Case 1. K is a seminear-field with a' as a category II special element. Let $x \in S \setminus \{a\}$. Then $a^2 = xa = a$. If f(a) = a', then f(xa) = f(x)f(a) = f(x)a' = f(x). Therefore x = xa = a, a contradiction. Hence $f(a) \neq a'$.

Subcase 1.1. $f(x) \neq a'$. Then f(a)f(a) = f(a)f(x), so f(a) = f(x). Hence a = x, a contradiction.

Subcase 1.2. f(x) = a'. Let $y \in S \setminus \{a,x\}$. Then $f(y) \neq f(x) = a'$ and aa = ay. Therefore f(a)f(a) = f(a)f(y) which implies that f(a) = f(y). Thus a = y, a contradiction.

<u>Case 2</u>. K is a seminear-field with a category III, IV or V special element. Then |K| = 2. But |S| > 2, so f is not an injection which is a contradiction.

Case 3. K is a seminear-field with a' as a category VI special element. Then $(a')^2 \neq a'$. If f(a) = a', then $f(a)f(a) = a'a' \neq a' = f(a)$. Thus $a^2 \neq a$, a contradiction. Hence $f(a) \neq a'$. Since $|S \setminus \{a\}| \geqslant 2$ and f(a) is an injection, there exists an $x \in S \setminus \{a\}$ such that $f(x) \neq a'$. Therefore f(a)f(x) = f(a)f(a) which implies that f(x) = f(a) and hence f(a)f(a) = f(a)f(a) which implies that f(a) = f(a) and hence f(a)f(a) = f(a)f(a) which implies that f(a) = f(a) and hence f(a)f(a) = f(a)f(a) which implies that f(a) = f(a) and hence f(a)f(a) = f(a)f(a).

Theorem 3.2. Let S be a Classification B seminear-ring w.r.t. a. Assume that there exists a b ϵ SN(a) such that bx = xb = x for all x ϵ SN(a) and ax = xa = x for all x ϵ S and x+y \neq a for all x,y ϵ S. If (SN(a),) satisfies the right [left] Ore condition, then S can be embedded into a seminear-field with a category II special element and not into any other category of seminear-fields.

Proof. By assumption, S (a) is an M.C. seminear-ring

satisfying the right [left] Ore condition. By Theorem 1.45, $Q(S \setminus \{a\})$ exists. Let e' be the multiplicative identity of $Q(S \setminus \{a\})$. Let $f: S \setminus \{a\} \rightarrow Q(S \setminus \{a\})$ be the natural embedding, that is, $f(x) = [(x^2, x)]$ for all $x \in S \setminus \{a\}$. Let a' be a symbol not representing any element of $Q(S \setminus \{a\})$. Extend the binary operation of $Q(S \setminus \{a\})$ to $K = Q(S \setminus \{a\}) \cup \{a'\}$ by defining $a'\alpha = \alpha a' = \alpha$, $a' + \alpha = e' + \alpha$ and $\alpha + a' = \alpha + e'$ for all $\alpha \in K$. Then we can show that K is a seminear-field with a category II special element. Extend $f: S \setminus \{a\} \rightarrow Q(S \setminus \{a\})$ to $f: S \rightarrow K$ by defining f(a) = a'. Clearly, f is an injection and f(b) is the multiplicative identity of $Q(S \setminus \{a\})$, that is, f(b) = e'.

Claim that a+a = b+b, a+y = b+y and y+a = y+b for all y ε S. Since (b+b)b = bb+bb = b+b = ab+ab = (a+a)b, a+a = b+b. Let y ε S. Then (a+y)b = ab+yb = bb+yb = (b+y)b. Thus a+y = b+y. Similarly, we can show that y+a = y+b. So we have the claim.

To show that f is a homomorphism, let $x, y \in S$.

Case 1. $x \neq a$, $y \neq a$. This case is clear.

Case 2. x = y = a. Then f(x+y) = f(a+a) = f(b+b) = f(b)+f(b) = e'+e' = a'+a' = f(a)+f(a) = f(x)+f(y) and f(xy) = f(aa) = f(a) = a'f(a) = f(a)f(a) = f(x)f(y).

Case 3. $x = a, y \ne a$. Then f(x+y) = f(a+y) = f(b+y) = f(b)+f(y) = e'+f(y) = a'+f(y) = f(a)+f(y) = f(x)+f(y) and f(xy) = f(ay) = f(y) = a'+f(y) = f(a)+f(y) = f(x)+f(y).

Case 4. $x \neq a$, y = a. The proof is the same as in Case 3. Since |S| > 2, S cannot be embedded into a seminear-field with a category III, IV or V special element. Next, suppose that there is a monomorphism $f: S \to K$ where K is a seminear-field with a' as a category I special element. If f(a) = a', then f(a)f(b) = a'f(b) = a' = f(a). Hence ab = a, a contradiction. Thus $f(a) \neq a'$. Similarly, we can show that $f(b) \neq a'$. Since f(a)f(b) = f(ab) = f(bb) = f(b)f(b), f(a) = f(b). Hence a = b, a contradiction.

Assume that there is a monomorphism $f: S \to K$ where K is a seminear-field with a' as a category VI special element. Then $xy \ne a'$ for all $x,y \in K$. If f(a) = a', then $a'a' = f(a)f(a) = f(a^2) = f(a) = a'$ which is a contradiction. Hence $f(a) \ne a'$. Also, if f(b) = a', then f(a)a' = f(a)f(b) = f(ab) = f(b) = a', a contradiction. Thus $f(b) \ne a'$. Since f(a)f(b) = f(ab) = f(bb) = f(b)f(b), f(a) = f(b). Hence a = b, a contradiction.

Example 3.3. $(\mathbf{Z}^+,+,\cdot)$ is an M.C. seminear-ring where x+y = maximum of x,y for all x,y $\in \mathbf{Z}^+$ and \cdot is the usual multiplication. Let a be a symbol not representing any element of \mathbf{Z}^+ . Define + and \cdot on $S = \mathbf{Z}^+ \cup \{a\}$ by defining ax = xa = x for all x \in S, a+x = x+a = x for all x \in Z⁺ and a+a = 1. Then we can show that S is a Classification B seminear-ring w.r.t. a. We see that 1 \in S\{a\} is a multiplicative identity, ax = xa = x, x+y \neq a for all x,y \in S and $(S \setminus \{a\}, \cdot)$ satisfies the right Ore condition. Hence this is an example of a seminear-ring satisfying the hypotheses of Theorem 3.2.

Theorem 3.4. Let S be an M.C. Classification B, C or D seminear-ring. If (S,•) satisfies the right [left] Ore condition, then S can be embedded into a O-seminear-field.

Proof. By Theorem 1.45, S can be embedded into Q(S).

By Proposition 1.26, Q(S) can be embedded into a 0-seminear-field and hence so can S.

Remark. Let K be the 0-seminear-field and $f: S \to K$ the embedding given by the construction used in Theorem 3.4. Then $K = Q(S) \cup \{a'\}$ where a' is a 0-special element and $f: S \to K$ is given by $f(x) = [(x^2,x)] \quad \text{for all } x \in S.$

Theorem 3.5. Let S be an M.C. Classification B, C or D seminear-ring.

If (S,•) satisfies the right [left] Ore condition, then S can be embedded into an ∞-seminear-field.

<u>Proof.</u> The proof is similar to the proof of Theorem 3.4, using
Proposition 1.27.

Remark. Let K be the ∞ -seminear-field and $f: S \to K$ the embedding given by the construction used in Theorem 3.5. Then $K = Q(S) \cup \{a'\}$ where a' is an ∞ -special element and $f: S \to K$ is given by $f(x) = [(x^2, x)] \quad \text{for all } x \in S.$

- Lemma 3.6. Let S be an M.C. seminear-ring such that (S,•) satisfies the right [left] Ore condition. Then the following statements hold:
- (i) If (S,+) is a left zero semigroup, then (Q(S),+) is a left zero semigroup.
- (ii) If (S,+) is a right zero semigroup, then (Q(S),+) is a right zero semigroup.

<u>Proof.</u> Let [(a,b)], [(c,d)] \in Q(S). Then there exist u, v \in S such that bu = dv. Thus [(a,b)]+[(c,d)] = [(au+cv,bu)].

- (i) Since x+y = x for all $x,y \in S$, [(a,b)]+[(c,d)] = [(au,bu)] = [(a,b)].
- (ii) Since y+x = x for all x,y ε S, [(a,b)]+[(c,d)] =
 [(cv,bu)] = [(cv,dv)] = [(c,d)].

Theorem 3.7. Let S be an M.C. Classification B, C or D seminear-ring such that (S,+) is a left zero semigroup. If (S,*) satisfies the right [left] Ore condition, then S can be embedded into an additive left zero seminear-field with a category I special element.

Proof. By Lemma 3.6, (Q(S),+) is a left zero semigroup.

By Theorem 1.45, S can be embedded into Q(S). By Proposition 1.28,

Q(S) can be embedded into an additive left zero seminear-field with

a category I special element and hence so can S.

Remark. Let K be the additive left zero seminear-field with a category I special element and $f: S \rightarrow K$ the embedding given by the construction used in Theorem 3.7. Then $K = Q(S) \cup \{a'\}$ where a' is a symbol not representing any element of Q(S) such that a'x = xa' = a', a'+x = a' and x+a' = x for all $x \in K$ and $f: S \rightarrow K$ is given by $f(x) = [(x^2,x)]$ for all $x \in S$.

Theorem 3.8. Let S be an M.C. Classification B, C or D seminear-ring such that (S,+) is a right zero semigroup. If (S,*) satisfies the right [left] Ore condition, then S can be embedded into an additive right zero seminear-field with a category I special element.

<u>Proof.</u> The proof is similar to the proof of Theorem 3.7, using Proposition 1.29.

#

Remark. Let K be the additive right zero seminear-field with a category I special element and $f: S \to K$ the embedding given by the construction used in Theorem 3.8. Then $K = Q(S) \cup \{a'\}$ where a' is a symbol not representing any element of Q(S) such that a'x = xa' = a', a'+x = x and x+a' = a' for all $x \in K$ and $f: S \to K$ is given by $f(x) = [(x^2,x)]$ for all $x \in S$.

We shall now give examples of Classification B, C and D seminear-rings (S,+,*) such that (S,+) is a left or a right zero semigroup.

Example 3.9. Define \oplus on \mathbf{Z}^+ by $\mathbf{x}\oplus\mathbf{y}=\mathbf{x}[\mathbf{x}\oplus\mathbf{y}=\mathbf{y}]$ for all $\mathbf{x},\mathbf{y}\in\mathbf{Z}^+$. Then (\mathbf{Z}^+,\oplus) and $(\mathbf{Z}^+,\{1\},\oplus)$ are left [right] zero semigroups. Furthermore,

- (1) (Z⁺,⊕,•) is a Classification B seminear-ring w.r.t.1,
- (2) (Z⁺,⊕,•) is a Classification C seminear-ring w.r.t.2
- and (3) $(z^+ \setminus \{1\}, \emptyset, \cdot)$ is a Classification D seminear-ring w.r.t.2 where \cdot is the usual multiplication.

Theorem 3.10. Let S be an M.C. Classification B, C or D seminear-ring. If (S,•) satisfies the right [left] Ore condition, then S can be embedded into a seminear-field with a category II special element.

<u>Proof.</u> By Theorem 1.45, S can be embedded into Q(S).
By Proposition 1.30, Q(S) can be embedded into a seminear-field with a category II special element and hence so can S.

ŧ

Remark. Let K be the seminear-field with a category II special element and $f: S \to K$ the embedding given by the construction used in Theorem 3.10. Let e be the identity of $(Q(S), \cdot)$. Then $K = Q(S) \cup \{a'\}$ where a' is a symbol not representing any element of Q(S) such that $a'\alpha = \alpha a' = \alpha$ for all $\alpha \in K$, $\alpha+a' = \alpha+e'$, $a'+\alpha = e'+\alpha$ for all $\alpha \in Q(S)$ and

$$a'+a' = \begin{cases} a' \text{ or } e' & \text{if } \alpha+\alpha = \alpha \text{ for all } \alpha \in Q(S) \\ e'+e' & \text{; otherwise} \end{cases}$$

and f: S \rightarrow K is given by $f(x) = [(x^2, x)]$ for all $x \in S$.

Theorem 3.11. Let S be an M.C. Classification B, C or D seminear-ring. If (S,*) satisfies the right [left] Ore condition, then S can be embedded into a seminear-field with a category VI special element.

Proof. The proof is similar to the proof of Theorem 3.10, using Proposition 1.31.

#

Remark. Let K be the seminear-field with a category VI special element and $f: S \rightarrow K$ the embedding given by the construction used in Theorem 3.11. Let $d' \in Q(S)$. Then $K = Q(S) \cup \{a'\}$ where a' is a symbol not representing any element of Q(S) such that

$$(a')^2 = (d')^2, \ \alpha a' = \alpha d' \ \text{and} \ a'\alpha = d'\alpha \ \text{for all} \ \alpha \in Q(S)$$

$$\alpha + a' = \alpha + d' \ \text{and} \ a' + \alpha = d' + \alpha \ \text{for all} \ \alpha \in Q(S),$$

$$a' + a' = \begin{cases} a' \ \text{or} \ d' & \text{if} \ \alpha + \alpha = \alpha \ \text{for all} \ \alpha \in Q(S) \\ d' + d' & \text{; otherwise} \end{cases}$$

and $f: S \to K$ is given by $f(x) = [(x^2, x)]$ for all $x \in S$.

Theorem 3.12. Let S be a Classification D seminear-ring. If S is not L.M.C., then S cannot be embedded into a seminear-field with a

category I, II, III, IV or V special element.

<u>Proof.</u> Assume that S is a Classification D seminear-ring w.r.t. a. Since S is not L.M.C., there exists a $z \in S$ such that z is not L.M.C. in S. Therefore there exist $x,y \in S$ such that zx = zy but $x \neq y$.

Case 1. z = a. Then ax = ay. Clearly, x = a or y = a. Without loss of generality, assume that x = a. Then $y \neq a$ and aa = ay. Assume that there exists a monomorphism $f : S \rightarrow K$ where K is a seminear-field with a category I, II, III, IV or V special element.

Subcase 1.1. K is a seminear-field with a' as a category I special element. Then a'x = xa' = a' for all x ϵ K. If f(a) = a', then f(ay) = f(a)f(y) = a'f(y) = a' = f(a). Therefore ay = a, a contradiction. Thus $f(a) \neq a'$. Similarly, we can show that $f(y) \neq a'$. Since f(a)f(a) = f(a)f(y), f(a) = f(y). Hence a = y, a contradiction.

Subcase 1.2. K is a seminear-field with a' as a category II special element. Then a'x = xa' = x for all x \in K. If f(a) = a', then f(a)f(a) = f(a). Thus a^2 = a, a contradiction. Therefore $f(a) \neq a'$. Similarly, we can show that $f(y) \neq a'$. Since f(a)f(a) = f(a)f(y), f(a) = f(y). Hence a = y, a contradiction.

Subcase 1.3. K is a seminear-field with a category III, IV or V special element. Then |K| = 2. But |S| > 2, a contradiction.

Case 2. $z \neq a$. Clearly, x = a or y = a. Without loss of generality, assume that x = a. Then $y \neq a$ and za = zy.

Subcase 2.1. K is a seminear-field with a' as a category I

or II special element. Clearly, $f(a) \neq a'$, $f(z) \neq a'$ and $f(y) \neq a'$. Since f(z)f(a) = f(z)f(y), f(a) = f(y). Hence a = y, a contradiction.

Subcase 2.2. K is a seminear-field with a category III, IV or V special element. Using the same proof as in Subcase 1.3 we can get a contradiction.

Corollary 3.13. Let S be a Classification D seminear-ring w.r.t. a.

If a is not L.M.C. in S, then S cannot be embedded into a seminear-field with a category I, II, III, IV or V special element.

Theorem 3.14. Let S be a Classification E seminear-ring such that |S| > 2. Then S cannot be embedded into a seminear-field with a category I, II, III, IV or V speical element.

Proof. Assume that S is a Classification E seminear-ring w.r.t. a. Then the proof of this proposition is similar to the proof of Case 1 in Theorem 3.12 (substituté a² for y).

Theorem 3.15. Let S be a Classification D seminear-ring w.r.t. a such that a is not L.M.C. in S. If $xa \neq a$ for all $x \in S \setminus \{a\}$, $x+y \neq a$ for all $x,y \in S$ and $(S \setminus \{a\}, \cdot)$ satisfies the right [left] Ore condition, then S can be embedded into a seminear-field with a category VI special element and not into any other category of seminear-fields.

Proof. Let $d \in S \setminus \{a\}$ be such that ax = dx for all $x \in S \setminus \{a\}$. Since $xa \neq a$ for all $x \in S \setminus \{a\}$, xa = xd for all $x \in S \setminus \{a\}$ and ad = da. By Proposition 2.43, a+a = d+d, a+x = d+x and x+a = x+d for all $x \in S$. Since $x+y \neq a$ for all $x,y \in S \setminus \{a\}$, $S \setminus \{a\}$ is an M.C. seminear-ring. Hence $Q(S \setminus \{a\})$ exists. Let $f : S \setminus \{a\} \rightarrow Q(S \setminus \{a\})$ be the natural

embedding, that is, $f(x) = [(x^2, x)]$ for all $x \in S \setminus \{a\}$. Let a' be a symbol not representing any element of $Q(S \setminus \{a\})$. Extend the binary operation of $Q(S \setminus \{a\})$ to $K = Q(S \setminus \{a\})$ U $\{a'\}$ by defining $a'\alpha = f(d)\alpha$, $\alpha a' = \alpha f(d)$, $a' + \alpha = f(d) + \alpha$ and $\alpha + a' = \alpha + f(d)$ for all $\alpha \in K$. Then we can show that K is a seminear-field with a category VI special element. Extend $f: S \setminus \{a\} \rightarrow Q(S \setminus \{a\})$ to $f: S \rightarrow K$ by defining f(a) = a'. Clearly, f is an injection.

To show that f is a homomorphism, let $x,y \in S$.

Case 1. x = y = a. Then f(x+y) = f(a+a) = f(d+d) = f(d)+f(d) = a'+a' = f(a)+f(a) = f(x)+f(y). Similarly, we can show that f(xy) = f(x)f(y).

Case 2. $x = a, y \neq a$. Then f(x+y) = f(a+y) = f(d+y) = f(d)+f(y) = a'+f(y) = f(a)+f(y) = f(x)+f(y). Similarly, we can show that f(xy) = f(x)f(y).

Case 3. $x \neq a$, y = a. The proof is similar to the proof of Case 2.

Case 4. $x \neq a$, $y \neq a$. This case is clear.

8

Hence f is a homomorphism and by Theorem 3.12, we are done.

Theorem 3.16. Let S be a Classification E seminear-ring w.r.t. a such that |S| > 2. If x+y \neq a for all x,y \in S and $(S \setminus \{a\}, \cdot)$ satisfies the right [left] Ore condition, then S can be embedded into a seminear-field with a category VI special element and not into any other category of seminear-fields.

 $\underline{\text{Proof.}}$ The proof is similar to the proof of Theorem 3.15 (substitute a^2 for d).

4

Theorem 3.17. Let S be a Classification D seminear-ring w.r.t. a such that a is not L.M.C. in S. Let d ε S\{a} be such that ax = dx for all x ε S\{a}. If there exist x,y ε S\{a} such that x+y = a and there exist u,v ε S\{d} such that u+v = d, then S cannot be embedded into a seminear-field with a category VI special element.

<u>Proof.</u> Suppose that there exists a monomorphism $f: S \to K$ where K is a seminear-field with a' as a category VI special element. Let e be the identity of $(K \setminus \{a'\}, \cdot)$.

Claim that $f(a) \neq a'$. To prove this, suppose not. Then $f(x), f(y) \in K \setminus \{a'\}$. Thus a' = f(a) = f(x+y) = f(x)+f(y) = f(x)e+f(y)e = (f(x)+f(y))e = a'e, a contradiction. Hence we have the claim. Similarly, we can show that $f(d) \neq a'$. Since f(a)f(d) = f(d)f(d), f(a) = f(d). Hence a = d, a contradiction.

Example 3.18. $\mathbf{z}^+ \setminus \{1,3\}$ with the usual addition and multiplication is an M.C. seminear-ring. Let a and b be symbols not representing any element of $\mathbf{z}^+ \setminus \{1,3\}$. Extend + and • from $\mathbf{z}^+ \setminus \{1,3\}$ to $\mathbf{z}^+ \setminus \{1,3\}$ by defining

 $a^2 = 36$, $b^2 = 9$, ab = ba = 18,

ax = xa = 6x and bx = xb = 3x for all $x \in \mathbb{Z}^{+} \setminus \{1,3\}$, a+a = 12, b+b = a, a+b = b+a = 9,

a+x = x+a = 6+x and b+x = x+b = 3+x for all x ϵ Z⁺ $\{1,3\}$. Then we can show that S is a Classification D seminear-ring w.r.t. a. We see that ax = 6x for all x ϵ S $\{a\}$, b ϵ S $\{a\}$ is such that b+b = a and 2,4 ϵ S $\{b\}$ are such that 2+4 = 6. Hence this example satisfies the hypotheses of Theorem 3.17.

Theorem 3.19. Let S be a Classification E seminear-ring w.r.t. a. If there exist x,y ε S ${a}$ such that x+y = a and there exist u,v ε S ${a}^2$ such that u+v = a^2 , then S cannot be embedded into a seminear-field with a category VI special element.

<u>Proof.</u> The proof is similar to the proof of Theorem 3.17 (substitute a^2 for d).

Theorem 3.20. Let S be a Classification D seminear-ring w.r.t. a such that a is not L.M.C. in S. Let d ε S\{a} be such that ax = dx for all x ε S\{a}. If there exist x,y ε S\{a} such that x+y = a and there exist z,w ε S such that zw = d and u+v \neq d for all u,v ε S, then S cannot be embedded into a seminear-field with a category VI speical element.

<u>Proof.</u> Suppose that there exists a monomorphism $f: S \to K$ where K is a seminear-field with a' as a category VI special element. Let e be the identity of $(K \setminus \{a'\}, \cdot)$. If f(a) = a', then $f(x) \neq a'$ and $f(y) \neq a'$. Thus a' = f(a) = f(x+y) = f(x)+f(y) = f(x)e+f(y)e = (f(x)+f(y))e = a'e, a contradiction. Thus $f(a) \neq a'$. By Proposition 1.33, $f(z)f(w) \neq a'$. Thus $f(d) = f(z)f(w) \neq a'$. Since f(a)f(d) = f(d)f(d), f(a) = f(d). Hence a = d, a contradiction.

Example 3.21. $\mathbf{Z}^+ \setminus \{1,2\}$ with the usual addition and multiplication is an M.C. seminear-ring. Let a and b be symbols not representing any element of $\mathbf{Z}^+ \setminus \{1,2\}$. Extend + and • from $\mathbf{Z}^+ \setminus \{1,2\}$ to $\mathbf{S} = (\mathbf{Z}^+ \setminus \{1,2\}) \cup \{a,b\}$ by defining

 $a^2 = 16$, $b^2 = 4$, ab = ba = 8,

ax = xa = 4x and bx = xb = 2x for all x $\in \mathbb{Z}^{+} \{1,2\}$, a+a = 8, b+b = a, a+b,b+a = 6,

a+x = x+a = 4+x and b+x = x+b = 2+x for all x ε Z⁺ $\{1,2\}$. Then we can show that (S,+,•) is a Classification D seminear-ring w.r.t. a. We see that ax = 4x for all x ε S $\{a\}$, b ε S $\{a\}$ is such that b+b = a, b² = 4 and x+y \neq 4 for all x,y ε S. Hence this is an example of a seminear-ring satisfying the hypotheses of Theorem 3.20.

Theorem 3.22. Let S be a Classification E seminear-ring w.r.t. a. If there exist x,y ε S\{a\} such that x+y = a and there exist z,w ε S such that zw = a^2 and u+v \neq a^2 for all u,v ε S, then S cannot be embedded into a seminear-field with a category VI special element.

Proof. The proof is similar to the proof of Theorem 3.20
(substitute a² for d).

Theorem 3.23. Let S be a Classification D seminear-ring w.r.t. a such that a is not L.M.C. in S. Let $d \in S \setminus \{a\}$ be such that ax = dx for all $x \in S \setminus \{a\}$. Assume that $xa \neq a$ for all $x \in S \setminus \{a\}$ and $u+v \neq d$ for all $u,v \in S$ and $uv \neq d$ for all $u,v \in S \setminus \{d\}$. If $(S \setminus \{d\}, \cdot)$ satisfies the right [left] Ore condition, then S can be embedded into a seminear-field with a category VI special element and not into any other category of seminear-fields.

<u>Proof.</u> By Proposition 2.26, xa = xd for all $x \in S \setminus \{a\}$ and ad = da. By Proposition 2.49, $S \setminus \{d\}$ is M.C.. By assumption, $S \setminus \{d\}$ is a seminear-ring. Thus $Q(S \setminus \{d\})$ exists. Let $f : S \setminus \{d\} \rightarrow Q(S \setminus \{d\})$

be the natural embedding, that is, $f(x) = I(x^2,x)$ for all $x \in S \setminus \{d\}$. Let a' be a symbol not representing any element of $Q(S \setminus \{d\})$. Extend + and \cdot on $Q(S \setminus \{d\})$ to $K = Q(S \setminus \{d\})$ U $\{a'\}$ by defining $a'\alpha = f(a)\alpha$, $\alpha a' = \alpha f(a)$, $a'+\alpha = f(a)+\alpha$ and $\alpha + a' = \alpha + f(a)$ for all $\alpha \in K$. Then we can show that K is a seminear-field with a category VI special element. Extend $f: S \setminus \{d\} \rightarrow Q(S \setminus \{d\})$ to $f: S \rightarrow K$ by defining f(d) = a'. Clearly, f is an injection.

To show that f is a homomorphism, let $x,y \in S$.

Case 1, $x \neq d$, $y \neq d$. By definition, f is a homomorphism.

Case 2: x = y = d. Then f(x+y) = f(d+d) = f(a+a) = f(a)+f(a) = a'+a' = f(d)+f(d) = f(x)+f(y). Similarly, we can show that f(xy) = f(x)f(y).

Case 3. x = d, $y \neq d$. Then f(x+y) = f(d+y) = f(a+y) = f(a)+f(y) = a'+f(y) = f(d)+f(y) = f(x)+f(y). To show that f(xy) = f(x)f(y), we shall consider two subcases.

Subcase 3.1. y = a. Then $f(xy) = f(da) = f(ad) = f(d^2) = f(a^2) = f(a)f(a) = a'f(a) = f(d)f(a) = f(x)f(y)$.

Subcase 3.2. $y \neq a$. Then f(xy) = f(dy) = f(ay) = f(a)f(y) = a'f(y) = f(d)f(y) = f(x)f(y).

Case 4. $x \neq d$, y = d. The proof is similar to the proof of Case 3.

Hence f is a homomorphism and by Theorem 3.12 we are done.

Theorem 3.24. Let S be a Classification E seminear-ring w.r.t. a such that |S| > 2. If $u+v \ne a^2$ for all $u,v \in S$, $uv \ne a^2$ for all $u,v \in S \setminus \{a^2\}$ and $(S \setminus \{a^2\}, \cdot)$ satisfies the right [left] Ore condition,

then S can be embedded into a seminear-field with a category VI special element and not into any other category of seminear-fields.

Proof. The proof is similar to the proof of Theorem 3.23
(substitute a² for d).

Theorem 3.25. Let S be a Classification A seminear-ring such that (S, \cdot) satisfies the right [left] Ore condition. Let $\mathcal{H}_{\mathbf{I}}$ be a category whose objects are seminear-fields with a category I special element. Let K be an object in $\mathcal{H}_{\mathbf{I}}$ and $f: S \to K$ the embedding given by the construction immediately following Theorem 1.38. Then (S, f, K) is a quotient seminear-field of S w.r.t. $\mathcal{H}_{\mathbf{I}}$.

<u>Proof.</u> Let K' be any seminear-field with a category I special element and $i: S \to K^t$ a homomorphism. Define $g: K \to K^t$ as follows: for $\alpha \in K$, choose $(c,d) \in \alpha$. Define $g(\alpha) = i(c)i(d)^{-1}$.

Let $(c',d') \in \alpha$. Then $(c,d) \sim (c',d')$. There exist $x,y \in S \setminus \{a\}$ such that cx = c'y and dx = d'y. Thus i(c)i(x) = i(c')i(y) and i(d)i(x) = i(d')i(y). Therefore $i(c) = i(c')i(y)i(x)^{-1}$ and $i(d')^{-1}i(d) = i(y)i(x)^{-1}$, so $i(c) = i(c')i(d')^{-1}i(d)$. Therefore $i(c)i(d)^{-1} = i(c')i(d')^{-1}$ and hence g is well-defined.

To show that g is a homomorphism, let $\alpha,\beta \in K$. Choose $(x,y) \in \alpha$ and $(z,w) \in \beta$. There exist $u \in S$ and $v \in S \setminus \{a\}$ such that yu = zv.

Thus $\alpha\beta = [(xu,wv)]$ and $i(u) = i(y)^{-1}i(z)i(v)$. Hence $g(\alpha\beta) = i(xu)i(wv)^{-1} = i(x)i(u)i(v)^{-1}i(w)^{-1} = i(x)i(y)^{-1}i(z)i(w)^{-1} = g(\alpha)g(\beta)$. There exist $p,q \in S \setminus \{a\}$ such that yp = wq. Therefore $\alpha+\beta = [(xp+zq,yp)]$ and $g(\alpha+\beta) = i(xp+zq)i(yp)^{-1} = i(xp)i(yp)^{-1}+i(zq)i(yp)^{-1} = i(x)i(y)^{-1}+i(z)i(u)^{-1} = i(xp)i(yp)^{-1}$

 $g(\alpha)+g(\beta)$.

To show that $g \circ f = i$, let $x \in S$. If x = 0, then $(g \circ f)(x) = g(f(0)) = g(0) = 0 = i(0)$. Assume that $x \neq 0$. Then $(g \circ f)(x) = g([(x^2,x)]) = i(x^2)i(x)^{-1} = i(x)$. Hence $g \circ f = i$.

Suppose that there exists a homomorphism $h: K \to K'$ such that $h \circ f = i$. Let $\alpha \in K$ and choose $(x,y) \in \alpha$. Then $g(\alpha) = i(x)i(y)^{-1} = ((h \circ f)(x))((h \circ f)(y))^{-1} = h([(x^2,x)])h([(y^2,y)])^{-1} = h([(x^2,x)])h([(y,y^2)]) = h([(x^2,x)][(y,y^2)]) = h([(x,y)]) = h(\alpha)$. Thus g = h.

Definition 3.26. Let K be a seminear-field with a as a special element. Then K is called almost full w.r.t. a if a+x \neq a and x+a \neq a for all x \in K\{a\}. K is called full w.r.t. a if a+x \neq a and x+a \neq a for all x \in K.

Example 3.27.

- (1) (x) in the proof of Theorem 2.9 is an example of a seminear-field which is almost full w.r.t. a' but not full w.r.t. a'.
- (2) (xi) in the proof of Theorem 2.9 is an example of a seminear-field which is not almost full w.r.t. a'.
- (3) (xii) in the proof of Theorem 2.9 is an example of a seminear-field which is full w.r.t. a'.

Theorem 3.28. Let S be a Classification B seminear-ring w.r.t. a. Assume that there exists an element b ε S\{a} such that bx = xb = x for all x ε S\{a} and ax = xa = x for all x ε S and x+y \neq a for all x,y ε S and (S\{a},•) satisfies the right [left] Ore condition. Let K be the seminear-field with a category II special element and f : S \rightarrow K the embedding given by the construction in Theorem 3.2.

Let \bar{K} be any seminear-field with \bar{a} as a category II special element and $i:S\to \bar{K}$ a monomorphism. Then the following statements hold:

- (i) If there are $x,y \in S \setminus \{a\}$ such that $\bar{a} = \bar{a} + i(x)i(y)^{-1}$, then there is no monomorphism $g : K \to \bar{K}$ such that $g \circ f = i$.
- (ii) If \bar{K} is almost full w.r.t. \bar{a} , then there is a unique monomorphism $g: K \to \bar{K}$ such that $g \circ f = i$.

Proof. First, we shall show that $i(b) \neq \bar{a}$, suppose not. Then $i(b) = i(ab) = i(a)i(b) = i(a)\bar{a} = i(a)$. Thus a = b, a contradiction. Hence $i(b) \neq \bar{a}$. Since $b = b^2$, $i(b) = \bar{e}$ where \bar{e} is the identity of $(\bar{K} \setminus \{\bar{a}\}, \bullet)$.

Claim that $i(a) = \bar{a}$. To prove this, suppose not. Since i(b)i(a) = i(b)i(b), i(a) = i(b). Thus a = b, a contradiction. Hence we have the claim.

- (i) Assume that there exists a monomorphism $g: K \to \overline{K}$ such that $g \cdot f = i$. Then $g(a') = g(f(a)) = (g \cdot f)(a) = i(a) = \overline{a}$ and $g([(b,b)]) = g(f(b)) = (g \cdot f)(b) = i(b) = \overline{e}$. Since $\overline{a} = \overline{a} + i(x)i(y)^{-1}$, y = y + x. Thus $g([(x,y)]) = g([(x^2,x)][(y,y^2)]) = ((g \cdot f)(x))((g \cdot f)(y))^{-1} = i(x)i(y)^{-1}$. Therefore $\overline{a} = \overline{a} + i(x)i(y)^{-1} = \overline{a} + g([(x,y)]) = g(a' + [(x,y)]) = g(e' + [(x,y)]) = g([(y + x,y)]) = \overline{e}$, a contradiction.
- (ii) Since $a+a \neq a$, $\overline{a}+\overline{a} \neq \overline{a}$. Since $(\overline{a}+\overline{a})\overline{e} = (\overline{e}+\overline{e})\overline{e}$ and \overline{K} is almost full w.r.t. \overline{a} , $\overline{a}+\overline{a} = \overline{e}+\overline{e}$. Let $\alpha \in K \setminus \{a'\}$ and choose (c,d) $\in \alpha$. Define $g(\alpha) = i(c)i(d)^{-1}$ and $g(a') = \overline{a}$. Using a proof similar to the proof of Theorem 3.25, we obtain that g is well-defined.

To show that g is an injection , let $\alpha, \beta \in K$ be such that $g(\alpha) = g(\beta)$. If $\alpha = a^t$, then $\beta = a^t$. Suppose that $\alpha \neq a^t$. Then $\beta \neq a^t$. Choose $(x,y) \in \alpha$ and $(z,w) \in \beta$. Then there exist $u,v \in S \setminus \{a\}$ such that yu = wv. Thus $i(u) = i(y)^{-1}i(w)i(v)$ and $i(x)i(u)i(v)^{-1}i(w)^{-1} = i(x)i(y)^{-1}i(w)i(v)i(v)^{-1}i(w)^{-1} = i(x)i(y)^{-1} = g(\alpha) = g(\beta) = i(z)i(w)^{-1}$. Therefore i(xu) = i(x)i(u) = i(z)i(v) = i(zv). Since i is an injection, xu = zv. Thus $(x,y) \sim (z,w)$ and hence $\alpha = \beta$.

Claim that $\bar{a}+u=\bar{e}+u$ and $u+\bar{a}=u+\bar{e}$ for all $u\in \bar{K}\setminus\{\bar{a}\}$. Let $u\in \bar{K}\setminus\{\bar{a}\}$. Since $(\bar{a}+u)u=\bar{a}u+uu=u+uu=\bar{e}u+uu=(\bar{e}+u)u$ and \bar{K} is almost full w.r.t. \bar{a} , $\bar{a}+u=\bar{e}+u$. Similarly, we can show that $u+\bar{a}=u+\bar{e}$. So we have the claim.

To show that g is a homomorphism, let $\alpha, \beta \in K$.

Case 1. $\alpha = \beta = a'$. Then $g(\alpha+\beta) = g(a'+a') = g([(b,b)]+[(b,b)]) = g([(b+b,b)]) = i(b+b)i(b)^{-1} = \bar{e}+\bar{e} = \bar{a}+\bar{a} = g(a')+g(a') = g(\alpha)+g(\beta)$ and $g(\alpha\beta) = g(a'a') = g(a') = \bar{a} = \bar{a} = g(a')g(a') = g(\alpha)g(\beta)$.

Case 2. α = a', $\beta \neq$ a'. Choose $(z,w) \in \beta$. Then $\alpha+\beta=a'+[(z,w)]=[(b,b)]+[(z,w)]$. There exist u,v \in S such that bu = wv. Thus $\alpha+\beta=[(bu+zv,bu)]$, so $g(\alpha+\beta)=i(bu+zv)i(bu)^{-1}=i(bu)i(bu)^{-1}+i(zv)i(wv)^{-1}=\bar{e}+i(z)i(w)^{-1}=\bar{a}+i(z)i(w)^{-1}=g(a')+g(\beta)=g(\alpha)+g(\beta)$ and $g(\alpha\beta)=g(a'\beta)=g(\beta)=g(\beta)=\bar{a}g(\beta)=g(\alpha')g(\beta)=g(\alpha)g(\beta)$.

Case 3. $\alpha \neq a'$, $\beta = a'$. The proof is similar to the proof of Case 2. Case 4. $\alpha \neq a'$, $\beta \neq a'$. Choose $(x,y) \in \alpha$ and $(z,w) \in \beta$. There exist p,q \in S such that yp = wq. Thus $g(\alpha+\beta) = i(xp+zq)i(yp)^{-1} = i(xp+zq)i(yp)^{-1}$ $i(xp)i(yp)^{-1}+i(zq)i(wq)^{-1}=i(x)i(y)^{-1}+i(z)i(w)^{-1}=g(\alpha)+g(\beta)$. There exist u,v ϵ S such that yu = zv. Thus $\alpha\beta=[(xu,wv)]$ and i(y)i(u)=i(z)i(v). Therefore $g(\alpha\beta)=i(xu)i(wv)^{-1}=i(x)i(u)i(v)^{-1}i(w)^{-1}=i(x)i(y)^{-1}i(z)i(w)^{-1}=g(\alpha)g(\beta)$.

Let $x \in S$. If x = a, then $(g \circ f)(x) = (g \circ f)(a) = g(f(a)) = g(a') = \overline{a} = i(a)$. Assume that $x \neq a$. Then $(g \circ f)(x) = g(f(x)) = g(f(x)) = g(f(x^2,x)) = i(x^2)i(x)^{-1} = i(x)$. Hence $g \circ f = i$.

Let $h: K \to \overline{K}$ be a monomorphism such that $h \circ f = i$. Let $\alpha \in K$.

If $\alpha = a'$, then $g(\alpha) = g(a') = \overline{a} = i(a) = (h \circ f)(a) = h(f(a)) = h(a') = h(\alpha)$. Suppose that $\alpha \neq a'$. Choose $(x,y) \in \alpha$. Then $g(\alpha) = g([(x,y)]) = i(x)i(y)^{-1} = ((h \circ f)(x))((h \circ f)(y))^{-1} = h([(x^2,x)])h([(y,y^2)]) = h([(x^2,x)][(y,y^2)]) = h([(x,y)]) = h([(x,y)]) = h(\alpha)$. Thus g = h.

Theorem 3.29. Let S be an M.C. Classification B(C,D) seminear-ring such that (S, \cdot) satisfies the right [left] Ore condition. Let \mathcal{H}_0 be the category whose objects are 0-seminear-fields. Let K be the 0-seminear-field and $f: S \to K$ the embedding given by the construction in the remark immediately following Theorem 3.4. Then (S,f,K) is a quotient seminear-field of S w.r.t. \mathcal{H}_0 .

<u>Proof.</u> Let \overline{K} be any 0-seminear-field and $i:S \to \overline{K}$ a homomorphism. By the construction of K, $K = Q(S) \cup \{a'\}$ where a' is a 0-special element of K. Let \overline{a} be a 0-special element of \overline{K} .

Claim that $i(x) \neq \bar{a}$ for all $x \in S$. To prove this, suppose not. Then there exists an $x \in S$ such that $i(x) = \bar{a}$. Let $y \in S \setminus \{x\}$. Then

 $i(xx) = i(x)i(x) = \overline{aa} = \overline{a} = \overline{a}i(y) = i(x)i(y) = i(xy)$, so xx = xy. Since S is M.C., x = y which is a contradiction. So we have the claim.

Define $g: K \to \overline{K}$ as follows: for $\alpha \in K \setminus \{a'\}$, choose $(x,y) \in \alpha$. Define $g(\alpha) = i(x)i(y)^{-1}$ and $g(a') = \overline{a}$. Using the same proof as in Theorem 3.25, we can show that g is well-defined.

To show that g is a homomorphism, let $\alpha, \beta \in K$.

Case 1. $\alpha = \beta = a'$. Then $g(\alpha+\beta) = g(a'+a') = g(a') = \overline{a} = \overline{a+a} = g(a')+g(a') = g(\alpha)+g(\beta)$. Similarly, we can show that $g(\alpha\beta) = g(\alpha)g(\beta)$.

Case 2. $\alpha = a'$, $\beta \neq a'$. Then $g(\alpha+\beta) = g(a'+\beta) = g(\beta) = \overline{a}+g(\beta) = g(a')+g(\beta) = g(\alpha)+g(\beta)$ and $g(\alpha\beta) = g(a'\beta) = g(a') = \overline{a} = \overline{a}g(\beta) = g(a')g(\beta) = g(\alpha)g(\beta)$.

Case 3. $\alpha \neq a'$, $\beta = a'$. The proof is similar to the proof of Case 2.

Case 4. $\alpha \neq a'$, $\beta \neq a'$. The proof is similar to the proof of Case 4 in Theorem 3.28(ii).

Hence g is a homomorphism. Using the same proof as in

Theorem 3.28, we get that g is the unique homomorphism such that gof = i.

Theorem 3.30. Let S be an M.C. Classification B(C,D) seminear-ring such that (S,·) satisfies the right [left] Ore condition. Let \mathcal{H}_{∞} be the category whose objects are ∞ -seminear-fields. Let K be the ∞ -seminear-field and f : S \rightarrow K the embedding given by the construction in the remark immediately following Theorem 3.5. Then (S,f,K) is a quotient seminear-field of S w.r.t. \mathcal{H}_{∞} .

<u>Proof.</u> Let \overline{K} be any ∞ -seminear-field and $i:S \to \overline{K}$ a

homomorphism. By the construction of K, K = Q(S) U {a'} where a' is an ∞ -special element of K. Let \bar{a} be an ∞ -special element of \bar{K} . Using the same proof as in Theorem 3.29, we can show that $i(x) \neq \bar{a}$ for all $x \in S$.

Define $g: K \to \overline{K}$ as follows: for $\alpha \in K \setminus \{a'\}$, choose $(x,y) \in \alpha$. Define $g(\alpha) = i(x)i(y)^{-1}$ and $g(a') = \overline{a}$. Using the same proofs as in Theorem 3.25 and Theorem 3.29, we can show that g is well-defined and $g(\alpha\beta) = g(\alpha)g(\beta)$ for all $\alpha, \beta \in K$.

To show that $g(\alpha+\beta)=g(\alpha)+g(\beta)$ for all $\alpha,\beta\in K$, let $\alpha,\beta\in K$.

Case 1. $\alpha = \beta = a'$. Then $g(\alpha+\beta) = g(a'+a') = g(a') = \overline{a} = \overline{a+a} = g(a')+g(a') = g(\alpha)+g(\beta)$.

Case 2. $\alpha = a^t$, $\beta \neq a^t$. Then $g(\alpha+\beta) = g(a^t+\beta) = g(a^t) = \overline{a} = \overline{a}+g(\beta) = g(a^t)+g(\beta) = g(\alpha)+g(\beta)$.

Case 3. $\alpha \neq a'$, $\beta = a'$. The proof is similar to the proof of Case 2.

Case 4. $\alpha \neq a'$, $\beta \neq a'$. The proof is similar to the proof of Case 4 in Theorem 3.28(ii).

Hence g is a homomorphism. Using the same proof as in Theorem 3.28, we get that g is the unique homomorphism such that $g \circ f = i$.

Theorem 3.31. Let S be an M.C. Classification B(C,D) seminear-ring such that (S,+) is a left zero semigroup and (S,·) satisfies the right [left] Ore condition. Let \mathcal{H}_L be the category whose objects are additive left zero seminear-fields with a category I special element. Let K be the object in \mathcal{H}_L and $f: S \to K$ the embedding given by the

construction in the remark immediately following Theorem 3.7. Then (S,f,K) is a quotient seminear-field of S w.r.t. \mathcal{H}_L .

<u>Proof.</u> The proof of this theorem is similar to the proofs of Theorem 3.29 and Theorem 3.30.

Theorem 3.32. Let S be an M.C. Classification B(C,D) seminear-ring such that (S,+) is a right zero semigroup and (S,*) satisfies the right [left] Ore condition. Let \mathcal{H}_R be the category whose objects are additive right zero seminear-fields with a category I special element. Let K be the object in \mathcal{H}_R and $f: S \to K$ the embedding given by the construction in the remark immediately following Theorem 3.8. Then (S,f,K) is a quotient seminear-field of S w.r.t. \mathcal{H}_R .

<u>Proof.</u> The proof of this theorem is similar to the proofs of Theorem 3.29 and Theorem 3.30.

Theorem 3.33. Let S be an M.C. Classification C seminear-ring w.r.t. a. Let b ϵ S\{a\} be such that ab = a. Assume that (S,•) satisfies the right [left] Ore condition. Let K be the seminear-field with a category II special element and f : S \rightarrow K the embedding given by the construction in the remark immediately following Theorem 3.10. Let \bar{K} be any seminear-field with \bar{a} as a category II special element and \bar{i} : S \rightarrow \bar{K} a monomorphism. Then the following statements hold:

- (i) If $i(b) = \bar{a}$, then there is no monomorphism $g : K \to \bar{K}$ such that $g \circ f = i$.
 - (ii) If $i(b) \neq \bar{a}$ and \bar{K} is full w.r.t. \bar{a} , then there is a

unique monomorphism g : $K \rightarrow \overline{K}$ such that $g \circ f = i$.

<u>Proof.</u> Since S is M.C., a is L.M.C. in S. By Proposition 2.23, ba = a. Let a' ϵ K be such that (K\{a'}\,\cdot\) is a group.

- (i) Assume that $i(b) = \overline{a}$ and there is a monomorphism $g : K \to \overline{K}$ such that $g \circ f = i$. Then $\overline{a} = i(b) = (g \circ f)(b) = g(f(b)) = g([(b^2,b)] = g([(b,b)])$. Thus $g(a^i) = g(a^i)\overline{a} = g(a^i)g([(b,b)]) = g(a^i,b)$. Hence $a^i = [(b,b)]$, a contradiction.
- (ii) First, claim that $i(x) \neq \bar{a}$ for all $x \in S$. Assume that there is an $x \in S$ such that $i(x) = \bar{a}$. Then $i(b) \neq \bar{a} = i(x) = i(xb) = i(x)i(b) = \bar{a}i(b) = i(b)$, a contradiction. So we have the claim. Define $g: K + \bar{K}$ as follows: for $\alpha \in K \setminus \{a'\}$, choose $(x,y) \in \alpha$. Define $g(\alpha) = i(x)i(y)^{-1}$ and $g(a') = \bar{a}$. Using the same proofs as in Theorem 3.25 and Theorem 3.28, we get that g is well-defined and g is the unique monomorphism such that $g \circ f = i$.

Proposition 3.34. Let K be any seminear-field with a as a category VI special element. Let d ϵ K \{a} be such that ax = dx and xa = xd for all x ϵ K. Let \bar{K} be any seminear-field with \bar{a} as a category VI special element. Let \bar{d} ϵ \bar{K} \{ \bar{a} } be such that $\bar{a}x$ = $\bar{d}x$ and $x\bar{a}$ = $x\bar{d}$ for all x ϵ \bar{K} . If there is a monomorphism g : K \rightarrow \bar{K} , then g(a) = \bar{a} and g(d) = \bar{d} .

<u>Proof.</u> Let e and \bar{e} be the identities of $(K \setminus \{a\}, \cdot)$ and $(\bar{K} \setminus \{\bar{a}\}, \cdot)$, respectively. Then $g(d) = g(de) = g(d)g(e) = g(d)\bar{e} \neq \bar{a}$. Therefore

g(a)g(a) = g(aa) = g(ad) = g(a)g(d). If $g(a) \neq \overline{a}$, then g(a) = g(d). Hence a = d, a contradiction. Thus $g(a) = \overline{a}$. Since g(d)g(d) = g(a)g(d), $g(d) = g(a)\overline{e} = \overline{ae} = \overline{de} = \overline{d}$.

Theorem 3.35. Let S be an M.C. Classification C seminear-ring such that (S, \cdot) satisfies the right [left] Ore condition. Let K be the seminear-field with a' as a category VI special element and $f: S \rightarrow K$ the embedding given by the construction in the remark immediately following Theorem 3.11. Suppose that there is an element $[(d,d_2)] \in K \setminus \{a'\}$ such that

 $a^{\dagger}\alpha = [(d_1, d_2)]\alpha, \alpha a^{\dagger} = \alpha[(d_1, d_2)],$ $a^{\dagger}+\alpha = [(d_1, d_2)]+\alpha \text{ and } \alpha+a^{\dagger} = \alpha+[(d_1, d_2)]$

for all $\alpha \in K$. Let \overline{K} be any seminear-field with \overline{a} as a category VI special element. Let $\overline{d} \in \overline{K} \setminus \{\overline{a}\}$ be such that $\overline{a}x = \overline{d}x$ and $x\overline{a} = x\overline{d}$ for all $x \in \overline{K}$ and let $i : S \to \overline{K}$ be a monomorphism. Then the following hold:

- (i) If there is a y ϵ S such that $i(y) = \bar{d}$ but $f(x) \neq [(d_1, d_2)]$ for all $x \in S$, then there is no monomorphism $g : K \to \bar{K}$ such that $g \circ f = i$.
- (ii) If there are y,u ϵ S such that y \neq u and i(y) = \overline{d} and $f(u) = [(d_1, d_2)]$, then there is no monomorphism $g : K \to \overline{K}$ such that $g \circ f = i$.
- (iii) If there is a u ϵ S such that $f(u) = [(d_1, d_2)]$ but $i(y) \neq \bar{d}$ for all y ϵ S, then there is no monomorphism $g: K \to \bar{K}$ such that $g \circ f = i$.

(iv) If $i(x) \neq \bar{d}$ and $f(x) \neq [(d_1, d_2)]$ for all $x \in S$ and $i(d_1)i(d_2)^{-1} = \bar{d}$ and \bar{K} is full w.r.t. \bar{a} , then there is a unique monomorphism $g: K \to \bar{K}$ such that $g \circ f = i$.

Proof. Let $b \in S \setminus \{a\}$ be such that ab = a. Then yb = y for all $y \in S$. If there exists an $x \in S$ such that $i(x) = \overline{a}$, then $\overline{a} = i(x) = i(xb) = i(x)i(b) = \overline{a}i(b)$. This is a contradiction, so $i(x) \neq \overline{a}$ for all $x \in S$. Since \overline{K} is full w.r.t. \overline{a} , $\overline{a}+\overline{a} = \overline{d}+\overline{d}$ and $\overline{a}+x = \overline{d}+x$ and $x+\overline{a} = x+\overline{d}$ for all $x \in \overline{K}$.

- (i) Assume that there is a monomorphism $g: K \to \overline{K}$ such that $g \circ f = i$. Then $g(f(y)) = (g \circ f)(y) = i(y) = \overline{d} = g([(d_1, d_2)])$, by Proposition 3.34. Thus $f(y) = [(d_1, d_2)]$, a contradiction.
- (ii) Assume that there is a monomorphism $g: K \to \overline{K}$ such that $g \circ f = i$. Then $i(u) = (g \circ f)(u) = g(f(u)) = g([(d_1, d_2)]) = \overline{d}$, by Proposition 3.34. Thus $i(u) = \overline{d} = i(y)$. Hence u = y, a contradiction.
- (iii) Assume that there is a monomorphism $g: K \to \overline{K}$ such that $g \circ f = i$. Then $i(u) = (g \circ f)(u) = g(f(u)) = g([(d_1, d_2)]) = \overline{d}$, a contradiction.
- (iv) Define $g: K \to \overline{K}$ as follows: for $\alpha \in K \setminus \{a'\}$, choose $(x,y) \in \alpha$. Define $g(\alpha) = i(x)i(y)^{-1}$ and $g(a') = \overline{a}$. Using the same proofs as in Theorem 3.25 and Theorem 3.28, we can show that g is well-defined and an injection.

To show that g is a homomorphism, let $\alpha, \beta \in K$. Case 1. $\alpha = \beta = a'$. Then $g(\alpha+\beta) = g(a'+a') = g([(d_1,d_2)]+[(d_1,d_2)]) =$
$$\begin{split} &g([(d_1d_2+d_1d_2,d_2d_2)] = g([(d_1+d_1,d_2)]) = i(d_1+d_1)i(d_2)^{-1} = \bar{d}+\bar{d} = \\ &\bar{a}+\bar{a} = g(a')+g(a'). \quad \text{There are } x,y \in S \text{ such that } d_2x = d_1y. \quad \text{Then} \\ &[(d_1,d_2)][(d_1,d_2)] = [(d_1x,d_2y)] \quad \text{and } i(x) = i(d_2)^{-1}i(d_1)i(y). \quad \text{Thus} \\ &g(\alpha\beta) = i(d_1x)i(d_2y)^{-1} = i(d_1)i(d_2)^{-1}i(d_1)i(d_2)^{-1} = \bar{d}\bar{d} = \bar{a}\bar{a} = g(a')g(a'). \end{split}$$

Case 2. $\alpha = a^{\dagger}$, $\beta \neq a^{\dagger}$. Choose $(z,w) \in \beta$. Then $g(\alpha+\beta) = g(a^{\dagger}+\beta) = g([(d_1,d_2)]+\beta) = g([(d_1,d_2)]+[(z,w)])$. There are $u,v \in S$ such that $d_2u = wv$. Thus $g(\alpha+\beta) = g([(d_1u+zv,d_2u)]) = i(d_1u+zv)i(d_2u)^{-1} = i(d_1)i(d_2)^{-1}+i(z)i(w)^{-1} = \bar{d}+g(\beta) = \bar{a}+g(\beta) = g(a^{\dagger})+g(\beta)$. There are $x,y \in S$ such that $d_2x = zy$. Then $g(\alpha\beta) = g(a^{\dagger}\beta) = g([(d_1,d_2)]\beta) = g([(d_1,d_2)][(z,w)]) = g([(d_1x,wy)]) = i(d_1x)i(wy)^{-1} = i(d_1)i(d_2)^{-1}i(z)i(w)^{-1} = \bar{d}g(\beta) = \bar{g}(\beta) = g(a^{\dagger})g(\beta) = g(\alpha)g(\beta)$.

Case 3. $\alpha \neq a'$, $\beta = a'$. The proof is similar to the proof of Case 2. Case 4. $\alpha \neq a'$, $\beta \neq a'$. The proof is similar to the proof of Case 4 in Theorem 3.28(ii).

Let x ϵ S. Then $(g \circ f)(x) = g(f(x)) = g([(x^2,x)]) = i(x^2)i(x)^{-1} = i(x)$, so $g \circ f = i$.

Using a proof similar to the one used in Theorem 3.28, we can show that $g: K \to \bar{K}$ is the unique monomorphism such that $g \circ f = i$.

Theorem 3.36. Let S be an M.C. Classification D seminear-ring such that (S, \cdot) satisfies the right [left] Ore condition. Let K be the seminear-field with a category II special element and $f: S \to K$ the embedding given by the construction in the remark immediately

following Theorem 3.10. Let \overline{K} be a seminear-field with \overline{a} as a category II special element such that \overline{K} is full w.r.t. \overline{a} and $i:S \to \overline{K}$ a monomorphism. Then there is a unique monomorphism $g:K \to \overline{K}$ such that $g \circ f = i$.

<u>Proof.</u> First, claim that $i(x) \neq \overline{a}$ for all $x \in S$. Assume that there exists an $x \in S$ such that $i(x) = \overline{a}$. Then $i(x) = \overline{a} = \overline{aa} = i(x)i(x) = i(xx)$ which implies that xx = x. Let $a \in S$ be such that $(S \setminus \{a\}, \cdot)$ is a cancellative semigroup. Then $ax \neq a$. Since axx = ax and S is M.C., ax = a which is a contradiction. So we have the claim.

Let a' ϵ K be such that $(K \setminus \{a'\}, \bullet)$ is a group. Define $g : K \to \overline{K}$ as follows: for $\alpha \in K \setminus \{a'\}$, choose $(x,y) \in \alpha$. Define $g(\alpha) = i(x)i(y)^{-1}$ and $g(a') = \overline{a}$. Using a proof similar to the one used in Theorem 3.28, we get that g is the unique monomorphism such that $g \circ f = i$.

Theorem 3.37. Let S be an M.C. Classification D seminear-ring such that (S,*) satisfies the right [left] Ore condition. Let K be the seminear-field with a' as a category VI special element and $f: S \rightarrow K$ the embedding given by the construction in the remark immediately following Theorem 3.11. Suppose that there is an element $[(d_1,d_2)] \in K \setminus \{a'\}$ such that

$$a'\alpha = [(d_1,d_2)]\alpha \quad , \quad \alpha a' = \alpha[(d_1,d_2)]$$

$$a'+\alpha = [(d_1,d_2)]+\alpha \quad \text{and} \quad \alpha+a' = \alpha+[(d_1,d_2)]$$

for all $\alpha \in K$. Let \overline{K} be any seminear-field with \overline{a} as a category VI special element. Let $\overline{d} \in \overline{K} \setminus \{\overline{a}\}$ be such that $\overline{a}x = \overline{d}x$ and $x\overline{a} = x\overline{d}$ for all $x \in \overline{K}$. Let $i : S \to \overline{K}$ be a monomorphism. If there is an $x \in S$

such that $i(x) = \bar{a}$, then there is no monomorphism $g: K \to \bar{K}$ such that $g \circ f = i$. Furthermore, if $i(x) \neq \bar{a}$ for all $x \in S$, then the following hold:

- (i) If there is a y ϵ S such that $i(y) = \overline{d}$ and $f(x) \neq [(d_1, d_2)]$ for all x ϵ S, then there is no monomorphism $g : K \rightarrow \overline{K}$ such that $g \circ f = i$.
- (ii) If there is a y ϵ S such that i(y) = \bar{d} and there is a u ϵ S such that f(u) = [(d₁,d₂)] where u \neq y, then there is no monomorphism g : K \neq \bar{K} such that gof = i.
- (iii) If $i(y) \neq \overline{d}$ for all $y \in S$ and there is a $u \in S$ such that $f(u) = [(d_1, d_2)]$, then there is no monomorphism $g : K \to \overline{K}$ such that $g \circ f = i$.
- (iv) If $i(y) \neq \bar{d}$ for all $y \in S$ and $f(y) \neq [(d_1, d_2)]$ for all $y \in S$ and $i(d_1)i(d_2)^{-1} = \bar{d}$, then there is a unique monomorphism $g : K \to \bar{K}$ such that $g \circ f = i$.

<u>Proof.</u> Assume that there is a monomorphism $g: K \to \overline{K}$ such that $g \circ f = i$. By Proposition 3.34, $g(f(x)) = (g \circ f)(x) = i(x) = \overline{a} = g(a^{t})$. Thus $f(x) = a^{t}$, a contradiction.

(i), (ii), (iii) and (iv) are proven in a similar way to the proof in Theorem 3.35.

Proposition 3.38. Let S be a Classification D seminear-ring w.r.t. a such that a is not L.M.C. in S. Let \overline{K} be a seminear-field with \overline{a} as a category VI special element and let $\overline{d} \in \overline{K} \setminus \{\overline{a}\}$ be such that $\overline{a}x = \overline{d}x$

and $x\bar{a}=x\bar{d}$ for all $x\in\bar{K}$. If there is a monomorphism $i:S\to\bar{K}$, then either $i(a)=\bar{d}$ or $i(a)=\bar{a}$.

<u>Proof.</u> Let $d \in S \setminus \{a\}$ be such that ax = dx for all $x \in S \setminus \{a\}$. Assume that $i(a) \neq \overline{d}$ and $i(a) \neq \overline{a}$. Let \overline{e} be the identity of $(\overline{K} \setminus \{\overline{a}\}, \cdot)$.

Case 1. $i(x) \neq \bar{a}$ for all $x \in S$. Since i(a)i(d) = i(ad) = i(dd) = i(d)i(d), i(a) = i(d). Thus a = d, a contradiction.

Case 2. There is an $x \in S$ such that $i(x) = \bar{a}$. Then $x \neq a$ and ax = dx.

Therefore $i(a)\bar{d} = i(a)\bar{a} = i(a)i(x) = i(ax) = i(dx) = i(d)i(x) = i(d)\bar{a} = i(d)\bar{d}$. Thus $i(a) = i(d)\bar{e}$.

Subcase 2.1. $i(d) \neq \bar{a}$. Then i(a) = i(d). Thus a = d, a contradiction.

Subcase 2.2. $i(d) = \bar{a}$. Then $i(a) = \bar{a}\bar{e} = \bar{d}\bar{e} = \bar{d}$, a contradiction. Hence either $i(a) = \bar{d}$ or $i(a) = \bar{a}$.

Proposition 3.39. Let S be a Classification E seminear-ring w.r.t. a. Let \bar{K} be a seminear-field with \bar{a} as a category VI special element and let $\bar{d} \in \bar{K} \setminus \{\bar{a}\}$ be such that $\bar{a}x = \bar{d}x$ and $x\bar{a} = x\bar{d}$ for all $x \in \bar{K}$. If there is a monomorphism $i: S \to \bar{K}$, then either $i(a) = \bar{d}$ or $i(a) = \bar{a}$.

 $\underline{\text{Proof}}$. This proof is similar to the proof of Proposition 3.38 (substitute a^2 for d).

Theorem 3.40. Let S be a Classification D seminear-ring w.r.t. a such that a is not L.M.C. in S. Assume that $xa \neq a$ for all $x \in S \setminus \{a\}$ and $x+y \neq a$ for all $x,y \in S$ and $(S \setminus \{a\}, \cdot)$ satisfies the right [left] Ore condition. Let K be the seminear-field with a category VI special element and $f: S \neq K$ the embedding given by the construction in Theorem 3.15. Let K be any seminear-field with K as a category VI special element, let K be any seminear-field with K as a category VI special element, let K be any seminear-field with K as a category VI special element, let K be a monomorphism. Then the following hold:

- (i) If $i(a) = \overline{d}$, then there is no monomorphism $g : K \to \overline{K}$ such that $g \circ f = i$.
- (ii) If $i(a) = \bar{a}$ and \bar{K} is full w.r.t. \bar{a} , then there is a unique monomorphism $g : K \to \bar{K}$ such that $g \circ f = i$.

Proof. Let $d \in S \setminus \{a\}$ be such that ax = dx for all $x \in S \setminus \{a\}$.

- (i) Assume that $i(a) = \bar{d}$ and there is a monomorphism $g : K \to \bar{K}$ such that $g \circ f = i$. Claim that $i(d) = \bar{a}$. To prove this, suppose not. Since i(a)i(a) = i(a)i(d) and $i(a) = \bar{d} \neq \bar{a}$, i(a) = i(d). Thus a = d, a contradiction, so we have the claim. By Proposition 3.34, $g(f(d)) = (g \circ f)(d) = i(d) = \bar{a} = g(a')$ where $a' \in K$ is such that $(K \setminus \{a'\}, \cdot)$ is a group. Therefore f(d) = a' = f(a). Hence d = a, a contradiction.
- (ii) Since $i(a) = \bar{a}$ and i(d)i(d) = i(a)i(d), $i(d) = i(a)\bar{e} = \bar{a}\bar{e} = \bar{d}\bar{e} = \bar{d}$. Define $g: K \to \bar{K}$ as follows: for $\alpha \in K \setminus \{a'\}$, choose $(x,y) \in \alpha$. Define $g(\alpha) = i(x)i(y)^{-1}$ and $g(a') = \bar{a}$. Using a proof similar to the one used in Theorem 3.35(iv) (substitute f(d) for $[(d_1,d_2)]$), we get that g is the unique monomorphism such that $g \circ f = i$.

Theorem 3.41. Let S be a Classification E seminear-ring w.r.t. a such that |S| > 2. Assume that $x+y \ne a$ for all $x,y \in S$ and $(S \setminus \{a\}, \cdot)$ satisfies the right [left] Ore condition. Let K be the seminear-field with a category VI special element and $f: S \rightarrow K$ the embedding given by the construction in Theorem 3.15 (substitute a^2 for d). Let K be any seminear-field with K as a category VI special element and let $K \setminus \{a\}$ be such that $K \setminus \{a\}$ be such that $K \setminus \{a\}$ and $K \setminus \{a\}$ be a monomorphism. Then the following hold:

- (i) If $i(a) = \bar{d}$, then there is no monomorphism $g : K \to \bar{K}$ such that $g \circ f = i$.
- (ii) If $i(a) = \bar{a}$ and \bar{K} is full w.r.t. \bar{a} , then there is a unique monomorphism $g : K \to \bar{K}$ such that $g \circ f = i$.

Proof. This proof is similar to the proof of Theorem 3.40
(substitute a² for d).

Proposition 3.42. Let S be a Classification D seminear-ring w.r.t. a such that a is not L.M.C. in S. Let $d \in S \setminus \{a\}$ be such that ax = dx for all $x \in S \setminus \{a\}$. If there is a monomorphism $i : S \to \overline{K}$ where \overline{K} is a seminear-field with \overline{a} as a category VI special element, then either $i(d) = \overline{a}$ or $i(d) = \overline{d}$ where $\overline{d} \in \overline{K} \setminus \{\overline{a}\}$ is such that $\overline{ax} = \overline{dx}$ and $x\overline{a} = x\overline{d}$ for all $x \in \overline{K}$.

<u>Proof.</u> Let \bar{e} be the identity of $(\bar{K} \setminus \{\bar{a}\}, \cdot)$. Assume that $i(d) \neq \bar{a}$. Claim that $i(a) = \bar{a}$. To prove this, suppose not. Since

i(a)i(a) = i(a)i(d), i(a) = i(d). Thus a = d, a contradiction. So we have the claim. Since $\bar{d}i(a) = \bar{a}i(a) = i(a)i(a) = i(a)i(d) = \bar{a}i(d) = \bar{d}i(d)$, $i(d) = \bar{e}i(a)$. Thus $i(d) = \bar{e}\bar{a} = \bar{e}\bar{d} = \bar{d}$.

Proposition 3.43. Let S be a Classification E seminear-ring w.r.t. a. If there is a monomorphism $i: S \to \bar{K}$ where \bar{K} is a seminear-field with \bar{a} as a category VI special element, then either $i(a^2) = \bar{a}$ or $i(a^2) = \bar{d}$ where $\bar{d} \in \bar{K} \times \{\bar{a}\}$ is such that $\bar{a}x = \bar{d}x$ and $x\bar{a} = x\bar{d}$ for all $x \in \bar{K}$.

Proof. This proof is similar to the proof of Theorem 3.42
(substitute a² for d).

Theorem 3.44. Let S be a Classification D seminear-ring w.r.t. a such that a is not L.M.C. in S. Let d ε S\{a} be such that ax = dx for all x ε S\{a}. Assume that xa \neq a for all x ε S\{a} and u+v \neq d for all u,v ε S and uv \neq d for all u,v ε S\{d} and (S\{d},\ddots) satisfies the right [left] Ore condition. Let K be the seminear-field with a category VI special element and f : S \times K the embedding given by the construction in Theorem 3.23. Let \overline{K} be any seminear-field with \overline{a} as a category VI special element and let \overline{d} ε \overline{K} \{ \overline{a} } be such that \overline{a} x = \overline{d} x and $x\overline{a}$ = $x\overline{d}$ for all x ε \overline{K} . If i : S \times \overline{K} is a monomorphism, then the following hold :

- (i) If $i(d) = \overline{d}$, then there is no monomorphism $g : K \to \overline{K}$ such that $g \circ f = i$.
- (ii) If $i(d) = \bar{a}$ and \bar{K} is full w.r.t. \bar{a} , then there is a unique monomorphism $g : K \to \bar{K}$ such that $g \circ f = i$.

<u>Proof.</u> (i) Let a' be a special element of K. Claim that $i(a) = \bar{a}$. To prove this, suppose not. Since i(a)i(a) = i(a)i(d) and $i(d) = \bar{d} \neq \bar{a}$, i(a) = i(d). Thus a = d which is a contradiction, so we have the claim. Assume that there is a monomorphism $g : K \to \bar{K}$ such that $g \circ f = i$. By Proposition 3.34, $g(f(a)) = (g \circ f)(a) = i(a) = \bar{a} = g(a')$. Thus f(a) = a' = f(d). Hence a = d, a contradiction.

(ii) Assume that $i(d) = \bar{a}$ and \bar{K} is full w.r.t. \bar{a} .

Then $i(a) \neq \bar{a}$. Since i(a)i(a) = i(a)i(d), $i(a) = \bar{e}i(d) = \bar{e}\bar{a} = \bar{e}\bar{d} = \bar{d}$.

Thus $i(a) = \bar{d}$. Define $g : K + \bar{K}$ as follows: for $\alpha \in K \setminus \{a'\}$, choose $(x,y) \in \alpha$. Define $g(\alpha) = i(x)i(y)^{-1}$ and $g(a') = \bar{a}$. Using a proof similar to the one used in Theorem 3.35(iv) (substitute f(a) for $[(d_1,d_2)]$), we get that g is the unique monomorphism such that $g \circ f = i$.

Theorem 3.45. Let S be a Classification E seminear-ring w.r.t. a such that |S| > 2. Assume that $u+v \neq a^2$ for all $u,v \in S$ and $uv \neq a^2$ for all $u,v \in S \setminus \{a^2\}$ and $(S \setminus \{a^2\}, \cdot)$ satisfies the right [left] Ore condition. Let K be a seminear-field with a category VI special element and $f: S \to K$ the embedding given by the construction in Theorem 3.23 (substitute a^2 for d). Let K be any seminear-field with K as a category VI special element and let K be such that K as a category VI special element and let K be such that K as a category VI special element and let K be such that K as a category VI special element and let K be such that K and K and K are K and K and K are K and K are K are K and K are K are K and K are K and K are K are K and K are K are K and K are K are K are K are K and K are K are K and K are K and K are K are K are K and K are K are K and K are K are K are K are K and K are K are K are K and K are K are K and K are K are K and K are K and K are K and K are K are K are K and K are K and K are K are K and K are K are K are K and K are K are K are K are K and K are K are K and K are K are K are K and K are K are K are K are K and K are K are K are K are K and K are K are K and K are K are K are K are K and K are K are K and K are K are K and K are K are K are K are K and K are K

- (i) If $i(a^2) = \bar{d}$, then there is no monomorphism $g: K \to \bar{K}$ such that $g \circ f = i$.
 - (ii) If $i(a^2) = \bar{a}$ and \bar{K} is full w.r.t. \bar{a} , then there is a

unique monomorphism g : $K \rightarrow \overline{K}$ such that $g \circ f = i$.

 $\underline{\text{Proof.}}$ This proof is similar to the proof of Theorem 3.44 (substitute a^2 for d).

ศูนย์วิทยทรัพยากร ลหาลงกรณ์มหาวิทยาลัย