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CHAPTER 1
INTRODUCTION

1.1 Evolvable Hardware

Evolvable hardware (EHW) is a one particular type of hardware whose
architecture/structure and functions change dynamically and autonomously in order to
improve its performance in performing certain tasks [1]. By contrast to the
conventional hardware machines that the structures are irreversibly fixed during
design processes, the evolvable hardware machines can adapt to changes in the field
or in environments. In recent years, the emerging of the EHW research has been
contributed by the progress in reconfigurable hardware and evolutionary computation
[1]. The adaptability of EHW machines is performed by reconfigured its own
hardware structure dynamically and autonomously by the mean of evolutionary
algorithms.

One of the key motivations behind EHW 1s to learn or adapt itself in
environments. Even being in an unknown environment, the EHW devices can adapt
and provide the appropriate function intelligently. This vision for a new kind of
hardware devices may have not been accomplished nowadays [2]. However, with the
progress on EHW research and contribution from EHW researchers around the world,
the ultimate goal of intelligent and adaptive hardware could be accomplished in the
near future. This thesis is a part of this EWH research community.

Relatively new research field as it i1s, EHW has delivered some solutions to
opened question of the real-world problems. There are real-world needs for evolvable
hardware, which are still opened research problems. These are adaptive computing,
adaptive signal processing, adaptive communication, adaptive fault-tolerant

computing, and adaptive and autonomous devices for space exploration.
1.1.1 Evolvable Hardware: Basic Concepts

The integration of evolutionary computation and configurable hardware devices is the
key to adaptability of EHW since the objective of evolvable hardware is the
“autonomous” reconfiguration of hardware structure in order to improve performance

[1]. The capacity for autonomous reconfiguration with evolvable hardware makes it



fundamentally different from conventional hardware, where it is almost impossible to
change the hardware’s function once it 1s manufactured. While configurable hardware
devices, such as a Programmable Logic Device (PLD) and Field Programmable Gate
Array (FPGA), allow for some functional changes after being installed on a printed
circuit board, such changes cannot be executed without the intervention of human
designers (i.e., the change is not autonomous). With the use of evolutionary
computation, however, evolvable hardware has the capability to autonomously change
its hardware functions. Figure 1.1 shows the overview of the EH research field which
lies between the computer science (evolutionary computation), and electronics

engineering.

Computer Science

Evolvable
Hardware

Electronics
Engineering

Figure 1.1: Overview of Evolvable Hardware

Although there are different views on what EHW is. In this thesis, we support
the view of EHW as hardware that capable of online adaptation through adapting its
structure and functions dynamically, and autonomously. Our view is different to the
view of EHW as a way of using evolutionary algorithms to circuit synthesis [3]. The
evolutionary design of electronic circuits has been around for a long time, especially
for logic and circuit synthesis [3]. The evolutionary algorithms have been used to
optimize certain processes in electronics design automation such as electronics board
layout and VLSI placement and routing,

The origins of our focused evolvable hardware can be traced back to two papers
by Daniel Mange [4, 5] and a paper by Tetsuya Higuchi [6]. Mange’s research led to
bio-inspired machines that aim at self-reproduction or self-repair of the hardware

structure rather evolving new structures [7, 8], the Higuchi’s work targeted evolvable



hardware research utilizing genetic algorithms (GAs) for the autonomous
reconfiguration of hardware structure [9, 10]. This dissertation focuses primarily on
the GA-based evolvable hardware.

The key concept of the evolvable hardware is to regard the configuration bits of
programmable hardware architecture as the chromosomes of GAs. By designing a
fitness function to achieve a desired hardware function, the GA becomes a means of
autonomous hardware configuration. Configuration bits “evolved” by the GA are
repeatedly downloaded into the programmable hardware devices until the evolved
hardware performance is satisfactory in term of fitness function values. This evolving
process by GA is illustrated in Figure 1.2. From Figure 1.2, in the first step, new
population, which represents different topology of circuits, are generated. Then, the
circuits are measured for their performance. The GA bits that represent the circuits
with higher performance are selected to be parents of the next population. By
performing GA operators: crossover and mutation, the new population are generated.

A GA for evolvable hardware 1s executed either outside or inside the evolvable
hardware, depending on its purpose. For example, if the speed of hardware
reconfiguration is an important factor which is the case for intrinsic or online
evolvable hardware, then GA should be a part of the evolvable hardware.

EHW can be classified into two categories: extrinsic and intrinsic EHW [3].
Extrinsic EHW simulates evolution by software running on an external computer and
only downloads the best configuration to hardware in each generation or only once.
Intrinsic EHW simulate evolution directly in its hardware, every chromosome will be
used to configure the hardware.

There are a number of methods and techniques that propose the Genetic
Algorithm (GA) and Evolutionary Algorithms (EA) to be implemented in hardware
for intrinsic EHW, especially implement into FPGAs or other reconfigurable devices
[11, 12]. However, intrinsically on-line evolving in hardware and to utilize hardware
resource efficiently pose a challenging question of how to modify or invent efficient

and improve GA or EA algorithms that can be effectively implemented into hardware.
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Figure 1.2: Genetic Algorithms as a mean for hardware evolution

In addition, regarding to the increasing of density and price per performance of
current FPGAs due to advanced semiconductor process technology [13, 14], there is
an opportunity for designers and researchers to use higher density and faster FPGA
devices for EHW at reasonable cost. Considering this trend of FPGA technology
development, the concept of implementing a group of parallel processing units for
EHW into a single or array of FPGA chips are feasible. In this thesis, the concept of

parallel genetic algorithms will be explored.

1.1.2 Applications of EHW

Through many years of EHW research, the application of EHW can be classified into
three main categories, namely, EHW controllers, EHW recognizers and classifiers,
and EHW as optimizers for other problems. These three EHW can be summarized as
follows:

a) EHW Controllers. The EHW can be used as intelligent controllers for robots
or other devices [8]. The typical EHW controller is shown in Figure 1.3.



EH Device

Memory for
Storing
Parameters

Reconfigurable
Hardware/Fabric
(Digital or Analog

VLSI)

Control
Efforts

A

Evolutionary
Algorithm
(Digital VLS

Controlled Devices

>erformance of

SensorResponse
Y

Current
Configuration

-

Performance
Evaluator

Figure 1.3: A typical EH device for control application.

b) EHW recognizers and classifiers.

classification on streams of data at faster data rate and lower power consumption. The

adaptability of EHW provides flexibility and autonomous behavior to traditional

EHW is capable of performing

classifiers. Figure 1.4 shows the typical EHW classifiers.
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Figure 1.4: A typical EH device for online classification

¢) EHW as optimizers for other problems. This class of EHW is for other EHW
that can not be classified into EHW controllers and EHW classifiers. There are some

research projects that use evolutionary algorithm integrated hardware to provide

solution to specific problems [15].




1.2 From Genetic Algorithms to Probabilistic Model-Building Genetic
Algorithms

1.2.1 Genetic Algorithms

Genetic algorithms (GAs) [16, 17] are stochastic optimization methods inspired
by natural evolution and genetics. GAs approaches optimization by evolving a
population of candidate solutions with the operators inspired by natural evolution and
genetics. Maintaining a population of solutions, as opposed to a single solution, has
several advantages. Using a population allows a simultaneous exploration of multiple
basins of attraction. Additionally, a population allows for statistical decision making
based on the entire sample of promising solutions even when the evaluation procedure
1s affected by external noise.

Genetic algorithms represent candidate of solutions as binary strings to vectors of
real numbers, to permutations, or even to production rules. There i1s no strict
restriction on representations. However, most GAs uses binary strings representation
for each candidate of solutions. The performance of each candidate solution is
represented by a real number called fitness. The task of GAs is to find the binary
string with the highest fitness.

The first population of candidate solutions is usually generated randomly with a
uniform distribution over all possible solutions. Each iteration starts by selecting a set
of promising solutions from the current population based on the performance of each
solution by using various selection operators. There are two methods commonly used:
tournament selection and truncation selection. In this thesis tournament selection is
preferred. Tournament selection iteratively selects one solution at a time by first
choosing a random subset of candidate solutions from the current population and then
selecting the best solution out of this subset. Once the set of promising solutions has
been selected, new candidate solutions are sampled by applying recombination
(crossover) and mutation to the promising solutions. Recombination combines subsets
of promising solutions by exchanging some of their parts;, mutation perturbs the

recombined solutions slightly.
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(a) One-point crossover (b) Uniform crossover

Figure 1.5: An illustrative two types of two-parent crossover operators.

In one-point crossover, the tails are exchanged after a randomly chosen position.
In uniform crossover, the bits on each position are exchanged with probability 50%.
For example, one-point crossover first randomly selects a single position in the two
strings and exchanges the bits on all the positions after the selected one (see Figure
1.5 (a)). On the other hand, uniform crossover exchanges bits on each position with

probability 50% (see Figure 1.5 (b)).
1.2.2 Probabilistic Model-Building Genetic Algorithms: concepts

Probabilistic model-building genetic algorithms (PMBGAs) use probabilistic
modeling of promising solutions to guide the exploration of the search space instead
of using the traditional recombination and mutation operators of simple GAs [18, 19].
There are many ways of estimating the probability distribution of promising solutions

and each PMBGA deals with the problem of estimating distributions in its own way.

(1)sett:=0
randomly generate initial population P(0)
(2) select a set of promising string S(t) from P(t)
(3) estimate the probability distribution of the selected set S(t)
(4) generate a set of new strings O(t) according to the estimate
(5) create a new population P(t+1) by replacing some strings
from P(t) with O(t)
sett:=t+1

(6) if the termination criteria are met, go to (2)

Figure 1.6: Pseudo-code of the general PMBGA procedure.

The general procedure of PMBGAs is similar to that of GAs. The initial

population of PMBGA is generated at random. In each iteration, promising solutions



are first selected from the current population of candidate solutions. The true
probability distribution of the selected solutions is then estimated. New candidate
solutions are then generated by sampling the estimated probability distribution. The
new solutions are then incorporated into the original population, replacing some of the
old ones or all of them. The process is repeated until the termination criteria are met.
The pseudo-code of the PMBGA procedure is shown in Figure 1.6. The difference
between PMBGAs and traditional GAs is in the way PMBGASs process a population
of promising solutions to generate new candidate solutions. Instead of performing
crossover on pairs of selected solutions with a certain probability and then applying
mutation to each of the resulting solutions, the following two steps are performed
[20]:

1. Model building. A probabilistic model of promising solutions is constructed.

2. Model sampling. The constructed model is sampled to generate new

solutions.
PMBGAs differ in how they cope with the above two steps and in whether they

incorporate special selection or replacement mechanisms for processing the
populations of solutions. In the literature, PMBGASs are also called estimation of

distribution algorithms (EDAs).
1.2.3 Parallel Genetic Algorithms

In order to increase the GA's efficiency, the parallelization of GA has been the active
research topic using high performance computer systems [21, 22]. The parallelized
GA (PGA) can be categorized into four approaches. These are global, coarse-grained,
fine-grained, and hybrid approaches.

1) Global parallelization In this class of model, there 1s only one group of
population. The evaluation of individual and execution of genetic operators are
performed in parallel. The evaluation can be parallelized by assigning a group of
individuals to a processor node to evaluate and send the results back to the common
shared memory or a master node. There is no communication between each processor
that evaluates each individual.

2) Coarse grained parallelization This is the popular model for the parallelized

GAs. The whole population is partitioned into sub-populations. Within each sub-



population, individuals can only mate with others in their own sub-population.
However, there is an introduction of migration operator the send some individuals
from a local sub-population to other sub-population. There are key parameters for this
model: topology, migration rate, and migration interval. The topology defines how
each sub-population connects to other sub-populations. The migration rate and
migration interval specify how many individuals in each sub-population are migrated
and how often they are migrated.

3) Fine grained parallelization The whole population is divided further into even
smaller sub-population than the coarse grain model. The ideal case is each individual
handled by only one processor node. This ideal case rarely happens in real world
implementation in high performance computer systems excepting the implementation
into special hardware bit-level. In summary, this model is similar to the massively
parallel processors

4) Hybrid parallelization This approach is to combine two approaches to solve
more difficult problems. For the coarse grained and fine grained approaches, in order
to exchange individuals between each sub-population, the question of how to
communicate and how costly in term of resources need to be considered. These
problems are related to migration parameters: topology, migration interval and

migration rate.
1.3 Thesis Objectives

There are five primary objectives in this thesis:

(1) Design a new parallel genetic algorithm capable of feasible hardware
implementation.

(2) Extend the proposed algorithm to the hardware implementation

(3) Test the developed algorithm on the designed class of problems

(4) Design an evolvable hardware based-on the proposed algorithm

(5) Test the designed evolvable hardware on a class of problems and real-world

applications.
1.4 Contributions

This thesis has made the following contributions:
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(1) Proposed the cellular compact genetic algorithm (CCGA), a new parallel
genetic algorithm and its hardware architecture for evolvable hardware.

(2) Proposed an evolvable hardware based-on CCGA and block-based
neural network (BBNN) to form an evolvable hardware machine.

(3) Proposed using CCGA and BBNN as an evolvable hardware to online
heartbeat monitoring and classification.

Specifically, the thesis proposes the cellular compact genetic algorithm (CCGA)
and its integrating with block-based neural network (BBNN) to form evolvable
hardware machines. Classified as a kind of parallel estimation of distribution
algorithms, the CCGA uses the improved compact genetic algorithm with probability
model migration. BBNN is an evolutionary neural network in which evolution is
another form of adaptation in addition to learning. CCGA and BBNN hardware
architecture are proposed. The parallel hardware architecture for integrating CCGA
and BBNN presents a class of evolvable hardware.

Empirical evidence is provided to show that CCGA is capable of solving
problems decomposable into sub-problem with growing difficulty and in scalable

manner.
1.5 Dissertation layout

The thesis is divided into six chapters. The first chapter introduces genetic algorithms,
and the basic concepts of probabilistic model-building genetic algorithms (PMBGAS).
Chapter II presents the related work to the thesis. Chapter III presents the cellular
genetic algorithm (CCGA) and its hardware implementation. Chapter IV presents the
evolvable hardware based on CCGA and block-based neural network (BBNN).
Chapter V motivates the use of the proposed evolvable hardware to solve the real-
world problem of ECG signal classification. The thesis closes by presenting
experimental results on two classes of real-world problems, discussing interesting
topics for future work, and providing the conclusions. The following subsections

present the content of each chapter in greater detail.
1.6 Publications

This thesis has made following publications:
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CHAPTER 11
LITERATURE REVIEWS

2.1 Evolvable Hardware: Vision and Motivation

One of the major goals of computation intelligence research is to create method and
systems that strive towards human level intelligence. Human level intelligence is
manifested through adaptive learning, associative memory, pattern recognition,
language communication, concept formation, abstract thinking, common sense of
knowledge, consciousness [23]. So far, the methods of computational intelligence
research have been successfully used in creation of some elements of human
intelligence, but not for the creation of human level intelligent machines. We need to
gain more knowledge to enable us to achieve a higher-degree of the intelligence in
machines. Two approaches to such high level of intelligence are to understand
evolving processes of the learning brain and biological organisms. Understanding
human intelligence in brain allows us to implement machines closer to the human-
level intelligence. In addition, understanding the development process of biological
organisms allows us to create machines that capable of cellular differentiation and
cellular division which are key mechanism of living organism.

The brain 1s a dynamic information processing system that evolves its structure
and functionality in time through information processing at different hierarchical
levels. The term “evolving” is mainly concerned with the development of the
structure and functionality of the individual system during its lifetime. Understanding
of the interaction through its modeling is the key to comprehend information
processing in brain and perhaps the brain as a whole. Building computation models
that integrate principles from brain based on connectionist learning may be well
towards constructing intelligence machines. These models can be called evolving
connectionist system.

The majority of living creatures, with exception of uni-cellular organism, share a
common multi-cellular structure in which the organism is divided into a finite number
of cells and each group realizing a single function such as muscle, neuron, etc. The
process that allows organisms to develop from a single initial cell to a fully-grown

individual relies essentially on two mechanisms: cellular division and cellular
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differentiation. The developing process of cells can inspire us to create artificial
machines that are capable of these two key mechanisms. Since the bio-organisms
inspire us to create hardware machines that imitate living organisms, we can call this

type of machines: bio-inspired machines.

2.1.1 Evolving connectionist system

Evolving connectionist system is an adaptive, incremental learning and knowledge
representation system that evolves its structure and functionality, where in the core of
the system is connectionist architecture and that consists of neurons and connections
between them. Evolving connectionist model operates continuously in time and
adapts their structure and functionality through a continuous interaction with
environment and with other systems. The adaptation can be defined through:
1. A set of evolving rules
2. A set of parameters that are subject to change during system operation
3. An incoming continuous flow of information, possibly with unknown of
distribution
4. Goal criteria that are applied to optimize the performance of the system over
time
Evolving connectionist system presented in this thesis is based-on principles from the
human brain. It is known that the human brain develops before the child is born.
During learning the brain allocates neurons to respond to certain stimuli and develop
their connections. Some parts of brain develop connections and also retain their
ability to create neurons during person’s lifetime.

Adaptive learning and behaviors are keys of human level intelligence. Until
recently, most researches on machine intelligence have been carried on in software
domain operated on fixed hardware. The emerging field of evolvable hardware and
adaptive hardware promise to deliver elements of machine intelligence at hardware
level. Principles of brain development and learning can be used as inspiration for the
development of evolvable hardware based-on evolving connectionist system:

1. Evolution is achieved through both genetically defined information and

learning

2. The evolved neurons in the brain have a spatial-temporal representation where

similar stimuli activate close neurons
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3. Evolving through interaction with the environment
4. The evolving process is continuous and life long
5. Redundancy is the evolving process in brain leading to the creation of a large
number of neurons involved in each learning tasks
Evolvable hardware based-on evolving connectionist system can be proposed as part
of the classical evolvable artificial neural networks. Traditionally, evolving
connectionist system is based-on software implementation. However, the concept of
evolving connectionist system can be applied towards building machine intelligence
at hardware level. Since most of evolving connectionist system is implemented in
software running on top of the fixed hardware. There opened research opportunities
for us to build an adaptive and learning aim at human intelligence level in silicon-

based hardware devices.

2.1.2 Bio-inspired Hardware Model

As mentioned in the previous section, the developmental process of biological
organisms exploits essentially two mechanisms: cellular differentiation and cellular
division.

Cellular division 1s the process through which each cell achieves its duplication.
During this phase, a cell copies its genetic material (1.e. the genome) and splits into
two 1dentical daughter cells.

Cellular differentiation defines which function a cell has to realize. This
specialization, which essentially depends of the cell’s position in the organisms, is
obtained through the expression of a part of the genomes.

In order to implement cellular division, new approaches have to be explored and
invented for the current hardware technology mainly silicon-based hardware.
However, to directly implement cellular division in silicon-based system is not
possible. An alternative way is to implement it at logical structures instead of physical
level. This is the same concept used in field programmable logic devices (FPGAS).
There are many approaches to implement cellular division and differentiation. The

notable are self-replicating and embryonic approaches.
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2.1.3 Evolvable Hardware Based-on Evolving Connectionist System and Bio-

inspired Machines.

The potential of evolvable hardware is its capability to adapt or change its behavior

and improve its performance while executing in real physical environment. Acquiring

knowledge from the evolving connectionist system and bio-inspired approach provide

solid models for realization of the innovative evolvable hardware. Typical design of

evolvable hardware from evolving connectionist system and bio-inspired machines

has to address following issues:

Genotype-phenotype mapping. It is common knowledge that the information
stored in the genome is not sufficient to completely define the structure of the
organisms. The current research suggests that genotypes code instructions on
how the cells grow. The codes are interpreted the help of applying
evolutionary mechanism to their design. The complex genotype-to-phenotype
mapping allows reduction in size of the genome, with a consequence increase
in its evolvability.

Structural adaptation. Networks of neuron or cells that adapt or self-organize
structurally to the environment by adding and removing neurons and
connections in the system exploit mechanisms that are similar to the those
used in the growth of an organism.

Unknown environmental adaptation. Environment-directed adaptation and
development occurs in bio-organisms. Mostly, currently implemented systems,
hardly implemented in hardware, only adapt themselves with existed fixed-
structure or known environment.

Online Adaptation. The online adaptation means adaptation while the
hardware is executing in a real physical environment. In a sense, it can be
view as real-time adaptation. Online adaptation requires the adaptive
hardware to learn incrementally and responsively. Such requirements do not
seem to be met by population-based evolutionary learning. The current
algorithms have limitation of re-learning the new and the old information in
order to response to the new changed environment. In addition the
evolutionary learning tend to require more time to reach the optimum

solutions.
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Disaster Prevention in Real-time online adaptation. The risk of trial and
error of the evolutionary algorithms can create severe damages to physical
devices or other devices under control by the adaptive/evolvable hardware.
Adaptation to a high-level specification of intended function. The true useful
adaptive systems have to adapt themselves to provide functional without
giving details. That is they have to provide users-friendly in setting new high-
level adaptation objective.

Minimal overhead for adaptation. The adaptive hardware/systems have to
require low overhead in term of limited or expensive resources: times and
spaces

Timely Adaptation. Adaptation process has to be as fast as needed and deliver
rapid reactions.

Decision making at hardware level. So far, evolvable and adaptive hardware
systems do not implement decision making process. The nowadays systems
tend to implement the decision process in software for system-level
adaptation.

Hardware change autonomously apart from software. Most current
implemented system. The hardware handles command sent by software
module in order to perform adaptation to software-set objective. The goal is to
allow hardware to adapt by interacting with environment directly and then
inform software.

New model for integrating software and evolvable/adaptive hardware.
Traditional and successful model is in the form Von-Neumann machine in
which the hardware provides instruction sets for programmer to create
software to control the hardware. With more intelligence and adaptive
hardware, the new model of interface between hardware and software can be
proposed.

Generalization. Generalization is a key issue for any learning system. How
well of the learning capability of the adaptive/evolvable hardware upon the

unknown environment or inputs.
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2.1.4 Dualism of Evolvable Hardware

It can be observed that there is a kind of dualism in the various proposed evolvable
hardware. The dualism consists of a network of topology and a learning algorithm.
The network of topology can consists of simple or complex processing elements. The
network of topology can support adaptation at its processing unit and its topology or
the way they are interconnected. This dualism in a sense is analogous to hardware and
software in current computing machines. In order to evolve or adapt efficiently, the
learning algorithm and the hardware fabric should provide flexibility to evolve which
we can call evolvability. Thus, the research direction for evolvable hardware has to
address both sides of this dualism. The more flexible fabric of topology and
processing units, the more powerful functions will be derived from the learning

algorithm.
2.1.5 Evolutionary Artificial Neural Network and Evolvable Hardware

Evolutionary Artificial Neural Network (EANN) is a special class of artificial neural
network that uses evolutionary algorithm to search for its parameters [24]. EANN is a
model of evolving connectionist systems (ECOS) [23, 24]. According to, an ECOS is
an adaptive, incremental learning and knowledge representation system that evolves
its structure and functionality, where in the core of the system is a connectionist
architecture that consists of neurons (information processing units) and connections
between them. EANN employs the evolutionary algorithms to find important
parameter of ANN such as weights, connections, learning rules. In other words,
EANN can be a type of EHWs.

The simple model of ANN is the feed forward neural networks. Architecture of
feed forward ANN is shown in Figure 2.1. ANN consists of a group of processing
element called neuron or nodes. ANN can be described by a transfer functions in the

form:
vi = fQierwijxi + b;), j €] (1)
Where y; is the output node 7, x; 1s the input, and w;; is the connecting weight

between nodes i and .
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Figure 2.1: Feed forward Artificial Neural Network.

Optimizing the weights of ANN has been traditionally performed using training
algorithm such as back-propagation (BP) and conjugate gradient [25]. BP has
drawbacks due to its use of gradient descent [26] so it often get trapped in a local
minimum of the error function and is incapable of finding minimum if the error
function is multimodal and/or non-differentiable. Evolutionary Algorithm (EA) has
been proposed to optimize weights of ANNs [27-30].

In this thesis, a special class of ANN called Block-Based Neural Network
(BBNN) is introduced to be integrated with our proposed genetic algorithm to form
evolvable artificial neural network (EANN) [31]. The BBNN consists of a two-
dimensional (2-D) array of basic neural-network blocks with integer weights for
easier implementation using reconfigurable hardware such as field programmable
logic arrays (FPGAs).

BBNNs are represented by fixed-length binary codes, which correspond to
network configuration bit strings of FPGAs to determine internal structures. The
structure and weights of the BBNN are encoded as a 2-D chromosome for easier
partial on-line reconfiguration. A genetic algorithm can evolve configuration bit
strings to search for an optimal structure and weights setting of the BBNN among

many possible choices of structure and weight combinations.
2.2 Evolvable hardware: Survey

Yao and Higuchi [2] wrote a good survey paper for evolvable hardware, they describe

two difference classes of evolvable hardware (EH): evolvable hardware used as
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alternative for circuit design and evolvable hardware as online adaptive hardware. To
achieve online adaptation, evolvable hardware must adapt its architecture while
operating in real environment. Many new issues arise when online adaptation is
required. This section presents a survey on new development of the field.

The first evolvable hardware chip developed for myo-electric hand control is
described in Kajitani et.al [32]. Sakanashi, et al. developed GA-based EHW applied to
image compression [33]. Korenek et al. have developed and evaluated a specialized
architecture to evolve relatively large sorting networks in an ordinary FPGA [34].

Some new and practical applications have also been studied. Martinek et al. have
proposed an evolvable image filter that was completely implemented in an FPGA
[35]. The system is able to evolve an image filter in a few seconds. Smith et al. [36]
have presented an application of GA to evolve new spatial masks for nonlinear image
processing operations, which are ultimately to be implemented to evolvable hardware.

Digital evolvable hardware has also been applied to evolving robot controllers.
Kim et al have shown that their proposed GA guarantees satisfactory smooth and
stable walking behavior in an experiment involving a real biped robot [37].

Stefatos investigated the problem of evolvable FIR digital filter [38]. Using
reconfigurable arithmetic architecture evolving with evolutionary algorithms provides

promising solution over traditional design [39].
2.3 Probabilistic Model-Building Genetic Algorithms

This section reviews PMBGAs proposed in the past. The methods are classified
according to the underlying representation of candidate solutions and the complexity
of the class of models they consider. The algorithms that use a probabilistic model are
also called the estimation of distribution algorithms (EDAs). There are generally three
classes of EDAs that can be applied to problems with solutions represented by fixed-
length string over a finite alphabet. The algorithms are classified according to the

complexity of the class of models they use [40].
2.3.1 Without Dependency

The basic approach i1s to assume that the variables represent the distribution of

solutions are independent. Figure 2.2 shows the graphical model with no interaction
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among the variables. There are three key EDAs within this class: population-based
incremental learning (PBIL) algorithm [41], univariate marginal distribution

algorithm (UMDA) [42], and compact genetic algorithm (cGA) [43].

Figure 2.2: Graphical models with no interactions

In the univariate marginal distribution (UMDA), the probability model is
represented as factorized of a product of independent univariate marginal

distributions. That is:
pi(x) = p (x|D7%) = [ pi(x:) (2.1)

Dy « Generate M individuals (the initial population) at random
Repeat for1 =1, 2, ... until the stopping criterion is met
1. D, « Select N < M individuals from D,_; selection
method
2. Estimate the joint probability distribution

p0 =pxioE) = [ | m

3. Generate a new population

D, « Sample M individuals from p;(X)

Figure 2.3: Pseudocode of UMDA

D¢ is the current data file containing selected individuals of generation / in which

each D}¢ contains many cases of patterns of “one” and “zero”. Table 2.1 shows an
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example of D¢, Each univariate marginal distribution is estimated from marginal

frequencies:

Where

Y16(X = x| D%y

pi(x) = N

1if in the j"case of D¢, X; =

§;(X; = x;| D¢ :{ Xi
i (Xi il Dizy 0 otherwise
Table 2.1: An example of D}®
X1 X2 X3 X4
1 1 0 1 0
2 0 1 0 1
3 1 0 0 0
4 1 1 0 1
Obtain an 1nitial probability vector:
Po (X) = ( (Y} (xl)l Pl (xi), D (xn))
while no convergence do
begin
1. Using p;(x) obtain M individuals: x!, ... x, .. ,xi,
2. Evaluate and rank x!, ... x}, ... ,x},
3. Select the N (N < M) best individuals
4. Update the probability vector
For i=1, ... ndo
1
Pi+1(X;) = (1= o)p; (x;)+o< Ezllyzl X,
end

Figure 2.4: Pseudocode of PBIL

(2.2)

(2.3)
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Population-based incremental learning (PBIL) algorithm represents the solution
by binary string of fixed length. In PBIL, population of solutions is replaced by the
probability vector which is initially assigned each value of each position in the vector
to the same probability at 0.5. Each generation the probability vector is shifted
towards the desired solutions by using Hebbian learning rules [41]. Figure 2.4 shows
the pseudocode of PBIL.

The compact GA (cGA) represents the population with a single probability
vector. The pseudocode of the compact GA is shown in Figure. 2.5. At each
generation, the two individuals are randomly generated from the probability vector.
Then, tournament selection is performed over the two individuals. Each bit of the
probability vector is adjusted according to the result of the competition. Eventually,

the CGA keeps running until the probability vector is converged.

1. Initialize probability vector

pX) = (pilxy), ..., pixi), ....pi(xn))
=(0.5,..,05,...,0.5)

. Generate two individuals from the vector p(X)

[\

a = generate (p);
b = generate (p);
3 Let them compete

winner, loser = evaluate (a, b)

~

. Update the probability vector toward the winner
for=1tondo

if winner[i] 1= loser[i] then

if winner|i] = 1 then p[i] += 1/N

else p[i] = 1/N
5. Check if the probability vector has converged

fori:=1tondo
if p[1] > 0 and p[1] <1 then goto step 2

6. p(X) represents the final solution

Figure 2.5: Pseudocode of compact GA
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2.3.2 Pairwise Dependency

By taking dependency between a pair of variables, there are three key algorithms in
this class. The mutual information-maximizing input clustering (MIMIC) algorithm, a
dependency tree approach proposed, and the bivariate marginal distribution algorithm
(BMDA) are key algorithm for pairwise dependency [44]. Figure 2.6 demonstrates the

difference of these three algorithms in term of graphical model.

O~y O ONNe®
W //>\ ONON® E

(a) MIMIC (b) Dependency tree (c) BMDA

Figure 2.6: Graphical model of pairwire dependency algorithms

The mutual information-maximizing put clustering (MIMIC) algorithm which
uses a simple chain distribution as shown in Figure 2.5. MIMIC employs greedy
search approach to search in each generation for the best permutation of variables to
construct a chain of variables. In this fashion the Kullback-Liebler divergence
between the chain and the complete joint distribution 1s minimized. Since MIMIC
uses only a greedy search algorithm, therefore global optimality of the distribution is
not guaranteed.

Baluja and Davies [41] use dependency trees to model promising solutions (see
Figure 2.5). Similarly as in the PBIL, the population is replaced by a probability
vector which contains all pairwise probabilities. The probabilities are initialized to
0.25 and repeatedly adjusted according to new promising solutions acquired on the
fly. Estimation of the probability distribution of the selected individuals in each
generation is done using a tree structured Bayesian network with a learning algorithm
proposed by Chow and Liu [41]. Once the probabilistic model is derived, individuals
of population are sampled from it. There are two major advantages of using trees

instead of chains. Trees are more general than chains because each chain is a tree.
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Moreover, by relaxing constraints of the model, in order to find the best model
(according to a measure decomposable into terms of order two), the global optimality
of the solution can be derived.

The bivariate marginal distribution algorithm (BMDA) uses a set of dependency
graph that need only second-order statistics [41]. A set of dependency graph is similar
to a set of trees that not mutually connected. This class is even more general than
dependency trees approach because the a dependency tree is a set of dependency
graph. Pearson’s chi-square test is used to determine which pair of variables should be
connected and to construct the final mode. In each generation the factorization

obtained with the BMDA is given by:

pl(X) = er ERy pl(Xr) Hxie V\R; p](Xi |Xj(i)) 24

where V is the set of n variables, R; denotes the set containing the root variable in
generation [, and Xj(;) return the variable connected to the variable X; and added
before X;. The probabilities for the root nodes, p;(x,) and the conditional
probabilities, pl(xi|xj(i)) are estimated from database, D;%;, containing selected

individuals.
2.3.3 Multivariate dependencies

For difficult problems with multivariate or highly-overlapping building blocks,
pairwise dependency can not solve those problems efficiently. Researchers propose to
use more complex graphical model to handle such problems. However, using more
complex model tend to increase computing time and sometimes still do not guarantee
global optimality of the resulting probabilistic models. In this section, the extended
compact genetic algorithm (ECGA) [44], factorized distribution algorithm (FDA), and
Bayesian optimization algorithm (BOA) are presented.

ECGA groups the variables into many clusters. Each cluster is taking as a whole
and different clusters are considered to be mutually independent. To discriminate
models, ECGA uses a minimum description length (MDL) metric which prefers
model that allows higher compression of data.

The factorized distribution algorithm (FDA) uses a factorized distribution as a

fixed model throughout the whole computation. The structure of problem which is the
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distribution and its factorization needs to be given by experts. Unfortunately, this
usually not available when solving real-world problems, and therefore the use of FDA
is limited to some specific problems.

The Bayesian optimization algorithm (BOA) models the probability using
Bayesian networks. BOA uses the Bayesian Dirichlet (BD) equivalence metric to
measure the quality of each network. The BD metric does not prefer simpler model to
the more complex ones. It uses only accuracy as the criterion. The search for the
model is done by using greedy search and it starts each generation from scratch. BOA

has been continuously developed and improved [44].
2.4 Test Functions for Genetic Algorithms

This section presents test functions for the proposed GAs. In experiments described in
this dissertation, various test problems are used to compare the experimental results
with the compact GA which 1s equivalent to simple GAs [43]. Fitness value (e.g., the
number of correct BBs) over generations of population is taken to be performance

measure.
2.4.1 Problems Involving Lower Order BBs

A 100-bit one-max problem (i.e., the counting ones problem) and a minimum
deceptive problem (MDP) (formed by concatenating ten copies of minimum deceptive
function) are considered for evaluating the proposed algorithms on problems
involving lower order BBs [45]. The one-max problem and the MDP are
representative problems with the order-one BBs and the order-two BBs, respectively.

The MDP problem is defined by

fupp = Xizi f(x20),

0.7,if x5; = 00 {o.o, if x,; = 10

where f (xz;) = {0.4 ifxy =01 M4f02) =400 p0, =11 D)

Here, x,;, presents the value (i.e., alleles) of a 2-bit long sub-string.

2.4.2 Problems involving higher order BBs
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Fully deceptive problems are used to test the proposed algorithms on problems
involving higher order BBs. Deceptive trap functions are used in many studies of GAs
because their difficulty is well understood and it can be regulated easily. The

deceptive trap 1s defined by

(g)(z—u),ifu <z
ftrap(u: a,b,zk) = b
{(k—z)

(2.6)
} (u — z), otherwise

where u is defined as the number of ones of a sub-string, a and b are the local
deceptive and the global optimum respectively, z is the slope-change location, and & is
the problem size.

The first deceptive problem is based-on a three-bit trap function. The test
problem is formed by concatenating thirty copies of the three-bit trap function for a
total chromosome length of 90 bits. Each three-bit trap function has a deceptive-to-

optimal ratio of 0.7. That is, the problem is formulated by

f3—bit = 21121 ftrap (u3i' 07; 1: 2' 3) (27)

where us;, is a 3-bit long string.

The second deceptive problem is 4-bit trap which is formed by concatenating
thirty copies of the 4-bit trap function for a total chromosome length of 120 bits. Each
4-bit trap function has a deceptive-to-optimal ration of 0.7. That is the problem is

specified by
ﬁl-—bit = 2391 ftrap (U4i, 07: 1) 3) 4') (28)
2.4.3 Continuous and Multimodal Functions

Many real-world problems do not involve the concatenation of distinct order-k BBs in
a simple manner since their solution and search space are continuous and multimodal.
The problems can be modeled as an intricate combination of lower and higher-order
BBs. In order to investigate the performance on such problems, a circle function and
Schafter’s binary function are employed [45]. The functions maybe used for modeling
several real-world problems, especially those arising in the emerging areas of wireless

networks.
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The circle function is investigated. It is defined in (2.9) and plotted in Figure 2.7.

This multimodal function has many local optima (i.e., minima) there are located on
concentric circles near the global optimal.

Minimize f;(x) = (XL, x2)Y*[sin?(50 (L, x)Y/1) + 1.0]

(2.9)

x; € [—32.767 32.768], n=2
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Figure 2.7: Plot of the circle function

Schaffer’s binary function is presented in (2.10). The characteristic of this
function are easily grasped from it two-dimensional case shown in Figure 2.8. The
function is degenerate in the sense that many points share the same global optimal
function value (fys = 0.99400693). As can be seen in Figure 2.7, the points are

located on the highest circle in the crown near the origin.
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sin2< ,Z?zl xi2>

- 2)2
1.0+ 1073(ZL, x7

Maximize fso () = (2.10)

x; € [—16.383 16.384], n=>5

Figure 2.8: Plot of the Schaffer’s function with 2-D (n=2)

2.5 Parallel Estimation of Distribution Algorithm with Probability Model
Migration

Parallel estimation of distribution algorithms or parallel probabilistic-modeling
genetic algorithms is based on the traditional parallel genetic algorithms. However,
the key difference is how the EDA manages probability vector instead of individuals
in the population. This difference has important effects on how to parallelize the
algorithms. In this section, parallel GAs or EDAs with multiple populations is in our
attention since the proposed algorithm is developed from it and so many researches
has been developed in this class of algorithm. This class of GAs is also called

coarse-grained or island model. The design of multiple-deme parallel GAs involves
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difficult and related choices. The main issues are to determine (1) the size and number
of demes, (2) the topology that interconnect the demes, (3) the migration rate that
controls how many individuals migrate, (4) the frequency of migration, and (5) the
migration policy that determines which individuals migrate and which are replaced in
the receiving demes [46, 47].

Most parallel EDAs concentrate on parallel construction and sampling of
probabilistic models in order to speed up the process especially for EDAs with
complex model like Bayesian optimization algorithm (BOA) [48, 49]. The idea of the
multi-deme estimation of distribution algorithm (PEDAs) based on PBIL algorithm is
presented in [50]. In [49], mixture of distribution with Bayesian inference is
discussed. The concept of migration of probability parameters instead of individuals
was firstly published in [51] where UMDA platform with the convex combination of
univariate probability models is investigated for various network topologies. In [52]
parallelization of compact GA is presented. Further enhancement of this concept is
described in [53] where local search methods are used to identify which parts of
migrant model can improve the resident model. Recently, the island model of
Bivariate marginal distribution algorithm (BMDA) is presented in [54]. In [54], the
unidirectional ring topology i1s used. The cooperation of demes is realized via
migration of probabilistic models. It introduces an adaptive learning technique, based
on the quality of resident and immigrant subpopulation, which consists of the
adaptation of the resident by the incoming neighbor immigrant model. Using parallel
EDA based-on compact GA to solve the scalability problem of GA is presented in
[55].

2.6 Hardware Implementation of Genetic Algorithms

GA process is a time-consuming. For many real-world applications, GA can run for
days, even when they are executed on a high performance workstation. To reduce the
execution time of GA, several method have been offered, including parallel and/or
distributed processing of GA along with its hardware implementation [56, 57]. A
myriad of hardware-based GA have been proposed in recent years. The hardware-

based GA can be categorized into three methods: direct implementation from the
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existing genetic algorithms, parallelized hardware implementation some parts of the
algorithm, and new genetic algorithms invented for hardware implementation.
The genetic algorithms and evolutionary algorithms been have implemented in
hardware in three areas [58]:
1. A means of implementing the fitness functions of GAs.
2. A platform for implementing the EA/GAs for general optimization
problems.

3. An evolutionary engine in intrinsic evolvable hardware
2.6.1 Direct Hardware Implementation of the Basic Genetic Algorithms

For this approach to the hardware implementation of GA, Scott et al. proposed a
hardware-based genetic algorithm (HGA), which was implemented on a set of field-
programmable gate arrays (FPGAs). The HGA is based on the simple genetic
algorithm (SGA) [59].

Yoshida et al. [56, 60] proposed a hardware-based GA called the GA processor
(GAP). The GAP is based on a steady-state GA.

Shakleford et al. [61, 62] proposed their original GA. It was called the survival-
based GA. It is somewhat similar to the steady-state GA. They implemented a
complete GA system using Xilinx XCV3200E chip. Their implementation uses
extensive pipelines and parallel fitness evaluation to get performance increase of 320
times when compared to the same algorithm running on a 366Mhz Pentium CPU.

Kajitani et al. [63] proposed GA hardware for evolvable hardware on a single LSI
chip.

Wakabayashi et al. [64] also proposed a VLSI implementation of an adaptive GA,
called the GA accelerator (GAA) chip as a general purpose GA hardware.

Yamaguchi et al. [65] used an FPGA to implement a coprocessor for evolutionary
computation to solve the iterated prisoners’ dilemma problem. They reported a 200
times performance speed up in processing the problem on FPGA when compared to a
750MHz Pentium processor.

Graham and Nelson [66] implemented a complete GA system using four FPGAs.
Each FPGA was programmed to carry out a different function; selection, crossover,

fitness, and mutation. Each FPGA passed its results to the next FPGA, forming a
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pipeline GA. The performance of their system was compared to a software
implementation running on a 125MHz PA-RISC workstation and they gain four times

of improvement.
2.6.2 Parallelized Hardware Implementation of the Existing Genetic Algorithm

The early effort to implement the parallel genetic algorithm in hardware is presented
in Turton et al [67]. They implemented fine-grained GA for image registration. Each
processor node processes only one chromosome. The result was simulated.

Bland et al [57] implemented the genetic operators of the simple genetic
algorithm 1n a systolic array like architecture. Also, four systolic arrays form a macro-
pipeline which implements the operators. They proposed the implementation for a
system consisted of a general purpose processor augmented with an FPGA.

Tufe and Haddow [64] designed pipeline architecture for the GA called GA
Pipeline for intrinsic evolvable hardware. The main functions of GA Pipeline are
selection, genetic operation, fitness and sorting which are implemented in separate
modules. The pipeline consists of two phases: reproduction and updating.

Cho et al. [68, 69] proposed the genetic algorithm processor (GAP) based on
subpopulation architecture. They applied the steady-state GA with modified
tournamenet selection, special survival condition and the parallelism of coarse-grain
GA. Their implementation keeps a group of best individual in each generation. Ring
topology was proposed for interconnection. The Altera FPGA was used to implement
one GAP.

Nedjah et al. [70] proposed a massively parallel architecture for hardware
implementation of genetic algorithms. They implemented the fitness computation in
parallel hardware units which they proposed as a hardware-based neural network.
Also, the crossover, mutation and selection are implemented in parallel using multiple
crossover, mutation, and selection wunits. However, this parallel hardware
implementation still using large amount of memory because of its implementation 1s
based on a simple genetic algorithm.

Jelodar et. al. [71] designed a parallel GA for an System-on-a-Programmable-
Chip (SOPC) called SOPC-based parallel GA. The global GA which has one

population was implemented in parallel hardware. The new 1dea in this paper was to



32

propose using configurable processors with genetics operators together. This approach
resembles software-hardware co-design architecture for the global parallel genetic

algorithm.
2.6.3 New Genetic Algorithms for Hardware Implementation

To implement GA in hardware from the existing software-based genetic algorithm
tends to require more hardware resources and memory. Researchers have proposed
solutions to these problems by design new or modified genetic algorithms suitable for
hardware implementation [58].

The compact genetic algorithm (CGA) is a probability vector-based evolutionary
algorithm that can be efficiently implemented in digital hardware [72]. Even though
CGA has advantage for hardware implementation, but unfortunately, the basic CGA
lacks of sufficient search power for real world EH applications that require accuracy
and faster processing time. Therefore, the CGA is improved by adding more
techniques like elitism, mutation, and champion resampling. This modified CGA 1s
called *CGA or *CGA family. Gallagher et al. [58] proposed a family of compact
genetic algorithms to be implemented in hardware. They modified a basic compact
GA with elitism, mutation, and resampling. The modified compact GA called *CGA
performs better than a basic compact GA with reasonable increased hardware
resources. The reason behind using the compact GA is that CGA can be implemented
in hardware without memory.

To implement a EA based hardware for less search capability, Gallagher also
proposed an EA-based hardware called Minipop EA. Recently, MiniPop EA is
proposed to be used for EH [73]. The MiniPop EA trades away search-power for the
ability to implement the algorithms in small size hardware. However, the *CGA and
MiniPop algorithms still perform well on normal EH-control problems [74]. Thus,
*CGA and MiniPop currently are the key algorithms for EH applications.

Recently, Zhu et al. [75] presented a new hardware-based GA called OIMGA.
OIMGA includes two searches that interact in hierarchical manner, namely a global
search and a local search. OIMGA operates on real population in contrary to the

compact GA which is probabilistic-based model building GA. The hardware



33

resources used by OIMGA is similar to the basic compact GA but the results shows

that OIMGA has more search power than a basic compact GA without elitisms.
2.7 Block-based Neural Network

The block-based neural network (BBNN) was proposed by S. W Moon et al in [76].
The BBNN model consists of a 2-D array of basic blocks. Each block is a basic
processing element that corresponds to a feedforward neural network with four
variable input/output nodes. Figure 2.9 represents the structure of the BBNN model of
m X n size with m row or stage and »n column labeled as B; The label i denotes the
stage. The last stage is denoted m. Any block in the BBNN is connected to its
neighbors. The first row of blocks Bjj, By, to By, is the input layer and the blocks
Bmi, Bm2, . Bmn form the output layer. An input signal x = (X, Xa,..., X,) propagates
through the blocks to produce network output'y = (y1, y2, ..., ¥n).

BBNN can implement both feedforward and feedback network configuration. A
feedback configuration of BBNN architecture may cause a longer signal propagation
delay. BBNN of size m x n can represent the input-output characteristics of any
Multilayer perception (MLP) network.

A block of BBNN consists of four nodes. These four nodes can be represented by
one of the three different types of internal configurations. Figure 2.10 shows three
types of internal configurations of one input and three outputs (1/3), three inputs and
one output (3/1), and two inputs and two outputs (2/2). The four nodes inside a BBNN
block are connected with each other through weights. A weight w; denotes a
connection from node i to node j. A BBNN block can have up to six connection
weights including the biases. For the case of two inputs and two outputs (2/2), there
are four weights and two biases. The 1/3 case has three weights and three biases.
There are three weights and one bias for 3/1 case. Generalization capability of BBNN

network emerges through various internal configuration of a BBNN block.
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Figure 2.10: Four different internal configurations of a BBNN block (a) 1/3, (b) 3/1,
(c)2/2,(d)2/2

If signal u; is the input and v; is the output of the block. The output v; of a block is
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computed with an activation function h as follows.

v = h(z Wl'jui+bj>, ]E]
L€l

I and J are sets for input and output node, respectively. The term b; is the bias of the
jth node. The activation function can be linear or nonlinear function. Direct
implementation of nonlinear activation function requires more hardware resources. A
more practical approach would be a piecewise-linear approximation of the non-linear

activation function or using lookup tables.
2.8 Hardware Implementation of Neural Network: Survey

In this section, the digital implementations of artificial neural network are surveyed.
The digital neural network hardware implementations are further classified as follows:
1) field-programmable gate array (FPGA)-based implementations, 2) digital signal
processor (DSP)-based implementations, and 3) application specific integrated chip
(ASIC)-based implementations [77, 78]. DSP-based implementation is like
programming on special proposed processors, it offers flexibility but cannot deliver
best performance compared to the cost of the devices.

For the past decades, Kuhn et.al presents a good survey of digital hardware for
neural network [79]. Dias et. al. wrote a comprehensive survey of commercial
hardware of neural network [80]. Zhu and Sutton present a short review of FPGA
implementation of neural network [81]. Since ANNs are inherently parallel
architectures, there have been several earlier attempts to build custom application
specific integrated circuits (ASICs) that include multiple parallel processing units
[82]. However, intrinsic to the ASIC design principles, the resulting networks were
constrained by size and type of algorithm implemented. More recently, the focus of
ANN hardware design shifted toward implementation on reconfigurable hardware
[83]. This allows for more flexibility of network size, type, topology, and other
constraints while maintaining increased processing density by taking advantage of the
natural parallel structure of neural networks. Currently, field-programmable gate
arrays (FPGAs) are the preferred reconfigurable hardware platform. Current FPGAs
provide performance and logic density similar to ASIC but with the flexibility of
quick design/test cycles. Thus, they are superior in research, and, often, industrial

applications
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Considering digital design techniques, there are two approaches to design digital
neural network hardware: bit-serial and bit-parallel approaches. The bit-serial
approach has been developed by encoding the weight and inputs to serial bit-stream
[84, 85].

In this dissertation, we adopt bit-parallel approach because it is suitable for FPGA
implementation since there are more hardware resources in current FPGA devices.
There are challenges in design and implement neural network in digital hardware. NN
hardware required to implement nonlinear excitation functions and to design suitable
hardware architecture to accommodate neurons. It demands higher resources,
especially hardware multipliers to implement neurons. Another challenge is the
design the suitable arithmetic precision to be implemented in hardware in order to
minimize hardware resource. This is called the area versus precision design tradeoft.
The tradeoff is to choose, in a data format, the correct balance between the precision
required carrying on network functionality, and the size and cost of the FPGA
resources consumed.

The traditional implementation of neuron is based on the hardware
implementation of multi-layer perceptron (MLP). Figure 2.11 shows the basic
structure of MLP. The basic unit of MLP is the neuron. There are generally two ways
to implement neural in digital hardware: shared multiply-accumulate (MAC) unit and
fully parallel multiply-accumulate. Figure 2.13 and 2.14 show the two types of basic

implementation of one neuron.
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Figure 2.11: Structure of MLP
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Figure 2.13: Parallel multiply-accumulate (MAC) unit

Numerous works have reported new multiplication algorithms for NN [86-90]. In
[86], to avoid the use of multipliers to reduce resource, the weights of the NN have
been constrained to integer powers of two. Constraint on weights leads to inferior
performance of the network. Distributed arithmetic (DA) has been widely used to
improve hardware resource efficiency for multiplication. Lookup tables (LUTs) are
used to store the excitation function in order to improve speed and reduce the resource

requirement. In addition, implementation of dedicated NNs with few numbers of
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neurons has been reported [90]. An NN with eight neurons for control of inverted
pendulum has been implemented using Xilinx FPGA interfaced to an 8031
microcontroller and a 16-K random access memory (RAM) [91]. A real-time
controller with proportional integral derivative (PID) control algorithms implemented
in FPGA and NN controller implemented in DSP board have been reported [92]. In
[93], the radial basis function neural network and back-propagation algorithm are
implemented with floating-points processor in FPGAs. For hardware implementation,
back-propagation algorithm is the key algorithm [94].

Even though with high density FPGAs, there are not limitless resources in
FPGAs when implementing an ANN and the design poses a number of challenges.
One is to determine the most efficient arithmetic representation format. While most
general computing microprocessors/software implementations currently implement
single (32 bit) and double (64 bit) IEEE floating-point (FLP) formats (IEEE 754-
1985) using these formats on FPGAs requires significant resources. On the other
hand, using shorter integer, FLP or fixed-point (FXP) formats [78], which consume
less FPGA area to process, often means loss of precision. Depending on the data
format chosen, efficient implementation of MLP-BP on FPGAs can result in
completely different outputs than those of a similar architecture implemented in

software using the IEEE FLP formats.
2.9 On-line ECG Signal Classification

The electrocardiogram (ECG) is the electrical manifestation of the contractile activity
of the heart and can be recorded with the surface, noninvasive electrodes placed on
limbs and chest. Any disturbance in the regular rhythmic activity of the heart
(amplitude, duration, and the shape of rhythm) is termed arrhythmia. Physicians
interpret the shapes (morphology) of the ECG waveform and decide, whether the
heartbeat belongs to the normal (healthy) sinus rhythm or to the appropriate class of
arrhythmia. Generally, arrhythmias can be divided into two groups. The first group
includes ventricular fibrillation and tachycardia which are life-threatening and require
immediate therapy with a defibrillator. Detection of these arrhythmias is well

researched and successful detectors have been designed with high sensitivity [95].



39

In this thesis, the second group which includes arrhythmias that are not
imminently life-threatening but may require therapy to prevent further problems is the
subject of the studies. Figure 2.14 shows the typical ECG signal with three indicated
waves: the P, QRS, and T. The P wave is the result of slow-moving depolarization
(contraction) of the atria. This is the low-amplitude wave of 0.1-0.2 mV and duration
of 60-120ms. The wave of stimulus spreads rapidly from the apex of the heart
upwards, causing rapid depolarization (contraction) of the ventricles. This results in
the QRS complex of the ECG, a sharp biphasic or triphasic wave of about 1mV
amplitude and approximately last 80-100ms duration. The plateau part of action
potential of about 100-120 ms after the QRS is known as the ST segment. The
repolarization (relaxation) of the ventricles causes the slow T wave with an amplitude
of 0.1-0.3 mV and duration of 100-120 ms. Between T and P wave there is a

relatively long plateau part of small amplitude known as TP segment.
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Figure 2.14: Typical ECG waveform.

Many arrhythmias manifest as sequences of heartbeats with unusual timing or
ECG morphology. An important step towards identifying an arrhythmia is the
classification of heartbeats. Figure 2.15 shows the real recorded ECG signals
corresponding to normal beats (N) and premature ventricular ectopic beat (V). The

rhythm of the ECG signal can then be determined by knowing the classification of
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consecutive heartbeats in signal. Classification heartbeats can be very time-consuming
and hence any automated processing of the ECG that assists this process would be
much needed [96].

The ECG arrhythmia waveforms differ usually with the amplitude and duration
of beats. Especially, the QRS complex is the important part. QRS complex reflects the
electrical activity within the heart during the ventricular contraction, the time and
shape of it occurrence provide much information about the current state of the heart.
Due to its characteristic shape, it serves as the basis for the automated determination
of heart-rate and diagnosis of cardiovascular diseases. QRS detection provides the
fundamentals for almost all automated ECG analysis algorithms.

Within the last decade many new approaches to QRS detection have been
proposed. The key algorithm is proposed in [97]. In this thesis, we focus on the
classification of ECG beat. The algorithm in [98] is used for QRS detection.
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Figure 2.15: Examples of real ECG recording of two different rhythm types
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As shown in Figure 2.16, it is divided into a preprocessing or feature extraction
stage including linear and nonlinear filtering and decision stage including peak

detection and decision logic.
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Figure 2.16: Common structure of the QRS detectors.

Within the last decade many new approaches to automatic ECG signals
classification have been proposed. In [99-102], the authors present use the Hermite
polynomial for feature selection. The method in [99] is based on a hybrid fuzzy
neural network that consists of a fuzzy self-organizing network connected in cascade
with a multilayer perceptron. In [103], a neuro-fuzzy approach is described. In [104],
the authors implemented two classification systems based on support vector machine
(SVM) approach. The first uses feature derived from high-order statistics, while the
second uses the coefficients of Hermite polynomials. Detection of premature
ventricular contractions (PVCs) by means of a fuzzy-neural network classifier with
feature derived from a quadratic spline wavelet transformed is proposed in [105]. In
[105], different classification systems based on linear discriminant classifiers are
explored, together with morphological and timing features. A high spectral analysis
techniques is proposed in [106]. In [107], an automatic online beat segmentation and
classification system based on a Markovian approach is proposed. In [108], a rule-
based rough-set decision system in time domain is presented. In [109], a patient-
adapting heartbeat classifier system based on linear discriminant is proposed. The
classification system processes an incoming recording with a global classifier to
produce the first set of beat annotations. Then, the expert can validate the records. The
system then adapt by first training a local classifier using the newly annotated beats.
The wavelet and timing features are used to for training using a large data set [110].

The author found that fourth scale of a dyadic wavelet transform with a quadratic
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spline wavelet together with the pre/post RR-interval ratio is very effective in
distinguishing normal and PVC from other beats. In [101], Moon S. and Kong S.
proposed the block-based neural network classifier with feature selection using
coefficient of Hermite polynomial and RR intervals. The block-based neural networks
are trained by evolutionary algorithm and a modified back-propagation algorithm.
The authors found a competitive classification results compared to other methods.
The support vector machine and particle swarm optimization is proposed in [111].
This method is effective for a limited number of training beats. Those methods that
have been presented so far are suitable for implemented on software. In [112], a
portable ECG classification system is presented.

The Association for Advancement of Medical Instrumentation (AAMI) has a
recommendation for reporting performance results of cardiac rhythm algorithms
[113]. AAMI standards are adopted in this thesis. The AAMI recommends that each
ECG beat be classified into the following five heart beat types: N (beat originating in
the sinus node), S (supraventricular ectopic beats), V (ventricular ectopic beats), F
(fusion beats), and Q (unclassifiable beats) [113]. The waveforms of ECG beats from
the same class may differ significantly and different types of heartbeats sometime
share similar shapes.

Several standard ECG databases are available for the evaluation of QRS detection
algorithms. Tests on these well-annotated and validated databases provide
reproducible and comparable results. These databases include MIT-BIH database,
AHA database, and CSE database. In this thesis, MIT-BIH is used. The MIT-BIH
database [114] provided by MIT and Boston’s Beth Israel Hospital consists of ten
databases for various test purposes; i.e., the Arrhythmia database, the noise stress test
database, the ventricular Tachyarrhythmia database. In addition to the AHA database
and the Euro-pean ST-T database, the first MIT-BIH databases are required by the
ANSI for testing ambulatory ECG devices. Most frequently the MIT-BIH arrhythmia
database is used. It contains 48 half-hour recording of annotated ECG with a sampling

rate of 360 Hz and 11-bit resolution over a 10-mV range.



CHAPTER III
CELLULAR COMPACT GENETIC ALGORITHMS

Cellular compact genetic algorithm is developed from the cooperative compact
genetic algorithm [115] and parallel GAs [46]. The concept of cellular compact
genetic algorithm is to parallelize or divide a large problem into smaller tasks and to
solve the task simultaneously using multiple genetic algorithms. CCGA is different
from a traditional parallel GA since it operates on probability vectors. CCGA is a
parallel univariate estimation of distribution algorithms (EDAs) that migrates the
probability model instead of individuals [48]. CCGA improves model combination
through local search by selecting the better model from neighbors to be combined
with the inner model of the cell [53]. The CCGA consists of uniform cellular compact
genetic algorithm cells connected in a cellular automata space. Each CGA cell only
exchange probability vectors to its neighbors. In the following section, we describe
the cooperative compact genetic algorithm, which is the prior version of CCGA. The

topology and the algorithm of CCGA are also described.
3.1 Cooperative Compact Genetic Algorithm

For cooperative GAs, the search space can be partitioned by splitting the solution
vectors into smaller vectors [116]. Each of these smaller search spaces is then
searched by a separate GA. The fitness is evaluated by combining solutions found by
each of the GAs representing the smaller sub-spaces. In this section, we present a
cooperative approach for CGA. The thrust is to propose the concept of confident
counter that guides toward search direction along with the traditional probability
vectors. The cooperation that we proposed comes from using confident counter as a
source of shared knowledge on where is the best search direction because only
exchanging the probabilities vectors is not enough to guarantee which one of
probability vectors from each neighboring cell is the current best vector. In the
cooperative compact genetic algorithm (CoCGA), the individual CGA cell searches in
its own sub-population.

The implementation of the coevolutionary genetic algorithm is similar to the
concept of parallelized GAs described in the previous chapter. Targeting hardware

implementation, we propose CoCGA to be applied to the evolvable hardware. In our
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case, the individual CGA cell sends its search result through its probability vector
together with its confident counter to the leader cell. The leader cell consolidates this
information and decides the bias for the search direction which it then sends back to

all neighboring CGA cell as the new current best probability vector.
3.1.1 CoCGA Topology

Figure 3.1 shows the topology of the cooperative compact GA (CoCGA). The
topology of the proposed CoCGA resembles the cellular automata (CA) systems that
cells only interact with their neighbors. However, the interactions between CA cells
occur by exchanging the probability vectors instead of mating between individuals of
sub-population directly. With this proposed CA topology, the hardware realization of
the algorithm is straight forward and not too complicated to be implemented,
considering in term of scalability and signal wiring that greatly contribute to the
performance of the hardware circuit. In addition, CA architecture is proposed for EH
that has capability of self-evolving and self-replicating [117]. Moreover, CA-like
architecture can be practically and efficiently implemented into FPGAs or other
reconfigurable devices that their architectures consist of array of logic blocks [118].
Therefore, CA-like architecture is proposed for CoCGA. Each coarse grained CoCGA
cell has a probability vector and sub-population. There is a group leader for each
group of these coarse grained CoCGA cells. In Figure 3.1, the four-neighbor cell with
the leader cell in the middle cell is shown. The probability vectors are exchanged
through the leader cells. Each cells except the leader cells keep adjusting their own
probability vector to the best probability. The confidence counter (CC) is introduced
to help the group leader evaluates which probability vectors from its neighbors are

likely to converge to a good solution.
3.1.2 CoCGA Algorithm

Figure 3.2 shows pseudocode of the normal CoCGA cell. After probability vectors of
each cell is initialized to the mid-point range, two individuals are generated from the
probability vector, then compete similar to a normal compact GA. The proposed
algorithm is different from the normal compact GA in two ways: (1) the probability

vectors are passed to the group leader cells. (2) the confidence toward the better
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probability vector is calculated as confident counter passed to the group leader cells.

In Figure 3.2, the step 3.2 and 4 are inserted into the normal Compact GA.
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Figure 3.1: Topology of Cooperative Compact GAs with the leader in the middle

The group leader cell only keeps the probability vector but does not implemented
the normal compact GA. The group leader updates the probability vectors of its
neighbor cells asynchronously because the updating process will occur after the
confident counters of the neighboring cells get the new values. For each neighboring
cells, the confident counter is incremented asynchronously because it depends on
when the current probability vector of each sub-population gives the current best
individual. During search process if the better individual is found the confident
counter is incremented. Therefore, the group leader uses an asynchronous updating

policy. The group leader keeps checking if confident counter (cc) for each one of its
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neighbor are updated to higher value. Once the confident counter for one of its
neighboring updated, then the group leader evaluates value of each confident counter
and identifies the current highest value in step two. Next, in step three, the group
leader, update its own probability vector with the vector from the neighbor that has
the highest confident counter. Then, the new best probability vector is passed from the

group leader to its neighbors in step four.
3.1.3 CoCGA Algorithm Benchmark Problems and Experimental Results

We used One-Max and the De Jong test functions (F1, F2, F3) to compare the
performance of the CGA and the proposed CoCGA. For De Jong's test functions, the
solution quality is measured by the objective function value. The function evaluations
are performed by modules coded in Verilog-HDL using behavioral modeling with the
same precision as described in [119]. For our experiment, the CoCGA has two
neighboring cells and one leader cell. The reason to use De Jong's test functions
because the De Jong's test function were originally proposed as a means to measure
the abilities of search algorithms and used in [68]. The functions are fully described in
[119]. We used 32-bit chromosome length for One-Max problem. For De Jong test
function F1 and F2, we used 30-bit chromosome length. For F3 function, the 50-bit
chromosome length was used.

De Jong's functions F1-F3 are shown below:
3
F1(x) = fo, —512 < x; < 512 (3.1)
i=1
F2(x) = 100 (x2 —x,)? + (1 —x;)?, -2.048< x; < 2.048 (3.2)
5
F3(x) = Zinteger (x), _512 < x; < 5.12 (3.3)

i=1

In our experiment, the two neighboring cells and one leader cell are used to validate
the efficacy of the proposed approach. We coded both CGA and CoCGA in Verilog-

HDL. The simulation was run on Pentium 4 machine with 512MB memory.
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L is chromosome length

M is number of neighbor cells
cc is Confident Counter

CA is Cellular Automata space

for each cell | in CA do in parallel
Initialize each pl[l]
For i =1 tolLdo
p(fi] := 0.5;

end parallel for
for each group leader cell i in CAdoin
parallel

while not done do

1. Read cc from neighboring cells

2. Select the highest cc of all neighbors
Ccma:r: = O;

1 to M do

> CCrax )

for i :=

if (cc[i]
CCrax := cc[il];

3. Update p; with p.. with ccpay
for i := 1 to L do

pl[ll = pccma}:[i]
4. Update new updated p; to all normal Cell
for each neighbor cell of leader cells
do in parallel
for i := 1 to L do
pli] := pi[i];
end parallel for
5. Check if the vector has converged
for i := 1 to L do
if pl[i] > 0 and pl[i] < 1 then
goto step 1
6. p represents the final solution
end while
end parallel for

L is chromosome length

N is population size

cc is Confident Counter

CA is Cellular Automata space

for each cell | in CA do in parallel
Initialize each pI[l]
For i :=1 toLdo
[i]:=0.5;
Initialize cc
cc:=0;
end parallel for
for each cell i in CA do in parallel
while not done do
1. Generate two individual from the vector
a := generate ();
b := generate ()
2. Letthem compete
Winner, loser := compete (a, b);
3. Update the probability vector toward
better one and
Increment Confident Counter
3.1. Update probability vector

for i := 1 to L do
if winner[i] != loser[1i] then
if winner[i] = 1 then
pli] += 1/N
else p[i] -= 1/N
3.2 Increment Confident Counter
if winner[i] !'= loser[i] then

cc: = cc + 1;
4. Check if cc is incremented then
Send p and cc to the group leader cell
5. Check if the vector has converged
1l to L do

> 0 and pli]

for i :=

if pli] < 1 then
goto step 1
6. p represents the final solution
end while
end parallel for

Figure 3.2: Pseudocode of CoCGA (left for leader cell, right for normal cell)

The ModelSim Verilog-HDL, an industrial strength simulator, from Mentor

Graphics was used to perform the simulation. We evaluated CoCGA by comparing its

performance with the performance of a normal CGA. The graphical plot in Figure 3.3

shows the best individual, the maximum value for One-Max problem and minimum

value for F1-F3. Both algorithms were terminated when each of them converged to

minimum values. In all cases CoCGA significantly outperformed the normal compact

GA both in the minimum values found and in the speed of convergence. The Figure

3.3 shows significance of the experimental results. Table 3.1 shows the speedup

comparison between CGA and CoCGA. CoCGA with two neighboring cells is at least

three times faster than CGA.
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Table 3.1: The performance comparison in term of number of clock cycles

One -Max F1 F2 F3
CGA 43362 126967 | 80027 | 32427
CoCGA | 11492 25542 | 27757 | 9407
Speedup | 3.77 4.97 2.88 3.44

3.1.4 Hardware Design and Implementation of CoCGA

For performance evaluation of the proposed CoCGA in comparison with the normal
compact GA in hardware, we designed and implemented two hardware circuits for the
normal compact GA and the proposed CoCGA into synthesizable Verilog HDL codes
and implemented into an FPGA chip. The CoCGA was designed by adding additional
modules to the hardware of the normal CGA hardware. By designing our own
hardware for both the CGA and CoCGA, we can perform performance comparison
fairly since both hardware circuits designed by the same designers and based on the
same Verilog HDL codes.

CGA hardware design for a normal compact GA is similar to the design in [58],
Figure 3.4 shows CoCGA bit module that consists of the following blocks:

1) RNG is the random number generator.

2) PV is register that keeps the probability vector.

3) GEN_A and GEN B: The random number generator RNG provides the
random number in 8-bit to GEN_A and GEN_B. If the 8-bit value from RNG greater
than value of PV, the output of GEN_A and GEN_B will be “0”. In the other hand, if
value from the random generator is less than the value of probability vector, then the
output of GEN_A and GEN_B will be “1”.

4) UPDATE PV: The result from the fitness evaluation controls the
UPDATE PV to increment or decrement the register that keeps probability vector.

5) BestFitNess is a register that keeps the current best fitness.
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Figure 3.5 shows the hardware design of the N-bit module of the CoCGAEach
cell. CoCGA bit-module is based on the designs proposed in [58, 72] integrated with
the communication unit (COMM) and the confident counter unit (CC). In Fig. 6, the
hardware design consists of three main blocks. The first block is the CoCGA bit-
module which can be cascaded to form N-bit chromosome. The second block is the
additional units for CoCGA which has the confident counter (CC) and the
communication unit COMM. The third block is a finite state machine acts as the main
controller for the whole block. The detail of these three additional modules is
described below:

1) COMM is a finite state machine that controls the process of sending and
receiving the probability vector as parallel 8-bit package to and from the normal cells
to the lead cell. For a chromosome of N-bit length, the compact GA needs to have N-
bit of probability vector which each bit of the probability vector sizes 8-bit. Thus, for
N-bit length chromosome, N packages of parallel 8-bit will be sent and received
between the lead and normal cells by the COMM units of each cell.

2) CC 1is the confident counter designed as a 5-bit counter. During fitness
evaluation, the counter is incremented every time when the fitness of the winner is
better than the current best fitness which is inside the fitness evaluation block. The
value of the counter is passed to the lead cell with the current probability vector.

3) FSM CONTROL is a finite state machine that controls and synchronizes
COMM, CC, and the Bit Module.

We implemented the CGA and CoCGA in Verilog-HDL and synthesized he code
into FPGA. For CoCGA, we used one leader cell and two neighbor cells. The verilog
design was then synthesized and implemented in to Xilinx Vertex-4 FPGA. Table II
shows the FPGA implementation results after the codes synthesized, placed and
routed using Xilinx software. From Table II, we can notice that the CoCGA cells only
require slightly higher hardware resources than normal CGA cell. This is because we
only added the communication unit and confident counter unit to the original

implementation of CGA [58, 72].
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Table 3.2: The performance comparison in term of FPGA hardware resources.

CGA CoCGA CoCGA
Normal cell Leader cell
Family Vertex-4 Vertex-4 Vertex-4
Device VIx25-sf363 VIx25-sf363 VIx25-sf363
No. of Flip Flops 541 598 168
4-input LUT 1065 1295 359
Total equivalent gate count 12602 17034 4651
Maximum Frequency 136.325Mhz 134.421 Mhz 145.423 Mhz
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3.2 Cellular Compact Genetic Algorithm

Cellular compact genetic algorithm is developed from cooperative compact genetic
algorithm described in the previous section and parallel GAs [46]. The concept of
cellular compact genetic algorithm is to parallelize or divide a large problem into
smaller tasks and to solve the task simultaneously using multiple genetic algorithms.
CCGA is different from a traditional parallel GA since it operates on probability
vectors. CCGA 1is a parallel univariate estimation of distribution algorithms (EDAs)
that migrates the probability model instead of individuals [50]. CCGA improves
model combination through local search by selecting the better model from neighbors
to be combined with the inner model of the cell [53]. Being difference from the
cooperative compact GA, the CCGA consists of uniform cellular compact genetic
algorithm cells connected in a cellular automata space by each CGA cell only
exchange probability vectors to its neighbors. In this section, the topology and the

algorithm of CCGA are also described.
3.2.1 CCGA Topology

Figure 3.6 illustrates the topology of the cellular compact GA. The topology of the

proposed CCGA resembles the cellular automata (CA) system that cells only interact
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with their neighbors [117]. When each local CA cells in cellular automata space
operates together, the global states of computation can emerged [117]. With this
proposed CA topology, the hardware realization of the algorithm is straight forward
and can be practically and efficiently implemented into FPGA because of the
architecture of array of logic block [118§].

Each coarse grained CCGA cell has a probability vector which represents a sub-
population. Every CCGA cell is identical. In Figure 3.6, Each CCGA cell with four
neighbors exchanges probability vectors and key information between its neighbors.
Every CCGA cell keeps adjusting its own probability vector to the better probability.
The confidence counter (CC) is introduced to help each cell evaluates how to
recombine the probability vectors coming from its neighbors. The key parameters for

CCGA topology is the number of the neighbors of each cell.

Other neighbor cells

Probability Vector
(PV)

I

O I
[@)] i—
>

Probability Vector Probability Vector
D e o - > (—
CGA
A - [
Probability Vector
\ (PV,
Probability Vector Probability Vector
< - > -
CGA CGA

I Other neighbor cells 1

Figure 3.6: Topology of cellular compact GA
3.2.2 CCGA Algorithm

The concept of the CCGA is the cooperative compact GA [115] which is based-on the
compact GA. However, the compact GA does not provide acceptable solutions to
difficult problems like deceptive problems or multimodal problems, because it does
not have memory to retain the required knowledge about non-linearity of the
problems. The compact GA with higher selection pressure was proposed in [45] and
by adding elitism to the compact GA. In summary, the elitism-based compact GAs

can be described into two approaches as shown in Figure 3.7 and Figure 3.8. The
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non-persistent compact GA performed slightly better than persistent approaches [45].
To apply the elitism compact GA to our cellular compact GA, we modified the non-
persistent compact GA from [54] in step 3 by simply discarding the elite chromosome
when the allowable length of inheritance reached. With this approach hardware
implementation will be more efficient.

Figure 3.9 shows the pseudocode of the cellular compact GA. Each cell of the
CCGA has the identical algorithm as shown in Figure 3.9. For each cell, one bit of
the GA is represented by a probability vector. There are eight steps in the algorithm.
Since the CCGA employs elitism-based compact GA, all of the eight steps are
modified from the standard compact genetic algorithm. At first, the probability vector
of each CCGA cell in the cellular automata space is initialized to the initial values that
can be set to same for every cell to the mid-point range or set to different initial values
for different cells in order to assign each CCGA cells to start searching in different
area of the problems. This strategy can be applied to more difficult problems and
more number of CCGA cells.

In the first step, for each generation, one individual is generated from the
probability vector except for the first generation that newly generated individual is
assigned to be the elite chromosome. To avoid premature convergence of strong
elitism, CCGA employs non-persistent or re-sampling of the current elite
chromosome from the initialized probability vector. Thus, a parameter m is
introduced as the allowable length or the allowable generations of the elite
chromosome to be passed on. This parameter retrains the length of inheritance or the
number of generations that the elite passed on, thereby avoid the populations to reach

equilibrium very fast and maintain genetic diversity.

Parameter: e : elite chromosome,
n : new chromosome

2. Generate one individual from the probability
vector
If'the first generation then
e := generate(p);
n := generate(p);
3 Let the elite and new chromosome compete
Winner, loser := evaluate(e, n);

Figure 3.7: Modification of compact GA to realize persistent elitism
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In the second step, the loser chromosome is always replaced by a newly
generated individual from the current probability vector. However, the winner can be
passed on to the next generation as the elite, only when e, the present generation
length, less than the allowable pass-on length of the elite which is the parameter, 1.

That is if 1 > e then the elite is passed on to the next generation.

Parameter: 1 : the allowable length of
inheritance

2. Generate one individual from the probability
vector

If the first generation then
e = generate(p);
o:=0;
n := generate(p);
3 Let the elite and new chromosome compete

ife <m then
Winner, loser := evaluate(e, n);
e =o0+1;

else
e := generate(prob. := 0.5);
o:=0;

Figure 3.8.: Modification of compact GA to realize non-persistent elitism

In addition to elitism in step two, the confident counter, cc is introduced as an
important parameter to indicate how well the current search process of a CCGA cell is
carried on. The higher the confident counter, the more confident toward finding the
better solution of this current CCGA cell. Each CCGA cell uses the confident counter,
cc, as the indicator to other neighbor cells so that each CCGA cell can compare its
own confident counter with other neighbor’s confident counter. In other word the
confident counter keeps track of the number of the newly generated chromosome that
is better than the current elite. The confident counter is incremented when the elite
chromosome is assigned a new value.

In the third step, the elite and a newly generated individual from the probability
vector compete similar to a normal compact GA. The probability vector of each cell
is updated as shown at step 3 in Figure 3.9. If the confident counter of each cell
reaches a certain level, then the probability vector and the confident counter of each
cell are passed to its neighbors in step four.

In fifth and sixth step, once a cell receives the probability vector and confident

counter from its neighbor, the cell performs local search by selecting the best
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probability vector from the incoming vectors. Then, the new inner probability vector
is calculated from the adaptive combination weighted by the £ value, which derives
from the best confident counter shown in step 6.2 in Figure 3.9.

Using § for vector recombination in step 6.3, the CCGA can avoid local minima
of the greedy search by shifting search direction gradually toward the better one. This
feature of the CCGA contributes to the better performance. Finally, the CCGA keeps
running until the probability vector is converged.

The proposed CCGA algorithm is different from the normal compact GA and
other concept of probability model migration as follows:

(1) CCGA employs the elitism-based compact GA which is suitable for
hardware implementation than UMDA or BMDA in [50, 54]. In addition, elitism-
based compact GA performs better than the normal compact GA.

(2) With uniform cells, the probability vectors are passed directly to neighbor
cells.

(3) The confidence toward the better probability vector is calculated as
confident counters and passed to neighbor cells. In Figure 3.9, the step 2, 4 and 5 are
inserted into the normal Compact GA.

(4) Improved probability vector combination is implemented by local search
and adaptive combination in step 6 in Figure 3.9. This combination scheme proposed
to provide a solution to the greedy search characteristic of the cooperative compact
genetic algorithm [53, 115]. The local search is implemented through selecting the
best probability vectors among its neighbor and the confident counter that keeps
frequency of the updating to the probability vector of each cellular compact GA cell.

The higher confident counter values contribute to higher chance to reach the
better solution. The probability vector combination refers to the following equation:

P = BRI+ (1— B)Pr()

Where ( is the adaptive weight calculated from the best confident counter
among neighbors. The better confident counter will provide the lower § which
increases the influence of the incoming model from the neighbors.

P (x) is a new inner probability vector of a CCGA cell

P:(x)is the best incoming probability vector from neighbors
g y g



L is chromosome length, N is population size
cc is Confident Counter, CA is Cellular Automata space
C is initial value of the probability vector

for each cell in CA do in parallel
Initialize each pli]
For i =1 toLdo
_plil=C;
Initialize cc
cc:=0;
end parallel for
for each cell i in CA do in parallel
while not done do
1. Generate two individuals from the vector
if the first generation then
E := generate(p);
e 0
N generate (p) s

[T

2. Letthem compete and update the cc counter
winner, loser := compete (E, N);
if winner != loser &

winner != E then
cc = cc + 1;
if e < n then
E := winner;
e e + 1;
else
e
o

generate(p := C);
0;

3. Update the probability vector toward
better one and Increment Confidence Counter

for i := 1 to L do
if winner[i] != loser[i] then
if winner[i] == 1

then p[i] += 1/N
else p[i] -= 1/N

4. Check if cc reaches a target level then Send p and cc to
the neighboring cell
cc := 0;

5. Receives p and cc from neighbors

6. Use local search and the adaptive convex recombination with the
received p from the neighbor and its own p
6.1 Find the highest cc among neighbors’ cc

CCpax := 03
for i := 1 to M do
if (ccli] > cCpax )
CChax := ccli];
Peemaz 1= P[]

6.2 Convert ccpax to B:0 < B <1
ﬁ =1 / CCnax 7

6.3. Update p, with
for i := 1 to L do
pl[l] L= ﬁpl[l] +(1'B)pccma:{[i]

7. Check if the vector has converged
for i := 1 to L do
if pli] > 0 and p[i] < 1 then
goto step 1
8. p represents the final solution

end while
end parallel for

Figure 3.9: Pseudocode of cellular compact GA
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(5) Asynchronous migration rate of probability vector for each CCGA cell is
achieved by using confident counter since the updating rate of each CCGA cell to its
confident counter is different. This contributes to the different rate to exchange the

probability vector.
3.2.3 Benchmarks Problems and Experimental Results

In this section, the performance of CCGA with 4-node, 2-node, 1-node, and normal
compact GA are compared. For 1-node case, it is equivalent to no communication
between each CCGA node. All results were averaged over 10 runs. Each experiment

1s terminated when the PV converse to a solution.
(a) Problem Involving Lower and Higher Order BBs

A 100-bit one-max problem and a minimum deceptive problem (MDP) are used for
evaluating the CCGA algorithm. A 100-bit one-max problem is specified in chapter
II. We investigate the number of correct building blocks (BBs) or the solution quality.
Figure 3.10 shows the performance of the CCGA on OneMax problem. After
performing around 200 of generations, CCGA with 4-node can find the best solution.
It takes almost 900 generations of CGGA with 1-node to get 100% correct BBs while
the compact GA performs poorly.

For the 100-bit MDP problem, Figure 3.11 shows the performance of CCGA
compared to the normal compact GA. The same trend as Figure 3.10 is found;
however 1-Node CCGA suffer from lack of wider search strength in the solution
space. As a result, 1-Node cannot find the best solution within 1000 generations. The

compact GA gradually improves the search solution.
(b) Problem Involving Higher Order BBs

Fully deceptive problems are used to test the CCGA on the problems involving higher
order BBs. The first deceptive problem is three-bit trap which is concatenated to form
the 90-bit problem. The 4-node CCGA achieves better solution than 1-Node CCGA,
and much better than the compact GA. From Figure 3.12, 4-node CCGA can find the
best solution within 200 generations. For 1-Node CCGA, it is difficult to find the best

solution. The communication between CCGA nodes contributes to the better results.
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Figure 3.10: Performance of the CCGA on OneMax

The second deceptive problem is formed by concatenating the four-bit trap
function to 120-bit. The results are compared in Figure 3.13. The 4-Node CCGA
outperforms the 1-node and the compact GA. It can be noticed from Figure 3.12 and
3.13 that the four-bit trap problem poses higher challenge for the algorithms than the
three-bit trap problem.

(c) Experimental Results for Continuous and Multimodal Functions

A circle and Schaffer’s binary function described in section 2.2 are used to test the
performance of CCGA. For the circle function, there are two variables which are
represented or sampled to 15-bit precision. Figure 3.14 shows results of minimizing
the circle function. The CCGA with 4-node significantly outperforms the compact
GAs and the 1-Node of CCGA with regard to convergence speed and quality of

solutions.
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The result of Schaffer’s binary function is shown in Figure 3.15. The function
has 5 variables. The function is degenerate in the sense that many points share the
same global optimum function value (0.99400693). The global optimum points are
located on the highest tip neat the origin. There many sub-optimal in the fitness
landscape. In Figure 3.15, the 4-Node CCGA without communication between each

node performs well better than 1-Node and the compact GAs.
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Figure 3.15: Performance of the CCGA on 75-bit of the Schaffer function

3.2.4 Hardware Architecture and Implementation of CCGA

In this thesis, we propose the hardware architecture of the CCGA that supports
scalable precision and scalable number of variables. The architecture can be scaled to
the problem size with little modification to the hardware. The proposed hardware
architecture CCGA is based-on the architecture of a single CCGA cell. Each CCGA
cell consists of four main blocks: Bit Module (BM), Package Switch Box (PSB),
Fitness Evaluation (FE), and Main Controller (MC). Fig 3.16 shows the hardware
architecture of CCGA.
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The Bit Module (BM) is the basic building block of CCGA. In order to support
the scalable number of variables or the problem size, the Random Access Memory
(RAM) with N bit depth and W bit wide is used in the BM. In addition to RAM, two
shift registers are used to store each bit of the currently generated chromosome and
the current best bit position or the elite bit. The two shift registers have the size of 1-
bit wide and N-bit depth. For example, for the problem of two variables and each
probability vector is represented by 8-bit, the RAM size 8x2 (W=8, N=2) and the shift
register size 1x2 will be used.

Each Bit Module (BM) consists of six sub-blocks: Confident Counter (CC)
block, Probability Vector (PV) block, Update Block, Gen A block, RAMs and two
shift registers. There are two key registers in Bit Module. These two registers are
probability vector register within PV block and confident counter register within CC
block.

In CC block, the confident counter is designed as an 8-bit counter. During fitness
evaluation, the counter is incremented every time when the fitness of the winner is
better than the current best fitness. The value of the counter is passed to the neighbor
CCGA cells with the current probability vector.

The Update block is the hardware block that implements the step 6 of the
pseudocode the Fig. 3.9. A hardware part of the block consists of comparators and
multiplexers for comparing incoming confident counter. The best confident counter
will be selected among the incoming confident counters of the neighbors. The
confident counter (cc) is converted to B by using fractional number (1/cc). The
multiplication of B with the probability vector is implemented using shift register
instead of using multipliers which occupy more hardware resource. With shift register
implementation, the § value which is equal to 1/cc, will be scaled down to multiple
of 2. From the equation of vector combination of CCGA algorithm, after
multiplication, the value of both probability vectors will be added using 8-bit adder.

The Package Switch Box consists of five First-In-First-Outs (FIFOs) that store
sending and receiving the probability vector as an N-bit package between each CCGA
cell. For a chromosome of M-bit length, the CCGA needs to have M number of
probability vector which each probability vector sizes N-bit. Thus, for M-bit length

chromosome, M packages of N-bit will be sent and received between each CCGA cell
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Figure 3.16: The proposed hardware architecture for CCGA

The Main Controller is a finite state machine that controls the four datapath

blocks. The CCGA-bit module takes four clock cycles for generating each
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chromosome for tournament selection and updating probability vectors. The Package
Switch Box module takes sixteen clock cycles for sending and receiving probability
vectors; however, the number of clock cycles depends on the size of the chromosome
for a specific problem. The Update block takes three clock cycles for latching
probability vector to the internal registers and perform shifting and addition.

We implemented the CCGA with four nodes in Virtex-5 LX50 device. The code
was designed and written in synthesizable Verilog HDL. ModelSim Version 6.2 and
Cadence NC-Sim were used for simulation. Xilinx ISE 9.1 was used for FPGA
implementation.

Table 3.3 shows the FPGA implementation of one node and when CCGA is
scaled up to four nodes. From Table 3.3, the speed of the CCGA is not related to the
number of the nodes which demonstrates that CCGA can be scaled up to a problem
size in FPGA hardware. The comparison of FPGA resources is shown in Table 3.3.
CCGA occupies the same amount of FPGA resources as others CGA. However, it’s
more practical to FPGA implementation since it has uniform cell type.

The comparison in term of speed and hardware resources to others compact GA
implementation is shown in Table 3.4. CCGA delivers the same speed and requires

the compatible hardware resources.
3.3 Discussion

The CCGA provides more efficient in hardware implementation than CoCGA since
the CCGA uses only one type of cells. For scalability of CCGA, there is a limitation
of increasing number of nodes to solve more difficult problems. For a particular
problem, there are an optimum number of nodes that can solve the problems. This
means that increasing number of nodes beyond a certain number will deteriorate the
performance of CCGA. We can conclude that more difficult problems will require
more number of CCGA nodes and that number should not exceed the optimum
number of nodes. From the experimental results, using elitism in CCGA enhances the
performance of CCGA over CoCGA drastically.

The proposed scalable hardware architecture of CCGA provides more flexibility
and ease of hardware implementation at the cost higher FPGA resources. The CCGA

node requires more resources especially the LUT that needs to be used as distributed
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random access memory (SRAM). However, the proposed architecture does not
require the large size of SRAM. This advantage allows us to save the large macro

SRAM inside FPGA for other purposes or lower cost FPGA can be used.
3.4 Summary

In this chapter, the CCGA is presented. The results provide initial evidence that
CCGA can outperform the normal compact GA and can provide compatible results to
the CoCGA with more applicable to FPGA implementation due to unified cell type.
The CCGA delivers a more search performance with the adaptive probability vector
recombination. For intrinsic evolvable or adaptive hardware, the CCGA can be used
for a hardware GA for real-time evolution and adaptation with increased quality of
search results. In addition, CCGA can address a scalability issue of genetic algorithm
with problem size since CCGA can scale up with problem size by increasing network

size as shown in Table 3.3.

TABLE 3.3: FPGA Hardware Resource Xilinx Virtex-5 LX50

FPGA resources for CCGA with 32-bit chromosome
Network
. on
size
Xilinx Vertex-5 LX50
CCGA
Slice Registers used Flip-Flops 621

Slice LUTs used as Logic 1,932

1 Total equivalent gate count 18,224
Maximum Frequency 290Mhz

Slice Registers used Flip-Flops 1,642

Slice LUTs used as Logic 5,506

2x2 Total equivalent gate count 49,204
Maximum Frequency 280Mhz




TABLE 3.4: Comparison of FPGA resources

CoCG
CoCGA
CGA A CCG
normal
[10] leader A
[10]
[10]
No. of flip-flop 541 598 168 1021
4-input LUT 1065 1296 359 2432
Total equivalent gate
12602 | 17034 4651 | 30224
count
330 330 300 300
Max. frequency
Mhz Mhz Mhz Mhz
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CHAPTER 1V
EVOLVABLE HARDWARE BASED-ON BBNN AND CCGA

Evolutionary artificial neural networks (EANN) use evolution to adapt the network
structure and internal configuration as well as the parameters in dynamic environment
[24]. Since the goal of evolvable hardware is to change hardware architecture and
functions without human intervention, EANN can be regarded as a class of evolvable
hardware. Block-based neural network (BBNN) model provide simultaneous
optimization of network structure and connection weights. The BBNN consists of a
two-dimensional array with support integer weights. The BBNN structure is suitable
to be implemented in hardware especially using field programmable logic arrays
(FPGAs). In addition, BBNN is successfully evolved using genetic algorithms to
optimize weight and structure. However, in the past research, the genetic algorithm
for BBNN was done in software off-line on computer system or on-chip embedded
processor. This approach requires higher cost and larger FPGA since it needs on-chip
processor.

This thesis presents an FPGA implementation of a cellular compact genetic
algorithm and Block-based neural network. We propose a new integration in hardware
between cellular compact genetic algorithm and Blocked-base neural network. The
layer-based architecture for evolvable hardware consists of three layers. The top and
bottom layers are for cellular genetic algorithms for evolving weight and structure.
The middle layer is the Block-based neural network. With the cellular-like models of
both Block-base neural network and cellular compact genetic algorithm, this layer
based approach for hardware implementation provides modular block design in
hardware and reduces interconnection length since the each cellular cells of both
Block-based neural network and cellular compact genetic algorithm only interact with
their neighbors even on the same layer or the another layer.

BBNN can implement both feedforward and feedback network configuration. A
feedback configuration of BBNN architecture may cause a longer signal propagation
delay. BBNN of size m x n can represent the input-output characteristics of any
Multilayer perception (MLP) network [76].

In [120], SM. Merchant et al. propose the design of Smart Block-based Neuron
(SBbN) that can be configured on-the-fly to emulate four types of the internal
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configuration modes of a BBNN neuron. However, the detail design of the SBbN is
not presented. SBbN supports gray mode which the block is inactive and only pass

the inputs to outputs.
4.1 The Proposed Hardware Architecture for BBNN

In this section, we propose the link-multiplexed block-based Neuron (LMBbN). This
idea is similar to layer-multiplexed in [77]; however, in [77] the goal is to multiplex
each layers of feed-forward network. Our design uses fixed-point fractional number
format [78]. The LMBDbN is derived from the analysis of a basic block of block-based
neural network which is shown in Figure. 4.1. In Figure 4.1, there two types of
routing switch: L and S types. These switches and four nodes form seven paths or
“link” between two nodes. The architecture of the link-multiplexed BBNN is shown
in Figure 4.2. With this LMBbN, we can reduce number of multipliers by sharing it
with other links since there are a limited number of hard-macro multipliers inside
DSP blocks of FPGAs. Hardware design of the general neuron is shown in Figure 4.3.
The main controller receives configuration type. With configuration type, the general
neuron can be configured to support case a, b, ¢, and d. of a BBNN block as shown in
Figure 4.3. From Figure 4.4, if we use fixed-point fractional number size 10-bit for
weights. The total number of bits to configure one BBNN block with the proposed
hardware implementation is 102 bits.

e Seven of 10-bit for weights

e Three of 10-bit for biases

e 2-bit for config-type
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S — S type switching box
L — L type switching box
N — neuron

Figure 4.1: a BBNN block

Switch
»  Nx Nx >
Source Destination
Node Node
A A
— Link Control Block —

Figure 4.2: Link-multiplexed BBNN block
4.2 The Layer-based Architecture for integration of CCGA and BBNN

In this section, we propose the Layer-based architecture for evolvable hardware based

on the block-based neural network and the cellular compact GA. To evolve the block-
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based neural network with one block, we need 132 bits genetic algorithms. However,
to apply a block-based neural network to solve real-world problems, the more number
of BBNN block will be required, for example if a BBNN network sized 3 x 4, it
requires 1584 bits GA to evolve. The larger size of BBNN, the wider bits requires for
GA. This turns to be the scalability problem for genetic algorithm. To solve this
problem, we propose to use cellular genetic algorithm implemented in hardware since
the CCGA can scale up with problem size since it has array-like characteristic as the
BBNN model. Figure 4.4 shows the concept of the layer-based architecture.

From Figure 4.4, the BBNN occupies different layer from the cellular compact
GA. These two layers interact to each other between nodes of BBNN and CCGA.
Figure 4.5 shows the layer-based architecture with the eight nodes for each BBNN
and CCGA layers. If [ is the problem size that is the number of node of the BBNN,
with n, CCGA nodes, then each CCGA node contains //n, probability vectors.

4.3 FPGA Implementation

Table 4.1 shows the FPGA hardware resources required for implementing BBNN and
CCGA. Each BBNN block was implemented using 10-bit fractional number. There is
one 25x18 multiplier with a Finite State Machine (FSM) to control how to multiplex
computation between the four sub-nodes of a basic BBNN block. There are ten data
inputs to a BBNN blocks. These are seven weights (w13, w12, wl4, w43, w42, w34,
and w32) and three biases (b2, b3, and b4). We implemented each CCGA that has
100-bit which each bit represented by an 8-bit probability vector. Since one CCGA
node supports 100-bit, the size of one CCGA node is about four times the size of a
BBNN node as shown in Table 4.1.

From Table 4.1, the speed for each BBNN and CCGA node is about 300Mhz
regardless of the size of matrix like 1x1, 2x2, or even 3x3. The reason is that each
node of BBNN and CCGA is quite independent in term of hardware implementation
especially CCGA since each 8-bit probability vector of one bit of CCGA was
parallelized in hardware implementation. In our implementation, each BBNN only
requires one DSP hard macro in Xilinx FPGA. This saving can allow implementing

more nodes of BBNN in one FPGA.
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Figure 4.4: Hardware design of general neuron three inputs and three outputs
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Block-Based Neural Network Layer

Cellular Compact Genetic Algorithm Layer

Figure 4.5: Layer-based architecture for evolvable hardware based on BBNN and
CCGA

CC@

Figure 4.6: 2 x 4 BBNN layer and CCGA
4.4 XOR problem

To demonstrate the capability of integration between BBNN and CCGA, we
implemented a 2 x1 BBNN network which has three BBNN nodes and evolving the
weights with three nodes of CCGA to solve the XOR problem with two inputs, x1 and
x2, and one output, yl. The “off” is when x or y has value < 0.0625 and > 0.9375
when “on”. Each CCGA has 102-bit which supports ten outputs; each has 10-bit, for

seven weights and three biases for one BBNN node and two bits for four
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configuration types. In Figure 4.7 shows the block diagram of BBNN and CCGA to

solve the XOR problem. The error calculation block computes using following

equations:
TABLE 4.1
FPGA Hardware Resource Xilinx Virtex-5 LX50
Network
. FPGA resources for BBNN and CCGA on Xilinx Vertex-5 LX50
size
BBNN CCGA

Slice Registers used Flip-Flops 341 621
Slice LUTs used as Logic 263 1,932
DSP48Es 1 0

Ix1
Total equivalent gate count 4,562 18,224
Maximum Frequency 290Mhz | 290Mh
Slice Registers used Flip-Flops 1326 1,642
Slice LUTs used as Logic 974 5,506
DSP48Es 3 0

2x2
Total equivalent gate count 17,317 49,204
Maximum Frequency 280Mhz | 280Mhz
Slice Registers used Flip-Flops 3,262 5,130
Slice LUTs used as Logic 2,300 16,549
DSP48Es 9 0

3x3
Total equivalent gate count 36,952 147,614
Maximum Frequency 270Mhz | 270Mhz

1
Fitness =

1+e

1 N TNo
2
e = e;
Nnoz Tk

j=1k=1

ejx = djx — yjx(x)

€y

(2)

(3)

Where, N and n, are number of training data and output. dj and yj are desired and

actual output respectively.
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Figure 4.6 shows the hardware simulation results of training of the XOR problem.
For one training pattern, the BBNN takes 60 clock cycles while CCGA takes only 3
clock cycles. At 549 epoch, the training was achieved fitness 0.998 with 18-bit
precision fixed point arithmetic. The number of bit in neural network has an impact

on the performance of the hardware [102].

B
2 x1 BBNN P R

X1

BBNN BBNN BBNN

1 ZB |
X2
+ B1 + B2 * B3

<,,
102-bit 102-bit 102-bit IE”;"[. rnzm
CCGA CCGA CCGA ||| Bioak | | Controler

*A1 +A2 +

A2
A
2 x1 BBNN ZA

-
L—p» | BBNN BBNN BBNN

Figure 4.7: Block diagram of BBNN and CCGA for XOR

4.5 Discussion

The FPGA implementation results shown in Table 4.1 confirm the strength of the
hardware implementation of the proposed BBNN and CCGA hardware architecture.
In term of speed, increasing the number of nodes in BBNN and CCGA does not
decrease the speed the FPGA implementation. The constant speed occurs due to the
parallelized architecture of both BBNN and CCGA which employ point-to-point
interconnect model. The FPGA resource requires by a BBNN node is less that
required by CCGA nodes because the proposed multiplexed neurons. We can see
from Table 4.1 that the BBNN node utilizes the hardwired macro DSP block in FPGA
that support fast multiplication, subtraction, and addition. =~ From Figure 4.9, the
arithmetic precision impacts the quality of optimization in FPGA. The higher

precision provides more room to perform optimization for CCGA.
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4.6 Summary

In this section, an approach to training BBNN in hardware using the cellular compact
genetic algorithm which is a kind of EDAs is presented. We propose the cellular
compact GA and the layer-based architecture for integration between the block-based
neural network and cellular genetic algorithm in hardware. With the layer-based
architecture, evolvable hardware based-on the integration between BBNN and CCGA
is feasible and effective since both have array- like architecture. This approach
provides a solution for scalability of genetic algorithm since CCGA can scale up to
the size of the BBNN by adding more CCGA nodes without sacrifice the speed in
term of clock period and cycles. The XOR problem was used as an example of the
approach. It has been implemented in hardware and can classify the data successfully.
The more difficult classification problems can be solved in real-time with this kind of
evolvable hardware. We believe that the more hardware resource in future FPGA will
create more applications of the block-based neural network and the cellular compact

GA for real world problems.

Uy

Figure 4.8: a structure of XOR that has fitness value of 0.998
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CHAPTER V
EVOLVABLE HARDWARE FOR ECG SIGNAL CLASSIFICATION

In this chapter, the proposed evolvable hardware based-on CCGA and BBNN is
applied to solve the problem of online ECG signal classification. The proposed
system for on-line ECG beat recognition approach is shown in Figure. 5.1. It consists
of two step processes: feature selection and classification. The feature selection
consists of QRS detection and Hermite basis functions coefficient extraction,
delivering these coefficients as the features to the input of classification process. The
classification process uses block-based neural network (BBNN) learning by cellular
genetic algorithm (CCGA). In this thesis, the feature selection process was carried on
by our own functions created in the Matlab software (Mathworks Inc.,Nattick, MA)
for which suitable solving Hermite polynomial and performing QRS window

construction.

QRS Hermite encoding of
ECG Signals > >
Detector QRS windows

normalization

RR info -

Y

Feature Selection

Block-based NN ———»

CCGA

Classification

Figure 5.1: Our method of ECGs signal classification.

From chapter 11, the AAMI recommends that each ECG beat be classified into the

following five heartbeat types: beats originating in the sinus node, supraventricular
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ectopic beats, ventricular ectopic beats, fusion beats, and unclassifiable beats [114]. A
large inter-individual variation of ECG waveforms is observed among individuals and
within patient groups [101]. The waveforms of ECG beats from the same class may
differ significantly and different types of heartbeats sometime possess similar shapes.
Hence, the sensitivity and specificity of ECG classification algorithms are often
unsatisfactorily low. For instance, a recent method [101] reports a sensitivity rate of

77.7% for VEB detection and 75.9% for SVEB detection.
5.1 ECG Data

The MIT-BIH arrhythmia database [114] is used in the experiment. The database
contains 48 records obtained from 47 different individuals (two records came from the
same patient). Each record contains two-channel ECG signals measured for 30 min.
Twenty-three records (numbered from 100 to 124, inclusive with some numbers
missing) serve as representative samples of routine clinical recordings. The remaining
25 (numbered from 200 to 234, inclusive with some numbers missing) records include
unusual heartbeat waveforms such as complex ventricular, junctional, and
supraventricular arrhythmias.

The data are bandpass filtered at 0.1-100 Hz and sampled at 360 Hz. There are
over 109 000 labeled ventricular beats from 15 different heartbeat types. Table 5.1
lists the heartbeat types. Table 5.2 lists the annotation codes of the database. Table 5.3
summarizes the contents of the database. These tables show some of the contents of
the database, reference should be made for more details [114]. The table 5.3 lists the
beat types for each half-hour record in its entirety. The largest class is “Normal beat”
(NORMAL) with over 75 000 examples and the smallest class is “Supraventricular
premature beat” (SPC) with just two examples.

In agreement with the AAMI recommended practice, the four recordings
containing paced beats were removed from the analysis. Paced beats refer to ECG
signals generated by the heart under the help of an external or implanted artificial
pacemaker for the patients whose electrical conduction path of heart is blocked or the
native pacemaker is not functioning properly. The remaining recordings were divided

into two datasets with each dataset containing ECG data from 22 recordings.



Table 5.1: Mapping the MIT-BIH arrhythmia database heartbeat types to the

AMMI heartbeat classes
AAMI
heartbeat N S \% F Q
class
Description | Any heartbeat | Supraventricular | Ventricular Fusion Unknown
not in the S, Ectopic beat Ectopic beat beat beat
V,F,orQ
classes
Heartbeat Notmal beat | Atrial premature Premature Fusion of Paced beat
(NORMAL) beat (APC) ventricular | ventricular (PACE)
contraction | and normal
(PVO) beat
(FUSION)
Types Left bundle Aberrated atrial | Ventricular Fusion of
branch block premature beat escape beat paced and
(LBBB) (ABERR) (VESC) normal beat
(PFUS)
Right bundle Nodal Unclassified
branch block (junctional) beat
beat (RBBB) premature beat (UNKNOWN)
(NPC)
Atrial scape | Supraventricular
beat (AESC) premature beat
(SVPB)
Nodal
(junctional)

escape beat

(NESC)




Table 5.2: Heartbeat annotation codes in MIT-BIH arrhythmia database

Beat annotation | Symbo
Meaning
codes 1
NORMAL corN Normal beat
LBBB L Left bundle branch block beat
RBBB R Right bundle branch block beat
BBB Bundle branch block beat
5 (unspecified)
APC A Atrial premature beat
ABERR a Aberrated atrial premature beat
NPC J Nodal (junctional) premature beat
SVPB S Supraventricular premature beat
PVC \Y Premature ventricular contraction
RONT R-on-T premature ventricular
' contraction
FUSION F Fusion of ventricular and normal beat
AESC E Atrial escape beat
NESC ] Nodal (junctional) escape beat
SVESC Supraventricular escape beat (atrial or
! nodal)
VESC E Ventricular escape beat
PACE Paced beat
PFUS f Fusion of paced and normal beat
NAPC X Non-conducted P-wave (blocked APB)
UNKNOWN Q Unclassifiable beat
LEARN ? Beat not classified during learning
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Table 5.3: Summary of the database and beat types (entire records)
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N v P F O | Q
Record

L R A J v P f p |Q

100 | 2239 | - - 33 - 1 - - - -
101 1860 | - - 3 - - - - - |2
102 99 - - - - 4 2028 | 56 | - -
103 2082 | - - 2 - - - - - -
104 163 - - - - 2 1380 | 666 & - |18
105 | 2526 | - - - - 41 - - - |5
106 1507 | - - - - 520 - - - -
107 - - - - - 59 2078 | - - -
108 1739 | - - 4 - 17 - - 11 | -
109 - 12492 | - - - 38 - - - -
111 - 2123 - - - 1 - - - -
112 2537 | - - 2 - - - - - -
113 1789 | - - - - - - - - -
114 1820 | - - 10 2 43 - - - -
115 1953 - - - - - - - - -
116 2302 | - - 1 - 109 - - - -
117 1534 | - - 1 - - - - - -
118 - - 2166 | 96 - 16 - - 10 | -
119 1543 - - - - 444 - - - -
121 1861 - - 1 - 1 - - - -
122 12476 | - - - - - - - - -
123 1515 - - - - 3 - - - -
124 - - 1531 | 2 29 47 - - - -
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200 1743 | - - 130 - - 86 2 |- | - | - | - .
201 1625 | - - 130 97 1 198 2 | - 10 - | - | - 37
2022061 | - - 136 19 - 19 1 - - oo
203 2529 | - - -2 77708 [ T U R E I N
205 2571 | - - 30 - AU N T T P U S U B B
207 - 1457 86 | 107 | - | - 105 - |- - 105 - | - | -
208 1586 | - - - -] - 992 (373 | - | - | - | - | - -
209 2621 | - - 1383 - |- T S S Y R I
210 2423 - - - 22 - 19410 - | - 1 | - - -
212 0923 | - 1825 | - | - | - A B R R R R
213 2641 - - 25 13- 20 362 - | - | - - o
214 - 12003 - - - - 256 1 - - - | - -
2153195 | - - 3 - 164 1 | - - - -
217 | 244 | - - - -] - 162 | - | - | - | - 1542 260 -
219 2082 - - 7 |- - 64 | 1 | - - - | - | - 133
220 1954 - R 7E A A D R R P D R
221 2031 - - - -] - 396 | - |- |- o | o o
222 2062 - - 208 - 1 S I R 32 R I I
22312029 - - 72 - 473 | 14 16 - - - - -
228 1688 | - - 3. 62| - |- - |- - ]-1-
230 2255 - - - -] - T S S O R I
231 314 - 1254 1 | - | - 2 - -1 -1-1-1-12
232 - - 1397 1382 - | - S I R I U R I I
23312230 - - 7 |- - 831 | 11 | - | - | - | - | o .
234 2700 - - - - 50 3 -l -1-1-1-1-




Table 5.4: Heartbeat types associated with the extracted beat for first five

minutes and first part of the training set.
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AMMI Heartbeat Number of beats in Number of beat in
Heartbeat Type first 5 Minutes The first part of
class Training set
N NORMAL 13206 6885
, AESC, NESC
N LBBB 854 506
N RBBB 1217 778
S APC 257 254
S ABERR 7 4
S NPC 15 15
S SPC 0 0
\Y% PVC 1110 716
F FUSION 180 85
Q PFUS 5 5

Pace beats are not included in the classification experiments in this thesis as well
as in the previous works [95, 103] chosen for comparison. The remaining records are
divided into two sets: testing sets and training sets as shown in Figure 5.2. However,
the training set is divided into two sub-groups. The training set consists of two data
sets: the common set and patient specific set.

From Table 5.5, the common set is from the first set contains the 22 records, with
each recordings period of total 30 min., randomly sampled. Since the number of
normal beats is as high as ten times more than the other beat types, no NORMAL beat
type is selected, but 5% of type-V (64), 30% of type-S (58) and all type-F (13), and
type-Q (7) beats are sampled to have total of 142 beats in the common set. The goal
to have the common set is to provide common representative of limited number of
beat types in the training data.

From Figure 5.2, the second part of the training set is composed of 22 records

listed in Table 5.5. For the second set or patient specific set, the heartbeats are from
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22 recording for the first 5 min of the ECG recording of the patients, which conforms
to the AAMI recommended practice that allows at most 5 min of recordings from a
subject to be used for training purpose. The remaining beats of the record are test

patterns.

44 ECGs
(each 30 min.
duration
e
Testing set Training Set part 1 Training Set part 2
(each 30 min. (common set, (each first 5 min.
duration) 30 min. duration) duration)
22 ECGs 22 ECGs 22 ECGs
Training Set
\_

Figure 5.2 Division of the MIT-BIH arrhythmia database into training and testing

sets

Table 5.5: Records in training and testing sets from the MIT-BIH arrhythmia

database

Records in Testing Set Records in Training Set

101, 103, 105, 111, 112, 113, 117, 100, 106, 108, 109, 114, 115, 116,
121, 122, 123, ,200, 202, 210, 212, 213, | 118, 119, 124, 201, 203, 205, 207, 208,
214, 219, 221, 222, 228, 231, 234 209, 215, 220, 223, 230, 232, 233
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5.2 Feature Selection

Basis function representations have been shown to be an efficient feature extraction
method for ECG signals [104, 121]. Hermite basis functions provide an effective
approach for characterizing ECG heartbeats and have been widely used in ECG signal
classification [121-123]. Hermite basis function expansion has a unique width
parameter that is an effective parameter to represent ECG beats with different QRS
complex duration. The coefficients of Hermite expansions characterize the shape of
QRS complexes and serve as input features. Let us denote x(?) be the discrete time
QRS complex of ECG curve. The expansion of x(t) into Hermite series may be

presented in the following way:

N-1

x(t) = Z a,0,(t, o) (5.1)
n=0
where a, (n =0, 1, 2, ..., N — 1) are the expansion coefficients while @,,(t, o) is the
Hermite basis function defined as
1 2,0 2
On(t,0) = ———=e""/27 H,(t/0) (5.2)
a2™"nlVr

The functions H,(t/o) are the Hermite polynomials. With Hy(x) =1 and

H,(x) = 2x, the Hermite polynomials are defined recursively by
Hy(x) = 2xHp_1(x) —2(n — 1)Hy_5(x) (5.3)

For example, H,(x) = 4x% —2,H;(x) = 8x3 —12x . Figure 5.2 shows
Expanded QRS complex, x(t) with the Hermite basis functions @,,(t, o) as a function
of time for different orders.

The higher in the order of the function, the higher its frequency of changes within
time domain and the better its capability to reconstruct the quick changes of the ECG
paradigms.

To illustrate the way, in which Hermite polynomials approximate the ECG curve,
the QRS segment of ECG signal is handled in a window with 91 data points around
the R peak (45 points before and 45 after). At the data sample rate of 360 Hz, this
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gives a window of 250 ms, which is long enough to cover most of QRS signals. They
have been also expanded by adding 45 zeros signals to each ends of the beats. After
that all ECG signals are normalized by linear scaling to the range of and substracting
the mean level of the first and the last data points. An example of normalized QRS

complex of ECG signal is presented in Figure 5.3
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Figure 5.3: Expanded QRS complex of (a) ECG waveform and its estimation
using (b) 6, (¢) 9, and (d) 15 Hermite basis functions.
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Figure 5.4: time-sampling methods for extracting ECG morphology features.

The modified QRS complex is decomposed onto a linear combination of Hermite
basis functions. In the experiments the width o has been set up in order to make
almost half of the Hermite basis function signal values are close to 0 in the considered
range. The expansion coefficients are obtained by minimizing the sum squared error,

defined as follows:

N-1 2

X(©) = ) anBa(t,0)

n=0

E= (5.4)

2

This error function represents the set of linear equations versus a, in practice it
can be solved by using SVD decomposition and pseudoinverse technique which can
be done in a Microcontroller or it can be solved using the concept of adaptive filter
and finding the coefficients by using the cellular genetic algorithm. In this thesis at
this point, we find the coefficient of the Hermite function using the Matlab functions.
However, finding coefficient of Hermite polynomial with the adaptive filter
techniques with the cellular genetic algorithm can be an another add-on research topic
and can provide the complete ECG signal classification using evolvable hardware

approach on a single chip without processor core.
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Different numbers of expansion coefficients can be used to approximate a QRS
complex. The approximation error depends on the number of coefficients. There is a
tradeoff between approximation error and computation time. More coefficients lead to
smaller errors, but result in heavy computation burden. Furthermore, a small number
of coefficients are able to approximate the heartbeats with small representation errors.
Five Hermite functions allow a good representation of the QRS complexes and fast
computation of the coefficients [121-123]. Besides the basis function coefficients and
width parameter , the time interval between two neighboring R-peaks is included to

discriminate normal and premature heart beats.
5.3 Classification Process

For the classification process, the two nodes of combined BBNN and CCGA are used
to perform the experiment. Each node consists of 7x2 BBNN and two CCGAs. In
BNNNSs, the number of columns is equal to or greater than the number of input
features. The number of rows needs to be determined so that the network has
sufficient complexity for a given problem. A small network size is preferred, provided
that it achieves the desired performance. Too big a network runs the risk of overfitting
that causes poor generalization performance, and requires a more complex
optimization process because of higher degree of freedom in the search space. Thus, a
2x7 network was selected as a minimum-size BBNN that can take seven input
features. For CCGA, the first CCGA is for topology optimization since it requires
only 2-bit per BBNN node which is 16x2 bits for this one combined 7x2 BBNN and
CCGA. The second CCGA 1is for weight optimization which supports fixed-point 15-
bit fraction number precision. The optimization of problems for the second CCGA is
the size of 140 variables since each node of BBNN requires 10 parameters to be
optimized. Each variable has the precision of 15-bit, so that it’s the problem of total
chromosome length of 2100 bit for each of the CCGA that find the weights of BBNN.
Fitness function evaluates the quality of the solutions. The fitness of an individual
BBNN is defined as
B 1-5

Fitness = + 1 (5.5)

1
1+ mzfﬁl”di -yl 1+ mzﬁzl”dé -y
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where M| and M; are the numbers of samples in the common and patient-specific
training data, respectively.ny donote the number of output blocks. 8 controls relative
importance of the common and patient-specific training in the final fitness, and a
small value less than 0.5 (0.2 in this paper) gives more weight for correctly classifying
patient-specific patterns. Both common and patient-specific training patterns are
considered in the fitness function. While patient-specific data may serve as the
training data for evolving BbNN specific to a patient, the inclusion of common
training data is useful when the small segment of patient-specific samples contains

few arrhythmia patterns [114].
5.4 Experimental Results

Figure 5.4 shows the results of the training experiment. The dotted and solid line
corresponds to using 4-Node CCGA with communicating between CCGA nodes and
without communicating between CCGA nodes. The evolution stops when the desired
fitness is met after approximately 2200 generations. From Figure 5.4, the solid line
indicates the occurrences of near-optimum structure and weights. The others represent
four non-optimal. The 4-node CCGA with communicating between nodes perform

significantly better than then non-communicating one.

Best Fitness

4-Node CCGA
- - -~ 4-Node without communication | |

0 I L | L | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Generation

Figure 5.5: Fitness and number of generation.



Table 5.6: Summary of beat-by-beat classification results for the five classes.
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Truth Classification Result
N S \Y% F Q
N 23049 340 256 10 0
S 603 641 48 1 0
A% 232 86 1978 7 1
F 71 37 105 107 0
Q 4 0 2 1 0

Table 5.6 summarizes classification results of ECG heartbeat patterns for test
records. Two sets of performance are reported: the detection of VEBs and the
detection of SVEBs, in accordance with the AAMI recommendations. Four
performance measures, classification accuracy (Acc), sensitivity (Sen), specificity
(Spe), and positive predictivity (PP), are defined in the following using true positive
(TP), true negative (TN), false positive (FP) and false negative (FN). Figure 5.5
summarizes how to calculate classification accuracy. Classification accuracy is
defined as the ratio of the number of correctly classified patterns (TP and TN) to the
total number of patterns classified. Sensitivity is the correctly detected events (VEB
or SVEB) among the total number of events and is equal to TP divided by the sum of
TP and FN. Specificity refers to the rate of correctly classified nonevents (non-VEBs
or non-SVEBs) and is, therefore, the ratio of TN to the sum of TN and FP. Positive
predictivity refers to the rate of correctly classified events in all detected events and
18, therefore, the ratio of TP to the sum of TP and FP. The classification of ventricular
fusion or unknown beats as VEBs does not contribute to the calculation of
classification performance according to AAMI recommended practice. Similarly,
performance calculation for detecting SVEBs does not consider the classification of
unknown beats as SVEBs.

For VEB detection, the sensitivity was 85.8%, the specificity was 98.7%, the
positive predictivity was 86.6%, and the overall accuracy was 97.7%. For SVEB
detection, the sensitivity was 49.6%, the specificity was 98.2%, the positive
predictivity was 58.06%, and the overall accuracy was 96.05%. From the results, the

performance of SVEB detection is not as good as VEB detection, and the possible
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reasons include the more diverse types in class and the lack of class training patterns
in patients [2], [5].

Table 5.7 summarizes sensitivity, specificity, positive predictivity, and overall
accuracy of the four methods. The proposed method overall outperforms the methods
in [112, 118]. The method in [128] performs slightly better than the proposed
method.

Table 5.7: Performance comparison of VEB and SVEB Detection (in percent)

Method VEB SVEB

Acc | Sen | Spe | +P | Acc | Sen | Spe | +P

Huet. al. [103] |94.8|78.9|96.8|75.8 | N/A | N/A | N/A | N/A
Chazal et. al.[95] | 96.4 | 77.5 | 98.9 | 90.6 | 92.4 | 76.4 | 93.2 | 38.7
Jiang et. al. [121] | 98.8 | 94.3 | 99.4 | 95.8 | 97.5 | 74.9 | 98.8 | 78.8
Proposed 97.7 | 85.8 | 98.7 | 86.6 | 96.0 | 49.6 | 98.2 | 58.1

5.5 Discussion

The proposed technique is similar to the technique in [121]. However, in [121] the
evolution algorithm with back-propagation learning is used for BBNN learning. Our
purposed technique only uses the proposed CCGA for BBNN optimization. By using
only CCGA, our proposed method is suitable for hardware implementation and by
estimation, can provide speed up of over 100 times to software version in [121]. Our
proposed method with four CCGA nodes has some disadvantage in comparison with
work in [121]. This is due to the precision of hardware implementation and the
limited number of CCGA nodes. With our proposed solution, the complete hardware
solution of ECG signal classification can be implemented in hardware if the wavelet

transform is used for feature selection.
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5.6 Summary

This chapter presents the integration of CCGA and the feedforward implementation of
BBNNs with its application to personalized ECG heartbeat classification. Network
structure and connection weights are optimized using CCGA with four nodes that
utilize evolutionary and gradient-based search operators. An adaptive rate adjustment
scheme that reflects the effectiveness of an operator in generating fitter individuals
produces higher fitness compared to predetermined fixed rates. The GDS operator
enhances the performance as well as the optimization speed. The BBNN demonstrates
a potential to classify ECG heartbeat patterns with a high accuracy for personalized
ECG monitoring. The performance evaluation using the MIT-BIH arrhythmia
database shows a sensitivity of 85.8% and overall accuracy of 97.7% for VEB
detection. For SVEB detection, the sensitivity was 49.6% and the overall accuracy
was 96.5%. These results shows improvement over other major techniques compared
for ECG signal classification [112, 118]. The CCGA and BBNN approach can also be
used where the dynamic nature of the problem needs an evolvable solution that can
tackle changes in operating environments. The key contribution for our purposed
technique is that the capability to be implemented in hardware for personal portable
ECQG classification because the CCGA and BBNN are designed to be implemented in
hardware. The evolvable hardware based-on CCGA and BBNN can perform online

ECQG signal classification.
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AAMI heartbeat classes.



CHAPTER VI
CONCLUSIONS

The purpose of this chapter is to provide the summary and main conclusions of this
dissertation. First, the contributions of the dissertation are summarized. Next, the

main conclusions of the dissertation are provided.
6.1 What Has Been Done
A summary of the major results of this thesis follows:

Cellular Genetic Algorithm (CCGA) The thesis proposed the cellular genetic
algorithm (CCGA), which is a parallel probabilistic model-building GA for evolvable
hardware applications. CCGA replaces traditional migration of individual with the
probabilistic migration using the concept of confident counter. Each CCGA improved
the performance of the traditional compact GAs with elitism concepts. CCGA
employs adaptive combination of probability vectors from its neighbors. CCGA can
solve hard problems of bounded difficulty in subquadratic or quadratic time with
respect to the number of candidate solutions that must be evaluated until the algorithm
converges to the optimum. With parallel approach, CCGA can support scalability
which is a limit of traditional GAs to solve the larger problems. CCGA is designed for
hardware implementation. This allows hardware architecture of CCGA to be less
complicated. The scalable hardware architecture for CCGA was proposed. For each
node of CCGA, the scalable hardware architecture supports expandable number of
variables to be optimized and flexible precision with expandable chromosome length.
The proposed hardware architecture supports the concept of package switching on the
chip with introducing switch box, designed with hardware FIFOs.

Evolvable hardware based-on Cellular Genetic Algorithm (CCGA) and Block-
based neural network (BBNN) The thesis proposed an evolvable hardware based-on
CCGA and BBNN. The layer-based architecture was proposed for integrating CCGA
with BBNN in hardware. The new hardware design of BBNN neurons was proposed.
The link-multiplexed concept is used for hardware design of BBNN neurons. BBNN

1s suitable for hardware implementation since it has array-like structure similar to
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CCGA. With this new evolvable hardware, the evolvable hardware classifier can be
realized in FPGA or even ASIC chip for real-world applications.

Real-world application of the proposed evolvable hardware to the online ECG
signal classification. The proposed evolvable hardware based-on CCGA and BBNN
was applied to the problem of online ECG signal classification. This demonstrates
that CCGA can be scaled to solve the bigger problem. In addition, the proposed
evolvable hardware can be applied to real-world problem. The proposed evolvable
hardware can be implemented in FPGA or ASIC for a portable personalized ECG

signal classifications for long term patient monitoring,
6.2 Main Conclusions

The evolvable hardware field has been the research subject for many years with
gradual progress on the theory and application sides. The NASA and ESA initiative
on adaptive and evolvable hardware for space application has stimulated this research
community. The transition from traditional genetic algorithms to probabilistic model
building GAs opens the way to design parallel genetic algorithms that communicating
the probability model instead of individuals in the population. More advanced in
FPGA technology allows designers to design larger digital circuits. This opens more
opportunities for evolvable hardware. The proposed cellular genetic algorithm
(CCGA) was created to take these opened opportunities. For computational
intelligence, especially evolvable hardware field, the proposed evolvable hardware
based-on CCGA and BBNN confirmed the effectiveness of hybrid between these two
fields of evolutionary computation and neural networks. Furthermore, the solving
real-world problem of ECG signal classification by the proposed evolvable hardware
demonstrates that evolvable hardware can be an alternative to traditional solutions and
capable to deal with real problems.

The CCGA and the proposed evolvable hardware contributed to the research in
evolvable hardware community and hardware hybrid evolutionary computation and
neural network in general. First of all, CCGA provides a solution to scalable problem
of genetic algorithm. Second, the proposed evolvable hardware based-on CCGA and

BBNN extends the probabilistic model building GAs to evolvable hardware. Finally,
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this evolvable hardware approach can be applied to the real-world problem of ECG

signal classification.

6.3 Future works

There are opened problems in applying evolving connectionist model and bio-inspired

approach to evolvable hardware. We conclude the key issues that can be subjects of

future research as follows:

From dualism concept presented in chapter II, there is trade-off and some
insight on how to design the configurable fabric and the suitable learning
algorithm to that fabric. We can generalize this idea by coming up with
flexible fabric that can support more kinds of neural network and more bio-
inspired technique to the fabric. Since we can see from the thesis that using
only BBNN that implemented in hardware provides a fixed solution fabric. On
the other side of dualism, the learning algorithm in our thesis we propose the
CCGA and CoCGA for evolvable hardware. The more generalize hardware
architecture can be proposed to allow more kind and more powerful genetic

algorithms to be used with configurable fabric.

More powerful hardware architecture of estimation of distribution algorithm
(EDA) can be proposed since CCGA is the parallel version of univariate

EDAs. Hardware BOA or ECGA can proposed as well.

The bio-inspired approach can be further investigated to design configurable
fabric architecture that supports self-replicating and cellular differentiation in

the context of evolving connectionist model.

The real-world application of evolvable hardware can be applied to the
emerging bionic research since the evolvable hardware can support interaction
between environment and can provide the optimum solution to the unknown

best operating condition and configuration of human-and-machine interface.
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