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APPENDIX I

Definition 1. Let {1 be a domain in R“ and R an extended

real number system. A function u: 1 = R is said to be subharmonic

in @ if

(i) u is uppe

(1i) If x € fanae GEEIEL(x,,r) C 8, then

area element on HB(xu )

A function u: 1 = R onic in O if -u is subhar-

monic in 1.

Definif lor W& perharmonic) in a domain

) lon f1, then h is called

a cF®, h is haggh

The function v is

c minorant) of u if

“gicﬁilt T i




APPENDIX 11

In this section, we shall state some relevant definitions and

basic properties of Ba it we used without stating or
proving in Chapter IV." « v ials are drawn from
Schaefer ([20], shall prove one lemma

that was often

1. Definitions andfbadid propes af ch lattices

An ordere; ' 5 ‘i ith a binary relation, .
usually denoted by o wlich i to be transitive (x £ y &

y

y § z=3%x € z), reflfxive < 3 A), and anti-symmetric

Let e Y bk :::T.;:; ;: X to mean x £ Y

Emllary for y > x. A

subset B of A is ; lad Mﬁunoﬁm&} if there exists a, € A

e on L0313 B TR » o s v

a, is callad a majorant nr"upper (renp&ctiva a minorant or

8 WG AN o TR0 o< n o

the aet of all z & A satisfying x £ z £ ¥i a subset C C A contained

in some ordered interval of A, is called order bounded. If B is a

majorized subset of A and if there exists a majorant of B that minorizes

.all majorants of B (in A), such an element is unique, called the

supremum or least upper bound of B, and denoted by sup B; similarly




for inf B (the infimum or greatest lower bound of B). Note that

these concepts depend on the set A of which B is thought to be a

subset; hence, sometimes the notation sup, B, .i.'nfa B are used.

Definition 1. An ordered set (L, €) is called a lattice if

for each pair (%,y)€ L = elements xyvy := sup { x,y } and

XAY := in{:’{x,y} :

Definitic

relation £, is

satisfied:
{LD'.',I < x iz O e .""-:—. 1 x,v.2. € E,
(LO) X ' all x,y€ E and x € R_.

2

A vector lattice is/fB space such that xyy and XAy

exist for all x,v €

If (Ep£) is an c B Jthe subset E, i=

| : : i

{xe E|x >0} i# called the positive cone'd

o ’fﬁfﬁmwamwmm

It s readily seen g from ILOJ at wheneve ra FuP A exists for

= WRS R B %ﬂ&ﬂ@»&imrh moreover

for ear.:h x ¢ E we have the following:

E; elements x & E+ are

Xx + sup A = suplx + A),
¥ +inf A = infilx + A},

sup A = =infl(-A}.
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pefinition 3. Let E be a vector lattice. For all x€ E, we
define x' := xVv0, x := (=x)V 0, |x| :=xv(-x). x*, x~ and |x| are

called the positive part, the negative part, and I:!'ne modulus (or

absolute value) of x, respectively.

Proposition 4_7 at! e afuéctor lattice. For all XY X 0¥ € E

and all A € R, the follawin atifne®re valid.

()
(2) |
3 Ix| = 0 g e fd A ha [l Txevl < Ix] + Iyl
(4) | ’
(5)
(6)
&) === AR AP
(9) =~ = A

(10)

(x + vy)

ks ﬂumwﬂmmm |
QRARRA FAHBNIGEN S o o0

the ramn:l.n:l.ng relations are easy consequences of the preceeding ones.

£X +Yy

Definition 5. Let E be a vector lattice. A norm ]l II on E

is called a lattice norm if |xf < |!|F| implies ||xl ” 4 ﬂy]l for all

x,y € BE. If || | is a lattice norm on E. the pair (E, | || »is callea
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a normed (vector) lattice; if, in addition, (E, | [|) is norm complete

it is called a Banach lattice,

Definition 6. A lattice norm x| |x| on a vector lattice E

is called an L-norm if it satisfies the axiom

||x + ".-"| YE E+}.

(E, || [|) is called aaei=fiormgd spaee, and an L-normed Banach lattice

L

\\\\ also a Banach lattice

’\\}\\ by x' > 0 in E' iff
\ N
easily verified that, for any

is called an abgirac!

‘The dual Eff o
provided that its gos
x'(x) > 0. for &

x',y' € E' and eve

) +y‘[x-u.'l| 0 <uc< x}

- . ;
I'I X—VJl 0£vas x}-
u

mﬂ%ﬁﬁﬂawﬂﬂswawnﬁ

La E be a Banach }atti::a Tha dual E' of tha Banach lattice

E Q w'} Mm&ma WE})O?J@ E}:ﬂne is defined

by e' » 0 in E* iff e'(e) 2 0, for each e £ E Define a mapping i

fx Y

from E into its second dual E" as follow:
ile) = e" (e € E),

where e"fe') = e'(e), It is obvious that i is a positive operator.
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If we can prove that 1"1 :i(E)— E is also a positive operator, then

our lemma is proved. To see this, let L & E. The assumption,
i
en(a'l = e‘{aul =0 (for all e' e E';_]

}sa"

0 is a positive element of i(E).

of Lemma 4.1, implies that il(e

1{a;} =e, > 0. Hence, it remains

s, we begin by showing that
(13)

for all x,y € E

xAy = 0. For e;

(1 )V ily)¥(u '—v')| 0 g vt g u'}

b)| 0 ¢ v < u'k.

-

By putting w'(z) = sup 3% each z € E:, we define a

bounded linears Sunctio a2l w =t {the lins _‘ y of w' is a consequence
| )
ot

of the inaquali [;-- 2c, which holds
)

for all a,b,c & E_‘) The functi.nnnl w' gsatisfies 0 £ w' € u',

w0 - ARG P75 o

[:.{x}vl(y”{u ') 2u'ly) +f'{x-y} = u' (x+y) = u*&’\ry} = ilxyy)lu),

~RRARITU HRIINYIAY

(14) i(x)vily) > ilxvy).
Since i is positive, we have i(x) < i(xvy) and ily) € i(xvy). Thus

{15) ifx)yvily) € ilxeyy).
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b

It follows from (14) and (15) that

ifx)yvily) = ilxvyl,

L]

Assume now that x,y are arbitrary elements of E. Put

Us=X-XAY, V=Y - XAY.

en we have upv > 0,
and

Hence u AV + Therefore

(16) i(ulvie & ., )i \ = ifuyv) = i(ul+i(v)-i(uAv).

So (16) implies = i(0) = 0. Moreover, we

note that i(x) = i) Y66 ‘@ = i(v) + i(xAy). Thus
_ T

(17) i(x) \y)]

<Ay).

It follows from (173, that

g ENINeIng

(18)  itAlyily) = i(x)+il 1-1{xmuy} = i(x)uﬁ_.rl-i{xhy} = ilxyyl,
m@magﬂnﬁmummmaﬂ

To see that i~' is positive, we let ey € EY M1i(E). Then

there exists a1 € E such that ite‘] = E:l" We note that

0<ep=ile) =ile)V0= ile,)Vi(0) = ile,v0) = ile]),
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where the fourth equality follows from (13), Hence ite11 = j.(n:i

and this implies e, = a',:' > 0. This proves Lemma 4.1.

1

AULINENINYINS
AR TN TN
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