titration that may
and Jagner ( 1971

1. Methods Basgd op the sig orm of a_titration curve.
AT - .
The end -pointwill be loct steeply rising portion of the

curve. ;-:E-Q 10WS arly | marked steep portion at

value o@end point will be given.
Thus, a titrati m 1 iC oorly defined inflection
point, will aﬁv ﬂﬂﬁiﬂmﬁ%ﬁe methods are
e T T
( Anfalt and Jagner, ), the” metho eCtio e method of

parallel tangents ( Jeffery etal., 1989 )

the equivalent regia an approximate



2. Differential methods.

These methods can be used to determine the equivalent volume
by plotting the difference in potential or pH between each of the addition
of titrant as the function of average volume ( Skoog, West, and Holler,

1992 ). These methods involye the, first derivative method, the second

Liteanu- thod ( Liteanu and Cormos,
1960 ), the Cohen’s metho@(Cohsh, 19669wand the Gran I method

(Gran, 1988). /

3. Methods#bafel

equilibrium equation l l ‘me

charge balance and

This method was 3 f by many scientists; e.g., Gran (1952),
Rossotti and Rossotti {19 r;u ;ir nanand Still (1966), Arttamangkul,

The equivd —

‘ ﬂ]ﬂ ined by extrapolation
of straight line before equwalcnt pnmt (G plot) and after equivalent point

Vi P B T MR oo v

potentiometrié'titration curves and dxfferegtial plots. Sig;e the graphical
oty S R I V) FI B ncded o
define it and the points can be taken at regular intervals instead of being
bunched in a narrow region around the equivalent point. The treated
portions of the curve are before or after the equivalent point; thus, the

linear extrapolation used in this method can provide more precise result
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than those obtained by the  differential method, especially for
asymmetrical titration curves.

Derivation of Gran equations for titration data prior to equivalent

point.

@Nﬂ’gﬂﬂﬂﬁﬂﬂﬂﬂ’i Eq.1
QW'\Nﬂ‘J‘WﬂJW]’mEI']ﬂEI

whmh Ka = the dissociation constant of weak acid
The solution must be electrically neutral, meaning that

[A"]+ [OH] = [Na"]+[H"] Eq. 2

and at the equivalent point



VeN = (Vo+V)Cya Eq.3

which Ve = volume of base equivalent to weak acid, called

equivalent volume

N = normality of titrant

Eq.4

Eq. 5

ﬂuﬂ@Mﬂﬂswaﬂnﬁ

wa@m;uummm

(Vo+V) (Vo+V)

which might be rearranged to



[HA] = VeN - { VN+ [H]-[OH]}  Eq7

(Vo+V) (Vot+V)

Substitution of Eq.6 and Eq.7 into Eq.l1 gave

Ka = [H {VN(VotV)+[H ]-{OH ]} Eq.8

Eq.9

where G = #N [HE\S Eq.10

2. lonized wéal

When an ioflizge HA"X™ was titrated,

the reaction was

HA "3 A+ NaX Eq.11

and the "'

L)
¥ W

sionized weak acid was

HA" X¢ a

@uammaﬁm
ARSI UM AN

[HA" ]

Eq.13

Charge balance of the titration solution was

[H" ]+[Na" ]+[HA" ] = [OH ]+ [X] Eq.14



At the equivalent point

Cua* =[X ] = VeN Eq.15

which Cya” th \ ifatie ionized weak acid and
N b \ ._’;:*EE; Eq.lﬁ

O I+ X Eq.17

f'*&

and substitution of £t W

q.17 gave

AN é—imz.--‘_--:§¢ + [OH' ] Eq. 18

.FI
o

(Vo+ V) (Vo+V)

o A ¥ R S
aninepSal il a

Eq.19

Substitution Eq.18 and Eq.19 into Eq.13, gave

Ka = [H]{VNAVo+V)+[H" ]-[OH ]} Eq.20
VeN/(Vo+V) - {VN/(Vo+V)+H" ]-[OH ]}




and rearrangement gave

G[H"] = KaVeN -KaG Eq.21

< acid was in the form of K'HA the

Although the mmzed wea

in the form of that Eq.9 and Eq.21 were

A% O LI

identical. The sl 7“ -i'r‘;r -
- // “h\\\

: s the dissociation constant
(Ka) and the term o 5\1\ in which the equivalent
volume (Ve) of the® \ e obtained.
A \\
Derivation of Gran‘eq@iafions *'i a after equivalent point

.e*.f
flrin "J‘

.iu

After 1-;!:‘:." ent point e : f weak acid (HA) was
negligible. The ch.mge bala

ﬂrﬁ‘iﬂﬁﬂﬂﬂﬁﬂuﬂqﬂ’i Eq22
mr][a]m mum%}mmﬂ of weak

acid [HA]

1. Neutral weak

e solution “was

The mass balance of weak acid was

[A]= Cua = VeN Eq.23

(VotV)



Eq.23 was substituted into Eq.22, and the rearrangement gave

[OH] - [H']= [Na] - VeN Eq.24

In the alkaline region, generally

be reduced to
[OH Eq.25
Eq.4 was subgtitdtgfingo Eig@5 an K v = [H "][OH], gave
Kw Eq.26
[H']
which ’;f

)i
Eq.26 could be rearranged tu

B RN mm
aw%wnimum'mmaﬂ

Swhich Vt = Vo+V

In this case, the plot of KwVt/[H'] versus V would give a linear
relationship with slope N and Ve could be obtained from intercept.

2. lonized weak acid



If an ionized weak acid, such as HA"X" was titrated, the charge

balance of the solution after equivalent point was

[X] + [OH] = [Na’] + [H] Eq.28

and the mass balang

e, M

” S—
Cra | Ve \:% Eq.29
- &\*'\s
which Cyt centra }\\\ tized weak acid.
As previouslyfdgr i ﬁ ’\ 5q.29 would give
kwve Jof ey \) Eq.30
fl‘:{ 4.»:_.1‘
& gf‘l’L J,s

1‘“'l'

derivation of Gran § 1o -ﬁt after the equwalent point

could be made in Mame m as for HA"X ~ ; thus, the final
equation wﬂ wat%8¢¥]ﬂh§aw&tﬂeﬂe ither equations (Eq.

27 or 1‘30) was employed ¢ to determimed the equivalent volume of

weak qugaﬂa lglnf] a El

The various methods described above were the methods used to

determine only the equivalent volume of the single weak acid titration.
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For the titration of the mixture of two weak acid compounds,
both equivalent volumes could be determined by these methods if there
was an appreciable difference in their acid strength, generally at a
difference in pKa value at least 4 (Skoog et al, 1992). If the
difference between the dissociation constant of the acids was not large

enough, some of the weaker aci d have been titrated during the

final stage of titration of the strotgbraeid . This resulted in a decrease

in the steep of slope.@ititiation 'urddsmall displacement of the
o longer represented the

position of the first pote vhic
\ a case like this, only the

sum of the acid coulgdfbedgte 'second potential jump. If

equivalent volume o

the dissociation consté a.g closely to each other,
only one jump in the tiiffation g . btained.

¥ Scientists ,such as; McCullum and
nso (1989)  studied

Moreover there v @;
Midgley (1975), Bdié
about the dete “ i 1 ‘T‘-ia nes in potentiometric

titrations of acid mm};res which had the different in pKa values more than

§ ﬂ‘HEJ‘EIVIEJV]ﬁWEJ’]ﬂ‘E
Q W}ﬁ@ﬁim ﬁl%ﬂ’ta W}H‘lﬁ}ﬂtﬂ titrations of

nuxnu‘eg of two monobasic weak acids by using weighted non-linear
regression analysis. The precisions of the concentrations obtained were
dependent on the difference between the values of pKa (ApKa), on the
ratio of the initial concentrations, and on the standard errors of

measurement of both pH and volume of strong base added. For any given
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values of the ratio of concentrations and the standard errors of
measurement, the precision of the concentration depended on ApKa and
was poorest when ApKa was approximately 1.5 and improved if ApKa
was either larger or smaller. However, this method was a theoretical

research, not confirmed by actual experiment.

In 1993, Chigawe anwaldiafodified the equation used for
. . ‘ - — . . .
determination equivalent-volume ¢ tQacld mixtures by using
multiple linear regression”anflysisiand the semputer program, SPSS/PC” .

for the data analysi imental researches were

studied and compared. Whg ’ \ vas based on the basic
principle of mass palahg ,i'b arg \ nd equilibrium equation,
which could be derived, 4§ follf *".: .. \

Mf'
4 _ 111JJ

neutral weak acid

Derivation of -;Jg, o two
Y]
2 ail'l" were titrated with a

mixtures.

When twd i' ¥
strong base, NaOH. ¢a

ﬁq‘i«lﬂﬂ mmm ol +nap  Eq31
QW’lﬁ‘@ﬁ?ﬁﬁ“ﬂJ’W"l“’Jﬂﬂ“\eﬁ d

HA «— A + H'
Kaxn = [H'][A] Eq.32

[HA]

HB — B +H'



Kas = [H'][B] Eq.33
[HB]

The mass balance of two weak acids were

CaVo = [HA] + [A]]

)«
s HIEIN S
WA IUGHAR AR NE  Eoss

(Vo+V)

Substitution of Eq.34 into Eq.32 and Eq.35 into Eq.33 gave
Kax = [H][A]
{CaVo/(Vo+V) - [AT)

12
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[A] = KaaVeaN Eq.39

(Vo+rV)(Kas + [H'])

Kas

Eq.40

SubstitulioA T ¥ 2538 gave
[f[j NV = [OH'] + Kaﬂr’eﬁl\l

ﬂumﬂﬂmwmmwm
ammnﬁmummm_

(Vo+V)(Kae +[H])

Eq.41 could be rearranged to

[H]+ NV - [OH] = KasVeaN

(VotV) (Vo+V)(Kaa +[H'])
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+  KasVesN Eq.42

(Vo+V)(Kas + [H'])

Eq.42 could be written in the term of the variables : y, x;, X»

y = axp tax Eq.43

Eq.44

Eq.45

Eq.46

Eq.47

Eq.48
From the partial gressign coefficients, a, and a,, which
obtained ﬁ'ﬂﬁism %m&%%maj ’}ﬁimulnple regression
anal}rsw cﬂmputer SPSSJTE the equivdlent volumes of
weak ﬁ ymm’jﬁﬂom if ApKa

of the acid mixtures was more than 2. The dissociation constant of each
weak acid could be obtained from the slope of Gran plots of titration
data of single weak acid solution. (as shown in Eq.9 and Eq.21)
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Derivation of equation for titration of the mixture of
neutral and ionized weak acids, such as: HA and K'HB" or the mixture of
two ionized weak acids, such as: K'HA and HB"X', could be performed

in the same manner as the mixture of two neutral weak acids.

In 1996, Prachasifthisak modified Chiewcharnwatana’s
quation by using [ynam ciatiun constant instead of
concentration dissociatii-constarn anﬁ potentiometric titrations of

mixtures of two weal ~=- L values less than 2.

Earlier me 1e equivalent volume of the
mixtures of two wea \ egression analysis above,
¥: ‘96) involved the samples

0 weak acids were fixed at 1:

(Chiewcharnwatana, |
which initial concentratibn

therefore, it was interesting 10-ive stigate whether the modified equation

Since the @ecuracy and preclsmn of the equivalent volumes

obtained dﬂnﬁ{}’fa %ﬂ%ﬁcﬂ gq ﬂ ?pKa value, initial

concentratmn%alms titration data range_being interpgeted, changes of
onic S| 6 siion Glfid 1Ak bour] & bt experimenta
condltmns and standard errors of pH measurement and volume of base,
precisely and carefully examine these parameters were necessary and

important.
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Since the ionic strength of the solution might be changed during
the titration, to reduce such a problem the thermodynamic dissociation
constant (Ka’) was used instead of the concentration dissociation constant
(Ka). The thermodynamic dissociation constant was obtained by
extrapolating the dissociation constant to zero concentration. (Butler,
1964) |

A AT] Egq. 50
‘Qg»
and {A"] '| =
f umwamwr‘m
SUATIEIE VAL
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The activity coefficient was dependent on total ionic strength
(I) of the solution, defined to be

- %}:Cizg Eq. 53

During \' ‘- \
could be calculated & "\ \'x;:. added. The activity
coefficient of each fon £odld be o \ n Davies’ equation (Bulter,

1964). 15

-

=
P+
o,

L

SN
7 2 (= Eq. 54

onstant depende don absolute temperature

AUt w‘ﬂﬂﬁfﬂm o

amaﬂn:imuma%maa Eq. 55

The dielectric constant of solution of electrolyte could be
determined by the equation below (Herbert and Benton, 1957).

£ = £y~ (8" +8)C Eq. 56
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where  &,, = static dielectric constant of water
& = concentration in mole per litre
8,8 = contributions of the cation and anion,

ectively

From the calculated val aﬂwty coefficient of any ion

in the solution at eaclwwoltiiacof titran '**-'a- re dissociation constant of

Thus,

dissociation constant¥

hich the thermodynamic
¢ concentration dissociation

_:r,_ i
constant could be derived “‘E

of mass balance, charge balance
_,, 5 LA, f',

and equilibrium equati ,
Derivation of moﬂﬁed AN equations fo@ titration of the single

e fﬁ‘ﬁ"ﬁfﬁ’?f WS
R IIPIUR /M) (A1

1. Neutral weak acid
When a weak acid, HA was titrated with a strong base (sodium
hydroxide).

ne:utral qnd ion
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HA + NaOH — H,0 + NaA

Dissociation reaction of weak acid was
HA «—— H' + A

Ka°®

(H}{A7} Eq.57

Eq.58
in dilute so
N[ A] Eq.59
The solution m gr,—%—;-?: i neutral, meaning that
. ,,_F—Tﬁ.:"__:;_ . Eq.ﬁ{]

and at the l uwalent pomt

ﬂuﬂwﬂﬂﬂﬂﬁ‘iﬂ(ﬂ’-ﬂﬂcﬁ Eq6!
q TOF AT ATA FRIER B v

[Na'] = _VN Eq.62
(Vo+V)

and the fact that
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Cra =  [HA]+[AT] Eq.63

Combining equation 60 and 62 gave

[AT] = VN + [H]-[OH] Eq.64

(Vo+V)

gave
- [OH]
(Vo+V)
which migh
~ [OH]} Eq65
Substitatjion®f Eq. 64 and Fg,59 gave
.o 2 X'
Ka® il 1 [OH]} Ya- Eq.66

V@’WHV) QUN/(V 0+V)+[H‘] [OH]}

AUEINENINEINT

dan earrangement gﬁ.\"ﬂ

q ma,@nimmamm 8 ree

where G = VN+(Vo+ V)([H]-[OHT]) Eq.68

2. Ionized weak acid whose conjugate base has lower charge

than its acid
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When an ionized weak acid, such as HA"X" was titrated, the

reaction was

HA'X  + NaOH —» H,0 + A + NaX

0 e ionized weak acid was

and the dissociati nr

Eq.69

Eq.70

Eq.71

ﬂummmwé‘l* n%

dvge balance of ths. titration saluunn was

q mmmwnm HaRY .

At the equivalent point

Cha+ = X] = —VeN Eq.73
(Vo +V)
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which Cys+ = the concentration of ionized weak acid and

Cha+ = VeN = [HA]+[A] Eq.74
(Vo+V)

Substitution Eq.62 into Eq. 72 gave

Eq.75

Eq.76

Eq.77

amm&muwwawﬂwaa

G{H"} = Ka°VeN - Ka°G Eq.79

Ym+
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3. lonized weak acid whose conjugate base has higher charge
than its acid

When an ionized weak acid, such as K'"HA ™ was titrated, the

reaction was
K'HA™ + 2 g ' H,O + Na,A + KOH
Z—'_a.
and the dissoeiation’ rofthe ionized weak acid was
HA 7 \A
Ka° Eq.80
Ka° e .. _ Eq.81
Charge balance i-f 7
[H]+ [Na [K’] [OH] + [HAj - A2] Eq.82

Atmeeqmv@u@qwﬂwﬁwaﬂni
Wﬁﬁ%nﬁfﬁmmfmmaa

(VotV)
which Cys” = the concentration of ionized weak acid and

Cua” = VeN = [HA]+[A%] Eq.84

(Vo+V)



Substitution Eq.62 into Eq.82 gave
[H]+ VN + [K]=[OH]+[HA]+2[A"]
(Vo+V)

and substitution of Eq.83 into Eq.85 gave

2

Substitution Eq.86 anc

K = {H " WViiesor Vs -TOH 1)va*

‘*,_f;' otV)-

and rearrangeme 'i

—ﬁ%ﬁﬂqw%%’wmm

Eq.85

Eq.86

Eq.87

Eq.88

Eq.89

24

] S Qﬂww&%% B ﬂ‘@]agr) was the

thermodynamic dissociation constant (Ka®) and the term Ka’VeN was

the intercept of these equation which equivalent volume of the weak acidic

compound could be obtained.
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Derivation of equations for titration of the mixture of two weak

acids.

1. Derivation of equations for titration of the mixture of two neutral

weak acids.

The mixture co i sutral weak acids, HA and HB
which HA was the --'-‘;:u—- nd GIrdiiivas strong base; e.g., sodium
hydroxide.

HA + HB + 280

The dissocis

Eq.90

Eq.91

In dilute suﬂu{ﬂ g mﬂnﬁlm;}m to
wmw?mwnwmaa

HB «——— H + B

= (H'}{B} Eq.93

{HB}



= (H")ys [B] Eq.94

yus [HB]

In dilute solution yus =~ 1 Eq.94 could be rearranged to

Ka’% = {H')ys. [B] Eq.95

Eq.96
Eq.97
and the charge balance
Eq.98
The concentratioi V-T titrant was
[Na*] ? Eq.99
ﬂ Uel ’JW TNYNT
S“"*@‘W’Wﬂ@ﬂ“ﬁ’ﬁﬁd WIANYIA Y
' [H]1+ VN = [OH] +[A]+[B] Eq.100

———

VotV
Substitution of Eq.96 into Eq.92 and Eq.97 into Eq.95 gave

26
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Ka’%a = {H}ya [A'] Eq.101

{VeaN/(VotV) -[A" ]}

[A] = °AVeaN Eq.102

(Vo+V)(Ka’a+ya {H }]

Ka® i+ 4 | [B Eq.103

C R

[B] = Eq.104

[H] + VN
worvy ¥ EE I + vx (H))
LN

: Eq.105

y (VorV)(Ks's e (H )

Eq.105 mﬂum&mw B1N39
W’Jﬁ’m Pt p i ala i TRY (]

T (vor) (VorV)(Ka’a +a {H ™))
* Ka’sVesN Eq.106

(Vo+V)(Ka's + s {H*})

Eq.106 could be written in term of variables : y, X, Xz
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y = oaxp T oax Eq.107

which y = [H]+ NV -[OH] Eq.108
(Vo+V)

X; = Ka’aN Eq.109

(Vot+V)(Ka’

X3 = Eq.110
(Vo+

a = Eq.111

a = Eq.112

The equuivale . oF dath yveak acid, Veaand Ves , could

be obtained from pz ti _ ient, a; and a,, which was
achieved from solving theeguga on 06) by the multiple regression
analysis and c@ Lf—;;;:;;;;;::;_--_-..,-_f_ ‘ The thermodynamic

i be obtained from the slope

of modified G plot uf‘,the titration data nf the single weak acid solution as

Shﬂ““mﬁﬂ ﬁ%ﬁﬁ%ﬁw e
2 o ARSI I VDAY st e

ionized weak acid.

dissociation cons F*'

2.1 Neutral weak acid (HA) + lonized weak acid (HB™ X )
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The dissociation constant of neutral weak acid (HA) was
calculated from Eq.90 and the dissociation constant of the ionized weak
acid (HB™ X ) could be expressed as followed:

Ka’s = Eq.113

Ka% = Eq.114

In dilute solutio R

Ka% = % Eq.115
= "IL T q

Vv

ﬂ'lJEl'WIEWIﬁWEI']ﬂ‘i

The mass balance of two weak acids werg,
) mmfuymmm Y o
(VotV)
[HB1+[B]=Cws’ =VesN = [X] Eqll7
(VotV)

and the charge balance of this titration solution was




[H*]+ [Na']+[HBT] = [OH]+[X]+[A] Eq.118
Substitution of Eq.117 into Eq.118 gave
[H]+[Na’] = [OH]+[B]+[A] Eq.119

Substitution of Eq.117 into Eg gave

\ 2

Ka%s =

[B] Eq.121

Substitution of Eq.99 , 1. 124and & into Eq.119 gave
[H] +VN eis%; ,,i_: 2 VesN
Voilf 3 T‘? H'})
+ 'ms-Ka BV Eq.122

ﬂﬂﬂ?ﬂﬂ%ﬁ)ﬂ%?ﬂﬁ*n
Ea. uma,am;;uum'mma d

[H]+ VN -[OH]= Ka’AVeaN Eq.123

Vo+V (Vo+V)(Ka’a+ya {H'})

+ v Ka’sVesN

(Vo V)(ye Ko + {H' })
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Then Ves and Ves could be obtained as previously described in
the mixture of two neutral weak acids.

2.2 Neutral weak acid (HA) + Ionized weak acid (K'HB")

The dissociation constant of neutral weak acid (HA)

Eq.124

Eq.125

mems e RN g
RIAIDNTUNIANYINY £

(VotV)

[HB]+[B*] = Cms- = [K'] = VesN Eq.127
(Vot+V)

and the charge balance of this titration solution was



[H]+[Na]+[K] = [OH]+[A]+[HBH2[B*]  Eq.l128

substitution of Eq.127 into Eq.128 gave
[H]+[Na’] = [OH]+[A]+ [B"] Eq.129

substitution of Eq.127 into Eq.125 gave

Ka% = (Hiys (B Eq.130

B27] Eq.131
(B*] = Eq.132
| ﬁ“ﬁ e ?Wﬁ‘i‘ﬁ ﬁé‘“ -
Hitan Sl bags
+  KasVesN Eq.133

(Vo+V)(Ka's + ys {H" }/ym)

Eq.133 could be rearranged to

32
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[H']1+ VN -[OH'] = Ka’%VeaN Eq.134
Vo+V (VorV)(Ka®a +ya (H'})
+ Ka%VesN

(Vot+V)(Ka’s + yer {H }/yum)

3. Derivation of e ixture of two ionized

weak acid.

3.1 Ionized weak acid (HB" Y

o
The dissociatios "X and HB Y could

be obtained from the

g
ﬂ%@gm?ﬁ’ﬂmm

RINTRRIHNIN N Y
Ka’x = {H'})[A] Eq.136

yiua "[HA']

HB'Y —— HB' +Y"



HB* — H' +B

Ka’s = {H}{B} Eq.137
{HB"}

Ka%s = {H"}[B] Eq.138

[HA'] + [A ] @77 MedNESSSiX Eq.139
[HB'] + [B] F e\ S\ Eq.140

[H]+[Na"]+ *....-;:;—;*,‘;ﬂ OH 1+ [X]+[Y ] Eq.141

[H"I+[N‘={0 17T U
susiwion§4 £41) HEE44) 171 3
RABEIBUUNINYINY s

yias( VeaN - [A] )

nito £1 gave

Eq.142

( Vo+V)

[A]= yia- + Ka®a VeaN Eq.144

(Vot+V)(yua " Kaa + {H"})

34
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Substitution of Eq.140 into Eq.138 gave

Ka% = {H }[B] Eq.145

vie ( VesN - [B])

[Bl= Eq.146
(Vo+ )
Substitution of Egé \ q.142 gave
o1 (N
(Vo Sl K + (H'))
\,-= VesN Eq.147

v
Eq.147 could be ;"‘“

KauAvEAN

[H'] + VN

AT gy
ammnimummmaa

(Vo+V)(yus T Ka’ + {H'})

Thus, Vea and Ves could be obtained in the same manner as

the mixture of two neutral weak acids.

T 1Mo11845
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3.2 lonized weak acid (HA'X ") + Ionized weak acid (K 'HB")

The dissociation constant of HA "X~ and K'HB™ could be
obtained from the equation, derived as followed:

HA"X s \l, TS
HA S e
AR Eq.149
| ,-:;-‘- "\lll \";\“'""'m.. \ Eq15 0
l‘ “I H‘.‘!\lllh . ....__.- ‘
5 ‘
Z \\\
“HB% K

Eq.151

ﬂuﬁlﬁﬂﬂ‘iﬁi‘%‘%mﬁ

arm[HB]

ama\mimumwmaa

The mass balance of two weak acids were

[HA']+[A] = Cn* = VeaN = [X"] Eq.153

VotV
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[HB]+[B] = Gz~ = VesN = [K']  Eq.154

Vot+V

and the charge balance of this titration solution was

[H]+[Na'] +[HA"]+[K"] = Eq.155
SO /A (1B +2[B” ]

-

Substitution of Eq.153 _—:n 15

-':% gave
-’ B™ ] Eq.156
Introduction of Eq.99 ‘l - to £q.156 gave
[H’] + ‘\\ °AVeaN

‘!"'._l (yua" KH.A'!‘{H 3]

Ka’sVesN Eq.157

: {1 i)
Fﬁlﬂ"'ﬂ%ﬂﬁﬂ El"l‘ﬂT""*“

Ka®ast {H"})

aﬁwaammumqj;maa

(Vo+V) ( Kas + yo > {H' }/ysw)

Eq.158

Thus, Vea and Ver could be obtained in the same manner
as the mixture of two neutral weak acids.
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3.3 [onized weak acid (K'HA™) + Ionized weak acid (K'HB")

The dissociation constant of K"HA™ and K'HB could be obtained
from the equation derived in the same manner as Eq.151. Therefore, the

multiple linear equation could be obtained as followed.

Thus, Vea
the mixture of two

{ 4{»-.1
All of the {T'::‘::: SJREL

both acids in theyti rak acids above could be

o0 find the equivalent volumes of

expressed in termidf the functio

fG Vi, ¥m, V

ﬂummmwmm
e P RGR TR RATHAG -

mvolved
y,£  denotes dependent variable
x,n denotes independent variable

a,B,y denotes numerical parameters involved
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this equation was called “condition equation” or “model equation”

All quantities in these equations would be classified into three
categories : parameters, constants, and variables. The parameters were the
unknown values which were searched for such as equivalent volumes in

the titration (Vea, Ves). The constants were both experimental(normality

®.gould be written down by
allowed by substituting and
ats pH and V. In practice ,
these equations coul b 10 a'single equation relating pH, V.
They could, however, ®e; ' ically and since the “condition
equation” needed not be's I set of model equations are
identified as Den # secs —canditon eougnon Al entity F (X, y; Vi, Va)
= () was mterpretetys

‘o Q
ﬁl%&l s e dcavit 9 71 7179
I entify the parameters Vy, Vaayith Vea, Ves,
’5131&;] mmmum&nmaamng fogsmaiiion
values of parameters, constants, and pH be denoted by
y =f (x; V1, V3). The condition equation is F(x, y; Vi, V2) =0
and least-squares “best” values of these parameters (Vea, Ves)

could be calculated by multiple linear regression.
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Basis for Least Squares Adjustment of Data

Assume that the errors of each of the observations of a given

quantity belonged to a Gaussian distribution, commonly expressed as

Eq.161

where ox = d deviation or root mean

square error), ﬂf sidual of x = absolute of

(observed value- trug u w of observing the ith residual

in the region rx; to ryf +f€ " :
f‘ﬂ {.»::J‘
D, = —e Gk Eq.162

Tl
I
Since the pmbabﬂltypg:-btammg a gben set of n observations was simply

o s YA e

Eq.163

HIABIUNRIINY N

Now, based upon the principle of maximum likelihood, the probability
became a maximum when the sum of the squared residuals became a



2.r.} = minimum Eq.164

Hence, the origin of the term least squares was apparent.
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In the above discussion it was assumed that all measurements

P; EqIGS
Equation 163 th
p=Tip =| S i = ¥ Eq.166
i=l —-=—
and the least sq " |
Y 22 rin imum ' Eq.167

If the weighﬂfﬂ ﬂsjvmng}m im’a]I iry inversely
RN NRINYA Y

Wa = .’ Eq.168

2

where 6, = variance of unit weight (an arbitrary constant), then the

principle of least squares was
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YW, r,* = minimum Eq.169

i.e., the sum of the weighted squares of the residuals was made a

minimum.

In actual practigé: l.j’,:ff_"s. &‘e value of the quantity x was

not known. Howeversthe-pri Qiuams attempted to adjust

W,V 2 f '7'1 \ Eq.170

Eq.171

where X was the yiie parameter.

Vo Y

U
General Least yquares Ad]ustment to a Single Function with

Uncorrsatfd] A M EJ NINYINT
Q759 B RN A s v

uncorrrglated errors was thoroughly presented by Deming. One section of
this text was concerned with the specific problem of curve fitting to a
single function containing parameters. In physical chemistry and
generally in chemistry as a whole, the adjustment was frequently

concerned with a single function containing one or more parameters to be
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determined (or system of equations which could be reduced to a single
function). Under this restriction, Deming’s treatment could be simplified

considerably.

It would be assumed that pairs of observations (X;, vi) or

lanng these variables with

*.' e ...) in the titration
condition. The extcmS10j ; \\\\‘\ able and more than three

LT AN
& ﬁ

variables ( €, 1 )
additional three parzmefCs /8.
parameters would hefob¥igus al equations were developed.
The treatment of thgfpwdblem gon dering 'a varying number of variable
(e.g., x,y,z) and a vagah £% _ “of \- ers could be facilitated by
the use of matrix alg ' ; S clarity and simplicity this
treatment would be concered” fixed number of variables and

parameters. C——— —

Suppose @function related two variables &, n and three

pmmqauﬂ’mﬂmwmn‘i
q W'&ﬁﬁaﬂ‘im UANINYNAY e

Furﬂlemmre, assumed that n pairs of observations made of the variables
which would be designated (x;, y;)i = 1,2 ..n. Since n was a finite
number, it was not possible to evaluate the true variables ( &, 1 ) and the

true parameters ( o, B, v ).



However, an estimate of these parameters might be determined
which would be designated by (a, b, ¢) based up the criteria of least
squares of the observations (x;, vi). Designate the adjusted or calculated
values the variables by (x;, y;) where i = 1,2, ..n and residuals of the

observations by

Eq.173

The least squiifesofablen coul e stated mathematically as
a desire to obtal 7ation
weighted residuals

sum of the squares of the

d‘ld
5@ &min iim Eq.174
under the restnctmn that t} "#’3"“"". 1€ gations

..,{-—-—f—*——A— 91 Eq17s

be satisfied. Thegerghts W W}r were deg\ed Eq.168 and. oo° was

generally seﬂt% EJ@ %%W ﬁ@ﬂ’% convenient.
q RVRAN TR 1D UGG ooty i e

condmun equations were linear with respond to the x;, i, a, b, ¢. This
could be accomplished very simply by expanding the function in a Taylor
’s Series about the point (X;, i, @, bo, C,) and truncating the series after
the first order terms. It was assumed satisfactory that first

approximations to the parameters could be obtained by graphical means or
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a numerical solution of a system of equations (three equations in this
case) with a selected set of the observations (three sets of in this case).
Represented the difference between this first approximation to the

parameters and the least squares estimate of these parameters by

aa = (a°-a)
ab = (b°-b) N Eq.176
Ac = (c"-c) - :

The Taylul:’ ondition equation 175 then

became
F,(x;,Y;.a,b,c) = F* (x; off. —F, Aa—F, Ab—F, Ac=0
i=1,2,..n

Eq.177

The usual yll‘h jeshad been employed

i¥

F, = T éﬁmﬁﬁf{w 119 Eq.178
WP/ TN

Rearranging equations Eq.177, then

1] T
F&VM+FnV,l+Fhﬁa+Fh&b+Fﬁﬁc=E 1=1. 23,0
Eq.179
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Now in order for S in equation Eq.174 to be a minimum it was necessary
that the differential of S with respect to the residuals be zero.

1
45 =Z(W, V,dV, +W,V,dV,)=0 Eq.180

The variations in the residuals, @ViJ 4n dVy had to also satisfy the

condition equations Eg 7 : ifferential of these
expressions 7
F.dV, +F,dV. i=12,.,n Eq.l8l
This was no ble Jimiiinize on problem as encountered in
elementary calculus - b be solved by the method of
Lagrange multipliers. 'had 2n + 3 differentials and n
equations. Therefore, ali-“ie dif vere not arbitrary since in
theory n of the —differentiais-couid=be=specificd by the n linear
equations Eq.181 ﬁi only j-'; arbitrary. Introduce n
arbitrary multipliers designated by -,-As,......-A, and multiplied each of
e e B S mamw 419

QW']Nﬂ‘iﬂJﬂJW]'JﬂEI']ﬁEI

—:‘»iF,‘, dv, - AF, dV, —AF, dAa—A\F, dAb—AF, dAc=0
1=L2,.0
Eq.182
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Combine Eq.182 and Eq.180 together and collected coefficients of the
differentials

W, Vs, ~AiF, )AVy, +SW,,V,, ~AF,,)dVy, +EAF, dsa+EAF, dAb+ XAF, dAc=0
Eq.183

There were flo 3:diffetentials remaining in equation Eq.183.
However, it was preéviglisly det {ed that exactly this number, n + 3, of the

differentials were arbitrafly. Fhércforésit might be concluded that since the

remaining n + 3 differentiais i 4183 were arbitrary the only way in
which equation EqQy18 théit, the coefficient of each
differential be equidl i

]

]

{: ‘E‘:ﬁ .‘f’ﬁﬁﬂ%w H1N7 Eq.184
AR 'ﬁUlIW]'JﬂEI']ﬂ d

TAF, =0 Eq.185
IAF, =0

Eq.184 can be solved for the residuals
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V, =—=i=12, .1
% w‘
V A, 12
=___$1'= ¥ :|"+1ﬂ
W, Eq.186

squares S of both resid gver all n recorded points from
Eq.174

Eq.187
subject to the restrgfil ed-by-the cor equation. The residuals
were defined here

Eq.188

and the weightingfa AVG ely proportional to o’

and o’ , respectifely. These sAwere the priori variance

T
' y measurements s

wyﬁ ?hnﬂfyt]ms calcjﬁlt;] curve to the data points
e QY AT TSI P T e

directlylas the sum of squared deviations were. This sum was not for the

estimates of the x 2

weighting factors W, and Wy which were inversely proportional to o’x

and o’, respectively, but otherwise arbitrary in magnitude.
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Substituted Eq.186 in Eq.187 and collected coefficient of the results

-7 53] - 5(5)] Fa 5

gave

By using the arbitrary multiplier o,” to normalize the Eq.189. With

Eq.190

This quantis

measurements of rz

ffective variance of the
did not contribute to the
deviation of the calculfitefl cupyi fiouthe ¢ aga‘points.

However, becausé we had inestipates of the statistical

uncertainties T!r’;_ 6, of the p "'f urements, respectively.

S%, was used as'asn :
:zi?:ﬂfaﬁﬁmﬁwrﬁ gt e
ARIANS, M QN ] E!’Jaﬁiﬁ&m e

from mass balance, charge balance and equilibrium equation in the

imating the pritﬁ effective variance of the

titration of two weak acid mixtures could be used to evaluate two
parameters, the equivalent volume of stronger acid (Vea) and the

equivalent volume of weaker acid (Ves), by using multiple linear
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regression analysis. The variance of the parameters were obtained from

equations of the form

=0 [cﬁ’(axﬁ/a,a)z+%*[awav,,)’]” Eq.191
Where o =
OpH —
b
This equalig sinns of the parameters

involved and had the ¢ e appropriate to careful

work with modern @py; . To permit prediction of
what the standard devi would be for any other
combination of the standard-s ation 0 measurement, it was convenient
to write the familjay.€GUation 191 in

L Iz
ﬂvl=UUUIF¥¢KP‘V/3 )’+(GfF)= av@av 1" =Fo*, Eq192

AULINININYINT
i?ihmﬁﬁhﬁmﬁ RTANYARG

As long as G/F was constant, the standard errors of the parameters
were proportional to the changes of the experimental variables and
conditions. These standard errors (ovy, and opy ) affected the precisions of

the parameters in ways that were different if the parameters were
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evaluated by multiple linear reqgression analysis from the ways in which
such changes affected precisions in the interpretations of titration curve
data by classic techniques or from the ways in which the interpretation of
titration data obtained by nonlinear regression analysis.

applicability of SPSS/PC s progran/ fadio be studied so as to avoid errors
owing to the effi ;;}—H..::'.'?_

AULINENINYINg
ARIANTAUNM TN



	Chapter I Introduction

