit empirical data. Because the equation
       ; file includes a $ substlevel = 0 directive, Eureka will
       ; perform a Least Squares Fit to find the function (of
       ; the required form) that best matches the points
       ; x, (f(x) given.
       ; In this example, the function is
               f(x) := EXP(a * x^N + B)
       ; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
       f(x) := A+B*x+C*x^2+D*x^3+E*x^4
       f(10.0) = 7.43
       f(10.9) = 9.23
       f(12.75) = 14.92
       f(13.65) = 18.20
       f(14.56) = 22.05
       f(15.47) = 26.19
       f(17.3) = 36.32
        f(18.2) = 41.84
       f(19.1) = 48.44
        f(20) = 54.97
        f(20.93) = 62.47
        f(21.84) = 70.32
        f(22.75) = 78.63
        f(23.65) = 87.29
        f(25.48) = 106.52
        f(26.39) = 117.22
        f(27.3) = 127.98
        f(29.12) = 150.44
        f(30) = 162.07
        f(30.95) = 173.78
        f(31.85) = 185.71
        f(33.67) = 210.58
        f(34.58) = 224.13
        f(36.4) = 249.38
        $ substlevel = 0
 **************************
        Solution:
                     Values
         Variables
                       -.92582351
                        .72327585
                  =
        B
                       -.12244506
        C
```


Maximum error is .58740562

D

.015329051

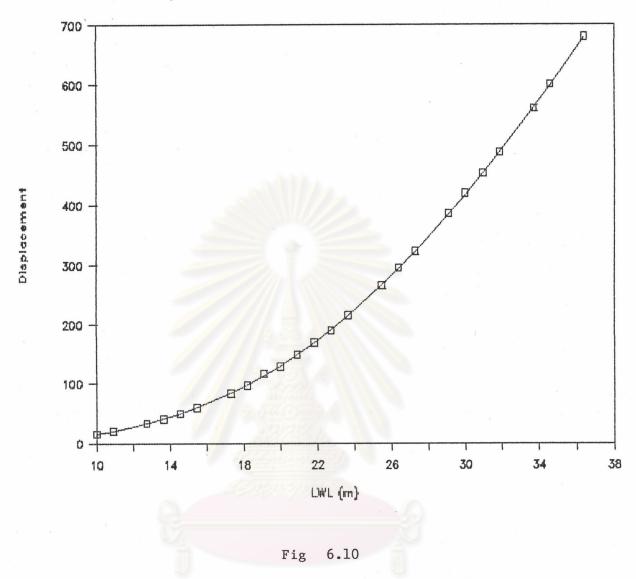
= -.00020120207

ศูนยวิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

```
***********************
```

Eureka: The Solver, Version 1.0

```
; This example demonstrates Eureka's ability to find
; values for constants in a function that make the
; function best fit empirical data. Because the equation
; file includes a $ substlevel = 0 directive, Eureka will
; perform a Least Squares Fit to find the function (of
; the required form) that best matches the points
; x, (f(x) given.
; In this example, the function is
        f(x) := EXP(a * x^N + B)
; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
f(x) := A+B*x+C*x^2+D*x^3+E*x^4
f(10.0) = 16.0
f(10.9) = 21.0
f(12.75) = 34.0
f(13.65) = 41.0
f(14.56) = 50.0
f(15.47) = 60.0
f(17.3) = 84.0
f(18.2) = 98.0
f(19.1) = 117.0
f(20) = 130.0
f(20.93) = 150.0
f(21.84) = 170.0
f(22.75) = 190.0
f(23.65) = 215.0
f(25.48) = 265.0
f(26.39) = 295.0
f(27.3) = 323.0
f(29.12) = 386.0
f(30) = 420.0
f(30.95) = 453.0
f(31.85) = 488.0
f(33.67) = 561.0
f(34.58) = 600.0
f(36.4) = 680.0
$ substlevel = 0
```

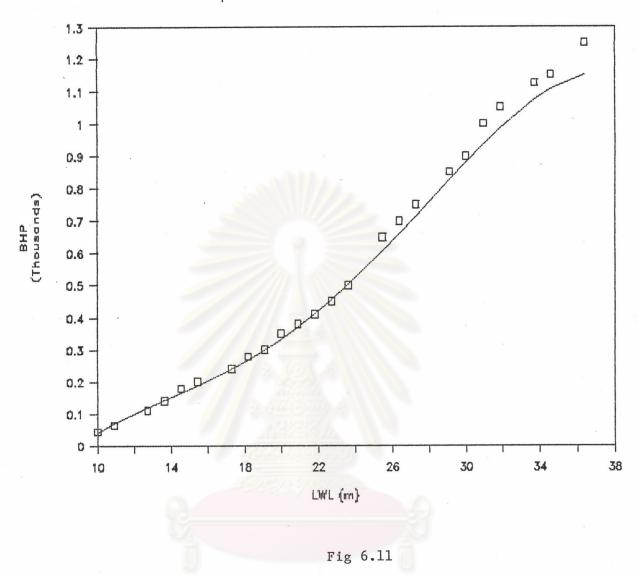


Solution:

Variables		Values
A	=	-18.276775
В	=	5.7387967
C	=	65218031
D	=	.047726411
E	=	00054070441

Maximum error is 2.9965494

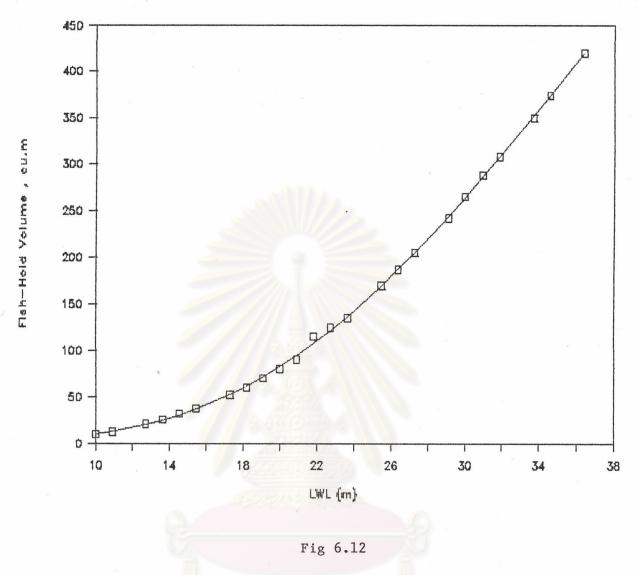
Graph between LWL vs Displacement


ศูนยวิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

```
************************
Eureka: The Solver, Version 1.0
Name of input file: A:\FIT112
************************
       ; This example demonstrates Eureka's ability to find
       ; values for constants in a function that make the
       ; function best fit empirical data. Because the equation
       ; file includes a $ substlevel = 0 directive, Eureka will
       ; perform a Least Squares Fit to find the function (of
       ; the required form) that best matches the points
       ; x, (f(x) given.
       ; In this example, the function is
               f(x) := EXP(a * x^N + B)
       ; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
       f(x) := A+B*x+C*x^2+D*x^3+E*x^4
       f(10.0) = 45.0
       f(10.9) = 65.0
       f(12.75) = 110.0
       f(13.65) = 140.0
       f(14.56) = 180.0
       f(15.47) = 200.0
       f(17.3) = 240.0
       f(18.2) = 280.0
       f(19.1) = 300.0
       f(20) = 350.0
       f(20.93) = 380.0
        f(21.84) = 410.0
       f(22.75) = 450.0
        f(23.65) = 500.0
        f(25.48) = 650.0
        f(26.39) = 700.0
        f(27.3) = 750.0
        f(29.12) = 850.0
        f(30) = 900.0
        f(30.95) = 1000.0
        f(31.85) = 1050.0
        f(33.67) = 1125.0
        f(34.58) = 1150.0
        f(36.4) = 1250.0
        $ substlevel = 0
 *************************
        Solution:
         Variables
                    Values
                       -867.65515
        A
                  -
                        187.24666
                  =
        B
                       -14.140499
        C
                  =
                  =
                        .51100510
        D
                    -.0060512559
```

Maximum error is

25.916607


ศูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

```
*************************
Eureka: The Solver, Version 1.0
Name of input file: A:\FIT113
************************
       ; This example demonstrates Eureka's ability to find
       ; values for constants in a function that make the
       ; function best fit empirical data. Because the equation
       ; file includes a $ substlevel = 0 directive, Eureka will
       ; perform a Least Squares Fit to find the function (of
       ; the required form) that best matches the points
       ; x, (f(x) given.
       ; In this example, the function is
              f(x) := EXP(a * x^N + B)
       ; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
       f(x) := A+B*x+C*x^2+D*x^3+E*x^4
       f(10.0) = 10.0
       f(10.9) = 13.0
       f(12.75) = 21.00
       f(13.65) = 26.0
       f(14.56) = 32.0
       f(15.47) = 38.0
       f(17.3) = 52.0
       f(18.2) = 60.0
       f(19.1) = 70.0
       f(20) = 80.0
       f(20.93) = 90.0
       f(21.84) = 115.0
       f(22.75) = 125.0
       f(23.65) = 135.0
       f(25.48) = 170.0
       f(26.39) = 187.0
       f(27.3) = 205.0
       f(29.12) = 242.0
       f(30) = 265.0
       f(30.95) = 288.0
       f(31.85) = 308.0
       f(33.67) = 350.0
       f(34.58) = 374.0
       f(36.4) = 420.0
       $ substlevel = 0
***********************
       Solution:
        Variables
                    Values
                      -1.8518574
```

A = -1.8518574 B = 2.4988900 C = -.41950340 D = .033685528 E = -.00042073796

Maximum error is 7.1830274

Graph between LWL vs Fish—Hold Volume

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Eureka: The Solver, Version 1.0

```
Name of input file: A:\FIT114
*********************
```

```
; This example demonstrates Eureka's ability to find
; values for constants in a function that make the
; function best fit empirical data. Because the equation
; file includes a $ substlevel = 0 directive, Eureka will
; perform a Least Squares Fit to find the function (of
; the required form) that best matches the points
; x, (f(x) given,
; In this example, the function is
        f(x) := EXP(a * x^N + B)
; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
f(x) := A+B*x+C*x^2+D*x^3+E*x^4
f(10.0) = 1.20
f(10.9) = 1.60
f(12.75) = 3.00
f(13.65) = 4.00
f(14.56) = 5.00
f(15.47) = 6.00
f(17.3) = 9.00
f(18.2) = 12.00
f(19.1) = 14.00
f(20) = 16.00
f(20.93) = 20.00
f(21.84) = 24.00
f(22.75) = 26.00
f(23.65) = 32.00
f(25.48) = 45.00
f(26.39) = 50.00
f(27.3) = 60.00
f(29.12) = 70.00
f(30) = 75.00
f(30.95) = 86.00
f(31.85) = 100.00
f(33.67) = 120.00
f(34.58) = 130.00
f(36.4) = 150.00
 $ substlevel = 0
```

Solution:

Variables		Values
A	=	-26.504118
В	=	6.5550103
C	=	58032769
D	-	.022072714
E	=	00020300034

4.3842704 Maximum error is

Graph between LWL vs F.&O.Capacity

ศูนยวิทยทรพยากร พาลงกรณ์มหาวิทยาลัย

Eureka: The Solver, Version 1.0

153

```
Name of input file: A:\FIT115
**********************
       ; This example demonstrates Eureka's ability to find
       ; values for constants in a function that make the
       ; function best fit empirical data. Because the equation
       ; file includes a $ substlevel = 0 directive, Eureka will
       ; perform a Least Squares Fit to find the function (of
       ; the required form) that best matches the points
       ; x, (f(x) given.
       ; In this example, the function is
               f(x) := EXP(a * x^N + B)
       ; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
       f(x) := A+B*x+C*x^2+D*x^3+E*x^4
       f(10.0) = 0.40
       f(10.9) = 0.60
       f(12.75) = 1.00
       f(13.65) = 1.20
       f(14.56) = 1.50
       f(15.47) = 1.80
       f(17.3) = 2.50
       f(18.2) = 3.00
       f(19.1) = 4.00
        f(20) = 4.50
        f(20.93) = 5.00
        f(21.84) = 6.00
        f(22.75) = 7.00
        f(23.65) = 8.00
        f(25.48) = 10.00
        f(26.39) = 12.00
        f(27.3) = 14.00
        f(29.12) = 18.00
        f(30) = 20.00
        f(30.95) = 22.00
        f(31.85) = 24.00
        f(33.67) = 30.00
        f(34.58) = 32.00
        f(36.4) = 36.00
        $ substlevel = 0
 ************************
        Solution:
```

Variables		Values
A	=	-21.201002
В	=	4.7549753
C	=	37518346
D	=	.012634112
E	=	00012964962

.80914714 Maximum error is

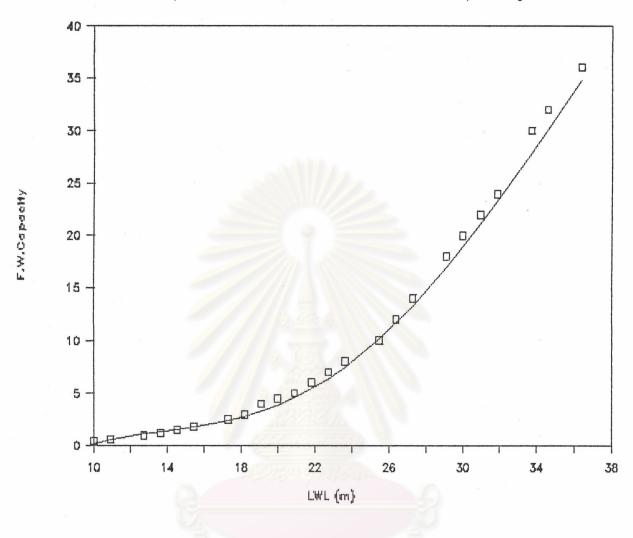
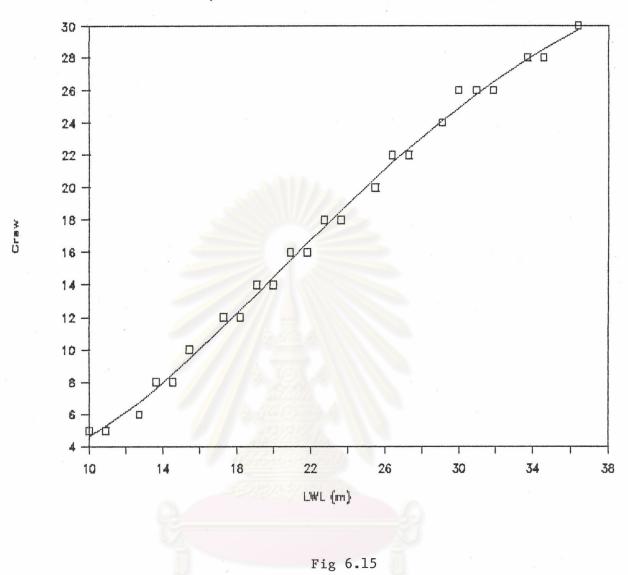


Fig 6.14

Eureka: The Solver, Version 1.0

155

```
; This example demonstrates Eureka's ability to find
; values for constants in a function that make the
; function best fit empirical data. Because the equation
; file includes a $ substlevel = 0 directive, Eureka will
; perform a Least Squares Fit to find the function (of
; the required form) that best matches the points
; x, (f(x) given.
; In this example, the function is
        f(x) := EXP(a * x^N + B)
; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
f(x) := A+B*x+C*x^2+D*x^3+E*x^4
f(10.0) = 5
f(10.9) = 5
f(12.75) = 6
f(13.65) = 8
f(14.56) = 8
f(15.47) = 10
f(17.3) = 12
f(18.2) = 12
f(19.1) = 14
f(20) = 14
f(20.93) = 16
f(21.84) = 16
f(22.75) = 18
f(23.65) = 18
f(25.48) = 20
f(26.39) = 22
f(27.3) = 22
f(29.12) = 24
f(30) = 26
f(30.95) = 26
f(31.85) = 26
f(33.67) = 28
f(34.58) = 28
f(36.4) = 30
$ substlevel = 0
```



Solution:

```
Variables Values

A = 6.1785288
B = -1.2543817
C = .14169465
D = -.0034697156
E = .000027821363
```

Maximum error is 1.0747529

ศูนย์วิทยทรัพยากร จหาลงกรณ์มหาวิทยาลัย

Name of input file: A:\FIT117

```
; This example demonstrates Eureka's ability to find
; values for constants in a function that make the
; function best fit empirical data. Because the equation
; file includes a $ substlevel = 0 directive, Eureka will
; perform a Least Squares Fit to find the function (of
; the required form) that best matches the points
; x, (f(x) given.
; In this example, the function is
; f(x) := EXP(a * x^N + B)
; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
```

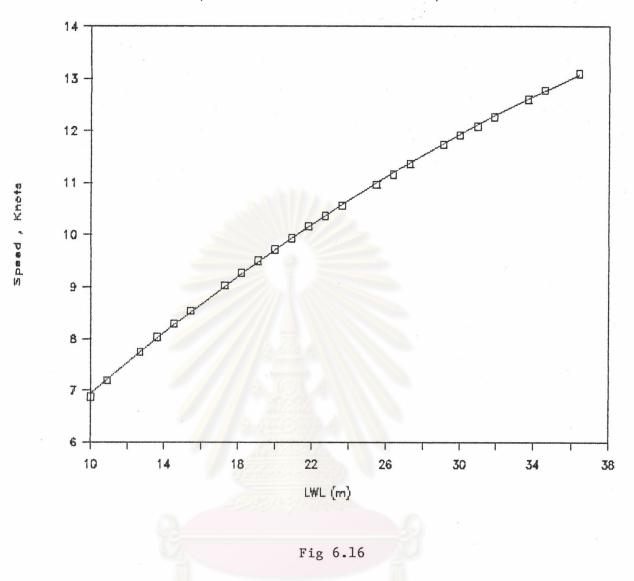
157

$f(x) := A+B*x+C*x^2$

```
f(10.0) = 6.87
f(10.9) = 7.18
f(12.75) = 7.75
f(13.65) = 8.03
f(14.56) = 8.29
f(15.47) = 8.55
f(17.3) = 9.04
f(18.2) = 9.27
f(19.1) = 9.50
f(20) = 9.72
f(20.93) = 9.94
f(21.84) = 10.16
f(22.75) = 10.37
f(23.65) = 10.57
f(25.48) = 10.97
f(26.39) = 11.17
f(27.3) = 11.36
f(29.12) = 11.73
f(30) = 11.91
f(30.95) = 12.09
f(31.85) = 12.27
f(33.67) = 12.61
f(34.58) = 12.78
```

\$ substlevel = 0

f(36.4) = 13.10


Solution:

Variables Values

A = 3.5976131
B = .36093548
C = -.0027744251

Maximum error is .059525382

Graph between LWL vs Speed

ัศูนยวิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

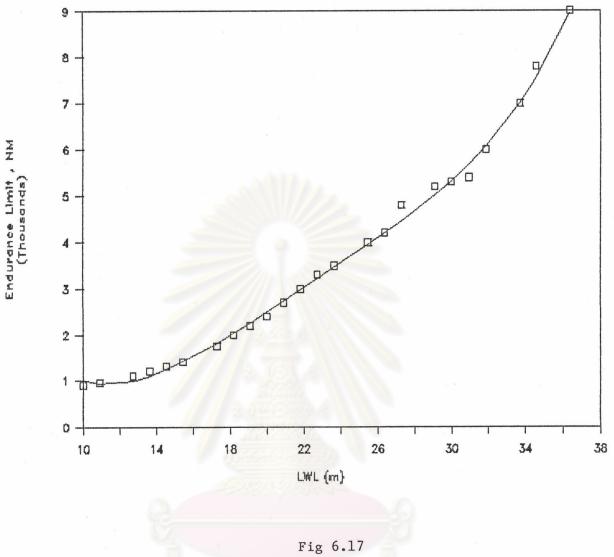
```
**********************
```

159

Eureka: The Solver, Version 1.0

```
; This example demonstrates Eureka's ability to find
; values for constants in a function that make the
; function best fit empirical data. Because the equation
; file includes a $ substlevel = 0 directive, Eureka will
; perform a Least Squares Fit to find the function (of
; the required form) that best matches the points
; x, (f(x) given.
; In this example, the function is
        f(x) := EXP(a * x^N + B)
; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
f(x) := A+B*x+C*x^2+D*x^3+E*x^4
f(10.0) = 900
f(10.9) = 950
f(12.75) = 1100
f(13.65) = 1200
f(14.56) = 1300
f(15.47) = 1400
f(17.3) = 1750
f(18.2) = 2000
f(19.1) = 2200
f(20) = 2400
f(20.93) = 2700
f(21.84) = 3000
f(22.75) = 3300
 f(23.65) = 3500
 f(25.48) = 4000
 f(26.39) = 4200
 f(27.3) = 4800
 f(29.12) = 5200
 f(30) = 5300
 f(30.95) = 5400
 f(31.85) = 6000
 f(33.67) = 7000
 f(34.58) = 7800
 f(36.4) = 9000
```

\$ substlevel = 0


Solution:

Variables		Values
A	=	9988.8955
В	=	-2049.2705
C	=	157.01680
D	=	-4.7289119
E	=	.053343520

Maximum error is 319.51037

Graph between LWL vs Endurance Limit


```
**********************
```

Name of input file: A:\FIT119 ***********************

```
; This example demonstrates Eureka's ability to find
; values for constants in a function that make the
; function best fit empirical data. Because the equation
; file includes a $ substlevel = 0 directive, Eureka will
; perform a Least Squares Fit to find the function (of
; the required form) that best matches the points
; x, (f(x) given.
; In this example, the function is
        f(x) := EXP(a * x^N + B)
; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
f(x) := A+B*x+C*x^2+D*x^3+E*x^4
f(10.0) = 3.98
f(10.9) = 3.99
```

161

f(12.75) = 3.98f(13.65) = 4.00f(14.56) = 3.98f(15.47) = 3.98f(17.3) = 3.98f(18.2) = 3.98f(19.1) = 3.94f(20) = 3.98f(20.93) = 3.98f(21.84) = 3.98f(22.75) = 3.98f(23.65) = 3.98f(25.48) = 4.00f(26.39) = 3.99f(27.3) = 4.00f(29.12) = 4.03

\$ substlevel = 0

f(30) = 4.04f(30.95) = 4.06f(31.85) = 4.08f(33.67) = 4.11f(34.58) = 4.13f(36.4) = 4.17

Solution:

Variables 3.7211858 -A = .059089623 B = -.0044977308C = .00013329131 D = -1.2364379e-06

Values

.033184137 Maximum error is

Graph between LWL vs L/ ▽ 1/3

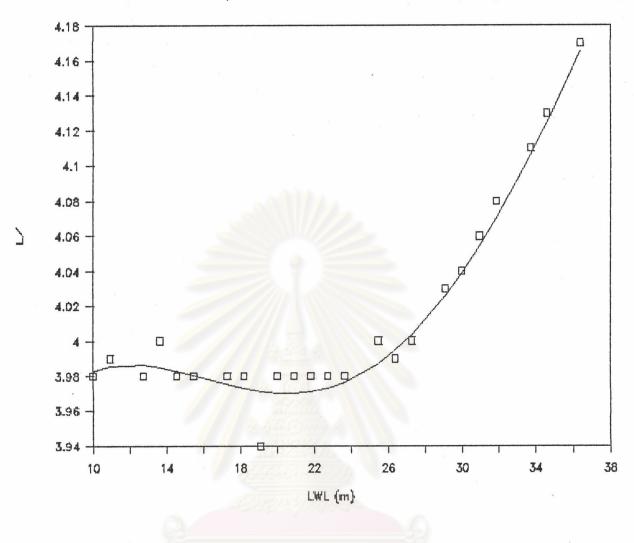


Fig 6.18

คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

```
*********************
```

```
163
```

```
Name of input file: A:\FIT120
**********************
       ; This example demonstrates Eureka's ability to find
       ; values for constants in a function that make the
       ; function best fit empirical data. Because the equation
       ; file includes a $ substlevel = 0 directive, Eureka will
       ; perform a Least Squares Fit to find the function (of
       ; the required form) that best matches the points
       ; x, (f(x) given.
       ; In this example, the function is
               f(x) := EXP(a * x^N + B)
       ; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
       f(x) := A+B*x+C*x^2+D*x^3+E*x^4
       f(10.0) = 461
       f(10.9) = 456
       f(12.75) = 460
       f(13.65) = 458
       f(14.56) = 460
       f(15.47) = 458
       f(17.3) = 460
       f(18.2) = 460
       f(19.1) = 475
       f(20) = 460
       f(20.93) = 460
       f(21.84) = 460
       f(22.75) = 460
       f(23.65) = 458
       f(25.48) = 452
        f(26.39) = 454
        f(27.3) = 449
        f(29.12) = 443
        f(30) = 439
        f(30.95) = 446
        f(31.85) = 427
        f(33.67) = 416
        f(34.58) = 411
        f(36.4) = 400
        $ substlevel = 0
 *************************
        Solution:
```

Variables		values
A	=	503.18650
В	=	-10.447520
C	=	.82236928
D	=	024164121
E	=	.00020034096

Maximum error is 13.062434

Graph between LWL vs $\triangle/(0.01L)^3$

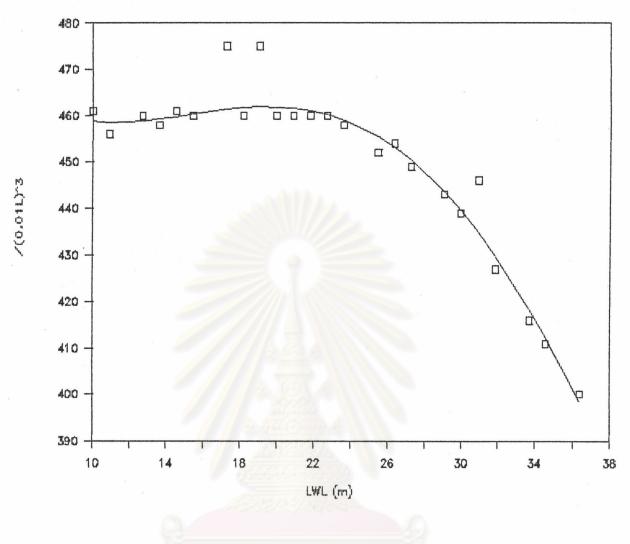


Fig 6.19

ศูนยวิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

```
************************
```

165

```
Name of input file: A:\FIT121
*************************
       : This example demonstrates Eureka's ability to find
       ; values for constants in a function that make the
       ; function best fit empirical data. Because the equation
       ; file includes a $ substlevel = 0 directive, Eureka will
       ; perform a Least Squares Fit to find the function (of
       ; the required form) that best matches the points
       ; x, (f(x) given.
       ; In this example, the function is
```

 $f(x) := EXP(a * x^N + B)$; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5

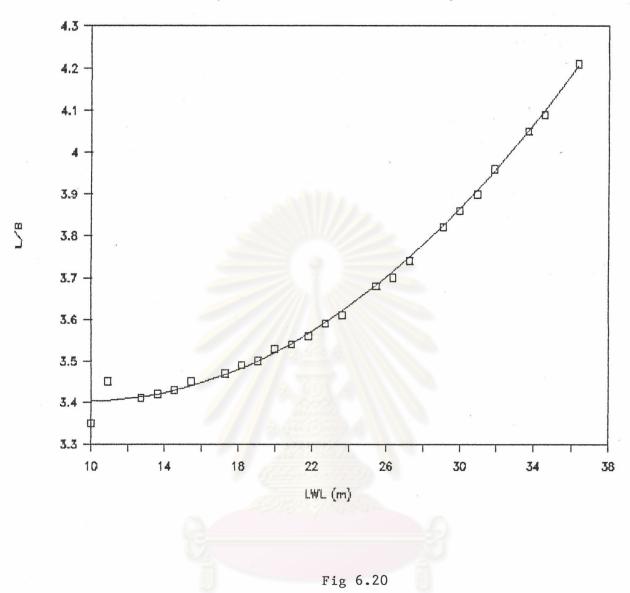
```
f(x) := A+B*x+C*x^2
```

```
f(10.0) = 3.35
f(10.9) = 3.45
f(12.75) = 3.41
f(13.65) = 3.42
f(14.56) = 3.43
f(15.47) = 3.45
f(17.3) = 3.47
f(18.2) = 3.49
f(19.1) = 3.50
f(20) = 3.53
f(20.93) = 3.54
f(21.84) = 3.56
f(22.75) = 3.59
f(23.65) = 3.61
f(25.48) = 3.68
f(26.39) = 3.70
f(27.3) = 3.74
f(29.12) = 3.82
f(30) = 3.86
f(30.95) = 3.90
f(31.85) = 3.96
f(33.67) = 4.05
```

\$ substlevel = 0

f(34.58) = 4.09f(36.4) = 4.21

Solution:


Variables

```
3.5143960
A
                -.022466751
B
                .0011354010
C
```

.053268540 Maximum error is

Values

์ ศูนย์วิทยทรัพยากร หาลงกรณ์มหาวิทยาลัย

```
*********************
```

```
; This example demonstrates Eureka's ability to find
; values for constants in a function that make the
; function best fit empirical data. Because the equation
; file includes a $ substlevel = 0 directive, Eureka will
; perform a Least Squares Fit to find the function (of
; the required form) that best matches the points
; x, (f(x) given.
; In this example, the function is
; f(x) := EXP(a * x^N + B)
; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
```

167

$f(x) := A+B*x+C*x^2$

```
f(10.0) = 7.43
f(10.9) = 7.50
f(12.75) = 7.44
f(13.65) = 7.50
f(14.56) = 7.48
f(15.47) = 7.49
f(17.3) = 7.51
f(18.2) = 7.52
f(19.1) = 7.50
f(20) = 7.53
f(20.93) = 7.54
f(21.84) = 7.55
f(22.75) = 7.53
f(23.65) = 7.56
f(25.48) = 7.57
f(26.39) = 7.53
f(27.3) = 7.57
f(29.12) = 7.62
f(30) = 7.64
f(30.95) = 7.60
f(31.85) = 7.72
f(33.67) = 7.82
```

\$ substlevel = 0

f(34.58) = 7.88f(36.4) = 8.00

Solution:

Variables Values

A = 7.7177896
B = -.031581452
C = .0010144974

Maximum error is .11213334

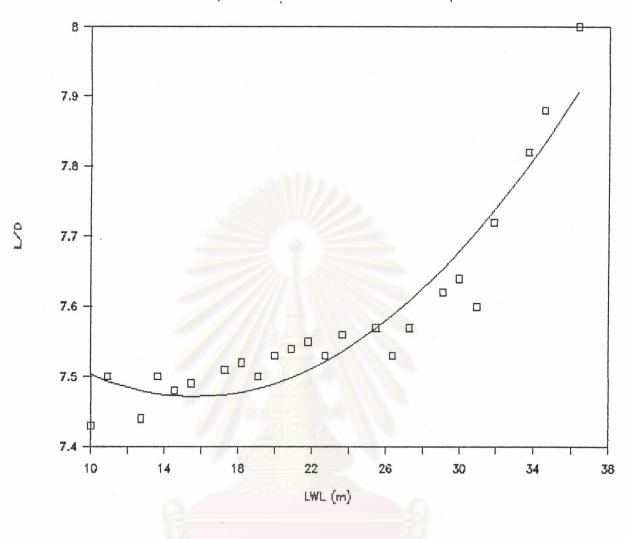


Fig 6.21

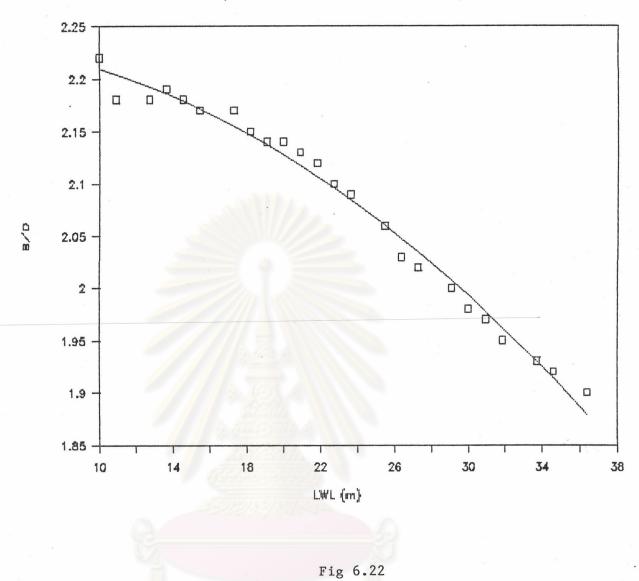
์ คูนยวทยทวพยากร จุฬาลงกรณ์มหาวิทยาลัย

```
***********************
Eureka: The Solver, Version 1.0
```

169

Name of input file: A:\FIT123

```
; This example demonstrates Eureka's ability to find
; values for constants in a function that make the
; function best fit empirical data. Because the equation
; file includes a $ substlevel = 0 directive, Eureka will
; perform a Least Squares Fit to find the function (of
; the required form) that best matches the points
; x, (f(x) given.
; In this example, the function is
        f(x) := EXP(a * x^N + B)
; where the ideal solution is a = 0.25, b = 0.15 and N = 1.5
f(x) := A+B*x+C*x^2
f(10.0) = 2.22
f(10.9) = 2.18
f(12.75) = 2.18
f(13.65) = 2.19
f(14.56) = 2.18
f(15.47) = 2.17
f(17.3) = 2.17
f(18.2) = 2.15
f(19.1) = 2.14
f(20) = 2.14
f(20.93) = 2.13
f(21.84) = 2.12
f(22.75) = 2.10
f(23.65) = 2.09
f(25.48) = 2.06
f(26.39) = 2.03
f(27.3) = 2.02
f(29.12) = 2.00
f(30) = 1.98
f(30.95) = 1.97
f(31.85) = 1.95
f(33.67) = 1.93
f(34.58) = 1.92
f(36.4) = 1.90
$ substlevel = 0
```


Solution:

Variables

2.2374872 B = -.00013226152 = -.00026725646

Maximum error is .024292777

Values

ศูนยวิทยทรัพยากร งุฬาลงกรณ์มหาวิทยาลัย