CHAPTER 1

INTRODUCTION
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We show that if the hypotheses of the above theorem are replaced by

the conditions that u is a non-negative subharmoniec functien in D,



u’ has a harmonic majorant in D for some p > 1, the Green's potential
c" is positive, and HIG“,}PI' < + =, then M(u,y) is decreasing and convex
in [1,+ =) or M(u,y) is identical to + ®. We also show that if u is

a non-negative subharmonic function in D and M(u .yl is locally bounded

in (0,+ =) than

In Chapter I/al iﬂﬁ:m::iutinn of the

functions that preser uc.l:uiaan space. Recently,

Nualtaranee ([18]) hat  preserves harmonicity

in the plane must befog ,: this result to a more

general case, i.e. i ye prove the following:

Let ﬂ\:#ubaa, domain g “_s__,' !. nuao l‘ﬂ.nd f:00— Rmbﬂﬂcz
function. If ¢(h o £ is: by v or .1 harmonic function h on
£f(Q), then f must be confo? : a1l points p€ 0 such that Vi, (p) # 0
where f,l is tho 'y
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Finally inﬁha e 'l \@:tur-vnluad subharmonic

functiens. The mt1v§tj.nn of this ¢ tar comes from the fact that
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domain 1 < E to a Banach spgce; and th concept i aeful for
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a cuncapt of vector-valued subharmonic functions from a domain 2 < R™
into an extended Banach lattice E. We begin with an attempt to
understand how a sequence of points in E converges to infinity. We

define vector-valued semi-continuous functions. Then we define



vector-valued subharmonic functions and use the Bochner integral to
study its basic properties. Furthermore, we apply these concepts to
study the behaviour of the hyperplane means of vector-valued

subharmonic functions.

A few words should be s 'r:I about the terminology employed.

For the definition of a syw ‘ff/ := has been used where it
promised to increase -7-::_—-‘- y f {meaning if and only if)
occasionally withou! Gte by N, R the sets of
integers > 0 and of aly. We write |x|

for the euclidean
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