

CHAPTER V

ANALYSIS OF THE DATA

5.1 Method of Analysis

The complex formation constants of the aqueous zinc halide complexes were determined by the computational method which was introduced by Rielly and Stoke (9). The computational process requires the emf data from the cell of the type

$$Zn-Hg / ZnX_{o} (m_{1}), KX(m_{2}) / AgX, Ag$$
 (1)

the cell potential which is defined by

$$E_{cell} = E_{cell}^{\circ} - (k/2) \ln(m_1)(2m_1 + m_2)^2 \gamma^3$$
(17)

and is also given by

$$E_{cell} = E_{cell}^{\circ} - (k/2) \ln[Zn^{2+}][X^{-}]^{2} \cdot \gamma_{21}^{3}$$
(18)

where k equals RT/F , m_1 and m_2 are molal concentration and γ is the mean molal activity coefficient of the zinc and halide in the solution. This formal activity coefficient becomes the stoichiometric mean molal activity coefficient γ_{\pm} of aqueous zinc halide when m_2 is zero (no potassium halide is present). [Zn^{2+}]

and [X^-] are the molal concentrations of the free ions at equilibrium (mol kg⁻¹) and γ_{21} is the activity coefficient of the non complexed zinc halides.

In aqueous solutions, a series of four complex equilibria occur, which are given by

$$Zn^{2+} + nX^{-} \xrightarrow{\beta_n} ZnX_n^{2-n} n = 1,2,3,4$$
 (19)

The corresponding complex formation constants, β_n , are defined by

$$\beta_n = (ZnX_n^{2-n}) / (Zn^{2+})(X^{-})^n$$
 (20)

(curve brackets indicate activities)

The corresponding concentration quotients Y are defined

$$X_n = [ZnX_4^{2-n}] / [Zn^{2+}][X^-]^n$$
 (21)

It can be shown that

$$\beta_{1} = Y_{1} \gamma_{11}^{2} / \gamma_{21}^{3} ; \beta_{2} = Y_{2} \gamma_{0} / \gamma_{21}^{3}$$

$$\beta_{3} = Y_{3} / \gamma_{21}^{3} ; \beta_{4} = Y_{4} \gamma_{12}^{3} / \gamma_{21}^{3} \gamma_{11}^{4}$$

In eq.18, γ_{ik} coefficients represent molal activity coefficients of the component dissociated electrolyte, with cationic valency i and anionic valency k and γ_0 is the coefficient of the

(22)

neutral complex (ZnX2).

There are several relations between the concentrations of the various species present in the solution. They are as followed. Firstly, the relations for the conservation of mass,

$$m_1 = \text{total zinc} = [Zn^{2+}] + \sum_{n=1}^{4} [ZnX_n^{2-n}]$$
 (23)

$$(2m_1 + m_2) = \text{total halide} = [X^-] + \sum_{n=1}^{4} n[ZnX_n^{2-n}]$$
 (24)

and

$$m_{1} = [2n^{2+}] \{ 1 + \sum_{n=1}^{4} Y_{n} [X^{-}]^{n} \}$$
(25)

$$(2m_1 + m_2) = [x^-] + [zn^{2+}] \sum_{n=1}^{4} nY_n [x^-]^n$$
 (26)

secondly for electroneutrality (neglecting the concentration of free hydrogen and hydroxyl ions and the small amounts of the hydrolysis products),

$$2[2n^{2+}] + [2nx^{+}] + m_{2} = [x^{-}] + [2nx_{3}^{-}] + 2[2nx_{4}^{2-}]$$
(27)

and thirdly, the ionic strength of the solution ,

$$I = 0.5(4[2n^{2+}] + [2nX^{+}] + [2nX_{3}] + 4[2nX_{4}^{2}] + [X^{-}] + m_{2})$$
(28)

Equation 25 and 26 may be combined to give a fifth order polynomial, expressing free halide concentration in terms of concentration quotients and known concentrations

$$a[x^{-}]^{5} + b[x^{-}]^{4} + c[x^{-}]^{3} + d[x^{-}]^{2} + e[x^{-}] + f = 0$$
 (29)

where

$$a = Y_{4}$$

$$b = Y_{3} + Y_{4} [4m_{1} - (2m_{1} + m_{2})]$$

$$c = Y_{2} + Y_{3} [3m_{1} - (2m_{1} + m_{2})]$$

$$d = Y_{1} + Y_{2} [2m_{1} - (2m_{1} + m_{2})]$$

$$e = 1 + Y_{1} [m_{1} - (2m_{1} + m_{2})]$$

$$f = -(2m_{1} + m_{2})$$

The values of free zinc and halide concentrations are restricted by the combined equation of 17 and 18, and one given as

$$m_1 (2m_1 + m_2)^2 \gamma^3 = [2n^{2+}][x^-]^2 \gamma_{21}^3$$
 (30)

It was assumed that activity coefficients may be expressed by extended Debye-Hueckel equations (eq.31a - d),

$$\log \gamma_{21} = -1.023I^{1/2} / (1 + A_{21} I^{1/2}) + BI + B'I^{2} + B''I^{3} (31a)$$

A 9 101 1 91 01 91 91 5 91 101 1 5 5

$$\log \gamma_{11} = -0.5115I^{1/2} / (1 + A_{11} I^{1/2}) + BI + B'I^{2} + B''I^{3} (31b)$$

$$\log \gamma_0 = BI + B'I^2 + B''I^3$$
 (31c)

$$\log \gamma_{12} = -1.023I^{1/2} / (1+A_{12}I^{1/2}) + BI + B'I^{2} + B''I^{3}$$
(31d)

where $A_{21} = ba_{21}^{\circ}$, $A_{11} = ba_{11}^{\circ}$ and $A_{12} = ba_{12}^{\circ}$ with b= 0.3291 at 298.15°K and a_{1k}° the corresponding distance of closest approach (A).

The input parameters are E and the corresponding total concentrations of zinc and halide. Initially, the value of \vec{E} must be determined, the procedure of which is described in section 5.1.1. Then four complex formation constants of eq.20 and fifteen unknown parameters in the Debye-Hueckel activity coefficients (eq.31) are evaluated by the procedure described in section 5.1.2.

5.1.1 The Determination of the Standard Potential, E, of the Cell (I)

For determination of E° , the concentration of KX,m_2 was set to zero while the concentration of the zinc halide, m_1 , was less than 0.1. In this concentration range, there is little possibility of self complexing of the salt. The square and the higher powers of the halide in equations 25 and 26 can thus be neglected, i.e., one needs only to consider the species Zn^+ , ZnX^+ , and X^- . Thus,

$$m_{1} = [Zn^{2+}](1 + \beta_{1}[X^{-}]\gamma_{21}^{3} / \gamma_{11}^{2})$$
(32)

$$2m_{1} = [X^{-}](1 + \beta_{1} [Zn^{2+}] \gamma_{21}^{3} / \gamma_{11}^{2})$$
(33)

and I = 0.5 (4 [
$$2n^{2+}$$
] + [$2nc1^{+}$] + [$c1^{-}$]) (34)

The calculation procedure requires initial assumption about ionic strength. In this case, the ionic strength of fully dissociated 2:1 electrolyte at the same concentration was used as an initial guess. The chosen value of β_1 , and the starting values of the parameters in the extended Debye-Hueckel eqs.31a and 31b were used to calculate the approximate value of chloride concentration for each point (eqs.32 and 33). The concentration of $2n^{2+}$ and $2nC1^+$ were computed from eq.24 and a new value of the ionic strength was obtained from eq.34. With this improved estimation of ionic strength, the calculation was repeated until the ionic strength was constant to 0.01%. The concentration of $2n^{2+}$ and $C1^-$ were then obtained and the value of E° was evaluated from eq. 18. This procedure was applied to all data points and the standard deviation of the E° values was calculated. All parameters were then optimized to give the appropriate value of E° with the lowest standard deviation. The flow chart and the programme used for this procedure is given in Appendix (II).

5.1.2 The Determination of the Complex Formation Constants

In the system of ZnX₂, each complex formation constant was adjusted separately, the procedure of which is described as followed.

1. The value of β_1 was obtained from the evaluation of E° as described in section 5.1.1. The working concentration range was 0.001-0.1 mol.kg⁻¹.

2. By fixing the value of β_1 , the value of β_2 was evaluated from the data of the solution concentration up to 0.5 mol.kg⁻¹. Within this limit, the effect of the anion complexes was assumed to be negligible. The initial guess of β_2 , ionic strength and a,B parameters in the Debye-Hueckel expression (eq.31) were used to calculate the halide concentration from the pentic equation (eq.29). The Bairstow's method (19) was employed, the procedure of which is shown in Appendix (I). The species concentrations were then computed from eq.(24) and the new value of ionic strength was obtained from eq.(28). The calculation was repeated until the ionic strength was constant to within 0.01%. The resulting values of zinc, halide concentrations and the activity coefficient values were then used in eq.(18) to calculate the emf. All parameters were optimized until the minimum standard deviation between the calculated and the measured emf.s (E) was obtained. The remaining, B' and B'' parameters in the extended Debye-Hueckel (eq. 31) were then adjusted to obtain the lower standard deviation. Finally the values of β_1 and β_2 were adjusted together.

3. Following the above procedure the value of $\beta_3^{}$ was obtained by extending the concentration range of solution up to 1.5 mol.kg^{-1}. Above this concentration, the value of $\beta_4^{}$ was determined.

4. Finally, the value of $\beta_1, \beta_2, \beta_3, \beta_4$ and all other parameters in eq.(31) were optimized simultaneously by using the Rosenbrock subroutine.

The above analysis was repeated for the data including the ZnX_2 -KX systems. All parameters obtained from the analysis of ZnX_2 systems were used as initial guesses. The procedures for the calculation of the emf and for the evaluation of the complex formation constants were the same as previously described.

5.2 Results of Analysis

5.2.1 Zinc Chloride System

The standard potential of the cell

was calculated by the method described in section 5.1.1. This gives $E_{cell}^{\circ} = 0.9838_7$ V. with $\sigma = 0.0002_5$ V. The standard electrode potential of zinc electrode, E_{Zn}° (= $E_{Ag,AgCl}^{\circ} - E_{cell}^{\circ}$) of -0.7616₃ V. is thus obtained. Using the same method, Lutfullah and Paterson (20) found these values to be 0.98428 V. and -0.76194 V., with $\sigma = 0.00015$ V. They are in reasonable agreement.

Using our standard potential values in the analysis of the data, the complex formation constants were found to be

> $\beta_1 = 5.00 \pm 0.10$ $\beta_2 = 1.30 \pm 0.10$ $\beta_3 = 0.96 \pm 0.04$ $\beta_4 = 1.00 \pm 0.03$

The parameters of the activity coefficients in the Debye-Hueckel equation are given in table 5.1.

log	a	В	в'	B''
Y ₂₁	4.13	0.19551	0.00437	0.00025
Y11	4.51	0.29374	0.00131	-0.00050
YO	-	0.31245	0.00140	0.00060
Ý12	4.85	0.41682	0.00175	-0.00120

Table 5.1 Activity coefficient parameters of the extended Debye-Hueckel equations in system of ZnCl₂.

The measured and calculated emf.s of the cell (II)

as a function of ZnCl₂ concentrations are assembled in Table 5.2. The concentration of species in ZnCl₂ solutions are shown in Table 5.3. The graphical representation of the percentage^{*} distribution of species as a function of total zinc concentrations is given in Fig 5.1.

percentage distribution of species = $[ZnX_n^{(2-n)}] \times 100 / m_{ZnX_2}$ %

			N 10	
^m ZnCl ₂₁ mol.kg	I mol.kg ⁻¹	E _{measd} . V.	Ecald. V.	Δ <u>ε</u> V.
0.00098	0.00293	1.2378	1.2377	-0.0001
0.00294	0.22871	1.1988	1.1985	-0.0003
0.00366	0.01081	1.1910	1.1909	-0.0001
0.00442	0.01303	1.1841	1.1844	0.0003
0.00508	0.01494	1.1793	1.1796	0.0003
0.00735	0.02148	1.1672	1.1671	-0.0001
0.00827	0.02411	1.1632	1.1631	-0.0001
0.01039	0.03014	1.1555	1.1556	0.0001
0.01204	0.03480	1.1504	1.1507	0.0003
0.01549	0.04446	1.1423	1.1424	0.0001
0.02052	0.05839	1.1331	1.1333	0.0002
0.02201	0.06248	1.1308	1.1311	0.0003
0.03017	0.08464	1.1206	1.1210	0.0004
0.04243	0.11731	1.1096	1.1101	0.0005
0.05913	0.16078	1.0993	1.0996	0.0003
0.06549	0.17708	1.0960	1.0963	0.0003
0.08327	0.22198	1.0883	1.0886	0.0003
0.09203	0.24376	1.0850	1.0854	0.0004
0.10352	0.27202	1.0812	1.0816	0.0004
0.15817	0.40201	1.0673	1.0675	0.0002
0.19300	0.48123	1.0604	1.0608	0.0004
0.23171	0.56626	1.0545	1.0545	0.0000
	and the second second	100000000	1 1211-222	1 2 2 2 2 2 2

1.0433

0.76360

0.32792

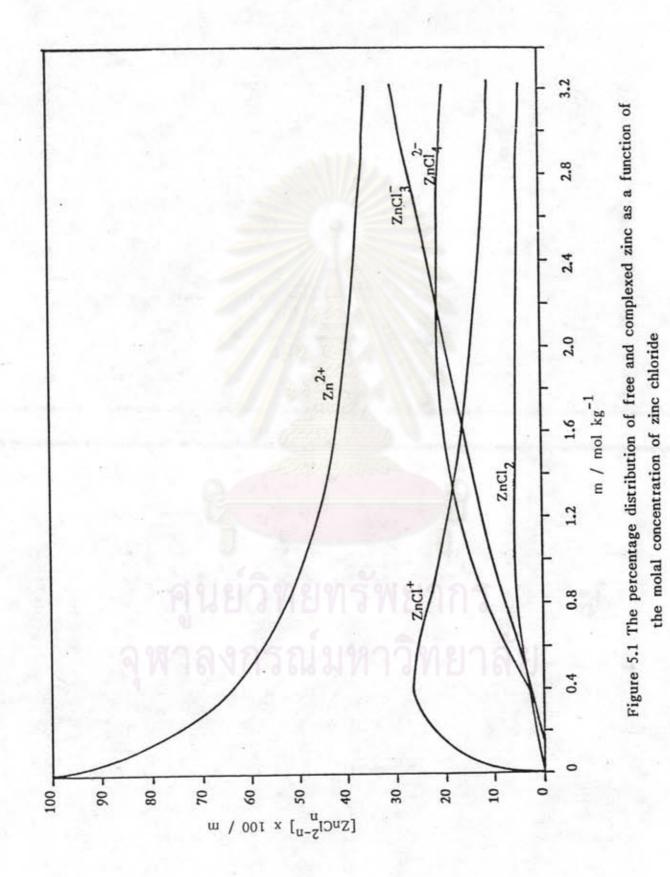
Table 5.2 The measured and calculated emf.s of the cell (II) as a function of ZnCl₂ concentrations.

÷

-0.0005

1.0427

^m ZnCl ₂₁ mol.kg	I mol.kg ⁻¹	E _{measd} . V.	Ecald. V.	∆E V.
0.37307	0.84987	1.0386	1.0385	-0.0001
0.49003	1.05811	1.0300	1.0298	-0.0002
0.54438	1.14879	1.0270	1.0267	-0.0003
0.60653	1.24910	1.0233	1.0235	0.0002
0.68557	1.37261	1.0200	1.0200	0.0000
0.78735	1.52604	1.0158	1.0162	0.0004
0.84448	1.60997	1.0137	1.0142	0.0005
0.89037	1.67644	1.0124	1.0128	0.0004
0.93123	1.73494	1.0113	1.0115	0.0002
0.97995	1.80414	1.0096	1.0101	0.0005
1.09970	1.97069	1.0065	1.0069	0.0004
1.29993	2.24068	1.0017	1.0021	0.0004
1.40031	2.37245	0.9994	0.9999	0.0005
1.50247	2.50412	0.9970	0.9977	0.0007
1.60265	2.63108	0.9953	0.9957	0.0004
1.70085	2.75384	0.9935	0.9939	0.0004
1.89969	2.99624	0.9899	0.9903	0.0004
1.98896	3.10266	0.9886	0.9887	0.0001
2.07495	3.20383	0.9870	0.9873	0.0003
2.34061	3.50781	0.9830	0.9831	0.0001
2.61177	3.80660	0.9789	0.9791	0.0002
2.94767	4.16261	0.9743	0.9744	0.0001
3.22138	4.44181	0.9710	0.9709	-0.0001


The standard deviation of emf.(σ_{emf}) is 0.0003 V.

 $\Delta E = E_{cald.} - E_{measd.}$

mZnCl2		concent	cration of	species (r	nol kg)	
mol.kg	[Zn ²⁺]	[ZnCl ⁺]	[ZnCl ₂]	[ZnC1]]	[ZnC12-]	[C1]
0.00098	0.00097	0.00001	0.00000	0.00000	0.00000	0.00000
0.00294	0.00288	0.00006	0.00000	0.00000	0.00000	0.00528
0.00366	0.00358	0.00008	0.00000	0.00000	0.00000	0.00724
0.00442	0.00430	0.00012	0.00000	0.00000	0.00000	0.00430
0.00508	0.00493	0.00015	0.00000	0.00000	0.00000	0.0100
0.00735	0.00706	0.00028	0.00000	0.00000	0.00000	0.0144
0.00827	0.00792	0.00035	0.00000	0.00000	0.00000	0.0151
0.01039	0.00987	0.00051	0.00000	0.00000	0.00000	0.0202
0.01204	0.01138	0.00066	0.00000	0.00000	0.00000	0.0234
0.01549	0.01449	0.00100	0.00001	0.00000	0.00000	0.0299
0.02052	0.01894	0.00157	0.00001	0.00000	0.00000	0.0394
0.02201	0.02024	0.00176	0.00001	0.00000	0.00000	0.0422
0.03017	0.02725	0.00289	0.00003	0.00000	0.00000	0.0572
0.04243	0.03747	0.00489	0.00006	0.00000	0.00000	0.0798
0.05913	0.05090	0.00807	0.00014	0.00001	0.00000	0.1098
0.06549	0.05589	0.00939	0.00018	0.00002	0.00000	0.1211
0.08327	0.06953	0.01337	0.00032	0.00004	0.00001	0.1523
0.09203	0.07609	0.01546	0.00040	0.00006	0.00002	0.1675
0.10352	0.08456	0.01831	0.00053	0.00009	0.00003	0.1872
0.15817	0.12283	0.03329	0.00144	0.00039	0.00022	0.2781
0.19300	0.14586	0.04369	0.00230	0.00080	0.00054	0.3331
0.23171	0.16978	0.05567	0.00351	0.00153	0.00122	0.3912
0.32792	0.22418	0.08560	0.00763	0.00507	0.00543	0.5180
0.37307	0.24727	0.09895	0.01000	0.00775	0.00910	0.5675

Table 5.3 The molal concentrations of the individual species in aqueous ZnCl₂ solutions.

mZnCl21		concent	ration of	species (m	nol kg ⁻¹)	37
mol.kg ²¹	[Zn ²⁺]	[ZnCl ⁺]	[ZnCl2]	[ZnCl-3]	[ZnC1 ²⁻]	[C1]
0.49003	0.30129	0.12972	0.01680	0.01778	0.02443	0.6656
0.54438	0.32420	0.14200	0.02010	0:02383	0.03425	0.6980
0.60653	0.34914	0.15458	0.02387	0.03171	0.04723	0.7266
0.68557	0.37937	0.16857	0.02860	0.04306	0.06598	0.7522
0.78735	0.41643	0.18390	0.03450	0.05965	0.09288	0.7713
0.84448	0.43655	0.19140	0.03771	0.06985	0.10896	0.7767
0.89037	0.45244	0.19695	0.04023	0.07850	0.12225	0.7788
0.93123	0.46677	0.20159	0.04241	0.08642	0.13404	0.7787
0.97995	0.48284	0.20672	0.04501	0.09650	0.14887	0.7781
1.09970	0.52250	0.21801	0.05114	0.12279	0.18527	0.7696
1.29993	0.58694	0.23361	0.06073	0.17231	0.24634	0.7424
1.40031	0.61858	0.24031	0.06526	0.19972	0.27644	0.7248
1.50247	0.65041	0.24658	0.06970	0.22935	0.30643	0.7052
1.60265	0.68131	0.25231	0.07389	0.26009	0.33505	0.6847
1.70085	0.71132	0.25758	0.07784	0.29186	0.36225	0.6688
1.89969	0.77136	0.26763	0.08538	0.36091	0.41441	0.6206
1.98896	0.79801	0.27195	0.08858	0.39393	0.43648	0.6010
2.07495	0.82353	0.27605	0.09155	0.42689	0.45693	0.5823
2.34061	0.90144	0.28861	0.10007	0.53548	0.51501	0.5260
2.61177	0.97959	0.30169	0.10774	0.65629	0.56646	0.4716
2.94767	1.07453	0.31895	0.11586	0.81846	0.61987	0.4098
3.22138	1.15042	0.33441	0.12138	0.95940	0.65577	0.3643

ŧ

Including the data of ZnCl2-KCl mixture in the analysis delivers the following complex formation constants

$$\beta_1 = 4.95 \pm 0.05$$
 $\beta_2 = 1.10 \pm 0.30$

$$\beta_{2} = 0.94 \pm 0.01$$
 $\beta_{11} = 2.55 \pm 0.10$

The parameters of the activity coefficients in the Debye-Hueckel equation are shown in table 5.4

Table 5.4 Activity coefficient parameters of the extended Debye-Hueckel equations in system of ZnCl₂ and ZnCl₂-KCl mixture.

og	a	В	В'	в''
Y21	3.90	0.18000	0.00057	0.00025
Y11	4.41	0.30000	0.00177	-0.00050
Yo	เย่าริง	0.47500	-0.00288	0.00060
Y12	4.96	0.49844	0.00080	-0.00120

The measured and calculated emfs. of the cell $Zn-Hg / ZnCl_2 (m_1)$, KCl $(m_2) / AgCl,Ag$ are shown in table 5.5. The concentration of the species in $ZnCl_2$ solutions and $ZnCl_2$ -KCl mixtures are shown in table 5.6. The graphical representation of the percentage distribution of species as a function of ionic strength is given in Fig.5.2.

^m 1 -1 mol kg	2m_+m_ 1 2-1 mol kg	I mol kg ⁻¹	E _{measd} . V.	Ecald. V.	∆E V.
0.00098	0.00196	0.00293	1.2378	1.2378	0.0000
0.00294	0.00588	0.00871	1.1988	1.1986	-0.0002
0.00366	0.00732	0.01081	1.1910	1.1910	-0.0000
0.00442	0.00884	0.01303	1.1841	1.1845	0.0004
0.00508	0.01016	0.01494	1.1793	1.1797	0.0004
0.00735	0.01470	0.02149	1.1672	1.1672	0.0001
0.00827	0.01654	0.02412	1.1632	1.1633	0.0001
0.01039	0.02078	0.03016	1.1555	1.1557	0.0002
0.01204	0.02408	0.03483	1.1504	1.1509	0.0005
0.01549	0.03098	0.04452	1.1423	1.1427	0.0004
0.02052	0.04104	0.05849	1.1331	1.1336	0.0005
0.02201	0.04402	0.06259	1.1308	1.1314	0.0006
0.03017	0.06034	0.08485	1.1206	1.1213	0.0007
0.04243	0.08486	0.11776	1.1096	1.1106	0.0010
0.05913	0.11826	0.16172	1.0993	1.1001	0.0008
0.06549	0.13098	0.17823	1.0960	1.0969	0.0009
0.08327	0.16654	0.22388	1.0883	1.0892	0.0009
0.09203	0.18406	0.24610	1.0850	1.0860	0.0010
0.10352	0.20704	0.27502	1.0812	1.0822	0.0010
0.15817	0.31634	0.40911	1.0673	1.0683	0.0010
0.19300	0.38600	0.49190	1.0604	1.0617	0.0013
0.23171	0.46342	0.58155	1.0545	1.0555	0.0010

Table 5.5 The measured and calculated emf.s of the cell

Zn-Hg / ZnCl₂ (m₁), KCl (m₂) / AgCl, Ag

^m 1 mol kg ⁻¹	^{2m} 1 ^{+m} 2 mol kg ⁻¹	I mol kg ⁻¹	E _{measd} . V.	^E cald. V.	∆E V.
0.32792	0.65584	0.79358	1.0433	1.0438	0.0005
0.37307	0.74614	0.88817	1.0386	1.0395	0.0010
0.49003	0.98006	1.12015	1.0300	1.0309	0.0009
0.54438	1.08876	1.22301	1.0270	1.0277	0.0007
0.60653	1.21305	1.33721	1.0233	1.0245	0.0012
0.68557	1.37114	1.47826	1.0200	1.0208	0.0008
0.78735	1.57470	1.65382	1.0158	1.0168	0.0010
0.84448	1.68892	1.74993	1.0137	1.0147	0.0010
0.89037	1.78074	1.82601	1.0124	1.0138	0.0008
0.93123	1.86246	1.89296	1.0113	1.0119	0.0006
0.97995	1.95990	1.97149	1.0096	1.0104	0.0008
1.09970	2.19940	2.16081	1.0065	1.0070	0.0005
1.29993	2.59986	2.46606	1.0017	1.0020	0.0003
1.40031	2.80062	2.61445	0.9994	0.9997	0.0003
1.50247	3.00494	2.76279	0.9970	0.9976	0.0006
1.60265	3.20530	2.90550	0.9953	0.9956	0.0003
1.70085	3.40170	3.04406	0.9935	0.9937	0.0002
1.89969	3.79938	3.31973	0.9899	0.9902	0.0003
1.98896	3.97792	3.44235	0.9886	0.9887	0.0001
2.07495	4.14990	3.55957	0.9870	0.9873	0.0003
2.34061	4.68122	3.92196	0.9830	0.9833	0.0003
2.61177	5.22354	4.29525	0.9789	0.9795	0.0006
2.94767	5.89534	4.78084	0.9743	0.9751	0.0008
3.22138	6.44276	5.21267	0.9710	0.9716	0.0006

^m 1 mol kg ⁻¹	^{2m} 1 ^{+m} 2 mol kg ⁻¹	I mol kg ⁻¹	E _{measd} . V.	E _{cald} . V.	ΔE V.
*0.02889	0.57676	0.58574	1.0747	1.0749	0.0002
*0.03265	0.58623	0.59620	1.0730	1.0730	0.0000
*0.03730	0.59692	0.60811	1.0709	1.0710	0.0001
*0.04353	0.61069	0.62344	1.0686	1.0686	0.0000
*0.06551	0.65628	0.67398	1.0620	1.0620	0.0000
*0.07512	0.68174	0.70292	1.0596	1.0596	0.0000
*0.08762	0.70125	0.72296	1.0571	1.0571	0.0000
*0.10538	0.73905	0.76312	1.0539	1.0538	-0.0001
*0.13224	0.79484	0.82137	1.0498	1.0497	-0.0002
*0.17737	0.88717	0.91843	1.0442	1.0440	-0.0002
*0.25838	1.03489	1.06138	1.0371	1.0369	-0.0002
*0.29268	0.87823	0.94992	1.0381	1.0387	0.0001
*0.58117	2.11513	1.90076	1.0153	1.0161	0.0008
*0.74772	1.99442	1.88104	1.0130	1.0137	0.0007
*0.90005	2.29549	2.11439	1.0088	1.0091	0.0004

The standard deviation of emf ($\sigma_{\rm emf}$) is 0.0004 V.

 $\Delta E = E_{cald.} - E_{measd.}$

* ZnCl₂-KCl mixture solutions

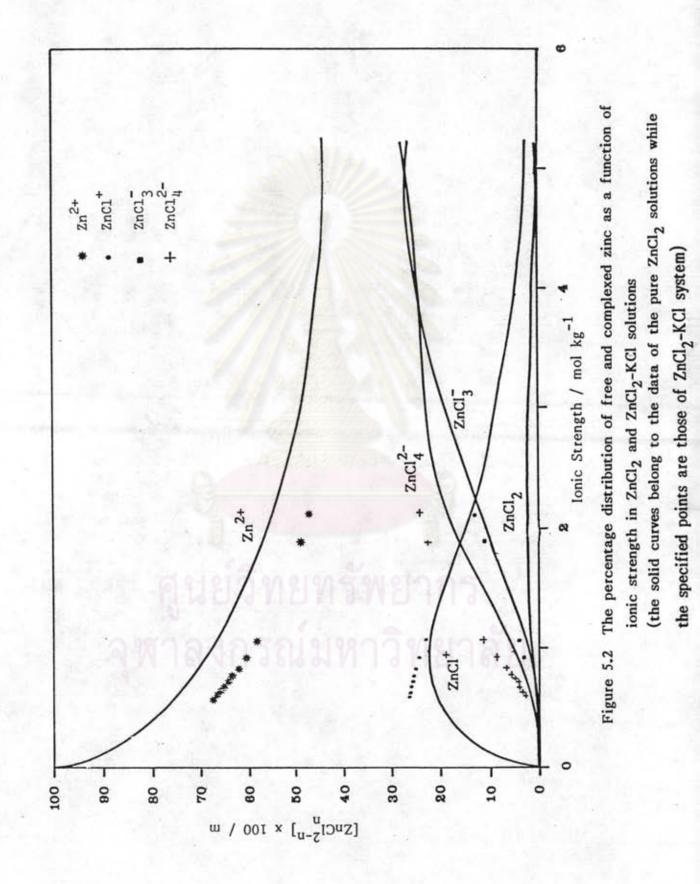

m.,	I		conc	entration	(mol kg	1)	
nol kg ⁻¹	mol kg ⁻¹	[Zn ²⁺]	[ZnCl ⁺]	[ZnCl ₂]	[ZnC1]	[ZnC1 ²⁻]	[C1]
0.00098	0.00293	0.00097	0.00001	0.00000	0.00000	0.00000	0.00195
0.00294	0.00871	0.00288	0.00006	0.00000	0.00000	0.00000	0.00582
0.00366	0.01081	0.00358	0.00008	0.00000	0.00000	0.00000	0.00724
0.00442	0.01303	0.00430	0.00012	0.00000	0.00000	0.00000	0.00872
0.00508	0.01494	0.00493	0.00015	0.00000	0.00000	0.00000	0.01001
0.00735	0.02149	0.00707	0.00028	0.00000	0.00000	0.00000	0.01442
0.00827	0.02412	0.00793	0.00034	0.00000	0.00000	0.00000	0.01620
0.01039	0.03016	0.00989	0.00050	0.00000	0.00000	0.00000	0.02027
0.01204	0.03483	0.01140	0.00064	0.00000	0.00000	0.00000	0.02343
0.01549	0.04452	0.01452	0.00097	0.00000	0.00000	0.00000	0.03000
0.02052	0.05849	0.01889	0.00152	0.00001	0.00000	0.00000	0.03950
0.02201	0.06259	C.02030	0.00170	0.00001	0.00000	0.00000	0.04229
0.03017	0.08485	0.02736	0.00279	0.00002	0.00000	0.00000	0.05750
0.04243	0.11776	0.03769	0.00468	0.00005	0.00000	0.00000	0.08706
0.05913	0.16172	0.05135	0.00765	0.00011	0.00001	0.00001	0.1103
0.06549	0.17823	0.05645	0.00888	0.00014	0.00002	0.00001	0.1217
0.08327	0.22388	0.07044	0.01253	0.0024	0.00004	0.00002	0.1533
0.09203	0.24610	0.07721	0.01443	0.00029	0.00006	0.00004	0.1687
0.10352	0.27502	0.08597	0.01701	0.00038	0.00008	0.00006	0.1887
0.15817	0.40911	0.12614	0.03028	0.00098	0.00037	0.00041	0.2813
0.19300	0.49190	0.15056	0.03923	0.00150	0.00074	0.00097	0.3376
0.23171	0.58155	0.17671	0.04929	0.00221	0.00141	0.00209	0.3971

Table 5.6 The molal concentrations of individual species in ZnCl₂ and ZnCl₂-KCl mixture solutions.

m ₁	I	concentration (mol kg ⁻¹)							
mol kg	mol kg ⁻¹	[Zn ²⁺]	[ZnCl ⁺]	[ZnCl ₂]	[ZnC1]	[ZnC14]	[C1]		
0.32792	0.79358	0.23734	0.07321	0.00436	0.00465	0.00837	0.52650		
0.37307	0.88817	0.26380	0.08329	0.00547	0.00708	0.01343	0.57694		
0.49003	1.12015	0.32744	0.10504	0.00836	0.01631	0.03288	0.67786		
0.54438	1.22301	0.35511	0.11305	0.00962	0.00200	0.04460	0.71204		
0.60653	1.33721	0.38560	0.12078	0.01096	0.02955	0.05964	0.74311		
0.68557	1.47826	0.42293	0.12869	0.01250	0.04073	0.08071	0.77241		
0.78735	1.65382	0.46491	0.13625	0.14243	0.05759	0.11010	0.79680		
0.84448	1.74993	0.49442	0.13940	0.01508	0.06824	C.12732	0.80523		
0.89037	1.82601	0.51435	0.14145	0.01570	0.07742	0.14146	0.80982		
0.93123	1.89296	0.53190	0.14294	0.01621	0.08623	0.15416	0.81239		
0.97995	1.97149	0.55257	0.14438	0.01677	0.09681	0.16942	0.81388		
1.09970	2.16081	0.60242	0.14646	0.01793	0.12573	0.20717	0.81123		
1.29993	2.46606	0.68328	0.14631	0.01319	0.18116	0.26986	0.79197		
1.40031	2.61445	0.72289	0.14497	0.01977	0.21197	0.30071	0.77735		
1.50247	2.76279	0.76271	0.14292	0.02011	0.24515	0.33159	0.76000		
1.60265	2.90550	0.80134	0.14040	0.02033	0.27924	0.36134	0.74117		
1.70085	3.04406	0.83888	0.13746	0.02044	0.31407	0.39000	0.72115		
1.89969	3.31973	0.91417	0.13049	0.02042	0.38784	0.44667	0.67746		
1.98896	3.44235	0.94776	0.12699	0.02032	0.42207	0.47183	0.65678		
2.07495	3.55957	0.98005	0.12347	0.02017	0.45542	0.49583	0.63649		
2.34061	3.92196	1.07982	0.11180	0.01944	0.55951	0.57004	0.57186		
2.61177	4.29525	1.18269	0.09902	0.01835	C.66324	C.64847	0.50421		
2.94767	4.78084	1.31397	0.08231	0.01658	0.77822	0.75659	0.41886		
3.22138	5.21267	1.42712	0.06863	0.01483	0.84824	0.86308	0.34798		

m 1	I		concentration (mol kg ⁻¹)							
mol kg ⁻¹	mol kg ⁻¹	[Zn ²⁺]	[ZnC1 ⁺]	[ZnCl ₂]	[ZnCl ₃]	[ZnC1 ²⁻]	[C1]			
*0.02889	0.58574	0.01940	0.00764	0.00048	0.00044	0.00093	0.56312			
*0.03265	0.59620	0.02182	0.00862	0.00055	0.00052	0.00109	0.57057			
*0.03730	0.60811	0.02487	0.00986	0.00064	0.00062	0.00132	0.57867			
*0.04353	0.62344	0.02890	0.01149	0.00076	0.00076	0.00163	0.58889			
*0.06551	0.67398	0.04286	0.01717	0.00120	0.00133	0.00296	0.62090			
*0.07512	0.70292	0.04867	0.01962	0.00141	0.00165	0.00376	0.63929			
*0.08762	0.72296	0.05650	0.02276	0.00167	0.00203	0.00466	0.65040			
*0.10538	0.76312	0.06709	0.02713	0.00206	0.00273	0.00637	0.67414			
*0.13224	0.82137	0.08266	0.03351	0.00268	0.00395	0.00944	0.70736			
*0.17737	0.91843	0.10764	0.04355	0.00375	0.00651	0.01592	0.75292			
*0.25838	1.06138	0.15084	0.05967	0.00560	0.01221	0.03006	0.80715			
*0.29268	0.94992	0.18943	0.06877	0.00545	0.00904	0.01999	0.6914			
*0.58117	1.90076	0.22892	0.07889	0.01153	0.07937	0.18246	1.04493			
*0.74772	1.88104	0.36642	0.11166	0.01424	0.08427	0.17113	0.19695			
*0.90005	2.11439	0.42676	0.11781	0.01589	0.11853	0.22147	0.9060			

* results of ZnCl₂-KCl mixture solutions

5.2.2 Zinc Bromide System

The standard potential of the cell

was found to be 0.8323_6 V., with $\sigma = 0.0001_9$ V. The standard potential electrode of zinc electrode, E_{Zn}° ($E_{Ag,AgBr}^{\circ} - E_{cell}^{\circ}$) of -0.7615_3 V. was thus obtained. This result agrees with that obtained for ZnCl₂ system.

Using the standard potential of the cell in the analysis of the data, the thermodynamic complex formation constants were found to be

> $\beta_1 = 2.45 \pm 0.05$ $\beta_2 = 1.25 \pm 0.05$ $\beta_3 = 0.036 \pm 0.00$ $\beta_4 = 0.43 \pm 0.01$

The parameters of the activity coefficients in the Debye-Hueckel equation are given in Table 5.7

log	a	В	B'	B''
Y21	4.45	0.17420	0.00094	0.00035
Y11	4.73	0.31338	-0.00287	0.00041
Yo	-	0.47520	0.00164	0.00041
Y12	5.33	0.53379	0.00200	-0.00040

Table 5.7 Activity coefficient parameters of the extended Debye-Hueckel equations in system of ZnBr₂.

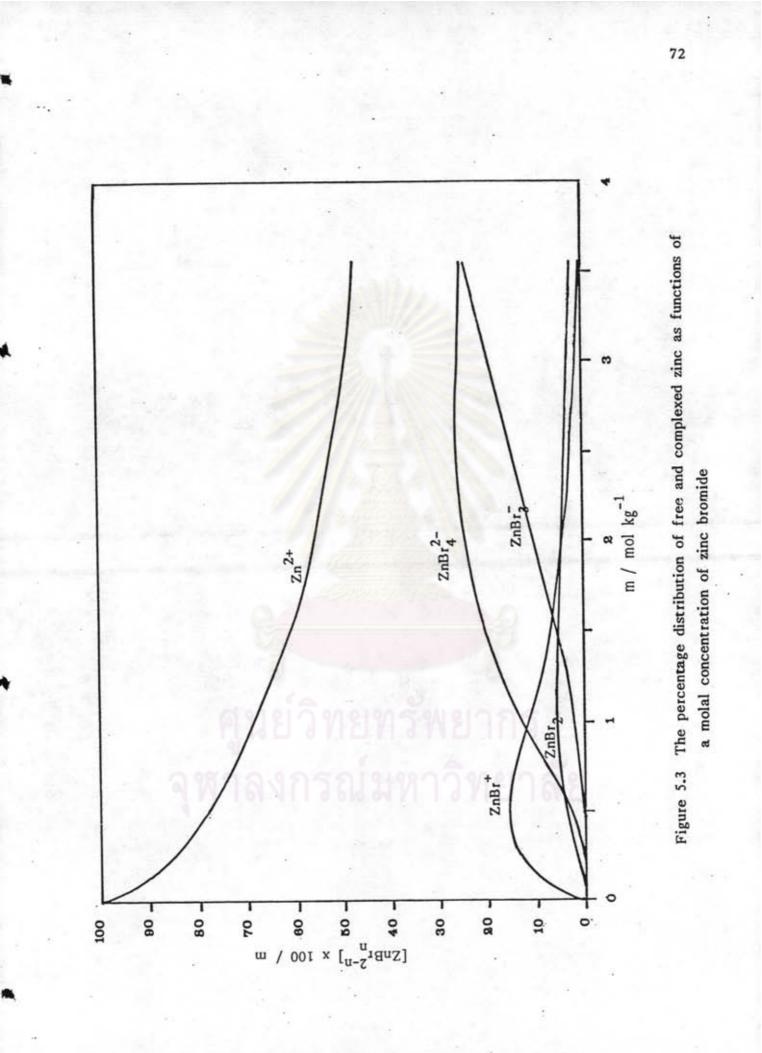
The measured and calculated emf.s of the cell (III) as a function of ZnBr_2 concentrations are listed in Table 5.8. The concentration of species in ZnBr_2 solutions are shown in Table 5.9. The graphical representation of the percentage distribution of species as a function of total zinc concentrations is given in Fig.5.3.

* percentage distribution of species = $[ZnX_n^{(2-n)}] \times 100 / m_{ZnX_p}$ %

^m ZnBr ₂₁ mol.kg	I mol.kg ⁻¹	E _{measd} . V.	Ecald. V.	ΔE V.
0.00100	0.00299	1.0854	1.0855	0.0001
0.00203	0.00606	1.0596	1.0600	0.0004
0.00325	0.00968	1.0432	1.0434	0.0002
0.00400	0.01190	1.0361	1.0361	0.0001
0.00510	0.01515	1.0274	1.0277	0.0003
0.00762	0.02255	1.0135	1.0140	0.0005
0.00822	0.02431	1.0110	1.0114	0.0004
0.01281	0.03768	0.9960	0.9965	0.0005
0.01887	0.05517	0.9832	0.9837	0.0005
0.02500	0.07271	0.9740	0.9744	0.0004
0.03210	0.09288	0.9660	0.9663	0.0003
0.04000	0.11513	0.9590	0.9592	0.0001
0.05000	0.14307	0.9515	0.9518	0.0003
0.05705	0.16263	0.9470	0.9475	0.0005
0.07289	0.20672	0.9390	0.9394	0.0004
0.09000	0.25276	0.9320	0.9324	0.0004
0.10000	0.27973	0.9278	0.9288	0.0010
0.15000	0.41260	0.9145	0.9148	0.0003
0.20269	0.54912	0.9033	0.9040	0.0003
0.28113	0.74687	0.8910	0.8916	0.0006
0.33976	0.89025	0.8844	0.8841	-0.0003
0.38082	0.98850	0.8797	0.8796	-0.0002
0.45553	1.16262	0.8724	0.8723	-0.0001
0.48207	1.22305	0.8697	0.8700	0.0003

Table 5.8 The measured and calculated emf.s of the cell (III) as a function of ZnBr₂ concentrations.

^m ZnBr ₂₁ mol.kg ²¹	I mol.kg ⁻¹	E _{measd} . V.	Ecald. V.	∆E V.
0.52198	1.31256	0.8664	0.8667	0.0003
0.56246	1.14074	0.8631	0.8637	0.0006
0.58149	1.44314	0.8617	0.8623	0.0006
0.64224	1.57340	0.8579	0.8583	0.0004
0.67096	1.63351	0.8563	0.8565	0.0002
0.70318	1.70050	0.8541	0.8546	0.0005
0.80044	1.89818	0.8492	0.8494	0.0002
0.92025	2.13383	0.8432	0.8438	0.0006
0.99049	2.26832	0.8401	0.8409	0.0008
1.01024	2.30569	0.8397	0.8401	0.0004
1.30092	2.83489	0.8295	0.8298	0.0003
1.49993	3.17545	0.8235	0.8239	0.0004
1.65193	3.42465	0.8192	0.8199	0.0007
1.82372	3.69481	0.8158	0.8158	-0.0000
1.97743	3.92664	0.8124	0.8124	-0.0001
2.13239	4.15208	0.8093	0.8092	-0.0001
2.24645	4.31279	0.8072	0.8070	-0.0002
2.48530	4.63630	0.8028	0.8027	-0.0001
2.69102	4.90338	0.7991	0.7994	0.0003
2.61177	3.80660	0.9789	0.9791	0.0002
2.89758	5.16280	0.7962	0.7963	0.0001
3.09691	5.40685	0.7929	0.7935	0.0006
3.30599	5.65839	0.7901	0.7907	0.0006
3.55661	5.95578	0.7861	0.7875	0.0012


The standard deviation of emf ($\sigma_{\mbox{emf}}$) is 0.0003 V.

 $\Delta E = E_{cald.} - E_{measd.}$

mZnBr2		concentr	ration of s	ration of species (mol kg ⁻¹)					
mol.kg	[Zn ²⁺]	[ZnBr ⁺]	[ZnBr2]	[ZnBr3]	[ZnBr ₄ ²⁻]	[Br]			
0.00100	0.00100	0.00000	0.00000	0.00000	0.00000	0.00199			
0.00203	0.00202	0.00001	0.00000	0.00000	0.00000	0.00405			
0.00325	0.00322	0.00003	0.00000	0.00000	0.00000	0.00647			
0.00400	0.00395	0.00005	0.00000	0.00000	0.00000	0.00795			
0.00510	0.00502	0.00008	0.00000	0.00000	0.00000	0.01012			
0.00762	0.00747	0.00015	0.00000	0.00000	0.00000	0.01509			
0.00822	0.00804	0.00017	0.00000	0.00000	0.00000	0.0162			
0.01281	0.01243	0.00037	0.00000	0.00000	0.00000	0.0252			
0.01887	0.01815	0.00071	0.00001	0.00000	0.00000	0.0181			
0.02500	0.02386	0.00112	0.00002	0.00000	0.00000	0.0488			
0.03210	0.03040	0.00167	0.00003	0.00000	0.00000	0.0624			
0.04000	0.03758	0.00236	0.00006	0.00000	0.00000	0.0775			
0.05000	0.04657	0.00334	0.00010	0.00000	0.00000	0.0964			
0.05705	0.05283	0.00408	0.00013	0.00000	0.00000	0.1097			
0.07289	0.06674	0.00590	0.00024	0.00000	0.00000	0.1393			
0.09000	0.08152	0.00807	0.00040	0.00000	0.00001	0.1711			
0.10000	0.09006	0.00941	0.00051	0.00000	0.00001	0.1895			
0.15000	0.13181	0.01680	0.00131	0.00002	0.00007	0.2802			
0.20269	0.17434	0.02539	0.00262	0.00005	0.00029	0.3734			
0.28113	0.23530	0.03889	0.00554	0.00018	0.00122	0.5068			
0.33976	0.27910	0.04900	0.00846	0.00039	0.00281	0.6012			
0.38082	0.30889	0.05587	0.01086	0.00061	0.00459	0.6638			
0.45553	0.36117	0.06759	0.01584	0.00124	0.00969	0.7693			
0.48207	0.37914	0.07144	0.01777	0.00155	0.01217	0.8038			

Table 5.9 The molal concentrations of the individual species in aqueous ZnBr₂ solutions.

mZnBr2	-1 1243	concentra	ation of sp	pecies (mo	1 kg ⁻¹)	
mol.kg ⁻¹	[Zn ²⁺]	[ZnBr ⁺]	[ZnBr ₂]	[ZnBr3]	[ZnBr ₄ ²⁻]	[Br ⁻]
0.52198	0.40561	0.07687	0.02077	0.00212	0.01662	0.85273
0.56246	0.43176	0.08191	0.02391	0.00283	0.02205	0.8985
0.58149	0.44384	0.08410	0.02541	0.00322	0.02493	0.9187
0.64224	0.48157	0.09041	0.03025	0.00469	0.03551	0.9778
0.67096	0.49877	0.09299	0.03252	0.00551	0.04117	1.00267
0.70318	0.51788	0.09561	0.03507	0.00655	0.04807	1.0286
0.80044	0.57364	0.10185	0.04256	0.01046	0.07193	1.0942
0.92025	0.63899	0.10644	0.05117	0.01704	0.10661	1.1541
0.99049	0.67586	0.10781	0.05583	0.02192	0.12906	1.1794
1.01024	0.68895	0.10805	0.05675	0.02314	0.13335	1.1794
1.30092	0.82867	0.10563	0.07274	0.05417	0.23972	1.2292
1.49993	0.92022	0.09985	0.08052	0.08526	0.31408	1.2230
1.65193	0.98560	0.09421	0.08515	0.11533	0.37164	1.2068
1.82372	1.05741	0.08726	0.08904	0.15570	0.43431	1.1777
1.97743	1.11926	0.08086	0.09153	0.19759	0.48818	1.1454
2.13239	1.17956	0.07444	0.09320	0.24517	0.54002	1.1083
2.24645	1.22243	0.06982	0.09398	0.28347	0.57674	1.0792
2.48530	1.31052	0.06067	0.09454	0.37139	0.64818	1.0139
2.69102	1.38360	0.05340	0.09407	0.45481	0.70541	0.95550
2.89758	1.45516	0.04672	0.09288	0.54442	0.75840	0.8958
3.09691	1.52290	0.04085	0.09118	0.63530	0.80667	0.8380
3.30599	1.59297	0.03527	0.08891	0.73412	0.85471	0.7776
3.55661	1.67627	0.02933	0.08568	0.85523	0.91011	0.7064

Including the data of ZnBr₂ mixture in the analysis, the following complex formation constants

 $\beta_1 = 2.40 \pm 0.10$ $\beta_2 = 1.80 \pm 0.05$ $\beta_3 = 0.041 \pm 0.02$ $\beta_4 = 0.38 \pm 0.01$

are obtained. The complex coefficient parameters in the Debye-Hueckel equation are listed in table 5.10

Table 5.10 Activity coefficient parameters of the extended Debye-Hueckel equations in system of ZnBr₂ and ZnBr₂-KBr mixture.

log	a	В	В'	B''
¥21	4.13	0.18104	0.00094	0.00035
Y ₁₁	4.73	0.32086	0.00221	0.00041
Yo		0.63434	-0.00323	0.00091
Y12	5.38	0.52135	0.00170	-0.00040

The measured and calculated emfs. of the cell $Zn-Hg / ZnBr_2 (m_1)$, KBr $(m_2) / AgBr, Ag$ are assembled in table 5.11. The concentration of the species in $ZnBr_2$ solutions and $ZnBr_2$ -KBr mixtures are shown in table 5.12. The graphical representation of the percentage distribution of species as a function of ionic strength is given in Fig.5.4.

^m 1 -1 nol kg	^{2m} 1 ^{+m} 2-1 mol kg ⁻¹	I mol kg ⁻¹	E _{meas} . V.	Ecal V.	ΔE V.
0.00100	0.00200	0.00299	1.0854	1.0854	0.0000
0.00203	0.00406	0.00606	1.0596	1.0600	0.0004
0.00400	0.00800	0.01190	1.0361	1.0361	0.0001
0.00510	0.01020	0.01515	1.0274	1.0277	0.0003
0.00762	0.01524	0.02256	1.0135	1.0140	0.0005
0.00822	0.01644	C.02432	1.0110	1.0114	C.0004
0.01281	0.02562	0.03770	0.9960	0.9966	0.0006
0.01887	0.03774	0.05521	0.9832	0.9838	0.0006
0.02500	0.05000	0.07279	0.9740	0.9746	0.0006
0.03210	0.06420	0.09299	0.9660	0.9665	0.0005
0.04000	0.08000	0.11530	0.9590	0.9594	0.0004
0.05000	0.10000	0.14333	0.9515	0.9522	0.0007
0.05705	0.11410	0.16297	0.9470	0.9479	0.0009
0.07289	0.14578	0.20674	0.9390	0.9399	0.0009
0.09000	0.18000	0.25354	0.9320	0.9329	0.0009
0.10000	0.20000	0.28069	0.9278	0.9293	0.0015
0.15000	0.30000	0.41457	0.9145	0.9154	0.0009
0.20269	0.40538	0.55276	0.9033	0.9046	0.0013
0.28113	0.56226	0.75361	0.8910	0.8921	0.0011
0.33976	0.67952	0.90019	C.8844	0.8846	0.0002
0.38082	0.76164	1.00251	0.8797	0.8798	0.0001
0.45553	0.91106	1.18032	0.8724	0.8725	0.0001

Table 5.11 The measured and calculated emf.s of the cell $Zn-Hg / ZnBr_2 (m_1)$, KBr $(m_2) / AgBr$, Ag

^m 1 mol kg ⁻¹	^{2m} 1 ^{+m} 2 mol kg ⁻¹	I mol kg ⁻¹	^E meas. V.	E _{cal} V.	∆E V.
0.48207	0.96414	1.24274	0.8697	0.8702	0.0005
0.52198	1.04396	1.33534	C.8664	C.8669	0.0005
0.56246	1.12492	1.42774	0.8631	0.8638	0.0007
0.58149	1.16298	1.47066	0.8617	0.8624	c.0007
0.64224 .	1.28488	1.60598	0.8579	0.8583	0.0004
0.67096	1.34192	1.66284	C.8563	0.8565	C.0002
0.70318	1.40636	1.73781	0.8541	0.8546	0.0005
0.80044	1.60088	1.94330	0.8492	0.8494	c.0002
0.92025	1.84050	2.18833	0.8432	0.8438	0.0006
0.99049	1.98818	2.32740	C.8401	0.8409	0.0008
1.01024	2.02048	2.36613	0.8397	0.8402	0.0005
1.30092	2.60184	2.91393	0.8295	0.8300	C.0005
1.49993	2.99986	3.26558	0.8235	0.8242	0.0007
1.65193	3.30386	3.52190	C.8192	0.8202	0.0010
1.82372	3.64744	3.79845	0.8158	0.8:60	0.0002
1.97743	3.95486	4.03542	0.8124	0.8126	0.0002
2.13239	4.26478	4.26419	0.8093	0.8093	0.0000
2.24645	4.49290	4.42582	0.8072	0.8071	-0.0001
2.48530	4.9706C	4.74944	0.8028	0.8027	-0.0001
2.69102	5.38204	5.01126	C.7951	0.7993	0.0002
2.89758	5.79516	5.26158	0.7962	0.7961	-0.0001
3.09651	6.19382	5.49076	0.7929	0.7932	0.0003
3.30599	6.61198	5.71977	0.7901	0.7904	0.0003
3.55661	7.11322	5.98163	0.7861	0.7872	0.0011

75

R

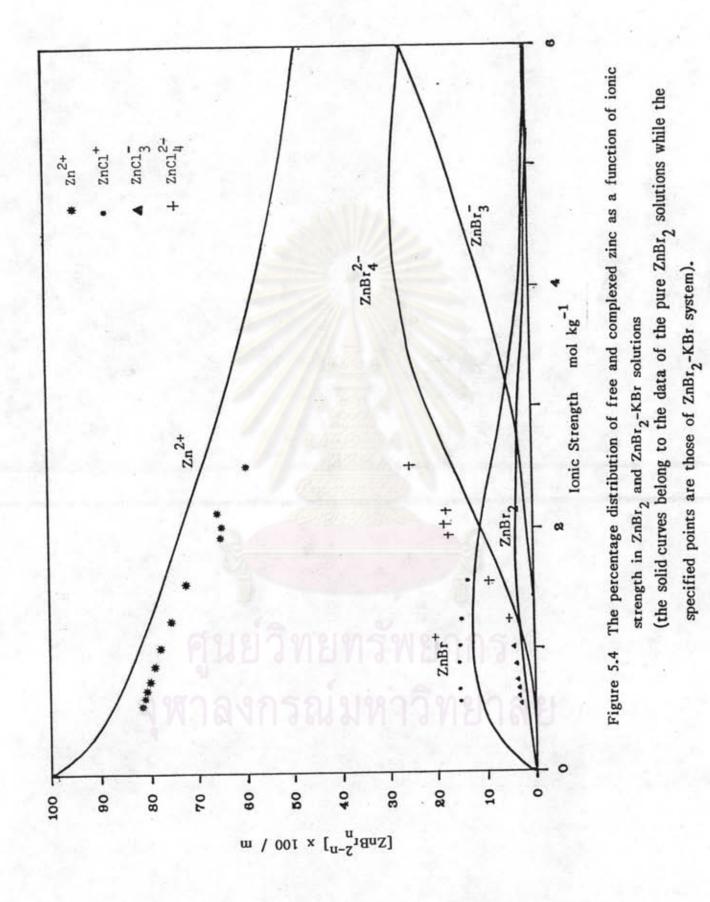
m1 rol kg ⁻¹	^{2m} 1 ^{+m} 2 mol kg ⁻¹	I mol kg ⁻¹	E _{meas} . V.	E _{cal} V.	Δ <u>Ε</u> V.
*0.02339	0.57921	0.59296	0.9232	0.9223	-0.0009
*0.02941	0.55729	C.57503	0.9201	0.9203	0.0003
*0.03301	0.56695	0.58664	0.9190	0.9185	-0.0005
*0.04098	0.58164	C.60596	0.9148	0.9151	0.0003
*0.06249	0.62481	0.66128	0.9083	0.9080	-0.0003
*0.07026	C.64086	C.68161	0.9051	0.9058	0.0007
*0.09970	0.69967	0.75613	0.9001	0.8991	-0.0010
*0.14946	0.79890	0.87991	0.8901	0.8904	0.0010
*0.20753	0.91517	1.02155	0.8801	0.8825	0.0014
*0.29614	1.10789	1.24384	C.8734	0.8727	-0.0007
*0.44097	1.38203	1.55364	0.8624	0.8615	-0.0009
*0.55054	1.80120	1.93412	0.8520	0.8519	-0.0001
*0.60742	1.87387	2.01721	0.8493	0.8496	0.0003
*0.72267	1.94524	2.13248	C.8451	0.8462	0.0011
*0.85016	2.40079	2.50819	0.8382	0.8390	0.0008

The standard deviation of emf ($\sigma_{\mbox{emf}}$) is 0.0006 V.

 $\Delta E = E_{cald.} - E_{measd.}$

* ZnBr₂-KBr mixture solutions

m ,	I concentration (mol kg ⁻¹)						
mol kg ⁻¹	mol kg ⁻¹	[Zn ²⁺]	[ZnEr ⁺]	[ZnBr ₂]		[ZnBr ₄ ²⁻]	[Er]
0.00100	0.00299	0.00100	0.00000	0.00000	0.00000	0.00000	0.00200
0.00203	0.00606	c.00202	0.00001	0.00000	0.00000	0.00000	0.00405
0.00400	0.01190	0.00395	0.00005	0.00000	0.00000	0.00000	0.00795
0.00510	0.01515	0.00503	0.00007	0.00000	0.00000	0.00000	0.01013
0.00762	0.02256	0.00147	0.00015	0.00000	0.00000	0.00000	0.01509
0.00822	0.02432	0.00805	0.00017	0.00000	0.00000	0.00000	0.01621
0.01281	0.03770	0.01245	0.00036	0.00000	0.00000	0.00000	0.02525
C001887	0.05521	0.01818	0.00068	0.00001	0.00000	0.00000	0.0370
0.02500	0.07279	0.02391	0.00107	0.00003	0.00000	0.00000	0.04888
0.03210	0.09299	0.03047	0.00159	0.00005	0.00000	0.00000	0.0625
0.04000	0.11530	0.03769	0.00223	0.00008	0.00000	0.00000	0.0776
0.05000	0.14333	0.04673	0.00314	C.00013	0.00000	0.00000	0.0966
0.05705	0.16297	0.05305	0.00383	0.00018	0.00000	0.00000	0.1099
0.07289	0.20674	c.06708	0.00550	c.00031	0.00000	0.00000	0.1396
0.09000	0.25354	0.08202	0.00747	0.00050	0.00000	0.00001	0.1715
C.10000	0.28069	0.09066	0.00869	0.00063	0.00000	C.00001	0.1899
0.15000	0.41457	0.13306	0.01532	0.00153	0.00002	0.00007	0.2812
0.20269	0.55276	0.17651	0.02295	0.00292	0.00006	0.00026	C.3753
0.28113	0.75361	0.23921	0.03481	0.00575	0.00020	0.C0116	0.5106
0.33976	0.90019	0.28460	0.04361	0.00837	0.00043	0.00276	C.6068
0.38082	1.00251	0.31519	0.04974	0.01049	0.00069	0.00472	0.6749
0.45553	1.18032	0.37020	0.05955	C.01428	0.00140	0.01010	C.7783
0.48207	1.24274	0.38902	0.06277	0.01569	0.00176	0.01283	0.8133


Table 5.12 The molal concentrations of individual species in ZnBr₂ and ZnBr₂-KBr mixture solutions.

m 1	I		con	centration	n (mol kg	⁻¹)	
mol kg ⁻¹	mol kg ⁻¹	[Zn ²⁺]	[2nBr ⁺]	North Control of Contr		[ZnEr ₄ ²⁻]	[Br]
0.52198	1.33534	0.41673	0.06725	0.01777	0.00241	0.01782	0.86266
0.56246	1.42774	0.44411	0.07132	0.01981	0.00323	0.02399	0.90833
0.58149	1.47066	0.45674	0.07305	0.02073	0.00367	0.02729	0.92829
0.64224	1.60598	0.49617	0.07788	0.02351	0.00536	0.03953	0.98577
0.67096	1.66284	0.51410	0.07976	0.02470	0.00630	0.04611	1.00944
0.70318	1.73781	0.53399	0.08160	0.02595	0.00748	0.05416	1.03378
0.80044	1.94330	0.59186	0.08553	0.02912	0.01187	0.08206	1.09325
0.92025	2.18833	0.65857	0.08753	0.03189	0.01918	0.12308	1.1435
0.99049	2.32740	0.69712	0.08753	0.03291	0.02439	0.14854	1.16030
1.01024	2.36613	0.70743	0.08742	0.03315	0.02603	0.15621	1.1645
1.30092	2.91393	0.85275	0.08124	0.03434	0.05812	0.27447	1.1796
1.49993	3.26558	0.94440	c.07438	0.03357	0.08988	0.35769	1.1585
1.65193	3.52190	1.01116	0.06867	0.03255	0.12004	0.41950	1.1319
1.82372	3.79845	1.08333	0.06223	0.03121	0.16059	c.48637	1.0955
1.97743	4.03542	1.14534	0.05664	0.02991	0.20288	0.54266	1.0591
2.13239	4.26419	1.20566	0.05135	0.02861	0.25124	0.59553	1.0203
2.24645	4.42582	1.24882	0.04771	0.02768	0.29040	0.63183	0.9912
2.48530	4.74944	1.33600	c.04078	c.02583	0.38230	0.70039	0.9297
2.69102	5.01126	1.40817	0.03560	0.02438	0.47137	0.75149	0.8775
2.89758	5.26158	1.47819	0.03103	0.02306	0.56978	0.79553	0.8265
3.09691	5.49076	1.54387	0.02721	0.02191	0.67226	0.83166	0.7793
3.30599	5.71977	1.61105	0.02372	0.02083	0.78708	0.86331	0.7321
3.55661	5.98163	1.68950	0.02014	0.01968	0.95392	0.89337	0.6784

m ,	I	concentration (mol kg ⁻¹)						
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mol kg ⁻¹	[Zn ²⁺]	100 C	[ZnBr ₂]	[ZnBr ₃]	[ZnBr ²⁻]	[Br ⁻]	
*0.02339	0.59296	0.01892	0.00360	0.00069	0.00002	0.00015	0.57356	
*0.02941	0.57503	0.02394	0.00446	0.00083	0.00002	0.00016	0.55052	
*0.03301	0.58664	0.02683	0.00501	0.00094	0.00003	0.00019	0.55920	
*0.04098	0.60596	0.03326	0.00623	0.00119	0.00004	0.00026	0.57187	
*0.06249		0.05047	0.00953	0.00191	0.00007	0.00050	0.60922	
*0.07026	1	0.05664	0.01073	0.00219	0.00008	0.00062	0.62303	
*0.09970		0.07980	0.01526	0.00332	0.00015	0.00117	0.67264	
*0.14946		0.11813	0.02283	0.00545	0.00034	0.00272	0.75330	
*0.20753		0.16141	0.03133	0.02823	0.00069	0.00586	0.84186	
*0.29614		0.22332	0.04309	0.01289	0.00173	0.01511	0.9733	
*0.44097	-	0.31848	0.05803	0.01971	0.00470	0.04006	1.1102	
*0.55054		0.35963	0.06122	0.02441	0.01152	0.09376	1.2815	
*0.60742	1000	0.39520	W. W. Walter	0.02595	0.01379	0.10798	1.2841	
*0.72267	and the second	0.47798		0.02861	0.01749	0.12672	1.2568	
*0.85016	1	0.51009	1.11	0.02984	0.03270	0.21030	1.3345	

ลงกรณมหาวิทยาลัย

* results of ZnBr2-KBr mixture solutions

