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CHAPTER |

INTRODUCTION

1.1 Introduction to High Gradient Magnetic Separation

High Gradient Magnetic Separation (HGMS) is a powerful method for the
removal of ultra-fine (diameter < 1um) weakly magnetic particles from suspensions.
The term “high gradient” comes from the character of this method that high gradient of
magnetic field and magnetic energy density are produced in the separation process to
maximize the magnetic force that acts on the magnetic particles to be captured. High
Gradient Magnetic Separation of ultra-fine particles is applied in many fields of works,
for example, chemical , blood separation in biochemical laboratory and pharmaceutical
industries. Consequently, high gradient magnetic separation may become an important

part of future technology and it is, therefore, desirable to understand its mechanism.

1.2 Thesis Background

The capture of weakly magnetic particles by high gradient magnetic
separation had been studied by many researchers [1, 2]. Initially, the studies are

performed for the capture of micron-size particles. In those studies, the capture of

magnetic particles is studied by applying. Newton’s laws of motion to an individual
particle. The motion of an individual particle is_analyzed to know whether it will be
captured by interception. The trajectories of the ‘particles are determined so that
features of the capture and capture radius are obtained to predict capture efficiency.
For ultra-fine weakly magnetic particles which are much smaller than the
micron size, Brownian motion dominates the kinematics of such particles and this affects
the capture process. Diffusion must be taken into account and diffusive capture is
considered. In 1983, R. Gerber, M. Takayasu and F.J. Fridlaender formulated the HGMS

theory describing the capture mechanism of ultra-fine particles [3, 4]. The theory of



R. Gerber and coworkers incorporate diffusion in describing the capture mechanism

of ultra-fine particles. Capture of ultra-fine particles in one dimension by a single
ferromagnetic cylindrical collector is simulated in various situations. Results of these
simulations show the features of the build-up of ultra-fine particles on and around the
collector and the qualitative agreement between the theoretical and experimental results
is achieved. With these results, the mechanism of the capture of ultra-fine particles can
be investigated. After the work of R. Gerber and coworkers, other researchers had
studied HGMS capture of ultra-fine particles in various cases [5, 6, 7]. In 1990, L. P.
Davies and R. Gerber developed a two dimensional theoretical model for the capture of
ultra-fine particles on a single ferromagnetic cylindrical collector [8]. This model is a
generalization of the theoretical model formulated in 1983. They considered two
dimensional diffusive capture including magnetic force and fluid velocity drag force. The
inter-particle forces are disregarded since the objective of the work is to obtain a
simplified two dimensional model that highlight the main features of the retention of
ultra-fine particles by a single ferromagnetic cylindrical collector at various times. The
capture of ultra-fine particles was simulated in various cases. Results of simulations
show the feature of the build-up of ultra-fine particles in various regions around the
collector at various times. Consequently, the behavior of the build-up of ultra-fine
particles on the collector were predicted. All former theoretical models considered the
capture of ultra-fine particles by a single collector. However, in practical applications of
HGMS, a certain magnetic separator does not contain only one collector but consists of
many collectors. To study the capture of ultra-fine particles by these collectors, a
generalized theoretical model must be formulated.

In this thesis, the former works of R. Gerber and coworkers are studied in
more details, both one dimensional and two dimensional problems are investigated.
Further more, we extend the single collector theoretical model for the capture of
ultra-fine magnetic particles to the case of an assemblage of parallel cylindrical
collectors randomly distributed in the static fluid. The only geometrical character of the
system that we know is the ratio of total volume of collectors to the total volume of the

system which is defined as the packing fraction(F) of the collectors in the system.



3
We study diffusive capture in various situations by, starting form the continuity
equation, deriving equations describing concentration distribution of ultra-fine particles
dispersed in a static fluid at various times. The steady-state solutions of these equations
can be determined analytically whereas the time-dependent solutions are determined
numerically. The given solutions can be examined to investigate the features of the

capture in various physical situations. The S| units are used throughout this thesis.

1.3 Thesis Objectives

In conclusion, objectives of this thesis are:

1) Develop a theoretical model describing the capture of ultra-fine
particles by an assemblage of randomly distributed cylindrical
collectors.

2) Develop computer programs for performing simulations of the capture of
ultra-fine particles in various physical situations.

3) Study HGMS capture of ultra-fine particles in both one and

two dimensional problems in various physical situations.

1.4 Thesis Outline

A brief outline of this thesis is as follows: Chapter | provides introduction to
high gradient magnetic separation, background and-objectives of this research.
Chapter Il starts with physical principle and mechanism of high gradient magnetic
separation then the formulation of the:generalized theory describing the capture of
ultra-fine particles.is presented. In Chapter Ill, the problem of the capture of ultra-fine
particles by an assemblage of randomly distributed cylindrical collectors in static fluid is
described. The character of the problem and the model used in studying the problem
are introduced. In Chapter IV, simulations of the capture of ultra-fine particles in various
cases are studied. The main content of Chapter IV is the numerical method and
simulation methodology. The results of the simulations and discussions are presented

in Chapter V. Finally, Chapter VI provides the conclusions of this research.



CHAPTER I

General Theory of Ultra-Fine Particle Capture in

High Gradient Magnetic Separation

The physical principle and the mechanism of high gradient magnetic
separation are described in the first section. Subsequently in the second section, the
formulation of the general theory describing the capture of ultra-fine particles in high
gradient magnetic field is presented. Finally in the third section, some theoretical
considerations on the capture of ultra-fine particles by a single cylindrical collector are

introduced.

2.1 The Physical Principle and the Mechanism of High Gradient

Magnetic Separation

From electromagnetic theory, the magnetic energy density in a medium

is expressed in general as
u =—H-B, (2.1)

where H and B are magnetic field and magnetic induction in the medium, respectively.
Consider an assembly. of ultra-fine_magnetic particles dispersed in a
fluid.In this thesis, ‘we treat both fluid and ultra-fine particles as linear isotropic
homogeneous magnetic media. Imagine a volume Vp demarcated inside the fluid. The
magnetic energy of the fluid enclosed in this volume is (lzﬁ-ﬁ)VP :%,ussz
where . is the magnetic permeability of the fluid. Let us now remove the fluid from the
volume Vp and replace it by an ultra-fine particle. The magnetic energy associated with
the particle itself is %,uprszhere 4, is the magnetic permeability of the particle.

The energy increment U of the system (fluid + particle) is given as the difference



between these two energies, i.e.

U :%(,up —u, )V, H . (2.2)

Taking positive gradient(§U) of this energy increment, we get the

magnetic force acting on the ultra-fine particle as

F, =%yOZVﬁ(H2), (2.3)

where y =y, — x,is the difference between magnetic susceptibilities of the particle
and the fluid, respectively, 1, = 47x107 T-m/ A is the permeability of free space.

The mechanism of high gradient magnetic separation is based on the
utilization of this magnetic traction force which extracts the ultra-fine magnetic particles
from the fluid. From equation (2.3), we can see that the magnetic traction force is
proportional to the difference y, -y ,. This difference is usually very small for weakly
magnetic particles, and also the magnetic field magnitude H can not be increased
above a certain upper limit for technical reasons. Thus an efficient extraction, which
results from a large value of I?m , requires that the value of §(H2) must be high.

The mechanism of operation of high gradient magnetic separation is

shown in Figure 2.1



magnetic field
lines

magnetic
particles

Figure 2.1: The mechanism of high gradient magnetic separation [9].

In Figure 2.1, a magnetic collector made from ferromagnetic or
paramagnetic materials of cylindrical (or spherical) shape and a fluid with suspended
magnetic particles are contained in a non-magnetic canister. A uniform external
magnetic field FO is applied perpendicular to the axis of the collector. The existence of
the collector disturbs the uniformity of the applied magnetic field. Consequently, there
exist regions of high gradient magnetic field outside the collector. Any magnetic
particles in or entering these regions are subjected to the large magnetic traction force.
To capture these particles at the collector, it is necessary that the-magnetic traction
force is directed towards the collector and is large enough to prevail over the action of
other forces and processes so that particles are brought to and retained at the collector.

The other forces and processes involved can be the viscous drag force
of the fluid, the gravity force, thermal diffusion, and inter-particles effects, etc. Not all of
these forces and processes are significant in a certain situation. In some situations, we
can reasonably approximate that some forces or processes are largely significant than

others.



2.2 HGMS Theory Describing the Capture of Ultra-fine Magnetic Particles

The HGMS theory describing the capture of ultra-fine magnetic particles
was formulated in 1983 by R.Gerber, M. Takayasu and F.J. Friedleander [3, 4]. The
theory describes dynamics of ultra-fine magnetic particles dispersed in a fluid and
subjected to high gradient magnetic separation process. In the theory, a statistical
approach was used since, due to Brownion motion and diffusion, the actual trajectory
and velocity of an ultra-fine particle are of little significance for the description of the

capture process and it is difficult to decide whether a given particle will be captured.
2.2.1 The Continuity Equation

The HGMS theory formulated by Gerber and coworkers in 1983
describes dynamics of the capture of ultra-fine particles in terms of particle volume
concentration and particle drift velocity denoted by ¢ and \7, respectively. The particle
volume concentration at a given point in the fluid is defined as the fraction of ultra-fine
particles volume contained in an infinitesimal volume element of fluid at that point and is

expressed as

AV

c=1q £ (2.4)
hmy,

where subscripts p and f refer to the ultra-fine particle and the fluid, respectively.
The value of particle volume 'concentration is a function of positions in

fluid and time and it satisfies the continuity equation

@ﬁ-?:o, (2.5)
ot

where J is the total particle volume flux through an infinitesimal volume element of fluid

locate at the considered point. The particle volume flux is defined as the net volume of
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ultra-fine particles that flow through an area perpendicular to the flow per unit area per
unit time.

For ultra-fine particles, J ata given point in fluid is considered to

consists of two contributions as

—_ ——

J=J,+J, . (2.6)

where Z denotes the diffusion flux due to diffusion and Z denotes the particle

volume flux due to the actions of external forces on the system of particles.

Diffusion flux can be determined by Fick’s law as [10]

J, ==DVc, (2.7)

where D is the diffusion coefficient of ultra-fine particles in the fluid.
The particle volume flux due to the actions of external forces which

impose a drift velocity v on the system of ultra-fine particles is expressed as [11]

The drift velocity of ultra-fine particles at a given point in the fluid is

determined by the relation [12]

v=ulF, (2.9)

where u is the mobility of ultra-fine particles in the fluid and F is the total external force
acted upon those particles. F is the vectorial sum of magnetic traction force, fluid
viscous drag force, electric force, gravitational force, and other forces those acted on
the system of ultra-fine particles.

When expressions of zand E in equations (2.7) and (2.8),

respectively, are substituted in equation (2.5) we obtain the continuity equation for the



system of ultra-fine particles as

%;.(zﬁc)_v.(c;). (2.10)

The diffusion coefficient of ultra-fine particles in the fluid is determined,

throughout this research, by Einstein’ s relation [12],
D =uk,T, (2.11)

where k,and T are the Boltzmann’ s constant and the absolute temperature,
respectively, and the value of D is assumed to be independent of the positions in fluid.

With this assumption, the continuity equation (2.10) is rewritten as

@:D§2c—§-(c§). (2.12)
ot

Equation(2.12) is the continuity equation describing dynamics of the
system of ultra-fine particles in high gradient magnetic separation for the general case.

In this research, the capture of ultra-fine particles in high gradient
magnetic separation is studied theoretically in various situations. In each situation,
equation(2.12) is solved to, obtain the time evolution of the concentration distribution in
various regions around the collector when some initial and boundary conditions are

assigned.
2.3 Capture of Ultra-fine Particles by a Single Cylindrical Collector

In this section, some theoretical studies about the capture of ultra-fine
magnetic particles by a single cylindrical magnetic collector are introduced. These
studies are bases of this research and are presented to show the development of the

theoretical studying of the HGMS capture of ultra-fine particles.
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2.3.1 The Magnetic Field and the Magnetic Traction Force
Consider a long circular cylindrical magnetic collector of radius a placed

in a static fluid as shown in Figure 2.2. The magnetic permeability and susceptibility of

the fluid are x, and y,, respectively.

(r.6,z)

fluid medium

Figure 2.2: A single cylindrical collector in formerly uniform magnetic field.

In Figure 2.2, the z-axis of the cylindrical coordinate system is chosen
to coincide with the axis of the collector. A uniform magnetic field iI«O is applied
perpendicular to the axis of the collector and is set to point in the positive X direction.
The collector is considered very long compared with its diameter hence the problem of
determining the magnetic field H in and around the collector can be treated only in two
dimensions. If the collector is the ferromagnetic one with the magnetization M then the

magnetic field outside the collector can be determined in polar coordinates as (see

Appendix A)
7 (r,,0)=H, {[1 +K—§V] cos Or —(1 —K—;VJ sin 9@} , (2.13)
Va ra
where
K, =L (2.14)
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The variable

(2.15)

o
Il
Q| >

is called the normalized radial distance and is defined as the radial distance form the
axis of the collector to the considering point normalized by the radius of the collector.
In the other case where the collector is the paramagnetic one with the

magnetic permeability £, the magnetic field outside the collector is determined as

J7a (r,,0)=H, [[1 +K—chcos HP—[I—K—fjsin 9@} (2.16)
ra ra
where
KCEV—I, (2.17)
v+1
o = He . (2.18)
Hy

For the ferromagnetic cylindrical collector, the term §(H2) in equation

(2.3) can be determined as

The magnetic traction force acting on the system of spherical ultra-fine

particles, each of radius bp , then can be obtained as

—+

mem__47w0(;tp—32(_f)MHobZ HCOS(M) K?]A (Sm(ze)jé} (2.20)

For the case of paramagnetic collector, the term g(Hz) is
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determined as

and the magnetic traction force acting on the system of spherical ultra-fine particles,

each of radius bp , then is obtained as

F 87u, (Zp —)(/»)KcHgb; Hcos(%’) K, ];ﬁ +(sin(29)Jé} (222)
3a
From equations (2.20) and (2.22), we can see that if other parameters
such as the difference y,— y,and the radius of ultra-fine particle bp are held fixed then
the large applied external uniform magnetic field Foand the very small radius a of the
collector can give rise to a large magnetic traction force per unit volume of ultra-fine

particle. This large magnetic traction force causes the separation to be efficient.

2.3.2 One Dimensional Capture of Ultra-fine Weakly

Magnetic Particles

The capture ‘of ultra<fine ‘magnetic. particles-in one dimension was
studied theoretically by Gerber and coworkers in 1983 [3, 4]. In their study, the single
cylindrical collector is. modeled to be a ferromagnetic one and the capture is considered
only inithe radial direction.

The continuity equation (2.12) in the one dimensional problem can be

written as

—=D———(cv,). (2.23)
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In their study, a new dimensionless variable called normalized time, denoted by 7, is

defined as

TEE. (2.24)

a2
With the definitions of this normalized time and the normalized radial

distance r, defined in equation (2.15), we can obtain the continuity equation rewritten in

terms of these dimensionless variables as

oc d*¢ 0
ot or’ Gra( <) (2:29
where it is defined that
) XA (2.26)
D

The equation (2.25) describes dynamics of the system of ultra-fine
particles in high gradient magnetic separation in one dimension. In their work, it is
assumed that only the dominant magnetic traction force are considered, consequently

the expression of G, can be determined by using equations (2.9), (2.11) and (2.20) as

G, (1,0)- Gi™ {ﬂ"—} @27
r(l r(l

where it is defined that

4y (2, — 2, )MH,b,

G(_)ferro =_
3k,T

(2.28)

From this definition of G;*", when g, > x, the capture is called to
be the paramagnetic mode. For the opposite case where y, < ¥, the capture is called

to be the diamagnetic mode.
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The one dimensional capture of ultra-fine weakly magnetic particles by
a single ferromagnetic collector was studied theoretically by solving equation (2.25) for
various cases when some initial and boundary conditions are given. This theoretical

study is performed in Chapter IV.

2.3.3 Two Dimensional Capture of Ultra-fine Weakly

Magnetic Particles

The one dimensional theoretical model for the capture of ultra-fine
weakly magnetic particles developed in 1983 by Gerber and coworkers [3, 4] was
generalized to the two dimensional case in 1990 by Gerber and L. P. Davies [8]. The
objective of the later work was to constructed a simplified two dimensional theoretical
model which will highlight the main features of the time dependent HGMS capture of
ultra-fine weakly magnetic particles by a single ferromagnetic cylindrical collector.

The continuity equation (2.12) for this generalized problem is

oc 1 0( oc D d%c 10 10
5 :D{——(rg)}+7W—[——(rcvr)+—£(cvg ):| (229)

¥ Oor

Equation (2.29) can be rewritten in terms of the normalized radial distance r, and the

normalized time 7 defined in equations (2.15 ) and (2.24), respectively as

2 2
oc _{8 c, 1o, 19 C}—{G’C+i(Grc)+l%(ch)}, (2.30)
r

o7 a_rj Z@ra E@é’z i~ K

a

where it is defined that

G,=—2, (2.31)

and G, is already defined in equation (2.26).
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By using equations (2.9), (2.11) and (2.20), it is determined, for the

case of the ferromagnetic collector, that

Gr (ra’ 9) — Goferm |:COS£329) +%j| , (232)

and

G/ sin(26)

3
r

a

G,(r,.0)= (2.33)

where G for this ferromagnetic case is already defined in equation (2.28).

From equations(2.32) and (2.33), we can see that when the single
cylindrical collector is a paramagnetic one, the forms of these equations are remain the
same but the variable K, is replaced by K. .. The expression of factor G, for the

paramagnetic case can be obtained, by using equations (2.9), (2.11) and (2.22), as

Gpara :_8ﬂﬂ0(zp_lf)KcH02b; (2 34)
’ 3k,T ’ '

where K. is already defined in equation (2.17);
The capture of ultra-fine weakly magnetic particles in two dimensions by
a single cylindrical collector is studied in this research in the case of ferromagnetic

cylindrical collector.



CHAPTER 1lI

Capture of Ultra-fine Magnetic Particles by an

Assemblage of Random Cylindrical Collectors

In this chapter, the consideration on HGMS capture of ultra-fine magnetic
particles is extended from the case of single cylindrical collector which has been
described in the previous chapter to the case of randomly distributed cylindrical
collectors. The main work of this research is to study, theoretically, the capture of
ultra-fine weakly magnetic particles by an assemblage of random cylindrical
paramagnetic collectors in high gradient magnetic field. The first section of this chapter
provides the character of the problem to be studied. Subsequently in the second
section, the model used for the study of the problem is introduced. The connection
between the old problem in the previous chapter and the extended one in this chapter is
also shown in the second section. Finally in the third section, the continuity equation
describing dynamics of the system of ultra-fine particles for the new problem is

presented.

3.1 Character of the Problem

We consider a system consists of two parts. The first part is a static fluid
with an assembly of monotype ultra-fine weakly magnetic particles as-a suspension.
Both fluid ‘and particle are considered to be linear isotropic. homogeneous magnetic
media. The other part is an assemblage of paramagnetic cylindrical collectors randomly
distributed in the fluid. These collectors are considered to have characteristic
distributions of cylindrical radii and are very long compared with their diameters. In this
research, axes of these collectors are considered all parallel. The system of fluid and
collectors are contained in a non-magnetic canister. A uniform magnetic field Fois

applied perpendicular to axes of these collectors. We study dynamics of the capture of
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ultra-fine particles by these collectors. The only characteristic of the system we know
is the packing fraction, denoted by F', of the cylindrical collectors in the system which
is defined as the ratio of total volume of cylindrical collectors to the total volume of the

system.

3.2 The Effective Medium Model

Basically, the capture of ultra-fine particles by an assemblage of random
cylindrical collectors is different from the case of single cylindrical collector. When the
number of the collector used in the capture process is more than one, the existence of
other collectors produces some effects on the capture operation of an individual
collector. These effects must be estimated and taken into account when the capture of
ultra-fine particles by an assemblage of random cylindrical collectors is studied.

Since all collectors in the system are randomly distributed, when an
arbitrary collector is considered, all residual collectors locate randomly with respect to it.
This situation is the same for any collectors in the system. Since the assemblage of

collectors have characteristic distributions of cylindrical radii, the distribution of

collectors’ radii surrounding an arbitrary collector is random. From this, we can
reasonably approximate that the capture operation of an arbitrary collector is affected
by the existence of other collectors equally.

From the theoretical consideration-on the capture of ultra-fine particles
by a single paramagnetic collector in chapter Il, we can see, from equations (2.30),
(2.32), (2.33) and (2.34), that these equations do not-depend on the size (radius) of the
collector explicitly since they are expressed in term of normalized radial distance r, and
there is no factor which depend on the radius of the collector explicitly. This means that
when capture operations of ultra-fine particles by two cylindrical collectors of difference
radii are considered separately, the distributions of particle volume concentration at the
same normalized radial distance from the axes of these collectors have the same

feature.
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The magnetic field around the assemblage of cylindrical paramagnetic collectors
randomly distributed in a fluid had been determined in 1988 by Natenapit [13]. In that
calculation, the effective medium model originally conceived by Hashin [14] is adopted.
In the effective medium model, the system of magnetic cylinders (permeability ) and
surrounding fluid (permeability ,uf) is considered to be composed of cylindrical
composite cells, each containing exactly one of the cylinders. In this model, only a
representative cell is considered, while the neighbor cells are replaced by a
homogeneous medium with effective permeability 4 to be determined. Figure 3.1
shows a representative cell in the effective medium model which is used to determine

the magnetic field in the cell.

Sl =]

—
Hg
—
——
—_—— =

(r,0,z)

0 &

u* -
I a effective medium

He

[

Figure 3.1: A representative cylindrical cell [13].

In Figure 3.1, a is radius of the collector where b is the radius of the
representative cell. Since the-ratio of the collector to'cell volume'is set equal to the

packing fraction of collectors in the fluid then we obtain

F=—. (3.1)

The Z -axis of cylindrical coordinate system is set along the cylinder axis.
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To determine the magnetic field in the cell, the boundary value problem of coaxial
magnetic cylinders subject to the boundary condition of uniform magnetic field at far
away from the cell is solved. Since according to the effective medium model, any
composite cell can be chosen to be the representative cell and the residual cells are
considered to be a homogeneous effective medium, then a self consistency must be
satisfied that the magnetic induction(ﬁ) averaged over the representative cell
(cylindrical collector plus fluid) must equal to the volume average of the magnetic
induction over the effective medium.

According to Natenapit [13], the magnetic field in the fluid surrounding

the collector in a representative cell is determined as (see Appendix B)

H—f:AHO{(1+K—§]cosﬁf—(l—l{—fjsinﬁé} 1<r, <2, (3.2)
‘ r r, a
where
A (33)
1-FK,

and K. has been already defined in equation (2.17) of chapter II.
The magnetic field in the effective medium outside the representative cell

is determined as

Hyg 5 Hy, é<ra<oo. (3.4)

The magnetic permeability of effective medium, 1", can be expressed in

term of ratio v* which is defined as

<
I

w

4

where the value of v* is determined as



. v(1+F)+(1—F)
Y =R+ (1+F) (3.6

We can see from equation (3.4) that, according to the effective

medium model, the gradient ?(H2

Eﬁ.)outside the representative cell equal to zero

hence the capture of ultra-fine particles can be studied by consider only in the
representative cell.

From equations (3.2) and (3.3), we can see that the effects of the
existence of other collectors on the magnetic field around an arbitrary collector are
contained in the factor 4. In the limit of packing fraction approach to zero, the factor 4
approach to unity and the problem is reduced to the case of single paramagnetic
cylindrical collector as shown in equation (2.16) of chapter 1.

At this point, we can see that, by using the effective medium model, the
problem of HGMS capture of ultra-fine magnetic particles by an assemblage of random
cylindrical paramagnetic collectors can be transformed to the problem of ultra-fine
particles capture by a single cylindrical paramagnetic collector in the representative
cell. As a result of this, the consideration that has been done for the case of single

cylindrical collector in chapter Il can be adjusted and adopted here.

3.3 Continuity Equation Describing the Capture of Ultra-Fine Weakly Magnetic
Particles by an Assemblage of Random Cylindrical Paramagnetic

Collectors

In‘the previous section, the problem of ultra-fine particle capture by an
assemblage of random cylindrical collectors is transformed to the case of single
cylindrical collector in a representative cell. Consequently, the continuity equation (2.30)
in chapter Il can be applied to the present problem and dynamics of the system of

ultra-fine particles in the fluid in a representative cell can be described with this equation

2 2
@_{2+ loc 10 c}_{G,c+i(Grc)+i%(ch)} (3.7)
r

or |a ror, rro0| |r or

a



21
Expressions of terms G, and G,, for this case is the same as those
have been defined in equations (2.26) and (2.31)
By using equations (2.9) and (2.11) in chapter I, we can express G, and

G, in other forms as

G = ak, (3.8)
k,T
and
G (3.9)
k,T

where F, and F, denote the radial and angular components of total external force
acting on the system of ultra-fine magnetic particles, respectively.

In this research, we consider the situation that the magnetic traction
force dominates the capture operation and other forces or processes produce very
small influence on the capture operation. Consequently, we assumed that the total
external force on the system of ultra-fine particles is due to magnetic traction force only.

From equation (3.2) term §(H;) is determined as

ik A é}. (3.10)

Then the expression of magnetic traction force acting on the system of

ultra-fine weakly magnetic particles in the representative cell can be obtained as

m a
3a

_ 8 —y VAHK.b ' .
7, 0)=— ﬂﬂo()(p Z/) oKe p{(005(29)+&]f+(sm(20)}9}' 3.11)

a a

From this equation we can determine expressions of G, and G, in

equations (3.8) and (3.9) as
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260
G.(r,,0)=G,/ """ (%3) + K—f} , (3.12)
rﬂ rﬂ
and
) in (260
G, (r,.0) =G, ™" (W] , (3.13)
rll

random

where the factor G, for this case is defined by the expression

_ Sau(x, — 2 ) A HIK b,
v/ 3k,T '

G random

(3.14)

When the expressions of G, and G, in equations (3.12) and (3.13) are
substituted in equation (3.7), we obtain the continuity equation describing the capture of
ultra-fine weakly magnetic particles in the representative cell. This continuity equation
can be solved, with some assigned initial and boundary conditions, to study dynamics
of the system of ultra-fine particles subjected to high gradient magnetic separation. In
this research time-dependent solutions of the continuity equation (3.7) is determined by
using numerical method and the capture process in the representative cell is simulated

in various situations.



CHAPTER IV

Simulations of HGMS Capture of Ultra-Fine Particles

To study the capture of ultra-fine magnetic particles in high gradient
magnetic separations, the continuity equation describing dynamics of the system of
ultra-fine particles is solved when some initial and boundary conditions are assigned.

In some situations, the continuity equation can be solved analytically but
in many situations, solving the continuity equation analytically is very difficult and some
numerical methods are used. By solving the continuity equation numerically, the HGMS
capture of ultra-fine particles can be simulated in various situations. In this chapter, we
simulate HGMS capture of ultra-fine particles in one dimension and two dimensions in
various cases. The content in this chapter consists of the simulation methodology, errors
and stability of the computation, initial and boundary conditions, parameters of

simulations, and the procedures of simulations.

4.1 One Dimensional Simulation of the Capture of Ultra-Fine Particles by

a Single-Ferromagnetic Cylindrical Collector

In section 2.3.2 of Chapter I, the continuity equation describing the
capture of ultra-fine particles'in one-dimension obtained as
G G _0(0) (4.1)
oz | 0n %an '
This equation can be solved to obtain the distribution of particle volume
concentration in some radial directions at various normalized times. The steady-state
solution of equation (4.1) can be solved analytically but the time-dependent solutions will

be solved numerically.
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4.1.1 The Steady-State Solution

At steady state, the value of particle volume concentration at any points
in fluid is independent of the normalized time, consequently, we get Oc/07 =0. Let
Cy (ra) denotes the value of steady-state particle volume concentration. We can solve

for cg (ra) from the equation

) ﬁ_grcs -0, (4.2)
dr,\ dr,

where partial derivatives becomes total derivatives at steady state.

Recalling the original continuity equation (2.5) of chapter Il, at steady

state we have

—

V-J=0. (4.3)
Since J=JD +JF , equation (4.3) means that, at steady state, the

particle volume flux due to diffusion and the particle volume flux due to the action of total
external force on the system of ultra-fine particles balances each other dynamically at

every points. Conseguently, from equation (4.2) we obtain
— -G =0. (4.4)

We assign the initial conditions for equation (4.4) that, at initial, the value

of particle volume concentration at every. points equal to a constant CO. We assign the
boundary condition for equation (4.4) that the value of particle volume concentration at
r, — o, where the influence of the magnetic force can be neglected, is fixed equal to

the initial value C, . Finally we obtain

Ty

¢,(r,)=Cyexp IGr (x)dx |. (4.5)

0
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From this equation, we can see that the value of ¢ changes with r,
exponentially. In practical, the value of ¢y can not greater than a limited value called the
saturation concentration denoted by C,,. Consequently, the value of ¢y in equation
(4.5) must be restricted inarange 0<c¢, <C_,.
It is shown in equation (4.5) that the value of ¢g depend on the spatial

function G, . If the magnetic collector is a ferromagnetic cylindrical one of radius a and

all influences of other forces and processes are much smaller than the influence of the

magnetic force then we obtain the expression of G, as

where the factor G{*™ has been defined in equation (2.28) of Chapter I.

From equations (4.5) and (4.6), we can determine the distribution of
particle volume concentration at steady state in any radial directions determined by the

angle 6.
4.1.2 Time-Dependent Solutions
The time-dependent solutions of equation (4.1) are solved numerically by

using the finite-difference method. The finite-difference method is @ numerical method
which solving differential equations, with some assigned initial and boundary conditions,
for their approximated numerical solutions by approximating differentiations with some
corresponding difference relations. In the finite-difference method, the continuous range
of r, and 7 is replaced by corresponding discrete ranges composed of a finite set of
uniformly distributed discrete points called grid as shown in Figure 4.1. In Figure 4.1,

each points in the grid is specified by discrete coordinates (ra )i and 7" . The values of
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(r,), and 7" can be obtained from
(r,),=1+i(Ar,); i=0,1,2,3, .., 0 4.7)
and " =n(A7); n=0,1,2,3, ., N, (4.8)

where Q and N are some finite positive integers much larger than unity and variables

Ar, and Az are called grid steps.

T
A
" &
4
AT

_T_

0 > 7,

1 —f Ar, f&— (ra)i

Figure 4.1: The grid in finite-difference method.

The approximated numerical value of particle volume concentration,

denoted by C”, are determined at every points in the grid.

To-solvediequation (4.1) numerically, we rewrite it as

2
Oc 0dc Oc " 0G, 4.9)

Py w & A

or ort~"Tor, I or,

All partial differentiations are approximated by some corresponding
difference relations. The term Oc/0t is approximated by the first-order forward
difference, the term oc/0r, is approximated by the first-order central difference, the
term 62c/8ra2 is approximated by the second-order central difference. Some details on

these approximations are presented in the Appendix C. Value of G, and 0G, /or,
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at every discrete radial positions (ra ),- are not necessary to be approximated since

their analytical values can be calculated from their expressions and we obtain

), (4.10)
and

: (4.11)

where the expression of 0G, /0, can be obtained from equation (2.27) of Chapter Il as

(4.12)
or, - 7

a a

a(;r (raﬁe) — (_I)G({erro |:3COS(26) + 51<W i| )

By using finite-difference method, the partial differential equation (4.9) is

approximated by its corresponding difference equation

cr-c; _(c,-2eC, (6) | Ea=Ci| [ or. sy
At (ar, ) L2(an) o, )y

It is seen from this equation that when approximated values of particle

volume concentration at every discrete points are known at the n" step of the discrete
normalized time then-we can compute new wvalue- of -approximated particle volume
concentration at every points at the n +1" step of the discrete normalized time.

The initial condition'is assigned as

CY'=C, for alli

and the boundary condition is assigned as

(4.14)

(C’fQ =C, foralln (4.15)

where C, is a positive constant. Now we can see from equation (4.13) that we can
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compute C}, C2, C, ..., C! in succession for all i and approximated
time-dependent solutions of the continuity equation (4.9) can be determined at various

normalized times by the relation

{(M +<G,.>i<m)}@ | w10
(ar) 2B

The capture of ultra-fine particles in one dimension by a single
ferromagnetic cylindrical collector can be simulated by computing values of C’ at every

discrete radial positions (ra )l_ at various normalized times(r”).
41.21 Errors of the Computation

The finite-difference method gives us the approximated value of particle
volume concentration at a given point in the computational grid. When the computation
are performed, there exist some errors at every points in each cycle of computation.

To estimate the error of the computation, equation (4.13) is rewritten as

n+l n n n n n n
C,’ _Ci _ (Ci+1 —2((:1‘ ;_(Ci—l +(Gr)- (CH—I _Ci—l + aG’ (C'l7 =0. (417
At (Ara) l 2(Ara) or, ),

Let’s ¢ denotes the value of analytical solution of equation (4.9)

evaluated at a discrete radial position (r, ) , that is

ci”:c((ra)i,r”). (4.18)

When all approximated solutions in equation (4.17) are replaced by their

corresponding analytical solutions we obtain
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¢ —=c' |, =2+ ¢ —cry oG, | , .,
i i | i i i G i ! r c=¢g, (419
s el SEHE e e

where &' is a real number generally not equal to zero.

The value of ¢ indicates the error of the computation occurred at a
discrete radial position (ra )l, at the n"” step of the computation. If the approximated
solution C? approach to the analytical solution ¢ then &' approach to zero. The

maximum value of &' among all discrete radial positions at the n” step of the

computation can be estimated as (see Appendix D)

max

in

> n 3 n 4 n 2
&'l < max (a—ij @ + max 2(G,_)(a—fj —[a—fJ (A7) . (4.20)
ot 2 in ‘\or, ) \or 12

in
i

This equation shows us that the difference equation (4.13) can
approximate the continuity equation (4.9) for its analytical solution c(ra,r), with the
limited second-order partial derivative of ¢ with respect to 7 and the limited third and
fourth-order partial derivative of ¢ with respect to r,. Equation (4.20) tells us that the

approximation with respect to grid steps Az and Ar, is of the first and second order,
respectively, or we-can write the order of the approximation as O[(Ar)+(Ard )2} It is

seen from equation (4.20) that the approximate solution €” can approach the analytical

solution ¢;" when grid steps-A7 and Ar, are approach to zero.
4.1.2.2 Stability of the Computation

Suppose that at the n” step of the discrete normalized time,

th

" =n(Ar),(and also the n™ step of the computation) the approximated solution C

differ from the analytical solution ¢ with a certain quantity ¢ called the error of
computation at the discrete radial position (r )i and at the n" step of the discrete

a

normalized time that is



Similarly, at the n+1" step of computation we have

If the error made at any n +1% step of computation, dc]

Cl =¢'+0c .

C' ="+ 5.
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(4.21)

(4.22)

, ot larger

than the error made at the previous step, dc;, then the computation is call stable. In

other words, for the computation to be stable, the error made in one step of computation

should not be increased by subsequent computations.

For the simulation of the capture of ultra-fine particles in one dimension

by a single ferromagnetic cylindrical collector, conditions to achieve a stable

computation are (see Appendix D)

and

where it is defined that

1
Oééﬁa,
(a7)
é:E 2
(AQ)

(4.23a)

(4.23b)

(4.23c)

(4.24)

When all conditions in equation (4.23) are satisfied, the computation is

stable and the maximum error occurred at the N” step of computation can be

determined as (see Appendix D)
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mlax|5cl.N| < max |5cl.°| + N(Ar) ) [(AT) + (Ara )2} , (4.25)

where the term &c! denotes the error from the assignation of the initial condition. From
equation (4.25), we can see that, with vanishing grid steps, Az and Ar,, and all
conditions in the equation (4.23) are satisfied, the approximated solution C? converge

to the analytical solution ¢/ and the computation is stable.
4.1.2.3 Initial Condition of the Computation

The initial condition of the simulation of this case is assigned by setting
the value of particle volume concentration at every discrete points (ra ),- at initial (z' = O)

equal to a constant denoted by C; that is
CY=C, foralli. (4.26)
4.1.2.4 Saturation Condition

In practical, as particle volume concentration at a given point increase,
inter-particle forces will limit this concentration to a finite value and the saturation is
occurred. Experimental evidence [18] indicates that saturation occurs approximately at
¢ ~0.10. This value is therefore used as a limit to the particle volume concentration.

A discrete radial position (7, ) with a concentration €} >0.10 is assumed to be the
saturation point. In this research, the point of saturation is considered to be the point
that particles accumulate highly denseand the build<up of particles is considered to be
static. All saturation points are excluded from the computation and values of particle
volume concentration are held fixed at 0.10.

The saturation condition can be expressed as

0<C?<0.10 foralliandn. (4.27)
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4.1.2.5 Boundary Conditions of the Computation

4.1.2.5.1 Outer Boundary Condition

Since the capture of ultra-fine particles must be simulated in a
finite computational domain. Let (r,), =1+Q(Ar,) be the outer boundary of the
computational domain. From equation (2.20) of Chapter Il, we can see that the
magnitude of radial component of magnetic traction force decrease with increasing r, .
Consequently in the simulation, the outer boundary of the computational domain is
chose to far from the collector. This make it is reasonably to approximate that the
influence of the magnetic force can be neglected at the outer boundary. From this, the
value of (C”Q is maintained equal to the initial particle volume concentration C, for all

steps of discrete normalized time z" . Consequently, the outer boundary condition of the

computation can be expressed as

(C"Q =C, foralln. (4.28)

4.1.2.5.2 Boundary Condition at the Impervious Surface

The impervious surface in this research is defined as the surface
of the collector or the surface of the region of saturation concentration where particles
accumulate highly dense. The particle volume flux in‘the radial direction at any points on
the impervious surface is considered equal to zero. Let subscript I indicates the
position of a point on the impervious surface. We can write the condition of particle

volume flux in the radial direction on the impervious surface as

(@—G,,CJ 0. (4.29)
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In finite-difference method, the difference equation

corresponds to the equation (4.29) can be written as

C,-C
——=1-(G,),C} =0. (4.30)
[ Al’a ( )1 1

In the simulation, the value of particle volume concentration at a

given point on the surface of the collector can be computed at the n" step of the

computation by using the expression

(4.31)

When the value of particle volume concentration at a point on the
surface of the collector reaches the saturation concentration, that point will be excluded
from the computation in the next cycle and equation (4.31) is applied for the point

adjacent to the saturation point.

4 .1.2.6 Parameters of Simulations

For.the simulation of ultra-fine. particle capture.in one dimension by a
single ferromagnetic cylindrical collector, parameters of the simulation are as follows:

1) The magnitude of applied uniform magnetic field( H, ) ,

2) The radius of ultra-fine particles (bp) .

3) The effective magnetic susoeptibility(;( =7, —;(f) .



34

4 1.2.7 Procedures of the Simulation

Procedures of the simulation in one dimensional case can be separated

into three main parts as shown schematically in Figure 4.2

The Pre-Computational Part

‘

The Computational Part

l

The Result-Collecting Part

Figure 4.2: Three main procedures of the simulation.

The first main procedure, the pre-computational part, is the preparation
before performing the computation. Sub-procedures contained in this part are

1.1) ~ Describe some introductions and the objective of the simulation,

1.2)  Set all constants and parameters those are used in the
simulation,

1.3) © Declareall output files and variables those are used in the
simulation,

1.4) © Construct the computational domain,

1.5)  Set the initial condition of the computation.

In the second main procedure, the computational part, the numerical
value of approximated particle volume concentration C' is updated at every discrete
radial positions (ra )l_in the computational domain at each step of discrete normalized

time (r”) . Sub-procedures in this part are as follows:
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2.1)  Increase the step of the discrete normalized time (r”) by one,

2.2) Find and mark the position of the impervious point in the
computational domain,

2.3)  Set the outer boundary condition of the computation,

2.4) Update numerical value of the approximated particle volume
concentration at every points in the computational domain by
starting from the point at the outer boundary toward the
impervious point,

2.5) Prepare for the next cycle of computation(r”*l) by treat the
new values of particle volume concentration those are computed
in the present cycle as the old values for the next cycle.

In the third main procedure, the result-collecting part, results of the
simulation which are numerical values of particle volume concentration at every discrete
points in the computational domain at some steps of normalized times those has early
specified are sent to corresponding output files. When these results are saved in the

output files, all output files are then closed and the simulation is terminated.
4.2 Two Dimensional Simulations of the Capture of Ultra-Fine Particles

From section 2.3.3 of Chapter I, we obtain the continuity equation

describing the capture of ultra-fine-particles in two dimensions as

2 2
@_{2+ 1 @+La C}_{Gchri(G,cHi%(Gg )} (4.32)
T

or otk or 1 a6* r, o or,

We can study the capture of ultra-fine particles in two dimensions by
solving this equation when some initial and boundary conditions are given. The solution
of this equation provides us the distribution of particle volume concentration in two
dimensional area around the collector at various normalized times. In this research, the

time-dependent solution of equation (4.32) is determined numerically by using the
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finite-difference method.
4.2.1 The Two Dimensional Computational Domain

The analytical solution of equation (4.32) is a continuous function of two
dimensional polar coordinates and normalized time denoted by c(ra,e,r). If this
analytical solution can be determined by some methods then the particle volume
concentration can be calculated, at any values of normalized time, at any points in a
continuous range 1<7 <co. In numerical method, numerical solutions of equation

(4.32) are computed in a finite discrete computational domain in two dimensions as

shown in Figure 4.3

Figure 4.3: A two dimensional circular grid.
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In Figure 4.3, the computational domain consists of a finite set of uniformly distributed
discrete points ((ra )i ,Hj) where discrete radial and angular coordinates are

determined by
(r,),=1+i(Ar,) 0<i<Q, (4.33)

and 0, = j(A0) 0<j<P, (4.34)
where i and jare positive integers , Qand P are positive integers generally much
larger than unity.

In the simulation of ultra-fine particles capture in two dimensions, some
initial and boundary conditions are assigned to the computational domain and the
numerical value of particle volume concentration is computed at every points at various
normalized times. The numerical value of particle volume concentration at a discrete

point ((ra )i ,Hj) and at the n” step of the discrete normalized time is denoted by Ci;-

4.2.2 The Computation of Approximated Time-Dependent

Solutions

The  continuity equation (4.32) is solved numerically to obtain its
approximated time-dependent solutions by using the finite-difference method. At the first

step, the continuity equation(4.32) is rewritten in an-alternative form as

@_8_20_’_1@ 1 0’°c G oc— 0G, G, oc - c 0G,

S 7 AN T 010 872 ACOND D IAAN D —=. (4.35)
or oOr, r,or, 1. 00 1, or, or, ~r, 00 r, 00

Then, all partial differentiations in this equation are approximated by their
corresponding difference relations. The term Oc/0t is approximated by the first-order
forward difference, terms &°c/dr’ and 0°c/ 06" are approximated by the second-order
central difference, terms Oc/0r, and Oc/08 are approximated by the first-order central

difference(see Appendix C), terms 0G, / 0r, and 0G, /06 are not necessary to be
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approximated since their analytical values can be determined at any discrete points
((ra ), ,Hj) in the computational domain.

Expressions of 0G, /0r, and 0G, /06 can be obtained as

3 20
oG, = -G, |:$+g:| , (4.36)
or, v r,
2G, 20
and s 0D 29) (4.37)

00 7

a

where the value of the factor G, and K depend on the type of the magnetic collectors
those are used.

The values of dG, /or, and 0G, /06 evaluated at a discrete points
((ra ), ,Qj) are defined as

(?) E%Gr (4.38)
Ya Dig Ta l((n).0)
and
(aG,,j 26, .39
or, r or, (2),)

The value of G, and-G, at a discrete point ((ra )i ,Hj) are not necessary

to be approximated and we define

(4.40)

and (Gy),, =G,

(4.41)

After all approximations are performed, the continuity equation (4.35) is

replaced by its corresponding difference equation
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c -C, {%_,—2@:-’,_,+@7.1,,,.}+ 1 (Chy=Chy), 1 [Chu-2C14C,
() (n);

A7 (ar,) ) 2(arn) 3) (A0)

(r ) r )i Q(Ara) or, ). ij
l ij

a

_ (G9 )i,j [CZ/’H ~ C?,j—l ] _ C?».i (aGﬂ j , (4.42)
ij

(), | 2080) ) (), Lo

where (C;’J is the approximated numerical solution of the continuity equation (4.35) at
the discrete point ((ra )i ,Hj) and at the n” step of discrete normalized time 7" .
The value of (C;';l which is the updated value of particle volume

a J

concentration at the discrete point ((r )i,H) at the n+1’hstep of the discrete

normalized time 7" can computed from the equation

|, 2(87) 2 (Car | (G,),,,+ 0G,) . _1 (&G, e
Ci,j =1 (Ara)z (Va)iz[(AH)z] [ (ra)i [ara lj (ra)i( 00 jz,;J(A ) (Ci,j

i+l,j

4 n
e

[irlcor o o o
i

Crl

ij-1 -

(4.43)

We can see from this equation that if the initial value(n:O) of C are

given at every discrete points as C} ; forall i and j then we can compute C; ;, C;

i,j? i,j?
C3

IR (C?’j in succession when some boundary conditions are assigned.

Consequently, the approximated solutions of the continuity equation can be determined
at various discrete normalized times and the simulation of the capture of ultra-fine

particles in two dimensions can be performed.
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4.2.3 Errors of the Computation

From equation (4.42) if all approximated solutions C are replaced by
their corresponding analytical solutions ¢ at every discrete points at the n” step of the

discrete normalized time 7" then we obtain

a=q, _ Chy = 2C+C " UGy =Ci, + | cipm =26+ ¢
Az (ArY () 2(8%) ) (n); (a0)°
- (Gr )i,j cirfj —(G ) cin+1,j N Cinfl,j N aC;r Cﬁ )
(%), VL 2(an) or, ),
_ (Ge )i,j € i =€l Xz < (8(?0 j e (4.44)
(), A 2(40) ) (n),\00 ), ™

1

where gl.’fj is a real quantity, generally not equal to zero, which indicates the error of the
computation. If the approximated solution at a given point, (C:’J, is close to the analytical
solution CZ_; at the same point then the value of gl.’fj is close to zero at that point.

For the simulation of ultra-fine particles capture in two dimensions, we
can estimate the maximum value of gfj which occurred at the n" step of the

computation as (see Appendix E)

2 -\ 3.\ 4 \" 2
max|g,."j|3max a—i (£J+max 20(G,) - ! 8_§' | f )
ij " i |\ Ot y 2 i.j i.j (”a )[ or; y or y 12

a

2 G 3 n 4 n 2
+max ( g)i’j & — 7a (S (AQ) ! (4.45)
el (), o6 ) (), oe" 12

i,j

The expression (4.45) tell us that the difference equation (4.42) can
approximate the continuity equation (4.35) for its analytical solution c(ra,é?,r), with the
limited second-order partial derivative of ¢ with respect to r and the limited third and

fourth-order partial derivative of ¢ with respect to , and @, respectively.
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The approximation with respect to grid steps Az, Ar, and A@ are of
the first, second and second order, respectively. It is said that the difference equation

(4.42) approximate the continuity equation (4.35) for its solution within the order

of (Az)+(ar, ) +(a0)"|.
4.2.4 The Stability of the Simulation
The stability of the simulation of the capture of ultra-fine particles in

two dimensional space is analyzed in the appendix E. Conditions those make the

simulation stable are

L]

O<max( 5 2}—{(@)"”’@7) <1, (4.46)
0 e

L]

0<max[ 25 )2]+£ (G“))i’;’(m) <1, (4.47)

- <1 , (4.48)

G.)
max ( V)”" + 9, +L(669j (A7) <1, (4.49)
b (r ) or, iij (r )i 00 iyj

G.) .
max L( r)”’ 19 J(£) <& , (4.50)
Lj P 2(r )i Ar

and 0<é&<

, (4.51)

where it is defined that

—
>
DS

N—

N
1l

(4.52)

—~
B
Y
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and & has been defined in the equation (4.24).
When these conditions are satisfied, the simulation in two dimensional
space can be stable and the maximum error of the computation among all discrete

points in the computational domain after N steps of computations can be expressed as

1
max|5ci”f
i,j ’j

0 2 2
Srr;gx‘&ci’j|+N(Ar)O[(A9) Han Y +(ar)]. @8
This expression means that if all gird steps(Az, Ar, and A@)are
approach to zero and all stability conditions are satisfied then the computed numerical

approximated solution € converge to the analytical solution ¢ and the simulation is

stable.
4.2.5 Initial Condition of the Simulation
The initial condition for the simulation in the two dimensional space can
be assigned as
C} =C, forall i and j, (4.54)
where C, is a numerical constant greater than zero.

4.2.6 Saturation Condition

The saturation condition in this two dimensional case is similar to the one

dimensional case and can be assigned as

0<(C;.’,j£0.1 forall i, j and n . (4.55)
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4.2.7 Boundary Conditions
4.2.7.1 Outer Boundary Condition

The outer boundary condition for the case of single cylindrical
collector is assigned similar to the case of one dimensional simulation. Since the
magnitude of magnetic traction force decrease with increasing r,, if we set the outer
boundary of the computational domain at (ra )Q >1 then the magnetic force can be
neglected at the outer boundary. Consequently, the outer boundary condition can be

assigned as
C”Q,_/ =C, forall jand n, (4.56)

where C, is the initial particle volume concentration.

In another case where ultra-fine particles are captured by an
assemblage of random cylindrical paramagnetic collectors, the effective medium model
allows us to study the capture process of overall system (collectors + fluid) by consider
only in a cylindrical representative cell. In this research, the capture of ultra-fine particles
by an assemblage of random cylindrical paramagnetic collectors is studied for the case
of static fluid. This means that no particle volume flux flow through the overall system.
Consequently, the total amount of ultra-fine particles:in the system can be considered to
be constant. Since the representative cell is the representation of the system, we then
impose a constraint on the simulation that the total-amount of ultra-fine particles in the
representative cell. should be constant.-Consequently, the net particle volume flux in all
directions perpendicular to the outer boundary of the representative cell must equal to
zero. From this, we will approximate that the outer boundary of the representative cell is

equivalent to an impervious surface as shown in Figure 4.4.
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the outer boundary of the representative cell
Figure 4.4: The outer boundary of the representative cell as an impervious surface.

The continuity equation at all points on the outer boundary can

be approximated as (see Appendix F)

2
I e R CE e
82. ("a)Q (ra)Q 80 (r,) (rtl)Q 89 (rﬂ) (Ara) ara (7)o

0

where Q denotes the position of a point on the outer boundary of the representative
cell. From the expression (4.57), the approximated numerical value of particle volume
concentration at various points on the outer boundary of the representative cell can be

computed from

+_(Va)Z(A9)2 (7. QJ(AG) o
{(GV)Q_I,.,-(M)}@ J{ﬂ}cn 3 (4.58)
Ar) M o)y |0
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4.2.7.2 Boundary Condition at the Surface of the
Collector or at the Surface of the Saturation

Region

In this research, the surface of the collector and the surface of
the saturation region, composed from many saturation points, are considered as an

impervious surface as shown in the Figure 4.5

- ar,

I I+1 I+2

) f ) )

the surface6f the collector

Figure 4.5: Surface of the collector or the saturation region as

an impervious surface.

The continuity equation for a given point which is adjacent to the
surface of the collector or the surface of the saturation region can be approximated as

(see Appendix.F)

2 o(G,
S R
dr ()1 (}’a)l 00 () (I’a)[ 00 ( (Al’a) 8ra (7)1

1

where the index I denotes the position of a point on the impervious surface.
From the expression (4.59), the approximated numerical value of
particle volume concentration at various points on the surface of the collector can be

computed from
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1,j

2(A A
(Cl}j-]l =|1= ( Z') _( T)(aGG C”
(

C?‘l

I,j+1
1,j Cn )
a6y 2(r),(a0) |

_ (AT +(Gr)1+1,j§AT)}Cn _,_{M}C” (4.60)

(ar ) |

When the impervious surface is the surface of saturation, equation (4.60)
is used for compute the value of particle concentration at the point adjacent to the

saturation point.

4 2.8 Parameters of Simulations

Simulations of ultra-fine particle capture in two dimensions are separated
into two categories. The first is the case of single ferromagnetic cylindrical collector and
the second is the case of an assemblage of random paramagnetic cylindrical collectors.
Parameters of these simulations are as follows:
1) In the case of single collector, the parameter is the magnitude of the
applied uniform magnetic fieId(HO) ,

2) -In the case of an-assemblage of random-paramagnetic cylindrical
collectors, parameters are the packing fraction (F) of the cylindrical
collectors inthe system and the magnitude of the-applied uniform

magnetic field (H,) .
4.2.9 Procedures of the Simulation

Procedures of the simulation for this two dimensional case are the same
as the one dimensional case and are already described in the section 4.1.2.7

In Chapter V, capture of ultra-fine particles is simulated in various cases.



CHAPTER V

Results of Simulations and Discussions

In this chapter, results of simulations of HGMS capture of ultra-fine
particles in various cases are presented with discussions. The simulation begins with the
capture of ultra-fine particles in one dimension by a single ferromagnetic cylindrical
collector. Next, the simulation is extended to the capture of ultra-fine particles in two
dimensions by a single ferromagnetic cylindrical collector. Finally, results of two
dimensional simulations of HGMS capture of ultra-fine particles by an assemblage of
random paramagnetic cylindrical collectors are presented. From all of these results, the

capture of ultra-fine particles in various situations can be investigated.

5.1 One Dimensional Simulations of the Capture of Ultra-Fine Particles by

a Single-Ferromagnetic Cylindrical Collector

In one dimensional case, HGMS capture of ultra-fine particles is
simulated in two situations and results of these simulations are categorized into two

sections.

5.1.1 Paramagnetic Mode of the Capture

In the first situation, the ultra-fine particle is paramagnetic

Mn,P,0, particle of radius b, =1.2x10" m. An assembly of Mn,P,0, particles
dispersed in a static water. The effective magnetic susceptibility of the system

(water + Mn,P,O, particle) is y =+4.73x107. This situation which y >0 is called the
paramagnetic mode of the capture. The ferromagnetic collector is considered to be
homogeneous saturate magnetized perpendicular to its axis by a uniform external
magnetic field H, =1.0x10° A/m points in the positive X direction and its saturate
magnetization is Mg =1.6x10° A/m. Let the absolute temperature equal to 300 K.

From these parameters, we can calculate the value of factor Gof”"' , from equation(2.28)
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of Chapter Il, as —16.62 and the value of the factor K, , from equation (2.14) as 0.80.
The value of initial particle concentration at every points in the computational domain is
set equal to C, =1.0x10"> and the saturation concentration is set equal to C,,, =0.10.
From equation (2.20) of Chapter I, we can see that, for the paramagnetic mode, the
radial component of the magnetic force is strongest attractive at € =0, xradian
whereas the strongest repulsive magnetic force occur at @ =7/2, 3x/2radian. The
position of the outer boundary is assigned at r, =10.00 where the magnetic force is
assumed neglected. The value of particle concentration at the outer boundary is held
fixed equal to the initial value for all normalized times.
Figure 5.1 shows the distribution of concentration in the paramagnetic

mode at @ =0 radian at various normalized times.

¢, particle volume concentration
—
=
I

Curve No. 1 2 3 4 5 6 7 8
T 1x107 1x107 5x107% 1x10™" 2x107" 5x10™" 1.00 steady state

Figure5.1: Time evolution of concentration distribution at & =0 radian in

paramagnetic mode, G/ =-16.62, K,, =0.80.



49

In Figure 5.1, at small 7, particles accumulate dynamically on the
surface of the collector and saturation does not occur. As 7 increase, concentration on
the surface of the collector increase which corresponds to the attractive magnetic force
at =0 radian. As 7 increase continuously, particles accumulate densely on the
surface of the collector, inter-particle forces (both electric and magnetic types) will limit
the concentration of particles to a finite value called the saturation concentration.
Consequently, when 7 is larger than a certain value, saturation concentration take
places on the surface of the collector. The saturation region extends with increasing 7 .
The dash line in the figure represents the analytical steady-state solution of this situation
which is the theoretical limit of numerical time-dependent solutions in curves number 1
to 7. The expression of steady-state solution for this situation is determined in the
Appendix G.

The result in Figure 5.1 is obtained by using the same set of parameters
as the former work produced in 1998 by R. Gerber and coworkers [3]. These two results
are compared and we find that they are consistent. This consistency indicates that our
simulation methodology is reliable.

The former work of R. Gerber and coworkers consider the capture in
paramagnetic mode at @ =0 radian only. In our work, ultra-fine particle capture in
paramagnetic mode at @ =z /2radian is also considered. Figure 5.2 shows the
distribution of particle concentration at € = /2 radian at various normalized times, the
radial magnetic force become repulsive at this angle.

In Figure 5.2, we can see that, at @ = /2 radian, particle concentration
on the surface of the collector decreases with increasing normalized time. These
features is opposite to those in Figure 5.1,this is because the directions of magnetic
forces in these two cases are opposite. From equation (2.20) of Chapter I, radial
magnetic force becomes repulsive at @ = z / 2 radian. Ultra-fine particles in the region
near to surface of the collector are repelled, by the magnetic force, to other regions
faraway form the collector. As 7 increase, amount of ultra-fine particles in the region
near to the collector surface more rare. The dash line in the Figure 5.2 represents the

analytical steady-state solution of this situation.
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5.1.2 Diamagnetic Mode of the Capture

In the second situation, the ultra-fine particle is diamagnetic gold particle
of radius b, =6.92x10"* m. An assembly of gold particles dispersed in a static water.
The effective magnetic susceptibility of the system (water + gold particles) is
¥ =-2.55x107. This situation which 7 <0 is called the diamagnetic mode of the
capture. Properties of ferromagnetic collector and the uniform external magnetic field in
this situation are all the same as the paramagnetic mode in previous section. The value
of factors  G,*" and K, in this situation are G,”" = +17.18, K,, = 0.80. The value
of initial particle concentration is set equal to C,=8x10" and the saturation
concentration is set equal to C,, =0.10. The position of the outer boundary is at
r,, =10.00 and the value of concentration at the outer boundary is held fixed equal to
initial concentration for all normalized times. For the diamagnetic mode, the radial
component of the magnetic force is strongest attractive at 6 =7/2, 37/2 radian
whereas the strongest repulsive magnetic force occur at 8 =0, 7z radian (see equation
(2.20) of Chapter ). Figure 5.3 shows the distribution of concentration in the
diamagnetic mode at 6 = /2 radian at various normalized times.

In Figure 5.3, we can see that, since the radial magnetic force is
attractive at @ = 7 /2 radian, the concentration on the surface of the collector increases
with 7. When two results in Figure 5.1 and 5.3 are compared, we can see that, at the
same value of 7, the increasing of particle concentration on the surface of the collector
in diamagnetic mode is slower than that of the paramagnetic mode . At 7=1.00,
saturation concentration take placeon the surface-of the collector-in paramagnetic
mode but dose not take place in the diamagnetic mode. This can. be understood by
consider equation (2.27) of Chapter Il. We consider on the surface of the collector so
r, =1.00, in paramagnetic mode at & =0 radian the absolute value of the function G,
is 29.92 whereas in diamagnetic mode at @ = x/2 radian the absolute value of the
function G, is 3.44 which is much smaller. The dash line in the figure represents the
analytical steady-state solution of this situation. We can see that saturation concentration

take place on the surface of the collector at steady state in this situation.
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¢, particle volume concentration

Curve No. 1 2 2 4 5 6 7 8
T 1x107 1x107% 5x107% 1x10" 2x10" 5x10™" 1.00 steady state

Figure 5.3: Time evolution of concentration distribution at & = 7 /2 radian in

diamagnetic mode, G,”™ =+17.18, K,, = 0.80.

The result in Figure 5.3 obtained by using the same set of parameters as
a formerwork published in"1998 by R. Gerber and coworkers [3]. These two results are
compared and the consistency is found. This consistency confirms the reliability of our

simulation methodology.
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Figure 5.4 shows the distribution of concentration in the diamagnetic mode at € =0
radian at various normalized times. At this angle, the radial magnetic force becomes
repulsive. In Figure 5.4, we can see that the value of particle concentration on the
surface of the collector decreases with increasing normalized times. When two results in
Figures 5.2 and 5.4 are compared, we see that the decreasing of concentration on the
surface of the collector in diamagnetic mode is faster than that in the paramagnetic
mode. This is because the absolute value of the function G, on the surface of the
collector at @ =0 radian in this situation is 30.92 whereas in the paramagnetic mode, at
0 =z /2 radian, the absolute value of the function G, is 3.32 which is much smaller.

i

The dash line in the figure represents the analytical steady-state solution of this situation.
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Figure 5.4: Time evolution of concentration distribution at & = 0 radian in

diamagnetic mode, G,"™ =+17.18, K,, = 0.80.



54
From Figure 5.1, we have seen that saturation concentration take place on the surface
of the collector in HGMS capture of Mn,P,O, particles. It is interested to investigate how
the occurrence of the saturation concentration on the surface of the collector depends
on the magnitude of the uniform external magnetic field H,. Figure 5.5 shows the
variation of 7z, with H, where 7, is defined as the value of normalized time that
saturation concentration begins to take place on the surface of the collector. In Figure
51, at 7=5x10" the saturation concentration take places on the surface of the

collector then we obtain 7., #5x107 for the situation in Figure 5.1.
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Figure 5.5: Variation of 7., with H in paramagnetic mode of

t

one dimensional capture of Mn,P,0O, particle.

From Figure 5.5, at the value of H,=1x10° A/m, the value of
7., = 0.040 which is close to the value 0.050 given by approximating curve number 3

in Figure 5.1.
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In Figure 5.5, we see that the value of 7

sat

decreases rapidly with

increasing H,, . If the variation of 7, with H, is plotted in semi-logarithmic scale, the
result is given in Figure 5.6. From Figure 5.6, we can approximate that the value of
loglo(rsm) decreases linearly with H,,, Consequently, we may approximate that the

value of 7., decrease ,with increasing H, by the factor which is the negative power of

10.

10 e —

Tsat

10 |

1 12 14 16 18 2 22 24 26 28 3
H,» 10° (A/m)

Figure 5.6: Variation of 7, with. H in paramagnetic mode
of one dimensional capture of Mn,P,O, particles

plotted in semi-logarithmic scale.

All results of simulations shown in Figures 5.1 to 5.6 achieved by using

values of grid steps Ar, = 4x107and Az =2x10". From equation (4.25) of chapter IV,
we can estimate that the maximum error of the computation generated at 7 =1.00 is in

the order of 107°.
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5.2 Two Dimensional Simulations of the Capture of Ultra-Fine Particle by a

Single-Ferromagnetic Cylindrical Collector

In this section, HGMS capture of ultra-fine particles by a single
ferromagnetic cylindrical collector is simulated in all the same situations as the previous
section of one dimensional case but all simulations here are performed in two

dimensions.

5.2.1 Paramagnetic Mode of the Capture

The first situation is the paramagnetic mode of the capture. The
ultra-fine particle is paramagnetic Mn,P,O, particle of radius b, =12x10"° m. An
assembly of Mn,P,O. particles dispersed in a static water. The effective magnetic
susceptibility of the system (water + Mn,P,O, particle) isy=+4.73x10" .The
ferromagnetic collector is considered to be homogeneous saturate magnetized
perpendicular to its axis by a uniform external magnetic field H, = 1.0x10° A/m points
in the positive X direction and its saturate magnetization is M =1.6x10° A/m. Let the
absolute temperature equal to 300 K. The values of factors G,”™ =-16.62 and
K, =0.80. The value of initial concentration at every points in the computational
domain is set equalto C,=1.0x10" and the saturation concentration is set equal to
C,, =0.10. Grid steps used in-this two-dimensional simulation are Ar, =1x107,
A =1x10",and A7 =1x107. The outer boundary of the computational domain is set
at r, =10.00and the boundary condition is assigned that the wvalue of particle
concentration at -all ‘points on -the. outer boundary are held fixed at the initial
concentration for all normalized times. The results of the simulation are presented to
illustrate the behavior of the build-up of ultra-fine particles on the collector.

Figure 5.7 shows the family of concentration contours in various
regions around the collector those describing the build-up features of ultra-fine particles

on the surface of the collector.
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Figure 5.7: A family of concentration contours.around the ferromagnetic

collector in paramagnetic mode, Gfe”” =-16.62, K,, =0.80.
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In Figure 5.7, we can see the feature of the build-up of
ultra-fine particles on the ferromagnetic collector. Regions around the collector can be
specified in three zones. The first zone is called the saturation region where

concentration at all points equal to the saturation concentration C

S

. =0.10. Saturation
regions in the figure are labeled by the symbol . The second zone is called the
accumulation region where the value of concentration is larger than the initial
concentration but less than the saturation concentration that is C, <c<C,, .Particles
accumulate dynamically in the accumulation region. Accumulation regions in the figure
are labeled by the symbol . The radial magnetic force is attractive in both saturation
and accumulation regions. The third zone is called the depletion region where the value
of concentration is less than the initial value that is 0 <¢ < C, . The radial magnetic force
is repulsive in the depletion region. Depletion regions in the figure are labeled by the
symbol @I
In Figure 5.7, we see that, in paramagnetic mode, the build-up of
ultra-fine particles on the ferromagnetic collector occur in the direction parallel to the
direction of uniform external magnetic field Fowhich is the X -direction in the figure.
Particles depleted in the direction that perpendicular to the direction of ﬁ; since, due to
magnetic force, they are repelled to other regions.
Figure 5.8 shows concentration distribution at & =0, 7 radian at various
normalized times and Figure 5.9 shows concentration distribution at 6 =7/2, 37/2
radian at the same normalized times. The dash line in the each figure represents the
analytical steady-state solution at that angle. From these figures, we can see that when
capture process proceeds, ultra-fineparticles are-transferred, by the action of the
magnetic force, from depletion regions to accumulation and saturation regions. In the
saturation region, particles accumulate highly dense and all particles contained in this
region are separated from the fluid. When the capture process is terminated, the
external magnetic field is shutdown and particles those are captured in saturation

regions can be washed from the collector.
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Figure 5.8: Concentration distribution at @ =0, zradian at various normalized

times in paramagnetic mode, G;""* =-16.62, K, =0.80.
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Figure 5.9: Concentration distribution at @ = /2,37 /2 radian at various
normalized times in paramagnetic. mode,

G/ =L16.62, K, = 0.80.

Figure 5.10 'shows a comparison between steady-state concentration
distribution at @ =0 radian and @ = /2 radian. From this comparison, we see that the
maximum concentration (C_, =0.10) is about 5000 times of the minimum
concentration. Consequently, almost total amounts of ultra-fine particles in depletion

regions are transferred to saturation and accumulation regions.
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Figure 5.10: Comparison between steady-state concentration distribution at
6 = 0and 7 /2 radian in paramagnetic mode,

G/ =-16.62, K,, =0.80.

The family ‘of coneentration contours. shown in Figure 5.7 is compared
with the result of the former work published by L. P. Davies and-R. Gerber in 1990 [8]. In
their work, HGMS capture of Mn,P,0,.3H,0 particles (b, = 1.2x10° 'm, y =2.03x107)
in aqueous suspension by a thin stainless steel wire of radius @=5x10" m and
saturate magnetization M =8.61x10° A/m is simulated in paramagnetic mode. The
uniform external magnetic field is H, =1x10" A/m. The factors GJ*"* =-38.4,

K, =0.04305 and the initial concentration is C, =1x107. The capture process was
simulated until 7 =0.20. We find that the features the build-up of ultra-fine particles on
the surface of the collector in these two results are consistent. Consequently, our

simulation methodology in this two-dimensional case can be considered reliable.
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All results of two dimensional simulations shown in Figures 5.7 to 5.10
are achieved by using values of grid steps Ar, =1x107, A@=1x10" and
A7 =1x10". From equation (4.53) of Chapter IV, we can estimate that the maximum
error of the computation generated at 7 =0.10is in the order of 10~
All results shown in Figure 5.7 to 5.9 are simulated from 7=0 to
7=0.10. Now we will consider steady state of HGMS capture process in two
dimensions. From the original continuity equation (2.5) of Chapter I, we assume that the
magnetic force is only the force that dominates the capture process. The outer boundary
condition is assigned that the value of particle concentration at every points on the outer
boundary is held fix equal to the initial concentration for all normalized times. From these
assumptions we can determine the steady-state solution of the original continuity

equation (2.5) in two dimensions as (see Appendix G)

cs(ra,0)=ﬂ(0)exp[%} (5.1)

where U, is the magnetic potential energy of the system of particles and fluid,

1
U, (ra,H)zguo(lp—Zf)Hz(ra,H) (5.2)

and A(8) is a function of @ which make the value of ¢, (r,,0) satisfy the outer

boundary condition at all points-on the outer boundary of the computational domain,

CO

A(@)=W,

kT

(5.3)

where C, is the initial concentration.
For this situation where the collector is a ferromagnetic one, from

equation (2.13) of Chapter Il, we can determine the expression of U, (raﬂ) as



+10) =~ o (z,—x,)| H; + 7t

a

2
U, (r 1 MH cos(260) M } ,

where M is the magnetization of the ferromagnetic collector.
From equations (5.1) to (5.4), we can generate the steady-state

concentration contours in the paramagnetic mode as shown in Figure 5.11.

L 4
{1 units of collector radius)

X

(in units of collector radiug)

Figure 5.11: Steady-state concentration contours around the ferromagnetic

collector in paramagnetic mode , G/ = -16.62, K,, = 0.80.
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In the Figure 5.11, we generate the steady-state concentration
contours in capture process of the ultra-fine paramagnetic Mn,P,O, particle of radius
b, =1.2x10" m. An assembly of Mn,P,O, particles dispersed in a static water. The
effective magnetic susceptibility of the system (water + Mn,P,0, particle) is
y=+4.73x10". The ferromagnetic collector is considered to be homogeneous
saturate magnetized perpendicular to its axis by a uniform external magnetic field
H, =1.0x10° A/m points in the positive X direction and its saturate magnetization is
M, =1.6x10° A/m. The absolute temperature equal to 300 K. The factor
GJ""” =-16.62 and the factor K,, =0.80. The value of initial concentration at every
points in the computational domain is set equal to C, =1.0x10" and the saturation
concentration is set equal to C,, = 0.10.

Figure 5.11 depicts the feature of the build-up of ultra-fine particles on
the collector at steady state. Locations of saturation, accumulation and depletion
regions are specified.

In this research, we define a variable denoted by P,

sat

as the percent of
the volume of ultra-fine particles those captured in saturation regions from total volume

of ultra-fine particles in the computational domain,

1 f ultra-fi rticl tured in saturati '
_ volume oOf ultra-1ine particles captured 1n saturation regions %100 .(5.5)

"~ total volume of ultra-fine particles in the computational domain

sat

From. the family of concentration contours-in-Figure 5.7, we can
determine the variation of P, with normalized time 7 as shown in Figure 5.12. In
Figure 512, we can see that, for this paramagnetic mode, the saturation concentration

take places at about 7 =0.020. When 7 =0.10 the value of P, is about 10%.



65

10 -~

sat
=

o

u L . 1] | i |
0 0.01 0.0 003 0.04 005 006 007 008 0.0% 0.1
T

Figure 5.12: Variation of P_ with 7 in the paramagnetic mode,

sat

G/ =-16.62, K,, =0.80.

Since we can determine the steady-state solution ¢, (r,,0), Itis

interested to determine how the value of P

sat

at steady state vary with the magnitude of
uniform external magnetic field H,,. This result is shown in Figure 5.13.

In Figure 5.13, if we consider at H, =1.0x10° A/m which equal to the
value of uniform external magnetic field used in our simulation then we find that the
steady-state value of P, for this value of H, equal to about 12.5%. When this data is
compared with the result of simulation in Figure 5-12, we can estimate that , for the value
of H, = 1.0x10° A/m, the capture process reach the steady state at normalized time 7

small amount greater than 0.10.
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Figure 5.13 can help us for adjustment the optimum value of the
uniform external magnetic field when the certain amount of ultra-fine particles to be

separated from the fluid is specified.
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Figure 5.13: Variation of steady-state P, with H,, in
paramagnetic mode, G =-16.62, K,, = 0.80.

5.2.2 Diamagnetic Mode of the Capture

In the diamagnetic mode, the ultra-fine particle is diamagnetic gold
particle of radius bp =6.92x10"° m. An assembly of gold particles dispersed in a static
water. The effective magnetic susceptibility is y =-2.55x10". The ferromagnetic
collector is considered to be homogeneous saturate magnetized perpendicular to its
axis by a uniform external magnetic field H, =1.0x10° A/m points in the positive X
direction and its saturate magnetization is My =1.6x10° A/m. The value of initial

concentration is set equal to C, = 8x10™ and the saturation concentration is set equal
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to C,,, =0.10. The position of the outer boundary is at 7, =10.00 and the value of
concentration at the outer boundary is held fixed equal to C, =8x10™* for all normalized
times. For this diamagnetic mode, the factors G/ =+17.18 and K,, = 0.80.

Figure 5.14 shows the family of concentration contours around the

collectorat 7 =0.10.

Y

(in units of collector radius)

.‘

X

(in units of collector radius)

Figure 5.14: A family of concentration contours around ferromagnetic
collector in diamagnetic mode, G = +17.18, K,, = 0.80,
7=0.10.

From this figure, we see that the location of accumulation regions and

depletion regions in diamagnetic mode are opposite to those of paramagnetic mode.
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This is because the directions of magnetic traction force between paramagnetic
mode and diamagnetic mode are opposite. We see in Figure 5.14 that the saturation
region does not exist on the surface of the collector, this tell us that, at 7 =0.10,
ultra-fine particles accumulate around the collector as a cloud but they are not retained
statically on the surface of the collector. Consequently, ultra-fine particles are not
separated from the fluid. The higher value of H| is required to achieve a successful
separation in this diamagnetic mode.

Figure 5.15 shows the distribution of concentration in the diamagnetic
mode at @ = 7/2, 3z/2radian at various normalized times. The dash line in the figure
represents the analytical steady-state solution at these angles. From this figure, we see
that the concentration on the surface of the collector at @=7/2, 37/2 radian

increases with 7 since the magnetic force is attractive at these angles.
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Figure 5.15: Time evolution of concentration distribution at @ =z /2, 37/2

radian in diamagnetic mode, GJ*"* =+17.18, K, =0.80.
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Figure 5.16 shows the distribution of concentration in the diamagnetic

0 =0, mradian at various normalized times. The dash line in the figure

represents the analytical steady-state solution at these angles. From this figure, we see

that the concentration on the surface of the collector at @ =0, 7 radian decrease with

7 since the magnetic force is repulsive at these angles.

¢, particle volume concentration

Curve No. 1 2 3 4 5 6
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Figure 5.16: Time evolution of concentration distribution at & =0, 7 radian

in diamagnetic mode, G/ =+17.18, K, =0.80.
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Figure 5.17 shows concentration contours around the collector in

diamagnetic mode at steady state. These contours are generated by using equations
(5.1) to (5.4) where parameters are specified in pages 66 to 67. Contours in Figure 5.17
show us that, in the diamagnetic mode, particles accumulate in the direction
perpendicular to the applied uniform external magnetic field(ﬁo) and particles deplete
in the direction parallel to the applied uniform external magnetic field. This result is
opposite to the case of paramagnetic mode. In Figure 5.17, we see that no saturation

region take place in this situation as we can see from the curve number 6 in Figure 5.15.

(in units of collector radius)

(in units of collector radius)

Figure 5.17: Steady-state concentration contours around the ferromagnetic collector

in diamagnetic mode, G/ =+17.18, K,, =0.80.
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The absence of the saturation region at steady state in Figure 5.17 tell
us that ultra-fine particles accumulate around the collector as a cloud but are not
retained statically on the surface of the collector. Consequently, at steady state,
ultra-fine particles are not separated from the fluid. The higher value of H,, is required to
achieve a successful separation in this diamagnetic mode. Figure 5.18 shows the

variation of P

sat

at steady state with H, in diamagnetic mode.
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Figure 5.18: Variation of steady-state P, with H, in diamagnetic mode,

sat

Gl =+17.18, K;, =0.80.

In Figure 5.18, we see that, for H, =1x10° A/m, the value of

steady-state P

sat

equal to zero which corresponds to the result in Figure 5.17. The result
in Figure 5.18 can help us for adjustment the optimum value of the uniform external
magnetic field in diamagnetic mode when the certain amount of ultra-fine particles to be

separated from the fluid is specified.
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5.3 Two Dimensional Simulations of the Capture of Ultra-Fine Particles by

an Assemblage of Random Paramagnetic Cylindrical Collectors

In this research, two dimensional simulations of the capture of ultra-fine
particles by an assemblage of random paramagnetic cylindrical collectors in static fluid
are performed in paramagnetic mode. Our first objective is to investigate the effect of
variation of packing fraction of cylindrical collectors in the fluid to the feature of the
build-up of ultra-fine particles on the surface of the collector and the distribution of
concentration around the collector in the representative cell. The second objective is to
investigate the effect of variation of packing fraction of cylindrical collectors in the fluid
to the volume of ultra-fine particles captured in the saturation regions on the surface of
the collector in the same interval of normalized time. The third and final objective is to
investigate the effect of varying the magnitude of uniform external magnetic field to the
volume of ultra-fine particles captured in the saturation regions on the surface of the

collector in the same interval of normalized time.

5.3.1 The Effect of Variation of Packing Fraction to
Features of Concentration Distributions in the

Representative Cell

In every simulations of this section, the ultra-fine particle is
paramagnetic Mn,P,0, particle of radius b, =1.2x10"° m. An assembly of Mn,P,O,
particle dispersed in a static water. The effective magnetic susceptibility of the system
(water + Mn,P,Q, particles) is y =+4.73x107 . The uniform external magnetic field has
its magnitude H,= 2.0x10° A/mand points in the positive X direction which
perpendicular to axes of all cylindrical collectors. The parameter K. defined in the
equation (2.17) of Chapter Il is equal to 0.20. The absolute temperature is set equal to
300 K. The value of initial concentration at every points in the representative cell is set
equal to C,=1.0x10" and the saturation concentration is set equal to C_, =0.10.

Three values of packing fractions of cylindrical collectors in fluid are used as
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F =5%, 8% and 10% . For all value of packing fractions, simulations are perform in
the same interval of normalized time as 0 <7 <0.10.

In the first case, F =5% the value of factor G,"" for this case is equal
to —16.95. Figure 5.19 shows the feature of the build-up of ultra-fine particles on the
surface of the collector and the distribution of concentration around the collector in the
representative cell. The concentration contours are shown only in the first quadrant,
(OS 6’S7r/2), since the distribution of concentration has symmetry about X and Y

axes.

4.47 : : : : ; : : :

.

L

[

b
(in units of collector radius)

[

(in units of collector radius)

Figure 5.19: A family of concentration contours around the paramagnetic collector

in the representative cell, F = 5%, G,"*" =-16.95, r=0.10.
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From concentration contours in Figure 5.19, we see that at 7 =0.10
saturation concentration take place on the surface of the paramagnetic collector in the
representative cell. The features of the build-up and depletion of ultra-fine particles in
regions close to the surface of the collector are similar to those in the case of single
ferromagnetic collector in Figure 5.7. This is because the forms of the equations of
functions G, (r,,8) and G, (r,,0) are the same for these two cases but the forms of the
factors G/*"* and G,"*" are different. In the case of single collector, we assign the
outer boundary condition by fix the concentration on the outer boundary of the
computational domain equal to initial concentration for all normalized times. In this case
of random cylindrical collectors, the capture of ultra-fine particles is considered only in a
representative cell. The outer boundary of the representative cell is considered as an
impervious surface. We can see the variation of concentration on the outer boundary of
the representative cell. In the range of @ that radial magnetic force is attractive, the
concentration on the outer boundary decreases lower than the initial concentration. This
is because ultra-fine particles in regions near to the outer boundary are transferred to
other regions more closed to the collector. In the range of @ that radial magnetic force
is repulsive, the concentration on the outer boundary increases higher than the initial
concentration. This is because ultra-fine particles in regions near to the surface of the
collector are transferred to other regions faraway from the collector.

Figure 5.20 shows the distribution of concentration at @ =0 radian at
various normalized times for this case of F'=5% .In Figure 5.20, note that the value of
concentration at the outer boundary is lower than initial concentration (CO :1><10"3)
since the magnetic force is attractive at this angle.

Figure 5.21 shows the distribution of concentration at @ = 7 /2 radian at
various ‘normalized times for this case of F'=5%. In Figure 5.21, note that the value of
concentration at the outer boundary is higher than initial concentration (CO :1><10*3)

since the magnetic force is repulsive at this angle.
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Figure 5.22 shows the feature of the build-up of ultra-fine particles on the surface of
the collector and the distribution of concentration around the collector in the
representative cell for the case of F =8%. In this case the value of factor G,"*" is

equal to —17.16.

b4
(in umnits of collector radius)

(inumits of collector radius)

Figure 5.22: A family of concentration contours around the paramagnetic collector

in the representative cell, F' =8%, G(’)"’”d"”’ =-17.16, 7=0.10.
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Figure 5.23 shows the distribution of concentration at & =0 radian at

various normalized times for this case of F =8%.
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Figure 5.24 shows the distribution of concentration at & = 7 /2 radian

at various normalized times for this case of /' =8%.
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Figure 5.25 shows the feature of the build-up of ultra-fine particles on
the surface of the collector and the distribution of concentration around the collector in
the representative cell for the case of F =10% . In this case the value of factor G;""*"

is equal to —17.30.
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Figure 5.25: A family of concentration contours around the paramagnetic
collector in the representative cell,

F =10%, G;"*" =-17.30, 7=0.10.



Figure 5.26 shows the distribution of concentration at & =0 radian

at various normalized times for this case of £ =10% .
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Figure 5.27 shows the distribution of concentration at @ = 7 /2 radian

at various normalized times for this case of £ =10% .

¢, particle volume concentration

Figure SE: Time evolution of concentration mtribution at @ = /2radian
in the representative cell, F'=10%, G =-17.30.
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From all results in Figures 5.19 to 5.27, we can conclude that variation

of packing fraction of cylindrical collectors in fluid has no significant effect to the feature
of the build-up of ultra-fine particles on the surface of the paramagnetic collector in the
representative cell. The variation of packing fraction of cylindrical collectors in fluid also
has no significant to the feature of concentration distribution in various regions around
the collector in the representative cell. These are because, features of concentration
contours in every case, F =5%, 8%, 10% are very similar and features of
concentration distributions at @ =0 radian and @ = z /2 radian of all values of packing

fraction are also very similar.

5.3.2 The Effect of Variation of Packing Fraction to the

Amounts of Particles Captured in Saturation Regions

In this section, we investigate the effect of variation of packing
fraction of cylindrical collectors in fluid to the amounts of ultra-fine particles captured in
saturation regions on the surface of the paramagnetic collector in the representative cell.

We compare the variation of variable P ,, defined in equation
(5.5), with normalized time among three values of packing fraction, F' =5%, 8%, 10%.

For every values of packing fraction, the ultra-fine particle is
paramagnetic Mn,P,0, particle of radius b, =1.2x10" m. An assembly of Mn,P,0,
particle dispersed in the static water. The effective magnetic susceptibility of the system
(water + Mn,P,0, particles) is y =+4.73x107. The-uniform external magnetic field has
its magnitude H, =2.0x10° A/mand points in the positive X direction. The parameter
K. defined in the equation (2.17) of Chapter Il is equal to 0.20. The absolute
temperature is set equal to 300 K. The value of initial concentration at every points in the
representative cell is set equal to C, = 1.0x107 and the saturation concentration is set
equal to C,=0.10. The values of factor G,"*"for packing fraction
F=5%, 8, 10% are —16.95, -17.16 and —-17.30, respectively. The interval of

normalized time is 0 <7 <0.10 for all values of packing fraction.
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Figure 5.28 shows the comparison of variation of P, with 7 in the

interval 0 <7 <0.10 for three values of packing fraction.
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Figure 5.28: Comparison of variations of P, with 7 between

F=5%, 8%, 10%.

From the result shown in Figure 5.28, we see that the evolution of P,
with 7 is faster when packing fraction is increased. In the same interval of normalized

time, the value of P _, is proportional to the value of packing fraction. This can be

sat
understood by a simple consideration, when packing fraction is increased, number of
paramagnetic collectors in the system is increased. Consequently, more collectors can

capture more amounts of ultra-fine particles in the same interval of 7 .
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5.3.3 The Effect of Variation of Uniform External
Magnetic Field to the Amounts of Particles

Captured in Saturation Regions

In this section, we investigate the effect of variation of uniform
external magnetic field (HO) to the amounts of ultra-fine particles captured in saturation
regions on the surface of the paramagnetic collector in the representative cell.

We compare the variation of variable P, with normalized time
among three values of H, H, =1.0x10° A/m, 2.0x10° A/m, 3.0x10° A/m .

For every values of H,, the ultra-fine particle is paramagnetic
Mn,P,O; particle of radius b, = 1.2x10™* m. An assembly of Mn,P,0, particle dispersed
in the static water. The effective magnetic susceptibility of the system (water + Mn,P,O,
particles) is y =+4.73x107. The uniform external magnetic field (7—1«0) points in the
positive X direction. The parameter K. is equal to 0.20. The absolute temperature is
set equal to 300 K. The value of initial concentration at every points in the representative
cell is set equal to C,=1.0x10" and the saturation concentration is set equal to

C., =0.10. The values of packing fraction is £ =5% and the value of factor G,"*" is

—16.95. The interval of normalized time is 0 <7 <0.10 for all values of H,,.
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Figure 5.29 shows the comparison of variations of P_, with 7

sat

in the interval 0 <7 <0.10 for three values of H,.
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Figure 5.29: Comparison of variations of P_, with 7 between

sat

H,=2.0x10° A/m, 3.0x10° A/m.

From the result. shown in Figure 5.29, we see that the evolution of
P,, with 7 is increased rapidly with increased H,. The curve of H,=1.0x10° A/mis

not shown since the value of P

sat

equal to zero at every 7 in the interval shown in the
figure. The obtained result can be understood by consider equation (3.14) of Chapter Ill.
We can see, in equation (3.14), that the factor Gg“"d”’" is proportional to H(f.
Consequently, when H, is increased, the amounts of particles captured in saturation

regions on the surface of the collector in representative cell increase rapidly.




CHAPTER VI

CONCLUSIONS

In this research, HGMS capture of ultra-fine weakly magnetic particles in
various situations both in one dimension and two dimensions are investigated. For the
case of single collector, former published researches are studied and more analyses
are given in details. Furthermore, we develop a simple two dimensional theoretical
model for describing the capture of ultra-fine particles by an assemblage of randomly
distributed parallel cylindrical collectors. We use the effective medium treatment to
construct the model mentioned. We simulate HGMS capture of ultra-fine particles in
various physical situations by solving the continuity equation describing dynamics of the
system of particles both analytically and numerically. Both time-dependent and
steady-state features of the capture of ultra-fine particles are obtained.

For the case of a single collector, Results of simulations can predict the
features of the build-up of ultra-fine particles on the surface of the collector both in
paramagnetic and diamagnetic modes of the capture. These results show that the build-
up of paramagnetic and diamagnetic particles on the collector have the opposite
features. The assembly of paramagnetic particles accumulate in the direction parallel to
the uniform external magnetic field whereas the assembly of diamagnetic particles
accumulate in the direction perpendicular to the uniform external magnetic field. In
addition, our results provide a basic guide for setting the strength of external magnetic
field to achieve the required amount of particles to be separated from the fluid at steady
state.

For the case of an assemblage of randomly distributed parallel
cylindrical collectors, we study the effect of collector packing fraction to the feature of
the build-up of ultra-fine particles on the collector and to the feature of particle
concentration distribution around the collector. Results of simulations show us that the
packing fraction has insignificant effect to those features. Furthermore, we study the

effect of packing fraction to the amount of particles captured in saturation regions on the
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surface of the collector in the same interval of normalized time. Results of simulation
show us that, in the same interval of normalized time, amount of particles captured in
saturation regions on the surface of the collector is proportional to the packing fraction.
Finally, we study the effect of the strength of magnetic field to the amount of particles
captured in saturation regions on the collector in the same interval of normalized time.
Results of simulation also show us that the amount of particles captured in saturation
regions on the surface of the collector increases rapidly when the strength of external
magnetic field is increased.

The theoretical model developed in this research can be used to predict
the separation process of very small particles in many field of works for example,
separation of blood component from whole blood, .etc.

The model developed in this research is for the capture of ultra-fine
particles in static fluid. In the future, this model can be developed further to the case of
the capture of ultra-fine particles in flowing fluid which more close to industrial

applications of high gradient magnetic separation.
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APPENDIX A

Magnetic Field Around a Ferromagnetic

Cylindrical Collector

Consider a long magnetic cylindrical collector of radius a immersed in a
magnetic medium of permeability 2, . Both collector and medium are placed in a
uniform magnetic field of magnitude H, perpendicular to the axis of the collector. Let
the Z axis of the Cartesian coordinate coincide with the axis of the collector. The

geometry of the situation can be shown in Figure A.1.

(r.8,z)

fluid medium

Figure A.1: A magnetic collector and surrounding medium in a uniform magnetic field.

The magnetic field in and around the collector can be determined by solving the

Laplace ’s equation

where @, is the magnetic scalar potential.
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Equation (A.1) can be solved by using these boundary conditions

1) The magnetic field very far from the collector is a uniform one of
magnitude H, and point in the positive X — direction as shown in
Figure A1,

2) Magnetic field at the origin of Cartesian coordinate must finite

3) The component of magnetic field in the direction that parallel to the
collector surface must continuous at the surface of the collector.

4) The component of magnetic induction in the direction that
perpendicular to the collector surface must continuous at the surface
of the collector.

Since the collector is long, we can approximate that the value of ®@,, dose not
depend on the z coordinate and the problem will be solved in two dimensions. By the
geometry in Figure A.1, itis convenient to solve this problem by using
two dimensional circular cylindrical coordinate (r,@). Consequently, equation (A.1)

becomes

2
li(raq’Mj+ia . n2)
r or or r* 00°

This equation has the general solution in the form
d(r,0)= i[Anr’” cos(nB)+B,r" cos(nH)], (A.3)
n=l1

where 4, and B, are constants would be determined.
Let @, and @, is magnetic scalar potential in the fluid and collector,

respectively. From the first and the second boundary condition we obtain

@, (r,0)=—H,r cos<9+iAnr’” cos(nb) (A.4)

n=1
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and
®,(r,0)=>_B,r" cos(nb). (A.5)
n=1
From the relation between magnetic scalar potential and the magnetic
field,
H=-V0,, (A.6)

and the third boundary condition we obtain

a5
r a0 )|_, r 06

When the magnetic collector is a ferromagnetic one with magnetization

r=a

M points in the same direction as the uniform external magnetic field E then we

(_ acsz
Hy or

When equations (A.4) and (A.5) are substituted in the equation (A.8), and by

obtain

or

r=a

+u,M cos€ =y, (— ad j

r=a

using orthogonality property of cosine function,

[cos(n6)cos(m0) do :%5,",,, (A9)
0
we obtain ,ufa’zAl + Uy B, = M — i H,, (A.10)
and A =0, B =0 forn#l. (A.11)

When equations (A.4) and (A.5) are substituted in the equation (A.7), and by

using orthogonality property of sine function,
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[sin(n0)sin(mo)do =%5nm , (A12)
0
we obtain a’4-B=H,, (A.13)

From the system of linear equations (A.10) and (A.13), we can obtain

N poMa’® +(/Jo _ﬂ/’)azHo

A (A.14)
Ho + Hy
M-2u H
and B, L NS0 (A.15)
Ho+ Hy

Since u, =y, (1+;(f), where y .is the magnetic susceptibility of the fluid, in
general the value of ¥ is in the order of 10~ to 10, consequently, we can

approximate that 4, =~ #, and we obtain

and B~—-H,. (A.16)

From this equation, we can determine magnetic scalar potentials as

: 2
@,/ (r,H):—HOrcosﬁ+M[2a (cos@j (A17)
r
and
d)zfm(r,ﬁ):(%—Hojrcosﬁ . (A.18)

From equation (A.17), we can determine the magnetic field in the fluid around

the ferromagnetic collector as
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ﬁl’fen’o (}"a’e) — HO |:(1+K_;V] cos ef—(l—K—;VJ Sin gé:| y (A19)
[

ra

where

(A.20)

and

(A.21)
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APPENDIX B

Magnetic Field for an Assemblage of Random Cylindrical

Paramagnetic Collectors

In 1998, Natenapit [13] determined the magnetic field around parallel
cylindrical paramagnetic collectors which are randomly distributed in the formerly
uniform external magnetic field. In that work, the effective medium approach originally
conceived by Hashin [ref] was used.

In the effective medium approach, the system of paramagnetic collectors
and surrounding medium is considered to be composed of cylindrical composite cells,
each containing exactly one of the collectors. The ratio of the collector to the cell volume
(az/bz) is set equal to the packing fraction of collectors in the medium denoted by F'.
Adjacent to each collector (permeability £, ) is the surrounding medium (permeability
4,). In the effective medium model, only a representative cell is considered, while the
neighbor cells are considered equivalent to a homogeneous medium with effective

permeability 4" to be determined. Figure B.1 shows a representative cell.

Ha

{r.8,z)

a %

,u"
- —_—_—_—_ -
153 a effective meditlm

(513

Figure B.1: A representative cylindrical composite cell.
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To determine the magnetic field in the cell, the boundary value
problem of coaxial magnetic cylinders subject to the boundary condition of uniform
magnetic field at far away from the representative cell is solved. By taking z axis of the

circular cylindrical coordinate along the collector axis and let @ be the magnetic scalar

potential satisfying Laplace’s equation for each region in Figure B.1.

Vo,=0 b<r<w (B.1)
V@ =0 asr<b (B.2)
—2

V.®,=0 0<r<a (B.3)

with these boundary condtions
@, (r,0)=—H,rcosd at r — oo (B.4)

0D, (b,6) o, (b,6)

B.5
00 00 (B:5)
o, (a,0) - o, (a,0) B.6)
06 00 '
oo, (r,0 oo, (r,0
/l* o(r ) :ML (B.7)
or ) or |5
and
oo, (r,0 oo, (r,0
20 00, (r6) (B.8)
or |, or |,

From equation (B.1) to (B.3), the general solutions, with boundary condition in

equations (B.4) assigned, of these equations are



D, (r,0)=—H0rcost9+iAnr‘" cos(nd), (B.9)
n=1
(I)l(r,e):i[Bnr" +Cnr_"}cos(n0), (B.10)
n=l1
and d)z(r,@):iDnr” cos(nd). (B.11)

n=1

When the boundary condition in equation (B.5) is imposed, we obtain

—H0b+i—B,b—Q=O forn=1 (B.12)
b b
and
Ab" =Bb"'-Cb"=0 forn=1 . (B.13)
When the boundary conditions in equations (B.6) to (B.8) are imposed,

we obtain
Ba"+Ca"-Da" =0, for all n (B.14)
—uH, — " Ab~ + uCh?> — B, =0, forn=1 (B.15)
HAD" +u (B ~C b )=0, . forn#l (B.16)
wDa" —pBa" + uCa =0, for all n (B.17)

By solving the system of linear equations (B.12) to (B.17), we can

determine coefficients 4,, B

n?’

C, and D, as

A,=B =C,=D,=0 foralln=#1 (B.18)
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4 =h;°;2 [F (v +1)(v=1)=(v" =1)(v+1)] (8.19)
B =-2 (1 (B.20)
C, =2H°fazv*(v—1) (B.21)
D = —4}?* (B.22)

where v =u"/y, v=pu,/1, and 12[(1/*+1)(V+1)—F(V—1)(V*—l)].

The magnetic field in various regions in the representative cell can be
determined from

H

VO . (B.23)

However, the results are given in term of the unknown effective
permeability #". We can determine z° by using the consistency of the effective
medium model that the magnetic induction averaged over the representative cell
(collector plus medium) to be the volume average of the magnetic induction over the
effective medium. That is

Fie () 1 o) = (77 () 250) o2

where i referred to x, y or z . Substituting the magnetic field into equation (B.24)

and taking the x component of the magnetic field, we obtain the relative effective

permeability

. v(I+F)+(1-F)
Y Cv(1-F)+(1+F) (B.29)




where v' = ' /i, v =t/ 14

Then we can determine the magnetic field in the meduim in the

representative cell as

H,(r,,0)= AH, [(1+K—§]cosﬁf—{l—1{—fjsineﬁl, I<r, <2
r

b r a

a

HEﬁ:E;, 2<Va<00
. a
where

? 1

1-FK,.
-1
el
v+1

and r,=r/a.

2
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(B.26)

(B.27)

(B.28)

(B.29)

We note that in the limit of F(=Z—2]—>O, viol (or u' =),

equation (B.26) is reduced to the case of single paramagnetic collector. For

=, (i.e. K. =0, A=1), the homogeneous magnetic field H = H, is obtained.



APPENDIX C

Approximating Derivatives of Functions by

Finite-Difference Relations

Consider a continuous function of real variable xdenoted by f(x), the
derivative of this function with respect to x at a certain value of its argument, x,, is

defined as

(C.1)

Let us assume that fis a well-behaved function, then the derivative of f with
respect to x can be determined in any order. Consequently, we can write Taylor’s
expansion of f(x) at a point x,,, which advance a point x, with an amount Ax in the

domain of f as

2

(Ax)
2!

f(xkﬂ) = f(xk)+(Ax)f'(xk)+ f"(xk)+... , (C.2)
where Ax =x,,, —Xx,.
From equation (C.2), we can determine the first-order derivative of f with

respectto x atthe point x, as
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where O(Ax) represent the terms of order (Ax)and higher. We can approximate the

first-order derivative of f with respect to x at the point x, as

where the error of approximation is in the order (Ax) )
The equation (C.5) is called the first-order forward difference approximation.
Now if we write Taylor's expansion of f(x) at a point x,_, which lag a point x, with an

amount Ax in the domain of f as

where Ax =x, —x,_,.
From equation (C.6), we can determine the first-order derivative of f with
respectto x atthe point x, as

[ (%)= f () | (Ax)

—f "
- + o f(xk)—... ) (C.7)

f'(x)=
The equation (C.7) can rewritten more compactly as

fx)

f'(x)= (xk“)+0[(m)] . (C.8)

QA
Ax
Then we obtain an alternative way to approximate the first-order derivative of f with

respectto x atthe point x, as

(o)< LI ©9
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where the error of approximation is also in the order (Ax) .
The equation (C.9) is called the first-order backward difference approximation.

If equation (C.6) is subtracted from equation (C.2) we obtain

F (o)~ f (x,) =2(Ax) f’(xk)+%(Ax)3 P ) e (€.10)

From this equation we can determine the first-order derivative of f with respectto x at

the point x, as

f;(xk): f(XkHz)(;;Cf)(Xk_l)_(A;) f"'(xk)+... , (C.11)
f'(xk)=f(xk+12)(;xj;(xk1)+O[(Ax)1 . (C.12)

From equation (C.12), we obtain an alternative way to approximate the

first-order derivative of f with respect to x at the point x, as

. I (%) = f (%) (C.13)

where the error of approximation is also in the order (A)c)2 .

The equation (C.9) is.called the first-order.central difference approximation.

When equations (C.2) and (C.6) are added we obtain
——2(Ax) +.... (C.14)

I () + £ (%) =21 (%) +(Ax)

This equation can be rewritten as

£7(x) = f(xk+l)_2(];i);/;)+f(xk—l)+O|:(Ax)2:|, (C.15)
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where O[(Ax)z} represent the terms of order (Ax)2 and higher. We can

approximate the second-order derivative of f with respect to x at the point x, as

f(xk+1)_2f(xk)+f(xk—l)

S (%)= (&) , (C.16)

where the error of approximation is in the order (Ax)2 .
The equation (C.16) is called the second-order central difference approximation.

These approximations are used in Chapter IV of this research.



APPENDIX D

Errors and Stability of the Computation for Simulations of
the Capture of Ultra-Fine Particles in One Dimension

D.1 Errors of the Computation

We start with equation (4.19) of Chapter IV,

=l ely=2c + e, B O oG,
i [ i+ i i G i+] i—1 r n_ fly D.1
e [ () }( (5w e

where &' is a real number generally not equal to zero.

The value of &' indicate the error of the computation occurred at a
discrete radial position (r )l, at_the n" step of the computation. If the approximated

a

solution C approach to the analytical solution ¢ then & approach to zero.

From equation (D.1), by using Taylor’ s expansions, we can approximate

the analytical solution-at each grid-points-as

When these approximations are substituted in equation (D.1), we obtain
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From this expression, we can see that the first part on the right hand side

equal to zero and we have

g;’z[aiJ (M){z((},)[a—f] —(ﬁ—fJ ](Ar") . (D.6)
ot 2 “\ o or, 12

i i i

From equation (D.6), we can conclude that

o’ )
or’ .

(Ara )2 .

< max
12

in

max|s;

in

(A7)
)

D.2 Stability of the Computation

From equation (4.13) of Chapter IV

CLoCl_|CL2CHEL | () [Ca—Ch) (Lo g
AT (ar, )’ Aca) N@se

We write the approximated solutions at grid points as
C' =™+ 8 (D.9a)

Cl=c'+0c', (D.9b)
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(C’iqﬂ = cin+1 + 5cirirl ! (DQC)

and Cl,=c¢",+oc, . (D.9d)

When all expressions in equations (D.9a) to (D.9d) are substituted in

equation (D.8) we obtain

501.”“—50;’: oc, —2o0¢! +dc’, (G) deiy—oc, | [ 0G, Se”
At (Ara)2 AN or, ) :

e et €4 =2c ol c —c! oG,
_ i iy 4 i+ i iz G i+l i1 ! " (D.10
[( ar M (] ]“ ")"[2<Ara>Haralc']( |

From section 4.1.2.1 of Chapter IV, the second term on the right hand

side of equation (D.10) can be replaced by O[(Ar)+(Ara )2} and we obtain

50;’*1—5c[”: ocl,—20c! +oc, =(6) dci, —oc, | [ 0G, Se”
At (Ara)z T 2(Ar,) or, ). :

+0[ (a7)+(ar, )| . (D11)

Solving equation (D.11) for Sc!'*', we obtain

y {1 2(Ar) {ai ] (M)}W{ (A7) _(G,),.<AT>}M

: (Ar, )2 or, (Ar, )2 2 (Ara )

{ (a7) +<G,>,.<Ar>}5cn H(ano[(ar)+(an)] . ©12)

(Ara )2 ) (Ara ) i+l

In the simulation, grid steps Az and Ar, are set to make these following

expressions become true
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oG,
max ( o 1 (Ar)< &, (D.13)
A
mlax|(Gr)i|2((A;)) <¢, (D.14)

where the variable & is defined in the equation (4.24) of Chapter IV.
With two expressions in equations (D.13) and (D.14) satisfied, we can

approximate equation (D.12) as
e ~(1-28)6¢) +& (8¢, +56’1."_1)+(AT)O[(AT)+(A}:I)2:| . (D.15)

When the condition

0<E< (D.16)

N | —

is satisfied, all coefficients of d¢;',dc],, and Jdc;', are positive and we can obtain

n+l
|5cl.

<(1-2¢)|ocs |+ &(|oct,

+ |5clfﬂ1

J+(a7)0[(ar)+(ar,) | (@7
Equation (D.17) can-be rewritten as
‘56;1“

oc!

i+l

< max(|5clf’

n
dci,

b 2

J#(az)o[(ar)+(ar)' | ©@18)

Since the inequality-(D.18) hold for.all-indices-i then we can write

max |5c.”+1
i

1

< max |5cl.”
i

+(Ar)0| (Ar)+(ar, ) |. (D.19)

The inequality (D.19) means that the maximum error of computation at a

given discrete point for one step of computation increase by not more than

(AT)O[(AT)+(Ara )2] Consequently, for N steps of computation, we obtain
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max|5(:,.N| < max|5c?| +O[(Ar)+(Ara )2] (D.20)
Now it is proved that, with vanishing (A7) and (Ar, ), conditions (D.13),
(D.14) and (D.16) are satisfied, the approximated solutions C’ converge to the analytical

solutions ¢/ at any grid points and t
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APPENDIX E
Errors and Stability of the Computation for Simulations of
the Capture of Ultra-Fine Particles in Two Dimensions
E.1 Errors of the Computation

We start with equation (4.44) of Chapter IV,

a-q, _ Craaj =~ 265+ G n 1[G, =Cly, + 1| Cm =260, + Gy
AT (Ara)2 (ra),' 2(Ar,) (’”a)i2 (A‘g)z
ER R TN AR
_(Gﬁ)f,j Cij ~Chim 2 iy (8(;9) + &' (E1)
() U 2(a0) ) () \ a0 ), " |

a

where gfj is a real number generally not equal to zero.

The value of &, indicate the error of the computation occurred at a
discrete radial position ((ra ), ,Gj) at the n” step of the computation. If the
approximated solution C7 ; approach to the analytical solution ¢;'; then &, approach
to zero.

From equation (E.1), by using Taylor’ s expansions, we can approximate

the analytical solution at each grid points as
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Q
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>
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;_/
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7~ N\
|Q)
W
(9
—
—
>
)
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B
7\
|Q)
2
(9
>
/rﬁ
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erfs) {%f’lf”?f*(f:;’,’( J (%G;)

a/ij a
2\ 3 4
(A7) a—i +12(G.). . 6_(3: oc
2 \or - ~\or, = = or! y

_+{2223?"’f(§;ﬂ;(r:x(s;il,,}%?

Fromthis expression, we can see that the first part on the right hand side

equal-to zero'and we have

; o%c) (Ar 1 oc) oc)’ Ar, ?
VRl Ry ( )+ 2 (G”)i,j_— a3 4 ( )
ot )., 2 (r, )l_ or, )., \or )| 12

ke el




113

From equation (E.8), we can conclude that

ort )
L]

max |gl."j| < max
i,j ’

ij 2
1 (&) (o' |(ar)
+“33“[(G’)f’f‘<r>J(?] %)% 7
ali a Jij aJij
- 2(Gy),, (@) 1 (a'e) |(a0)
ij (r ) ] (r ) ort ) | 12
aji a /i j aji a /Ji,j

E.2 Stability of the Computation

From equation (4.42) of Chapter 1V,

n+l n n n n n n n n n
(Ci,j _Ci,j _ Ci+1,j _2(Ci,j +Ci—1,j A 1 Ci+1,j _Ci—l,j n 1 Ci,j+1 _2(Ci,j +Ci,j—1
(r.) (r.);

AT (Ara)2 E9 2(Ar,) ; (Ae)z
_ (Gz )i,j C;l,j —(G ) C?H,j —(C?—l,j _ aGr (C” i
(%), T 2(an) o )y
_ (GH )i,j C?,jﬂ _C?,j—l a C?J (aGH] : (E.10)
(r.), U 2(a8) ) (n),\ 00 ),

We write the approximated solutions-at grid points as

Cift =g+ o | (E.11a)
C?,j:C;fj+5C;fj , (E.11b)
Cli, =, +0¢,, (E.11c)
C' . =c' 4+ (E.11d)

i-1,j i-1,j i-1j
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Clia=c,atoc . (E.11e)
Cli=c, +oc . (E.111)

When all expressions in equations (E.11a) to (E.11f) are substituted in

equation (E.10) we obtain

502;.1 —dc], _ dcp, —20¢!+dc) | G VAR, el . 1 [0c, —20c +oc,
().l 2(ar) (r,); (A0)
oc', . —oc’

G ") [8G
N 1] 5 n & G i+l i-1,j Y ” 5 n
ra )i CI,] ( r )i,j ( Z(Ara) ] ( a]"a | Cz,]

i,J

n+l n n n n
B B ci+1,j_2ci,j+cz>1j 1 C’,-'il—cl-n,l
“ Az N (30) }(ra)i[zwa)}
N 1 ch+1_2c;j_/+ch—1 _(Gr)i,j cirfj_(G) Czil,j_cz'ril,j
(.); (A0) (7a), L 2(an)
c,ﬂj—(Gg)i” v =N (GGHJ | (EA2)
g () U 2(a0) ) (n) 00 ),

From section 4.2.3 of Chapter. 1V, the second.part on the right hand side

of equation (E-12) can be replaced by O[(Az‘)Jr(Ara )2 +(A9)2} and we obtain



[ (oo,
_(Al’a )2 2 (ra )I_ (Ara ) i+1,)
+_(AT) +((G’)i1_ 1 J(Af)léc." ‘
_(Ara)2 2 2(r,). |(4r,) i1,
L (A7) _( (G,),, ](Ar)ﬂgc%
a’ (l”a)lz (Ara)z 2a(ra)i (Ar“)_ i, j+1
+ (a7) J{ (Gg)f’f ](AT)_&”.
@ (n); (an) A 2a(n) )(an) |

where the variable « is defined in the equation (4.52) of Chapter IV.

(E.13)

In the simulation, grid steps Az, Ar, and A8 are set to make these

following expressions become true

0 < max — <1,

1,]

O<maX[ 1 J(AT)Jr(GH)W(AT) <1
e () ) (An ) 2a(r,), ’

= (ra Ara) Ta )l (Ara)
1
max |— <1
' (”a),

(E.14)

(E.15)

(E.16)

(E17)
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(Gr),',j _ 1 (Az‘)|<< (AT)
( 2 2(r, ),](Ara)| (Ara)2 ' (E.18)

With all conditions in equations (E.14) to (E.18) are satisfied, we can

approximate equation (E.13) as

sel; = (1-28)8¢], + (¢t +8el )+ B(0€,. )+ 7(6¢),,) +(Ar)O| (ar)+ () |
(E.19)

where f and y are defined as

( 1 ] (A7) (Gy),, (A7) | (E.20)
o’ ),2( ' ""

and

( 1 J (A7) | (G,),,(47) | | (E.21)
o’ )12 ( u i ”‘

When the condition

(E.22)

is satisfied, all coefficients of dc!, dct,, oc;

n n H'
Tas OC, 5, o¢,and d¢;; | are positive and we

can obtain

n
i,j-1

n+l
|5 Cij

<(1-2¢)|oc],

n n n
+&(|5ct | +[oer )+ Bloel

+(a7)0[ (a7)+(ar,) +(40)’ |

+}/|5c
(E.23)

Equation (E.23) can be rewritten as
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oc!

i,j+1

oc!

i+l,j

oc!

i-1,j

|6 : : : [oei])+ (az)0 (Ar)+(ar,) +(a0)]

(E.24)

< max (|§c,.”j

Since the inequality (E.24) hold for all indices i then we can write

1
max |§ci"+,
i 7/

< rrl;ax|5ci’fj| + (AT)O[(AT) +(Ar, )2 + (A@)z} . (E.25)

The inequality (E.25) means that the maximum error of computation at a

given discrete point for one step of computation increase by not more than

(Ar)O[(Ar)+(Ara )2 +(A0)2] Consequently, for N steps of computation, we obtain
max |§cl.”vj| < max |5c3j| + O[(Ar) +(ar,) + (A6’)2} . (E.26)
1] L]

Now it is proved that, with vanishing (Az), (Ar,) and (A@), conditions
(E.14) to (E.18) and (E.22) are satisfied, the approximated solutions C’ converge to the

analytical solutions ¢ at any grid points and the computation is stable.



APPENDIX F

Approximating the Continuity Equation at the Point

on the Impervious Surface

F.1 The Impervious Surface at the Outer Boundary of the

Representative Cell

In two dimensional simulation of HGMS capture of ultra-fine particles by
an assemblage of random cylindrical collectors, we use the effective medium treatment
construct the model of the problem. The obtained model allows us to consider the
capture process in only a representative cylindrical cell. In the simulation, the outer
boundary of the representative cell is treated as an impervious surface. Consequently,
the original continuity equation (2.5) of Chapter Il will be approximated at all points on
the outer boundary of the representative cell.

From the original continuity equation

%N}j:o . (F.1)
ot

In two dimensional circular-cylindrical coordinates (r,@) the term VsJ can be written as

— - aJ J 1daJ,
e L

VeJ = (F.2)
or. ~r - ro6

Consider the outer boundary of the representative cell as shown in
Figure F.1. In the figure, the position of the outer boundary is specified by the symbol Q
and radial coordinate at that point is 7,. We assign a point specified by O-1 at the

radial coordinate 7, , which locate with a distance Ar from the outer boundary.
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Ar

o-1 )

Yoo "o
outer boundary of the

representative cell
Figure F.1: Impervious surface at the outer boundary of the representative cell.
From equation (F.2), we can see that the term J, at point Q equal to zero since point Q

is on the impervious surface. By approximating the first term on the right hand side of

equation (F.2), we can write VeJ atthe point Q in approximated form as

r TAl—(J
(V-J) o (/) ~()g . (F.3)
0 1.00

Equation (F.3) obtained by approximate the term &J,./0r at point Q by

the first-order backward difference relation. From this equation we see that (Jr )Q =0.

By using these expressions in the equation (F.3),

J=-pX iy e (F.4)
or

J, =—B@+vgc, (F.5)
r or

where D is diffusion coefficient, v and v, are radial and angular components of

particle drift velocity, respectively, we obtain



(6-,7) zii(—2@+vgcj —L(—Dﬁijch : (F.6)
o 1,00\ r 06 o (Ar) or ool

By rearrange equation (F.6), we obtain

2
(6-.7) z—22 8_02 +i a(vgc) ] (vrc—D%j : (F.7)
o p\od* ), 1\ 08 ), (Ar) or )y,

Now the original continuity equation (F.1) can be approximated at the

point O on the outer boundary of the representative cell as

; 0
ot), Iy\ 00 o o 00 5 (Ar) or Joy

When equation (F.8) is rewritten in terms of normalized radial distance

(r,) and normalized time (), defined in equations (2.15) and (2.24) of Chapter II,

a

respectively, we obtain the approximated continuity equation used in the computation of

concentration at any point on the boundary of the representative cell as

(@j 1 (azcj il (a(ch)j N [Gc_gj F9)
0t )o (r, )\ 06" )y (r),\ 00 ), (ar)7 o),

The function G, and G, in equation (F.9) are defined in equations (2.26)

and (2.31) of Chapter Il, respectively.
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F.2 The Impervious Surface at Surface of the Collector or the

Surface of Saturation Regions

In this research, the surface of the collector and the surface of the
saturation regions are considered as an impervious surface. The original continuity
equation (2.5) will be approximated at all points on these surfaces.

Consider the surface of the collector or surface of the saturation region
as shown in Figure F.2. In the figure, the position of impervious surface is specified by
the symbol I and radial coordinate at that point is #,. We assign a point specified by

I —1 at the radial coordinate #,,, which Ar forward the impervious surface.

.

collector surface Ar

or surface of

saturation region I+1
}"1 r1+1

Figure F.2: Impervious surface at the surface of the collector or the surface of

saturation regions.

From equation (F.2), the second term equal to zero at the impervious, By
approximating the first term on the right hand side of equation (F.2), we can write VeJ at

the point I in approximated form as

Ar

(V-J) 1 (U =U), | (F.10)
o r 00
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Equation (F.10) obtained by approximate the term &.J, /Or at point I by the first-order
forward difference relation. From this equation we see that (JV)I:O. By using

expressions of J, and J, in equations (F.4) and (F.5), we obtain

(6-,7) zli(—BEJrvgcj + ! (—D@-FVC) ) (F.11)
"h o0\ oo ),

By rearrange equation (F.11) we obtain

2
(?-7) z—BZ 802 /45 o(vec) - (v,c—D@j . (F.12)
1 rS 00 7 00 ) (Ar) or ).,

Now the original continuity equation (F.1) can be approximated at the

point I on the impervious of this case as

2 0
(@] zﬂz(aij —1( (V"C)] o (v,,c—D@j . (F.13)
ot), w\06 ), n\ 06 | (Ar) or ),

When equation (F.13) is rewritten in terms of normalized radial distance (ra) and

normalized time, we obtain the approximated continuity equation used in the
computation of concentration at any point on the 'surface of the collector or at the first

point next to the surface of saturation region as

(@Jz 12(522]_ 1 (9(G,e) S (G,c—@) e
ot ), (ra)1 00 1 (r“)l 00 I (Ara) or, I+1




APPENDIX G

Steady-State Solutions of HGMS Continuity Equation

G.1 One Dimensional Case

From the equation (4.5) of Chapter IV, we obtain the steady-state solution

of one dimensional HGMS continuity equation (2.25) of Chapter Il as

¢ (r,)=C, eXpUGr(x)dx:I , (G.1)

0

where C,is the initial particle concentration.
In the case of single ferromagnetic cylindrical collector, the expression of

function G, is obtained as

G, (l"a,e) > G(_)ferro |:Coslf326) +%:| , (G 2)

erro

where the factor G is defined in the equation (2.28) of Chapter II.
When the expression of G, in equation (G.2) is substituted in equation
(G.1) we obtain the stead-state| solution of HGMS: continuity-equation for the case of

single ferromagnetic cylindrical collector as

ferro
¢, (r)=6, exp[— G°2 (COS(26)+KW ﬂ . 63)

ra2 2ra4
The equation (G.3) obtain by assign the outer boundary condition at
infinity where the influence of the magnetic force is neglect and the value of

concentration there equal to initial concentration C, .
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G.2 Two Dimensional Case

From the original continuity equation

@Jﬁ-?:o . (G.4)
ot

At steady-state, concentration at any points in fluid does not change with

time hence Oc/ 0t =0 and we obtain
Vel =0 . (G.5)

The equation (G.5) means that, at steady state, the diffusion flux (z)at
a given point must be balanced by the particle flux due to action of the external force
(j;)at that point. By using expression of z and Z in equations (2.7) and (2.8) of

Chapter Il, we obtain
~DVc+vwe=0 |, (G.6)

where v is the drift velocity of the system of ultra-fine particles.
By substituting the expression of v from equation (2.9) of Chapter Il in

equation (G.6), we obtain

HAA | (G.7)

where u is the particle mobility in fluid and F is the total external force acting on the
system of ultra-fine particles.
By substituting the expression of D from equation (2.11) of Chapter Il in

equation (G.7), we obtain



Ve _ £ (G.8)
c k,T

where T is the absolute temperature in Kelvin.

From equation (G.8), by using the mathematical property of gradient of a

scalar function, we can write

where dr is the infinitesimal displacement of position in space.

In this research, we study the capture of ultra-fine particles by consider
that the magnetic force is the only dominate force that has influence to the capture
process then F =Fm in equation (G.8). Since the magnetic force can be expressed as

the positive gradient of the magnetic potential energy U, in the system that is

considered then we can write

— = G.10
c e ( )

£=d(U’”] . (G.11)
c kT

Since dc/c can be written as d (Inc)then, from equation (G.11) we

obtain

c(ra,H)zexp{W} . (G.12)
B

This equation is the steady-state solution of the continuity equation in
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two dimensions.
The magnetic potential energy of the system of fluid (permeability ,uf)
with an assembly of ultra-fine particles (permeability ,up) as suspensions can be

determined as

1 2
Um(ra,9)=z,u0(;(p—;(f)H (r,.0) . (G.13)

With equations (G.12) and (G.13), we can calculate the steady-state

concentration at any points around the collector in the computational domain.
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