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CHAPTER I

INTRODUCTION

1.1 Introduction to High Gradient Magnetic Separation

High Gradient Magnetic Separation (HGMS) is a powerful method for the
removal of ultra-fine (diameter 1 mµ ) weakly magnetic particles from suspensions. 
The term “high gradient” comes from the character of this method that high gradient of 
magnetic field and magnetic energy density are produced in the separation process to 
maximize the magnetic force that acts on the magnetic particles to be captured. High 
Gradient Magnetic Separation of ultra-fine particles is applied in many fields of works, 
for example, chemical , blood separation in biochemical laboratory and pharmaceutical 
industries. Consequently, high gradient magnetic separation may become an important 
part of future technology and it is, therefore, desirable to understand its mechanism.

1.2  Thesis Background

The capture of weakly magnetic particles by high gradient magnetic
separation had been studied by many researchers [1, 2]. Initially, the studies are 
performed for the capture of micron-size particles. In those studies, the capture of 
magnetic particles is studied by applying Newton,s laws of motion to an individual 
particle. The motion of an individual particle is analyzed to know whether it will be 
captured by interception. The trajectories of the particles are determined so that 
features of the capture and capture radius are obtained to predict capture efficiency.

For ultra-fine weakly magnetic particles which are much smaller than the 
micron size, Brownian motion dominates the kinematics of such particles and this affects 
the capture process. Diffusion must be taken into account and diffusive capture is 
considered. In 1983, R. Gerber, M. Takayasu and F.J. Fridlaender formulated the HGMS 
theory describing the capture mechanism of ultra-fine particles [3, 4]. The theory of
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R. Gerber and coworkers incorporate diffusion in describing the capture mechanism
of ultra-fine particles. Capture of ultra-fine particles in one dimension by a single 
ferromagnetic cylindrical collector is simulated in various situations. Results of these 
simulations show the features of the build-up of ultra-fine particles  on and around the 
collector and the qualitative agreement between the theoretical and experimental results 
is achieved. With these results, the mechanism of the capture of ultra-fine particles can 
be investigated. After the work of R. Gerber and coworkers, other researchers had 
studied HGMS capture of ultra-fine particles in various cases [5, 6, 7]. In 1990, L. P. 
Davies and R. Gerber developed a two dimensional theoretical model for the capture of 
ultra-fine particles on a single ferromagnetic cylindrical collector [8]. This model is a 
generalization of the theoretical model formulated in 1983. They considered two 
dimensional diffusive capture including magnetic force and fluid velocity drag force. The 
inter-particle forces are disregarded since the objective of the work is to obtain a 
simplified two dimensional model that highlight the main features of the retention of
ultra-fine particles by a single ferromagnetic cylindrical collector at various times. The 
capture of ultra-fine particles was simulated in various cases. Results of simulations 
show the feature of the build-up of ultra-fine particles  in various regions around the 
collector at various times. Consequently, the behavior of the build-up of ultra-fine 
particles on the collector were predicted. All former theoretical models considered the 
capture of ultra-fine particles by a single collector. However, in practical applications of 
HGMS, a certain magnetic separator does not contain only one collector but consists of 
many collectors. To study the capture of ultra-fine particles by these collectors, a
generalized theoretical model must be formulated.

In this thesis, the former works of R. Gerber and coworkers are studied in 
more details, both one dimensional and two dimensional problems are investigated. 
Further more, we extend the single collector theoretical model for the capture of
ultra-fine magnetic particles to the case of an assemblage of parallel cylindrical 
collectors randomly distributed in the static fluid. The only geometrical character of the
system that we know is the ratio of total volume of collectors to the total volume of the
system which is defined as the packing fraction( )F of the collectors in the system.
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We study diffusive capture in various situations by, starting form the continuity 
equation, deriving equations describing concentration distribution of ultra-fine particles 
dispersed in a static fluid at various times. The steady-state solutions of these equations 
can be determined analytically whereas the time-dependent solutions are determined 
numerically. The given solutions can be examined to investigate the features of the 
capture in various physical situations. The SI units are used throughout this thesis.

1.3  Thesis Objectives

In conclusion, objectives of this thesis are:
1) Develop a theoretical model describing the capture of ultra-fine

                         particles by an assemblage of randomly distributed cylindrical
                         collectors.

2) Develop computer programs for performing simulations of the capture of
ultra-fine particles in various physical situations.

3) Study HGMS capture of ultra-fine particles in both one and
two dimensional problems in various physical situations.

1.4  Thesis Outline
A brief outline of this thesis is as follows: Chapter I provides introduction to

high gradient magnetic separation, background and objectives of this research.
Chapter II starts with physical principle and mechanism of high gradient magnetic 
separation then the formulation of the generalized theory describing the capture of
ultra-fine particles is presented. In Chapter III, the problem of the capture of ultra-fine 
particles by an assemblage of randomly distributed cylindrical collectors in static fluid is 
described. The character of the problem and the model used in studying the problem 
are introduced. In Chapter IV, simulations of the capture of ultra-fine particles in various 
cases are studied. The main content of Chapter IV is the numerical method and 
simulation methodology. The results of the simulations and discussions are presented
in Chapter V. Finally, Chapter VI provides the conclusions of this research.



CHAPTER II

General Theory of Ultra-Fine Particle Capture in
High Gradient Magnetic Separation

The physical principle and the mechanism of high gradient magnetic
separation are described in the first section. Subsequently in the second section, the 
formulation of the general theory describing the capture of ultra-fine particles in high 
gradient magnetic field is presented. Finally in the third section, some theoretical
considerations  on the capture of ultra-fine particles by a single cylindrical collector are
introduced.

2.1 The Physical Principle and the Mechanism of High Gradient
     Magnetic Separation

From electromagnetic theory, the magnetic energy density in a medium
is expressed in general as

                                                             1
2mu H B= ⋅ ,                                                   (2.1)

where H and B are magnetic field and magnetic induction in the medium, respectively.
Consider an assembly of ultra-fine magnetic particles dispersed in a 

fluid. In this thesis, we treat both fluid and ultra-fine particles as linear isotropic 
homogeneous magnetic media. Imagine a volume pV  demarcated inside the fluid. The 
magnetic energy of the fluid enclosed in this volume is ( ) 21 1

2 2p f pH B V V Hµ⋅ =

where fµ is the magnetic permeability of the fluid. Let us now remove the fluid from the 
volume pV  and replace it by an ultra-fine particle. The magnetic energy associated with 
the particle itself is 21

2 p pV Hµ where pµ is the magnetic permeability of the particle.
The energy increment U of the system (fluid + particle) is given as the difference
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between these two energies, i.e.

                                                          ( ) 21
2 p f pU V Hµ µ= − .                                       (2.2)

Taking positive gradient ( )U∇ of this energy increment, we get the
magnetic force acting on the ultra-fine particle as

                                                       ( )2
0

1
2m pF V Hµ χ= ∇ ,                                           (2.3)

where p fχ χ χ= − is the difference between magnetic susceptibilities of the particle
and the fluid, respectively, 7

0 4 10  /T m Aµ π −= × ⋅  is the permeability of free space.
The mechanism of high gradient magnetic separation is based on the 

utilization of this magnetic traction force which extracts the ultra-fine magnetic particles 
from the fluid. From equation (2.3), we can see that the magnetic traction force is 
proportional to the difference p fχ χ− . This difference is usually very small for weakly 
magnetic particles, and also the magnetic field magnitude H can not be increased 
above a certain upper limit for technical reasons. Thus an efficient extraction, which 
results from a large value of mF , requires that the value of ( )2H∇  must be high.

The mechanism of operation of high gradient magnetic separation is
shown in Figure 2.1
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Figure 2.1: The mechanism of high gradient magnetic separation [9].

In Figure 2.1, a magnetic collector made from ferromagnetic or
paramagnetic materials of cylindrical (or spherical) shape and a fluid with suspended 
magnetic particles are contained in a non-magnetic canister. A uniform external 
magnetic field 0H  is applied perpendicular to the axis of the collector. The existence of 
the collector disturbs the uniformity of the applied magnetic field. Consequently, there 
exist regions of high gradient magnetic field outside the collector. Any magnetic 
particles in or entering these regions are subjected to the large magnetic traction force. 
To capture these particles at the collector, it is necessary that the magnetic traction 
force is directed towards the collector and is large enough to prevail over the action of 
other forces and processes so that particles are brought to and retained at the collector.

The other forces and processes involved can be the viscous drag force
of the fluid, the gravity force, thermal diffusion, and inter-particles effects, etc. Not all of 
these forces and processes are significant in a certain situation. In some situations, we 
can reasonably approximate that some forces or processes are largely significant than
others.
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2.2 HGMS Theory Describing the Capture of Ultra-fine Magnetic Particles

The HGMS theory describing the capture of ultra-fine magnetic particles 
was formulated in 1983 by R.Gerber, M. Takayasu and F.J. Friedleander [3, 4]. The 
theory describes dynamics of ultra-fine magnetic particles dispersed in a fluid and 
subjected to high gradient magnetic separation process. In the theory, a statistical 
approach was used since, due to Brownion motion and diffusion, the actual trajectory 
and velocity of an ultra-fine particle are of little significance for the description of the 
capture process and it is difficult to decide whether a given particle will be captured.

2.2.1 The Continuity Equation

The HGMS theory formulated by Gerber and coworkers in 1983 
describes dynamics of the capture of ultra-fine particles in terms of particle volume
concentration and particle drift velocity denoted by c  and v , respectively. The particle 
volume concentration at a given point in the fluid is defined as the fraction of ultra-fine 
particles volume contained in an infinitesimal volume element of fluid at that point and is 
expressed as

                                                        
0

lim
f

p

V f

V
c

V∆ →

∆
≡

∆
,                                                      (2.4)

where subscripts p and f  refer to the ultra-fine particle and the fluid, respectively.
The value of particle volume concentration is a function of positions in

fluid and time and it satisfies the continuity equation

                                                             0c J
t
∂

+∇ ⋅ =
∂

,                                                  (2.5)

where J is the total particle volume flux through an infinitesimal volume element of fluid
locate at the considered point. The particle volume flux is defined as the net volume of
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ultra-fine particles that flow through an area perpendicular to the flow per unit area per 
unit time.

For ultra-fine particles, J  at a given point in fluid is considered to
consists of two contributions as

                                                           D FJ J J= + ,                                                      (2.6)

where DJ  denotes the diffusion flux due to diffusion and FJ  denotes the particle
volume flux due to the actions of external forces on the system of particles.

Diffusion flux can be determined by Fick, s law as [10]

                                                         DJ D c= − ∇ ,                                                        (2.7)

where D is the diffusion coefficient of ultra-fine particles in the fluid.
The particle volume flux due to the actions of external forces which

impose a drift velocity v  on the system of ultra-fine particles is expressed as [11]

                                                        FJ cv= .                                                                (2.8)

The drift velocity of ultra-fine particles at a given point in the fluid is
determined by the relation [12]

                                                          v uF= ,                                                               (2.9)

where u is the mobility of ultra-fine particles in the fluid and F is the total external force 
acted upon those particles. F is the vectorial sum of magnetic traction force, fluid
viscous drag force, electric force, gravitational force, and other forces those acted on 
the system of ultra-fine particles.

When expressions of DJ and FJ  in equations (2.7) and (2.8),
respectively, are substituted in equation (2.5) we obtain the continuity equation for the
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system of ultra-fine particles as

                                                     ( ) ( )c D c cv
t
∂

= ∇⋅ ∇ −∇⋅
∂

.                                     (2.10)

The diffusion coefficient of ultra-fine particles in the fluid is determined,
throughout this research, by Einstein, s relation [12],

                                                                  BD uk T= ,                                                 (2.11)

where Bk and T are the Boltzmann, s constant and the absolute temperature,
respectively, and the value of D  is assumed to be independent of the positions in fluid.

With this assumption, the continuity equation (2.10) is rewritten as

                                                    ( )2c D c cv
t
∂

= ∇ −∇⋅
∂

.                                           (2.12)

Equation(2.12) is the continuity equation describing dynamics of the
system of ultra-fine particles in high gradient magnetic separation for the general case.

In this research, the capture of ultra-fine particles in high gradient
magnetic separation is studied theoretically in various situations. In each situation, 
equation(2.12) is solved to obtain the time evolution of the concentration distribution in 
various regions around the collector when some initial and boundary conditions are 
assigned.

2.3 Capture of Ultra-fine Particles by a Single Cylindrical Collector

In this section, some theoretical studies about the capture of ultra-fine 
magnetic particles by a single cylindrical magnetic collector are introduced. These 
studies are bases of this research and are presented to show the development of the 
theoretical studying of the HGMS capture of ultra-fine particles.
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2.3.1 The Magnetic Field and the Magnetic Traction Force

Consider a long circular cylindrical magnetic collector of radius a placed
in a static fluid as shown in Figure 2.2. The magnetic permeability and susceptibility of
the fluid are fµ  and fχ , respectively.

Figure 2.2: A single cylindrical collector in formerly uniform magnetic field.

In Figure 2.2, the z-axis of the cylindrical coordinate system is chosen
to coincide with the axis of the collector. A uniform magnetic field 0H  is applied 
perpendicular to the axis of the collector and is set to point in the positive X direction. 
The collector is considered very long compared with its diameter hence the problem of 
determining the magnetic field H  in and around the collector can be treated only in two 
dimensions. If the collector is the ferromagnetic one with the magnetization M then the 
magnetic field outside the collector can be determined in polar coordinates as (see 
Appendix A)

                        ( ) 0 2 2
ˆˆ, 1 cos 1 sin

ferro W W
a

a a

K KH r H r
r r

θ θ θθ
    

= + − −    
    

,                  (2.13)

where
                                                            

02W
MK
H

= .                                                     (2.14)
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The variable
                                                                a

rr
a

≡                                                          (2.15)

is called the normalized radial distance and is defined as the radial distance form the
axis of the collector to the considering point normalized by the radius of the collector.

In the other case where the collector is the paramagnetic one with the
magnetic permeability cµ , the magnetic field outside the collector is determined as

                            ( ) 0 2 2
ˆˆ, 1 cos 1 sin

para C C
a

a a

K KH r H r
r r

θ θ θθ
    

= + − −    
    

,               (2.16)

where
                                                              1

1CK
ν
ν
−

≡
+

,                                                   (2.17)

and                                                           c

f

µν
µ

≡ .                                                     (2.18)

For the ferromagnetic cylindrical collector, the term ( )2H∇ in equation
(2.3) can be determined as

                           ( ) ( ) ( )2 0
3 5 3

cos 2 sin 22 ˆˆ
ferro W

a a a

MH KH r
a r r r

θ θ
θ

    
∇ = − + +    

     
.         (2.19)

The magnetic traction force acting on the system of spherical ultra-fine
particles, each of radius pb , then can be obtained as

             ( ) ( ) ( )3
0 0

3 5 3

4 cos 2 sin 2 ˆˆ
3

ferro p f p W
m

a a a

MH b KF r
a r r r

πµ χ χ θ θ
θ

−     
= − + +    

     
.   (2.20)

For the case of paramagnetic collector, the term ( )2H∇  is
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determined as

                      ( ) ( ) ( )2
2 0

3 5 3

cos 2 sin 24 ˆˆ
para C C

a a a

K H KH r
a r r r

θ θ
θ

    
∇ = − + +    

     
,            (2.21)

and the magnetic traction force acting on the system of spherical ultra-fine particles,
each of radius pb , then is obtained as

             ( ) ( ) ( )2 3
0 0

3 5 3

8 cos 2 sin 2 ˆˆ
3

para p f C p C
m

a a a

K H b KF r
a r r r

πµ χ χ θ θ
θ

−     
= − + +    

     
.  (2.22)

From equations (2.20) and (2.22), we can see that if other parameters
such as the difference p fχ χ− and the radius of ultra-fine particle pb  are held fixed then
the large applied external uniform magnetic field 0H and the very small radius a  of the
collector can give rise to a large magnetic traction force per unit volume of ultra-fine
particle. This large magnetic traction force causes the separation to be efficient.

2.3.2 One Dimensional Capture of Ultra-fine Weakly
                         Magnetic Particles

The capture of ultra-fine magnetic particles in one dimension was 
studied theoretically by Gerber and coworkers in 1983 [3, 4]. In their study, the single 
cylindrical collector is modeled to be a ferromagnetic one and the capture is considered 
only in the radial direction.

The continuity equation (2.12) in the one dimensional problem can be
written as

                                                        ( )
2

2 .r
c cD cv
t r r
∂ ∂ ∂

= −
∂ ∂ ∂

                                       (2.23)
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In their study, a new dimensionless variable called normalized time, denoted by τ , is
defined as
                                                                  2

Dt
a

τ ≡ .                                                     (2.24)

With the definitions of this normalized time and the normalized radial
distance ar  defined in equation (2.15), we can obtain the continuity equation rewritten in 
terms of these dimensionless variables as

                                                            ( )
2

2 r
a a

c c G c
r rτ

∂ ∂ ∂
= −

∂ ∂ ∂
,                                    (2.25)

where it is defined that
                                                             r

r
avG
D

≡ .                                                       (2.26)

The equation (2.25) describes dynamics of the system of ultra-fine 
particles in high gradient magnetic separation in one dimension. In their work, it is 
assumed that only the dominant magnetic traction force are considered, consequently 
the expression of rG  can be determined by using equations (2.9), (2.11) and (2.20) as

                                          ( ) ( )
0 3 5

cos 2
, ferro W

r a
a a

KG r G
r r
θ

θ
 

= + 
 

,                            (2.27)

where it is defined that

                                             ( ) 3
0 0

0

4
3
p f pferro

B

MH b
G

k T
πµ χ χ−

≡ − .                            (2.28)

From this definition of 0
ferroG , when p fχ χ>  the capture is called to

be the paramagnetic mode. For the opposite case where p fχ χ< , the capture is called 
to be the diamagnetic mode.
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The one dimensional capture of ultra-fine weakly magnetic particles by 

a single ferromagnetic collector was studied theoretically by solving equation (2.25) for 
various cases when some initial and boundary conditions are given. This theoretical 
study is performed in Chapter IV.

2.3.3 Two Dimensional Capture of Ultra-fine Weakly
                          Magnetic Particles

The one dimensional theoretical model for the capture of ultra-fine
weakly magnetic particles developed in 1983 by Gerber and coworkers [3, 4] was 
generalized to the two dimensional case in 1990 by Gerber and L. P. Davies [8]. The 
objective of the later work was to constructed a simplified two dimensional theoretical 
model which will highlight the main features of the time dependent HGMS capture of 
ultra-fine weakly magnetic particles by a single ferromagnetic cylindrical collector.

The continuity equation (2.12) for this generalized problem is

                          ( ) ( )
2

2 2

1 1 1
r

c c D cD r rcv cv
t r r r r r r r θθ θ
∂  ∂ ∂  ∂ ∂ ∂   = + − +    ∂ ∂ ∂ ∂ ∂ ∂    

.        (2.29)

Equation (2.29) can be rewritten in terms of the normalized radial distance ar  and the
normalized time τ  defined in equations (2.15 ) and (2.24), respectively as

                   ( ) ( )
2 2

2 2 2

1 1 1r
r

a a a a a a a

c c c c G c G c G c
r r r r r r r θτ θ θ

   ∂ ∂ ∂ ∂ ∂ ∂
= + + − + +   ∂ ∂ ∂ ∂ ∂ ∂   

,   (2.30)

where it is defined that
                                                              avG

D
θ

θ ≡ ,                                                   (2.31)

and rG  is already defined in equation (2.26).
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By using equations (2.9), (2.11) and (2.20), it is determined, for the

case of the ferromagnetic collector, that

                                             ( ) ( )
0 3 5

cos 2
, ferro W

r a
a a

KG r G
r r
θ

θ
 

= + 
 

,                             (2.32)

and

                                                     ( ) ( )0
3

sin 2
,

ferro

a
a

G
G r

rθ

θ
θ = ,                                   (2.33)

where 0
ferroG  for this ferromagnetic case is already defined in equation (2.28).

From equations(2.32) and (2.33), we can see that when the single 
cylindrical collector is a paramagnetic one, the forms of these equations are remain the 
same but the variable WK  is replaced by CK . The expression of factor 0G  for the 
paramagnetic case can be obtained, by using equations (2.9), (2.11) and (2.22), as

                                             ( ) 2 3
0 0

0

8
3

p f C ppara

B

K H b
G

k T
πµ χ χ−

= − ,                              (2.34)

where CK  is already defined in equation (2.17);
The capture of ultra-fine weakly magnetic particles in two dimensions by 

a single cylindrical collector is studied in this research in the case of ferromagnetic 
cylindrical collector.



CHAPTER III

 Capture of Ultra-fine Magnetic Particles by an
Assemblage of Random Cylindrical Collectors

In this chapter, the consideration on HGMS capture of ultra-fine magnetic 
particles is extended from the case of single cylindrical collector which has been 
described in the previous chapter to the case of randomly distributed cylindrical 
collectors. The main work of this research is to study, theoretically, the capture of
ultra-fine weakly magnetic particles by an assemblage of  random cylindrical 
paramagnetic collectors in high gradient magnetic field. The first section of this chapter 
provides the character of the problem to be studied. Subsequently in the second 
section, the model used for the study of the problem is introduced. The connection 
between the old problem in the previous chapter and the extended one in this chapter is 
also shown in the second section. Finally in the third section, the continuity equation 
describing dynamics of the system of ultra-fine particles for the new problem is 
presented.

3.1 Character of the Problem

We consider a system consists of two parts. The first part is a static fluid 
with an assembly of monotype ultra-fine weakly magnetic particles as a suspension.
Both fluid and particle are considered to be linear isotropic homogeneous magnetic 
media. The other part is an assemblage of paramagnetic cylindrical collectors randomly 
distributed in the fluid. These collectors are considered to have characteristic
distributions of cylindrical radii and are very long compared with their diameters. In this 
research, axes of these collectors are considered all parallel. The system of fluid and 
collectors are contained in a non-magnetic canister. A uniform magnetic field 0H is 
applied perpendicular to axes of these collectors. We study dynamics of the capture of 
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ultra-fine particles by these collectors. The only characteristic of the system we know 
is the packing fraction, denoted by F , of the cylindrical collectors in the system which 
is defined as the ratio of total volume of cylindrical collectors to the total volume of the 
system.

3.2 The Effective Medium Model

Basically, the capture of ultra-fine particles by an assemblage of random 
cylindrical collectors is different from the case of single cylindrical collector. When the 
number of the collector used in the capture process is more than one, the existence of 
other collectors produces some effects on the capture operation of an individual 
collector.  These effects must be estimated and taken into account when the capture of 
ultra-fine particles by an assemblage of random cylindrical collectors is studied.

Since all collectors in the system are randomly distributed, when an 
arbitrary collector is considered, all residual collectors locate randomly with respect to it.
This situation is the same for any collectors in the system. Since the assemblage of 
collectors have characteristic distributions of cylindrical radii, the distribution of 
collectors, radii surrounding an arbitrary collector is random. From this, we can 
reasonably approximate that the capture operation of an arbitrary collector is affected 
by the existence of other collectors equally.

From the theoretical consideration on the capture of ultra-fine particles 
by a single paramagnetic collector in chapter II, we can see, from equations (2.30), 
(2.32), (2.33) and (2.34), that these equations do not depend on the size (radius) of the 
collector explicitly since they are expressed in term of normalized radial distance ar  and 
there is no  factor which depend on the radius of the collector explicitly. This means that
when capture operations of ultra-fine particles by two cylindrical collectors of difference 
radii are considered separately, the distributions of particle volume concentration at the 
same normalized radial distance from the axes of these collectors have the same 
feature.
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The magnetic field around the assemblage of cylindrical paramagnetic collectors 
randomly distributed in a fluid had been determined in 1988 by Natenapit [13]. In that 
calculation, the effective medium model originally conceived by Hashin [14] is adopted. 
In the effective medium model, the system of magnetic cylinders (permeability cµ ) and 
surrounding fluid (permeability fµ ) is considered to be composed of cylindrical 
composite cells, each containing exactly one of the cylinders. In this model, only a 
representative cell is considered, while the neighbor cells are replaced by a 
homogeneous medium with effective permeability µ∗  to be determined. Figure 3.1 
shows a representative cell in the effective medium model which is used to determine 
the magnetic field in the cell.

                           Figure 3.1: A representative cylindrical cell [13].

In Figure 3.1, a  is radius of the collector where b  is the radius of the 
representative cell. Since the ratio of the collector to cell volume is set equal to the 
packing fraction of collectors in the fluid then we obtain

                                                                
2

2

aF
b

= .                                                         (3.1)

           The Z -axis of cylindrical coordinate system is set along the cylinder axis.
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To determine the magnetic field in the cell, the boundary value problem of coaxial 
magnetic cylinders subject to the boundary condition of uniform magnetic field at far
away from the cell is solved. Since according to the effective medium model, any
composite cell can be chosen to be the representative cell and the residual cells are 
considered to be a homogeneous effective medium, then a self consistency must be
satisfied that the magnetic induction(B ) averaged over the representative cell 
(cylindrical collector plus fluid) must equal to the volume average of the magnetic 
induction over the effective medium.

According to Natenapit [13], the magnetic field in the fluid surrounding
the collector in a representative cell is determined as (see Appendix B)

            0 2 2
ˆˆ1 cos 1 sin ,  1 ,C C

f a
a a

K K bH AH r r
r r a

θ θθ
    

= + − − < <    
    

             (3.2)

where
                                                             1

1 C

A
FK

≡
−

,                                                   (3.3)

and CK  has been already defined in equation (2.17) of chapter II.
The magnetic field in the effective medium outside the representative cell

is determined as
                                                        0 ,           Eff a

bH H r
a

= < < ∞ .                               (3.4)

The magnetic permeability of effective medium, µ∗ , can be expressed in
term of ratio ν ∗  which is defined as

                                                            ,
f

µν
µ

∗
∗ ≡                                                            (3.5)

where the value of ν ∗  is determined as
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                                                   ( ) ( )
( ) ( )
1 1
1 1
F F
F F

ν
ν

ν
∗ + + −
=

− + +
.                                        (3.6)

We can see from equation (3.4) that, according to the effective
medium model, the gradient ( )2

EffH∇ outside the representative cell equal to zero 
hence the capture of ultra-fine particles can be studied by consider only in the 
representative cell.

From equations (3.2) and (3.3), we can see that the effects of the
existence of other collectors on the magnetic field around an arbitrary collector are
contained in the factor A . In the limit of packing fraction approach to zero, the factor A
approach to unity and the problem is reduced to the case of single paramagnetic 
cylindrical collector as shown in equation (2.16) of chapter II.

At this point, we can see that, by using the effective medium model, the 
problem of HGMS capture of ultra-fine magnetic particles by an assemblage of random 
cylindrical paramagnetic collectors can be transformed to the problem of ultra-fine 
particles capture by a single cylindrical paramagnetic collector in the representative
cell. As a result of this, the consideration that has been done for the case of single 
cylindrical collector in chapter II can be adjusted and adopted here.

3.3 Continuity Equation Describing the Capture of Ultra-Fine Weakly Magnetic
     Particles by an Assemblage of Random Cylindrical Paramagnetic
     Collectors

In the previous section, the problem of ultra-fine particle capture by an
assemblage of random cylindrical collectors is transformed to the case of single 
cylindrical collector in a representative cell. Consequently, the continuity equation (2.30) 
in chapter II can be applied to the present problem and dynamics of the system of
ultra-fine particles in the fluid in a representative cell can be described with this equation

            ( ) ( )
2 2

2 2 2

1 1 1r
r

a a a a a a a

c c c c G c G c G c
r r r r r r r θτ θ θ

   ∂ ∂ ∂ ∂ ∂ ∂
= + + − + +   ∂ ∂ ∂ ∂ ∂ ∂   

.    (3.7)



21
Expressions of terms rG  and Gθ  for this case is the same as those

have been defined in equations (2.26) and (2.31)
By using equations (2.9) and (2.11) in chapter II, we can express rG  and

Gθ  in other forms as
                                                     r

r
B

aFG
k T

= ,                                                    (3.8)

and
                                                                 

B

aFG
k T

θ
θ = ,                                                    (3.9)

where rF  and Fθ  denote the radial and angular components of total external force
acting on the system of ultra-fine magnetic particles, respectively.

In this research, we consider the situation that the magnetic traction 
force dominates the capture operation and other forces or processes produce very 
small influence on the capture operation. Consequently, we assumed that the total 
external force on the system of ultra-fine particles is due to magnetic traction force only.

From equation (3.2) term ( )2
fH∇  is determined as

                    ( ) ( ) ( )2 2
2 0

3 5 3

cos 2 sin 24 ˆˆC C
f

a a a

A H K KH r
a r r r

θ θ
θ

    
∇ = − + +    

     
.               (3.10)

Then the expression of magnetic traction force acting on the system of
ultra-fine weakly magnetic particles in the representative cell can be obtained as

    ( ) ( ) ( ) ( )2 2 3
0 0

3 5 3

8 cos 2 sin 2 ˆˆ,
3

p f C p C
m a

a a a

A H K b KF r r
a r r r

πµ χ χ θ θ
θ θ

−     
= − + +    

     
.  (3.11)

From this equation we can determine expressions of rG  and Gθ  in
equations (3.8) and (3.9) as
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                                        ( ) ( )
0 3 5

cos 2
,

 
= + 

 

random C
r a

a a

K
G r G

r r
θ

θ ,                          (3.12)

and

                                           ( ) ( )
0 3

sin 2
,

 
=  

 

random
a

a

G r G
rθ

θ
θ ,                                  (3.13)

where the factor 0
randomG  for this case is defined by the expression

                                            ( ) 2 2 3
0 0

0

8
3
−

≡ − p f C prandom

B

A H K b
G

k T
πµ χ χ .                   (3.14)

When the expressions of rG  and Gθ  in equations (3.12) and (3.13) are
substituted in equation (3.7), we obtain the continuity equation describing the capture of 
ultra-fine weakly magnetic particles in the representative cell. This continuity equation
can be solved, with some assigned initial and boundary conditions, to study dynamics 
of the system of ultra-fine particles subjected to high gradient magnetic separation. In 
this research time-dependent solutions of the continuity equation (3.7) is determined by 
using numerical method and the capture process in the representative cell is simulated 
in various situations.



CHAPTER IV

Simulations of HGMS Capture of Ultra-Fine Particles

To study the capture of ultra-fine magnetic particles in high gradient 
magnetic separations, the continuity equation describing dynamics of the system of 
ultra-fine particles is solved when some initial and boundary conditions are assigned.

In some situations, the continuity equation can be solved analytically but 
in many situations, solving the continuity equation analytically is very difficult and some 
numerical methods are used. By solving the continuity equation numerically, the HGMS 
capture of ultra-fine particles can be simulated in various situations. In this chapter, we 
simulate HGMS capture of ultra-fine particles in one dimension and two dimensions in 
various cases. The content in this chapter consists of the simulation methodology, errors 
and stability of the computation, initial and boundary conditions, parameters of 
simulations, and the procedures of simulations.

4.1 One Dimensional Simulation of the Capture of Ultra-Fine Particles by
     a Single-Ferromagnetic Cylindrical Collector

In section 2.3.2 of Chapter II, the continuity equation describing the
capture of ultra-fine particles in one dimension obtained as

                                                            ( )2

2
r

a a

G cc c
r rτ

∂∂ ∂
= −

∂ ∂ ∂
.                                       (4.1)

This equation can be solved to obtain the distribution of particle volume 
concentration in some radial directions at various normalized times. The steady-state 
solution of equation (4.1) can be solved analytically but the time-dependent solutions will 
be solved numerically.
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4.1.1 The Steady-State Solution

At steady state, the value of particle volume concentration at any points 
in fluid is independent of the normalized time, consequently, we get / 0c τ∂ ∂ = . Let 

( )S ac r denotes the value of steady-state particle volume concentration. We can solve 
for  ( )S ac r  from the equation

                                                     0S
r S

a a

d dc G c
dr dr

 
− = 

 
,                                           (4.2)

where partial derivatives becomes total derivatives at steady state.

Recalling the original continuity equation (2.5) of chapter II, at steady 
state we have

                                                                0J∇ ⋅ = .                                                      (4.3)

Since D FJ J J= + , equation (4.3) means that, at steady state, the

particle volume flux due to diffusion and the particle volume flux due to the action of total 
external force on the system of ultra-fine particles balances each other dynamically at 
every points. Consequently, from equation (4.2) we obtain

                                                            0S
r S

a

dc G c
dr

− = .                                               (4.4)

We assign the initial conditions for equation (4.4) that, at initial, the value

of particle volume concentration at every points equal to a constant 0C . We assign the  
boundary condition for equation (4.4) that the value of particle volume concentration at  
ar →∞ , where the influence of the magnetic force can be neglected, is fixed equal to 

the initial value 0C . Finally we obtain

                                           ( ) ( )0 exp
ar

s a rc r C G x dx
∞

 
=  

  
∫ .                                        (4.5)
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From this equation, we can see that the value of Sc  changes with ar

exponentially. In practical, the value of Sc  can not greater than a limited value called the 
saturation concentration denoted by satC . Consequently, the value of Sc  in equation 
(4.5) must be restricted in a range 0 S satc C≤ ≤ .

It is shown in equation (4.5) that the value of Sc  depend on the spatial 
function rG . If the magnetic collector is a ferromagnetic cylindrical one of radius a  and

all influences of other forces and processes are much smaller than the influence of the 
magnetic force then we obtain the expression of rG  as

                                       ( ) ( )
0 3 5

cos 2
, ferro W

r a
a a

KG r G
r r
θ

θ
 

= + 
 

,                                     (4.6)

where the factor 0
ferroG  has been defined in equation (2.28) of Chapter II.

From equations (4.5) and (4.6), we can determine the distribution of 
particle volume concentration at steady state in any radial directions determined by the 
angle θ .

4.1.2 Time-Dependent Solutions

                         The time-dependent solutions of equation (4.1) are solved numerically by

using the finite-difference method. The finite-difference method is a numerical method 
which solving differential equations, with some assigned initial and boundary conditions, 
for their approximated numerical solutions by approximating differentiations with some 
corresponding difference relations. In the finite-difference method, the continuous range 
of ar  and τ  is replaced by corresponding discrete ranges composed of a finite set of 
uniformly distributed discrete points called grid as shown in Figure 4.1. In Figure 4.1, 
each points in the grid is specified by discrete coordinates ( )a i

r  and nτ . The values of
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( )a ir  and nτ  can be obtained from

                                       ( ) ( )1 ;   0,  1,  2,  3,  ...,  a air i r i Q= + ∆ =                             (4.7)

and                                       ( );   0,  1,  2,  3,  ...,  n n n Nτ τ= ∆ = ,                            (4.8)

where Q  and N  are some finite positive integers much larger than unity and variables 
ar∆  and τ∆  are called grid steps.

                            τ

                        nτ                                                  •

                   τ∆

                          0                                                                                        ar

                             1              ar∆                         ( )a ir

Figure 4.1: The grid in finite-difference method.

The approximated numerical value of particle volume concentration, 
denoted by n

i , are determined at every points in the grid.
To solved equation (4.1) numerically, we rewrite it as

                                                 
2

2
r

r
a a a

c c c GG c
r r rτ

∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ ∂
.                                         (4.9)

All partial differentiations are approximated by some corresponding
difference relations. The term /c τ∂ ∂  is approximated by the first-order forward 
difference, the term / ac r∂ ∂  is approximated by the first-order central difference, the 
term 2 2/ ac r∂ ∂ is approximated by the second-order central difference. Some details on 
these approximations are presented in the Appendix C. Value of rG  and /r aG r∂ ∂
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at every discrete radial positions ( )a ir  are not necessary to be approximated since
their analytical values can be calculated from their expressions and we obtain

                                                           ( ) ( )ar ri r i
G G=                                                   (4.10)

and

                                                        
( )a

r r

a ai r i

G G
r r

 ∂ ∂
= ∂ ∂ 

  ,                                           (4.11)

where the expression of /r aG r∂ ∂  can be obtained from equation (2.27) of Chapter II as

                                            ( ) ( ) ( )
0 4 5

, 3cos 2 51r a ferro W

a a a

G r KG
r r r

θ θ∂  
= − + ∂  

.                (4.12)

By using finite-difference method, the partial differential equation (4.9) is 
approximated by its corresponding difference equation

                  
( )

( ) ( )
1

1 1 1 1
2

2
2

n n n n n n n
ni i i i i i i r

r ii
a a ia

GG
r rrτ

+
+ − + −

     − − + − ∂
= − −       ∆ ∆ ∂∆    

.     (4.13)

It is seen from this equation that when approximated values of particle 
volume concentration at every discrete points are known at the thn step of the discrete
normalized time then we can compute new value of approximated particle volume 
concentration at every points at the 1thn + step of  the discrete normalized time.

The initial condition is assigned as

                                                               0
i = 0C    for  all i                                        (4.14)

and the boundary condition is assigned as

                                                               n
Q = 0C    for  all n                                      (4.15)

where 0C  is a positive constant. Now we can see from equation (4.13) that we can
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compute  1 2 3,  ,  ,  ..., n

i i i i  in succession for all i  and approximated
time-dependent solutions of the continuity equation (4.9) can be determined at various 
normalized times by the relation

                           ( )
( )

( ) ( )
( )

( ) ( )
( )

1 1
2 2

2
1

2
rn n nir

i i i
a aaia

GG
r rrr

ττ τ
τ+ +

   ∆∆ ∆ ∂
 = − − ∆ + −  ∂ ∆∆∆       

                                        ( )
( )

( ) ( )
( ) 12 2
r ni

i
aa

G
rr

ττ
−

 ∆∆
+ + 

∆∆  
.                                            (4.16)

The capture of ultra-fine particles in one dimension by a single
ferromagnetic cylindrical collector can be simulated by computing values of n

i  at every
discrete radial positions ( )a i

r at various normalized times( )nτ .

4.1.2.1 Errors of the Computation

The finite-difference method gives us the approximated value of particle 
volume concentration at a given point in the computational grid. When the computation 
are performed, there exist some errors at every points in each cycle of computation.

To estimate the error of the computation, equation (4.13) is rewritten as

              
( )

( ) ( )
1

1 1 1 1
2

2 0
2

n n n n n n n
ni i i i i i i r

r ii
a a ia

GG
r rrτ

+
+ − + −

     − − + − ∂
− + + =       ∆ ∆ ∂∆    

.   (4.17)

Let ,s n
ic  denotes the value of analytical solution of equation (4.9)

evaluated at a discrete radial position ( )a i
r , that is

                                                            ( )( ),n n
i a i
c c r τ= .                                            (4.18)

When all approximated solutions in equation (4.17) are replaced by their
corresponding analytical solutions we obtain
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( )

( ) ( )
1

1 1 1 1
2

2
2

n n n n n n n
n ni i i i i i i r

r i ii
a a ia

c c c c c c c GG c
r rr

ε
τ

+
+ − + −

     − − + − ∂
− + + =       ∆ ∆ ∂∆    

,    (4.19)

where n
iε  is a real number generally not equal to zero.

The value of n
iε  indicates the error of the computation occurred at a

discrete radial position ( )a i
r  at the thn step of the computation. If the approximated 

solution n
i  approach to the analytical solution n

ic  then n
iε  approach to zero. The 

maximum value of n
iε  among all discrete radial positions at the thn step of the 

computation can be estimated as (see Appendix D)

          ( ) ( ) ( )22 3 4

2 3 4, , ,
max   max   max 2

2 12

n nn
an

i r ii n i n i n
a ai i i

rc c cG
r r

τ
ε

τ
∆ ∆    ∂ ∂ ∂

≤ + −    ∂ ∂ ∂     
.  (4.20)

This equation shows us that the difference equation (4.13) can 
approximate the continuity equation (4.9) for its analytical solution ( ),ac r τ , with the 
limited second-order partial derivative of c  with respect to τ  and the limited third and 
fourth-order partial derivative of c  with respect to ar . Equation (4.20) tells us that the 
approximation with respect to grid steps τ∆  and ar∆  is of the first and second order, 
respectively, or we can write the order of the approximation as ( ) ( )2

arτ Ο ∆ + ∆  . It is 
seen from equation (4.20) that the approximate solution n

i  can approach the analytical 
solution n

ic  when grid steps τ∆  and ar∆  are approach to zero.

4.1.2.2 Stability of the Computation

Suppose that at the thn  step of the discrete normalized time,
( )n nτ τ= ∆ ,(and also the thn  step of the computation) the approximated solution n

i

differ from the analytical solution n
ic  with a certain quantity n

icδ  called the error of 
computation at the discrete radial position ( )a i

r  and at the thn  step of the discrete 
normalized time that is
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                                                           n n n

i i ic cδ= + .                                              (4.21)

Similarly, at the 1thn +  step of computation we have

                                                          1 1 1n n n
i i ic cδ+ + += + .                                           (4.22)

If the error made at any 1thn +  step of computation, 1n
icδ
+ , not larger

than the error made at the previous step, n
icδ , then the computation is call stable. In 

other words, for the computation to be stable, the error made in one step of computation 
should not be increased by subsequent computations.

For the simulation of the capture of ultra-fine particles  in one dimension 
by a single ferromagnetic cylindrical collector, conditions to achieve a stable 
computation are (see Appendix D)

                                               ( )max r

i
a i

G
r

τ ξ
 ∂

∆  ∂ 
,                                            (4.23a)

                                               ( )
( ) ( )max

2 r ii
a

G
r
τ

ξ
∆
∆

,                                           (4.23b)

and                                                         10
2

ξ≤ ≤ ,                                                 (4.23c)

where it is defined that

                                                              ( )
( )2

ar
τ

ξ
∆

≡
∆

.                                                   (4.24)

When all conditions in equation (4.23) are satisfied, the computation is
stable and the maximum error occurred at the thN  step of computation can be
determined as (see Appendix D)
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                                  ( ) ( ) ( )20max maxN

i i ai i
c c N rδ δ τ τ ≤ + ∆ Ο ∆ + ∆  ,            (4.25)

where the term 0
icδ  denotes the error from the assignation of the initial condition. From 

equation (4.25), we can see that, with vanishing grid steps, τ∆  and ar∆ , and all 
conditions in the equation (4.23) are satisfied, the approximated solution n

i  converge 
to the analytical solution n

ic  and the computation is stable.

4.1.2.3 Initial Condition of the Computation

The initial condition of the simulation of this case is assigned by setting
the value of particle volume concentration at every discrete points ( )a i

r  at initial ( )0τ =

equal to a constant denoted by 0C  that is

                                                      0
0i C=     for all i .                                               (4.26)

4.1.2.4 Saturation Condition

In practical, as particle volume concentration at a given point increase, 
inter-particle forces will limit this concentration to a finite value and the saturation is 
occurred. Experimental evidence [18] indicates that saturation occurs approximately at

0.10c ≈ . This value is therefore used as a limit to the particle volume concentration.
A discrete radial position ( )a i

r with a concentration 0.10n
i ≥  is assumed to be the 

saturation point. In this research, the point of saturation is considered to be the point
that particles accumulate highly dense and the build-up of particles is considered to be 
static. All saturation points are excluded from the computation and values of particle 
volume concentration are held fixed at 0.10.

The saturation condition can be expressed as

                                                    0 0.10n
i≤ ≤      for all i  and n .                            (4.27)
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4.1.2.5 Boundary Conditions of the Computation

4.1.2.5.1 Outer Boundary Condition

Since the capture of ultra-fine particles must be simulated in a 
finite computational domain. Let ( ) ( )1a aQ

r Q r= + ∆  be the outer boundary of the 
computational domain. From equation (2.20) of Chapter II, we can see that the 
magnitude of radial component of magnetic traction force decrease with increasing ar . 
Consequently in the simulation, the outer boundary of the computational domain is 
chose to far from the collector. This make it is reasonably to approximate that the 
influence of the magnetic force can be neglected at the outer boundary. From this, the 
value of n

Q  is maintained equal to the initial particle volume concentration 0C  for all 
steps of discrete normalized time nτ . Consequently, the outer boundary condition of the 
computation can be expressed as

                                                              0
n
Q C=    for  all n .                                      (4.28)

4.1.2.5.2 Boundary Condition at the Impervious Surface

The impervious surface in this research is defined as the surface 
of the collector or the surface of the region of saturation concentration where particles 
accumulate highly dense. The particle volume flux in the radial direction at any points on 
the impervious surface is considered equal to zero.  Let subscript I  indicates the 
position of a point on the impervious surface. We can write the condition of particle 
volume flux in the radial direction on the impervious surface as

                                                          0r
a I

c G c
r

 ∂
− = ∂ 

.                                              (4.29)
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In finite-difference method, the difference equation

corresponds to the equation (4.29) can be written as

                                                        ( )1 0
n n

nI I
r II

a

G
r

− −
− = ∆ 

.                              (4.30)

In the simulation, the value of particle volume concentration at a 
given point on the surface of the collector can be computed at the thn step of the 
computation by using the expression

                                                    
( ) ( )

1

1

n
n I
I

r aIG r
+=

+ ∆
.                                              (4.31)

When the value of particle volume concentration at a point on the 
surface of the collector reaches the saturation concentration, that point will be excluded 
from the computation in the next cycle and equation (4.31) is applied for the point 
adjacent to the saturation point.

4.1.2.6 Parameters of Simulations

For the simulation of ultra-fine particle capture in one dimension by a 
single ferromagnetic cylindrical collector, parameters of the simulation are as follows:

1) The magnitude of applied uniform magnetic field( )0H ,
2) The radius of ultra-fine particles ( )pb .
3) The effective magnetic susceptibility ( )p fχ χ χ≡ − .
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4.1.2.7 Procedures of the Simulation

Procedures of the simulation in one dimensional case can be separated
into three main parts as shown schematically in Figure 4.2

Figure 4.2: Three main procedures of the simulation.

                        The first main procedure, the pre-computational part, is the preparation
before performing the computation. Sub-procedures contained in this part are

1.1) Describe some introductions and the objective of the simulation,
1.2) Set all constants and parameters those are used in the

simulation,
1.3) Declare all output files and variables those are used in the

simulation,
1.4) Construct the computational domain,
1.5) Set the initial condition of the computation.

In the second main procedure, the computational part, the numerical
value of approximated particle volume concentration n

i  is updated at every discrete
radial positions ( )a i

r in the computational domain at each step of discrete normalized 
time ( )nτ . Sub-procedures in this part are as follows:

 The Pre-Computational Part

The Computational Part

  The Result-Collecting Part
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2.1)      Increase the step of the discrete normalized time ( )nτ  by one,
2.2) Find and mark the position of the impervious point in the
             computational  domain,
2.3) Set the outer boundary condition of the computation,
2.4) Update numerical value of the approximated particle volume

concentration at every points in the computational domain by
starting from the point at the outer boundary toward the
impervious point,

2.5) Prepare for the next cycle of computation ( )1nτ +  by treat the
                                      new values of particle volume concentration those are computed
                                      in the present cycle as the old values for the next cycle.

In the third main procedure, the result-collecting part, results of the 
simulation which are numerical values of particle volume concentration at every discrete 
points in the computational domain at some steps of normalized times those has early 
specified are sent to corresponding output files. When these results are saved in the 
output files, all output files are then closed and the simulation is terminated.

4.2 Two Dimensional Simulations of the Capture of Ultra-Fine Particles

From section 2.3.3 of Chapter II, we obtain the continuity equation
describing the capture of ultra-fine particles in two dimensions as

                   ( ) ( )
2 2

2 2 2

1 1 1r
r

a a a a a a a

c c c c G c G c G c
r r r r r r r θτ θ θ

   ∂ ∂ ∂ ∂ ∂ ∂
= + + − + +   ∂ ∂ ∂ ∂ ∂ ∂   

.       (4.32)

We can study the capture of ultra-fine particles in two dimensions by 
solving this equation when some initial and boundary conditions are given. The solution 
of this equation provides us the distribution of particle volume concentration in two 
dimensional area around the collector at various normalized times. In this research, the 
time-dependent solution of equation (4.32) is determined numerically by using the
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 finite-difference method.

4.2.1 The Two Dimensional Computational Domain

The analytical solution of equation (4.32) is a continuous function of two 
dimensional polar coordinates and normalized time denoted by ( ), ,ac r θ τ . If this 
analytical solution can be determined by some methods then the particle volume 
concentration can be calculated, at any values of normalized time, at any points in a 
continuous range 1 ar≤ ≤ ∞ . In numerical method, numerical solutions of equation 
(4.32) are computed in a finite discrete computational domain in two dimensions as
shown in Figure 4.3

Figure 4.3: A two dimensional circular grid.

θ∆
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In Figure 4.3, the computational domain consists of a finite set of uniformly distributed 
discrete points ( )( ),a ji

r θ  where discrete radial and angular coordinates are 
determined by
                                                    ( ) ( )1        0a ai

r i r i Q= + ∆ ≤ ≤  ,                             (4.33)

and                                                ( )             0j j j Pθ θ= ∆ ≤ ≤ ,                             (4.34)

where i  and j are positive integers , Q and P  are positive integers generally much 
larger than unity.

In the simulation of ultra-fine particles capture in two dimensions, some 
initial and boundary conditions are assigned to the computational domain and the 
numerical value of particle volume concentration is computed at every points at various 
normalized times. The numerical value of particle volume concentration at a discrete 
point ( )( ),a ji

r θ  and at the thn step of the discrete normalized time is denoted by ,
n
i j .

4.2.2 The Computation of Approximated Time-Dependent
                          Solutions

The continuity equation (4.32) is solved numerically to obtain its 
approximated time-dependent solutions by using the finite-difference method. At the first 
step, the continuity equation (4.32) is rewritten in an alternative form as

               
2 2

2 2 2

1 1 r r
r

a a a a a a a a a

G Gc c c c G c c G c cG c
r r r r r r r r r

θ θ

τ θ θ θ
∂∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + − − − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

.     (4.35)

Then, all partial differentiations in this equation are approximated by their 
corresponding difference relations. The term /c τ∂ ∂  is approximated by the first-order 
forward difference, terms 2 2/ ac r∂ ∂  and 2 2/c θ∂ ∂ are approximated by the second-order 
central difference, terms / ac r∂ ∂  and /c θ∂ ∂ are approximated by the first-order central 
difference(see Appendix C), terms /r aG r∂ ∂  and /Gθ θ∂ ∂  are not necessary to be
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approximated since their analytical values can be determined at any discrete points 
( )( ),a ji
r θ  in the computational domain.

Expressions of /r aG r∂ ∂  and /Gθ θ∂ ∂  can be obtained as

                                                  ( )
0 4 5

3cos 2 5r

a a a

G KG
r r r

θ ∂
= − + ∂  

,                                (4.36)

and                                            ( )0
3

2 cos 2

a

GG
r

θ θ
θ

∂
=

∂
,                                               (4.37)

where the value of the factor 0G  and K  depend on the type of the magnetic collectors
those are used.

The values of /r aG r∂ ∂  and /Gθ θ∂ ∂  evaluated at a discrete points
( )( ),a ji
r θ  are defined as

                                                          
( )( ), ,a ji

r r

a ai j r

G G
r r

θ

 ∂ ∂
≡ ∂ ∂ 

,                                     (4.38)

and

                                                          
( )( ), ,a jii j r

G G
r r
θ θ

θ θ θ

 ∂ ∂
≡ ∂ ∂ 

 .                                   (4.39)

The value of rG  and Gθ  at a discrete point ( )( ),a ji
r θ  are not necessary

to be approximated and we define

                                                         ( ) ( )( ), ,a ji
r ri j r
G G

θ
≡ ,                                            (4.40)

and                                                   ( ) ( )( ), ,a jii j r
G Gθ θ θ

≡ .                                           (4.41)

After all approximations are performed, the continuity equation (4.35) is
replaced by its corresponding difference equation
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,                                      (4.42)

where ,
n
i j  is the approximated numerical solution of the continuity equation (4.35) at

the discrete point ( )( ),a ji
r θ  and at the thn step of discrete normalized time nτ .

The value of 1
,
n
i j
+  which is the updated value of particle volume 

concentration at the discrete point ( )( ),a ji
r θ  at the 1thn + step of the discrete 

normalized time nτ can computed from the equation
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  .                                             (4.43)

We can see from this equation that if the initial value ( )0n = of  are 
given at every discrete points as 0

,i j  for all i  and j  then we can compute 1
,i j , 2

,i j ,
3
,i j , …, ,

N
i j  in succession when some boundary conditions are assigned. 

Consequently, the approximated solutions of the continuity equation can be determined
at various discrete normalized times and the simulation of the capture of ultra-fine 
particles in two dimensions can be performed.
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4.2.3 Errors of the Computation

From equation (4.42) if all approximated solutions  are replaced by
their corresponding analytical solutions c  at every discrete points at the thn step of the
discrete normalized time nτ  then we obtain
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  ,                       (4.44)

where ,
n
i jε  is a real quantity, generally not equal to zero, which indicates the error of the 

computation. If the approximated solution at a given point, ,
n
i j , is close to the analytical 

solution ,
n
i jc  at the same point then the value of ,

n
i jε is close to zero at that point.

For the simulation of ultra-fine particles capture in two dimensions, we 
can estimate the maximum value of ,

n
i jε  which occurred at the thn  step of the 

computation as (see Appendix E)
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  .                      (4.45)

The expression (4.45) tell us that the difference equation (4.42) can 
approximate the continuity equation (4.35) for its analytical solution ( ), ,ac r θ τ , with the 
limited second-order partial derivative of  c  with respect to τ  and the limited third and 
fourth-order partial derivative of  c  with respect to ar  and θ , respectively.
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The approximation with respect to grid steps τ∆ , ar∆  and θ∆  are of

the first, second and second order, respectively. It is said that the difference equation
(4.42) approximate the continuity equation (4.35) for its solution within the order

( ) ( ) ( )2 2
arτ θ Ο ∆ + ∆ + ∆  .

4.2.4 The Stability of the Simulation

The stability of the simulation of the capture of ultra-fine particles in
two dimensional space is analyzed in the appendix E. Conditions those make the 
simulation stable are
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and                                                           10
2

ξ≤ ≤                               ,                    (4.51)

where it is defined that

                                                                 ( )
( )ar
θ

α
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≡
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                                                  (4.52)
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and ξ  has been defined in the equation (4.24).

When these conditions are satisfied, the simulation in two dimensional 
space can be stable and the maximum error of the computation among all discrete 
points in the computational domain after N steps of computations can be expressed as

                       ( ) ( ) ( ) ( )2 21 0
, ,, ,

max maxn
i j i j ai j i j
c c N rδ δ τ θ τ+  ≤ + ∆ Ο ∆ + ∆ + ∆  .          (4.53)

This expression means that if all gird steps( τ∆ , ar∆  and θ∆ )are 
approach to zero and all stability conditions are satisfied then the computed numerical 
approximated solution  converge to the analytical solution c  and the simulation is 
stable.

4.2.5 Initial Condition of the Simulation

The initial condition for the simulation in the two dimensional space can
be assigned as
                                                    0

, 0i j C=   for all i  and j ,                                      (4.54)

where 0C  is a numerical constant greater than zero.

4.2.6 Saturation Condition

The saturation condition in this two dimensional case is similar to the one
dimensional case and can be assigned as

                                            ,0 0.1n
i j< ≤   for all i , j  and n  .                                 (4.55)
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4.2.7 Boundary Conditions

4.2.7.1  Outer Boundary Condition

The outer boundary condition for the case of single cylindrical
collector is assigned similar to the case of one dimensional simulation. Since the 
magnitude of magnetic traction force decrease with increasing ar , if we set the outer 
boundary of the computational domain at ( ) 1a Q

r  then the magnetic force can be 
neglected at the outer boundary. Consequently, the outer boundary condition can be 
assigned as

                                                     , 0
n
Q j C=   for all j and n ,                                  (4.56)

where 0C  is the initial particle volume concentration.
In another case where ultra-fine particles are captured by an 

assemblage of random cylindrical paramagnetic collectors, the effective medium model 
allows us to study the capture process of overall system (collectors + fluid) by consider 
only in a cylindrical representative cell. In this research, the capture of ultra-fine particles 
by an assemblage of random cylindrical paramagnetic collectors is studied for the case 
of static fluid. This means that no particle volume flux flow through the overall system.
Consequently, the total amount of ultra-fine particles in the system can be considered to 
be constant. Since the representative cell is the representation of the system, we then 
impose a constraint on the simulation that the total amount of ultra-fine particles in the 
representative cell should be constant. Consequently, the net particle volume flux in all 
directions perpendicular to the outer boundary of the representative cell must equal to 
zero. From this, we will approximate that the outer boundary of the representative cell is 
equivalent to an impervious surface as shown in Figure 4.4.
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                                                                                ar∆

                                              2Q −            1Q −                  Q
                                               ( ) 2a Q

r
−

        ( ) 1a Q
r

−
               ( )a Q

r

                                                                       the outer boundary of the representative cell

Figure 4.4: The outer boundary of the representative cell as an impervious surface.

The continuity equation at all points on the outer boundary can
be approximated as (see Appendix F)
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where Q  denotes the position of a point  on the outer boundary of the representative
cell. From the expression (4.57), the approximated numerical value of particle volume
concentration at various points on the outer boundary of the representative cell can be
computed from
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4.2.7.2 Boundary Condition at the Surface of the
           Collector or at the Surface of the Saturation
                Region

In this research, the surface of the collector and the surface of 
the saturation region, composed from many saturation points, are considered as an 
impervious surface as shown in the Figure 4.5

                                             ar∆

                                       I            1I +            2I +
                                    ( )a I

r          ( ) 1a I
r

+
        ( ) 2a I

r
+

              the surface of the collector

Figure 4.5: Surface of the collector or the saturation region as
                                         an impervious surface.

The continuity equation for a given point which is adjacent to the
surface of the collector or the surface of the saturation region can be approximated as 
(see Appendix F)
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where the index I  denotes the position of a point on the impervious surface.
From the expression (4.59), the approximated numerical value of 

particle volume concentration at various points on the surface of the collector can be 
computed from
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When the impervious surface is the surface of saturation, equation (4.60) 
is used for compute the value of particle concentration at the point adjacent to the 
saturation point.

4.2.8 Parameters of Simulations

Simulations of ultra-fine particle capture in two dimensions are separated 
into two categories. The first is the case of single ferromagnetic cylindrical collector and 
the second is the case of an assemblage of random paramagnetic cylindrical collectors. 
Parameters of these simulations are as follows:

1) In the case of single collector, the parameter is the magnitude of the
applied uniform magnetic field ( )0H ,

2) In the case of an assemblage of random paramagnetic cylindrical
collectors, parameters are the packing fraction ( )F of the cylindrical
collectors in the system and the magnitude of the applied uniform

      magnetic field ( )0H .

4.2.9 Procedures of the Simulation

Procedures of the simulation for this two dimensional case are the same
as the one dimensional case and are already described in the section 4.1.2.7

In Chapter V, capture of ultra-fine particles is simulated in various cases.



CHAPTER V
Results of Simulations and Discussions

In this chapter, results of simulations of HGMS capture of ultra-fine 
particles in various cases are presented with discussions. The simulation begins with the 
capture of ultra-fine particles in one dimension by a single ferromagnetic cylindrical 
collector. Next, the simulation is extended to the capture of ultra-fine particles in two 
dimensions by a single ferromagnetic cylindrical collector. Finally, results of two 
dimensional simulations of HGMS capture of ultra-fine particles by an assemblage of 
random paramagnetic cylindrical collectors are presented.  From all of these results, the 
capture of ultra-fine particles in various situations can be investigated.

5.1 One Dimensional Simulations of the Capture of Ultra-Fine Particles by
     a Single-Ferromagnetic Cylindrical Collector

In one dimensional case, HGMS capture of ultra-fine particles is 
simulated in two situations and results of these simulations are categorized into two 
sections.

5.1.1 Paramagnetic Mode of the Capture
  
In the first situation, the ultra-fine particle is paramagnetic

Mn2P2O7 particle of radius 81.2 10  m.pb
−= ×  An assembly of Mn2P2O7 particles 

dispersed in a static water. The effective magnetic susceptibility of the system
(water + Mn2P2O7 particle) is 34.73 10χ −= + × . This situation which 0χ >  is called the 
paramagnetic mode of the capture. The ferromagnetic collector is considered to be 
homogeneous saturate magnetized perpendicular to its axis by a uniform external 
magnetic field 6

0 1.0 10  A/mH = ×  points in the positive X direction and its saturate 
magnetization is 61.6 10  A/m.SM = ×  Let the absolute temperature equal to 300 K. 
From these parameters, we can calculate the value of factor 0

ferroG , from equation(2.28)
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of Chapter II, as –16.62 and the value of the factor WK , from equation (2.14) as 0.80. 
The value of initial particle concentration at every points in the computational domain is 
set equal to 3

0 1.0 10C −= ×  and the saturation concentration is set equal to 0.10satC = . 
From equation (2.20) of Chapter II, we can see that, for the paramagnetic mode, the 
radial component of the magnetic force is strongest attractive at 0,  θ π= radian 
whereas the strongest repulsive magnetic force occur at / 2,  3 / 2θ π π= radian. The 
position of the outer boundary is assigned at 10.00aLr = where the magnetic force is 
assumed neglected. The value of particle concentration at the outer boundary is held 
fixed equal to the initial value for all normalized times.

Figure 5.1 shows the distribution of concentration in the paramagnetic 
mode at 0θ =  radian at various normalized times.

       Curve No.      1            2           3            4            5            6             7            8
              τ          31 10−×   21 10−×  25 10−×  11 10−×   12 10−×  15 10−×    1.00    steady state

                       Figure5.1: Time evolution of concentration distribution at 0θ =  radian in
                                         paramagnetic mode, 0 16.62,  0.80ferro

WG K= − = .
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In Figure 5.1, at small τ , particles accumulate dynamically on the

surface of the collector and saturation does not occur. As τ  increase, concentration on 
the surface of the collector increase which corresponds to the attractive magnetic force 
at 0θ =  radian. As τ  increase continuously, particles accumulate densely on the 
surface of the collector, inter-particle forces (both electric and magnetic types) will limit 
the concentration of particles to a finite value called the saturation concentration. 
Consequently, when τ  is larger than a certain value, saturation concentration take 
places on the surface of the collector. The saturation region extends with increasing τ . 
The dash line in the figure represents the analytical steady-state solution of this situation
which is the theoretical limit of numerical time-dependent solutions in curves number 1 
to 7. The expression of steady-state solution for this situation is determined in the 
Appendix G.

The result in Figure 5.1 is obtained by using the same set of parameters 
as the former work produced in 1998 by R. Gerber and coworkers [3]. These two results 
are compared and we find that they are consistent. This consistency indicates that our 
simulation methodology is reliable.

The former work of R. Gerber and coworkers consider the capture in 
paramagnetic mode at 0θ =  radian only. In our work, ultra-fine particle capture in 
paramagnetic mode at 2/θ π= radian is also considered. Figure 5.2 shows the 
distribution of particle concentration at 2θ π=  radian at various normalized times, the 
radial magnetic force become repulsive at this angle.

In Figure 5.2, we can see that, at 2/θ π= radian, particle concentration 
on the surface of the collector decreases with increasing normalized time. These 
features is opposite to those in Figure 5.1,this is because the directions of magnetic 
forces in these two cases are opposite. From equation (2.20) of Chapter II, radial 
magnetic force becomes repulsive at 2/θ π= radian. Ultra-fine particles in the region 
near to surface of the collector are repelled, by the magnetic force, to other regions
faraway form the collector. As τ  increase, amount of ultra-fine particles in the region 
near to the collector surface more rare. The dash line in the Figure 5.2 represents the 
analytical steady-state solution of this situation.
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     Curve No.      1            2           3            4             5            6            7              8
             τ          31 10−×   21 10−×  25 10−×   11 10−×   12 10−×  15 10−×    1.00    steady state

       Figure 5.2: Time evolution of concentration distribution at / 2=θ π  radian in
                          paramagnetic mode, 0 16 62 0 80ferro

WG . ,  K .= − = .
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5.1.2 Diamagnetic Mode of the Capture

In the second situation, the ultra-fine particle is diamagnetic gold particle 
of radius 86.92 10  m.pb

−= ×  An assembly of gold particles dispersed in a static water. 
The effective magnetic susceptibility of the system (water + gold particles) is

52.55 10χ −= − × . This situation which 0χ <  is called the diamagnetic mode of the 
capture. Properties of ferromagnetic collector and the uniform external magnetic field in 
this situation are all the same as the paramagnetic mode in previous section. The value 
of factors  0

ferroG  and WK  in this situation are 0 17 18 0 80ferro
WG . ,  K .= + = . The value 

of initial particle concentration is set equal to 4
0 8 10C −= ×  and the saturation 

concentration is set equal to 0.10satC = . The position of the outer boundary is at 
10.00aLr = and the value of concentration at the outer boundary is held fixed equal to 

initial concentration for all normalized times. For the diamagnetic mode, the radial 
component of the magnetic force is strongest attractive at 2,  3 2θ π π=  radian 
whereas the strongest repulsive magnetic force occur at 0,  θ π=  radian (see equation 
(2.20) of Chapter II). Figure 5.3 shows the distribution of concentration in the 
diamagnetic mode at 2θ π=  radian at various normalized times.

In Figure 5.3, we can see that, since the radial magnetic force is
attractive at / 2θ π=  radian, the concentration on the surface of the collector increases 
with τ . When two results in Figure 5.1 and 5.3 are compared, we can see that, at the 
same value of τ , the increasing of particle concentration on the surface of the collector 
in diamagnetic mode is slower than that of the paramagnetic mode . At 1.00τ = , 
saturation concentration take place on the surface of the collector in paramagnetic 
mode but dose not take place in the diamagnetic mode. This can be understood by 
consider equation (2.27) of Chapter II. We consider on the surface of the collector so 

1.00ar = , in paramagnetic mode at 0θ =  radian the absolute value of the function rG

is 29.92  whereas in diamagnetic mode at 2θ π= radian the absolute value of the 
function rG  is 3.44  which is much smaller. The dash line in the figure represents the 
analytical steady-state solution of this situation. We can see that saturation concentration 
take place on the surface of the collector at steady state in this situation.



52

     Curve No.      1            2           3            4             5            6            7              8
             τ          31 10−×   21 10−×  25 10−×   11 10−×   12 10−×  15 10−×    1.00    steady state

      Figure 5.3: Time evolution of concentration distribution at / 2=θ π  radian in
                          diamagnetic mode, 0 17 18 0 80ferro

WG . ,  K .= + = .

The result in Figure 5.3 obtained by using the same set of parameters as
a former work published in 1998 by R. Gerber and coworkers [3]. These two results are 
compared and the consistency is found. This consistency confirms the reliability of our 
simulation methodology.
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Figure 5.4 shows the distribution of concentration in the diamagnetic mode at 0θ =

radian at various normalized times. At this angle, the radial magnetic force becomes 
repulsive. In Figure 5.4, we can see that the value of particle concentration on the 
surface of the collector decreases with increasing normalized times. When two results in 
Figures 5.2 and 5.4 are compared, we see that the decreasing of concentration on the 
surface of the collector in diamagnetic mode is faster than that in the paramagnetic 
mode. This is because the absolute value of the function rG  on the surface of the 
collector at 0θ =  radian in this situation is 30.92 whereas in the paramagnetic mode, at 

/ 2θ π=  radian, the absolute value of the function rG  is 3.32 which is much smaller. 
The dash line in the figure represents the analytical steady-state solution of this situation.

       Curve No.     1            2           3             4            5            6             7             8
             τ          31 10−×   21 10−×  25 10−×   11 10−×   12 10−×  15 10−×    1.00    steady state

            Figure 5.4: Time evolution of concentration distribution at 0=θ  radian in
                               diamagnetic mode, 0 17 18 0 80ferro

WG . ,  K .= + = .
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From Figure 5.1, we have seen that saturation concentration take place on the surface 
of the collector in HGMS capture of Mn2P2O7 particles. It is interested to investigate how 
the occurrence of the saturation concentration on the surface of the collector depends 
on the magnitude of the uniform external magnetic field 0H . Figure 5.5 shows the 
variation of satτ  with 0H  where satτ  is defined as the value of normalized time that 
saturation concentration begins to take place on the surface of the collector. In Figure 
5.1, at 25 10τ −= ×  the saturation concentration take places on the surface of the 
collector then we obtain 25 10satτ −≈ ×  for the situation in Figure 5.1.

Figure 5.5: Variation of satτ  with 0H  in paramagnetic mode of
                                         one dimensional capture of  Mn2P2O7 particle.

From Figure 5.5, at the value of 6
0 1 10  A/mH = × , the value of 

0.040satτ ≈ which is close to the value 0.050 given by approximating curve number 3  
in Figure 5.1.
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In Figure 5.5, we see that the value of satτ  decreases rapidly with 

increasing 0H . If the variation of satτ  with 0H  is plotted in semi-logarithmic scale, the 
result is given in Figure 5.6. From Figure 5.6, we can approximate that the value of 

( )10log satτ  decreases linearly with 0H , Consequently, we may approximate that the 
value of satτ  decrease ,with increasing 0H , by the factor which is the negative power of 
10.

                   Figure 5.6: Variation of satτ  with 0H  in paramagnetic mode
                                             of one dimensional capture of Mn2P2O7 particles

                                                        plotted in semi-logarithmic scale.

All results of simulations shown in Figures 5.1 to 5.6 achieved by using
values of grid steps 34 10ar

−∆ = × and 72 10τ −∆ = × . From equation (4.25) of chapter IV,
we can estimate that the maximum error of the computation generated at 1.00τ =  is in
the  order of 510− .
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5.2  Two Dimensional Simulations of the Capture of Ultra-Fine Particle by a
      Single-Ferromagnetic Cylindrical Collector

        In this section, HGMS capture of ultra-fine particles by a single
ferromagnetic cylindrical collector is simulated in all the same situations as the previous 
section of one dimensional case but all simulations here are performed in two 
dimensions.

5.2.1 Paramagnetic Mode of the Capture

The first situation is the paramagnetic mode of the capture. The
ultra-fine particle is paramagnetic Mn2P2O7 particle of radius 81.2 10  m.pb

−= ×  An 
assembly of Mn2P2O7 particles dispersed in a static water. The effective magnetic 
susceptibility of the system (water + Mn2P2O7 particle) is 34.73 10χ −= + × .The 
ferromagnetic collector is considered to be homogeneous saturate magnetized 
perpendicular to its axis by a uniform external magnetic field 6

0 1.0 10  A/mH = × points 
in the positive X direction and its saturate magnetization is 61.6 10  A/m.SM = ×  Let the 
absolute temperature equal to 300 K. The values of  factors 0 16 62= −ferroG .  and 

0 80=WK . . The value of initial concentration at every points in the computational 
domain is set equal to 3

0 1.0 10C −= ×  and the saturation concentration is set equal to 
0.10satC = . Grid steps used in this two-dimensional simulation are 21 10 ,−∆ = ×ar

11 10 ,−∆ = ×θ and 51 10τ −∆ = × . The outer boundary of the computational domain is set 
at 10.00aLr = and the boundary condition is assigned that the value of particle 
concentration at all points on the outer boundary are held fixed at the initial 
concentration for all normalized times. The results of the simulation are presented to 
illustrate the behavior of the build-up of ultra-fine particles on the collector.

Figure 5.7 shows the family of concentration contours in various
regions around the collector those describing the build-up features of ultra-fine particles 
on the surface of the collector.
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             Figure 5.7: A family of concentration contours around the ferromagnetic
                            collector in paramagnetic mode, 0 16.62,  0.80ferro

WG K= − = .
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In Figure 5.7, we can see the feature of the build-up of

ultra-fine particles on the ferromagnetic collector. Regions around the collector can be 
specified in three zones. The first zone is called the saturation region where 
concentration at all points equal to the saturation concentration 0.10satC = . Saturation 
regions in the figure are labeled by the symbol S . The second zone is called the 
accumulation region where the value of concentration is larger than the initial 
concentration but less than the saturation concentration that is 0 satC c C< < .Particles 
accumulate dynamically in the accumulation region. Accumulation regions in the figure 
are labeled by the symbol A . The radial magnetic force is attractive in both saturation 
and accumulation regions. The third zone is called the depletion region where the value 
of concentration is less than the initial value that is 00 c C< < . The radial magnetic force 
is repulsive in the depletion region. Depletion regions in the figure are labeled by the 
symbol D .

In Figure 5.7, we see that, in paramagnetic mode, the build-up of 
ultra-fine particles on the ferromagnetic collector occur in the direction parallel to the 
direction of uniform external magnetic field 0H which is the X -direction in the figure. 
Particles depleted in the direction that perpendicular to the direction of 0H since, due to 
magnetic force, they are repelled to other regions.

Figure 5.8 shows concentration distribution at 0,  θ π=  radian at various 
normalized times and Figure 5.9 shows concentration distribution at 2,  3 2θ π π=

radian at the same normalized times. The dash line in the each figure represents the 
analytical steady-state solution at that angle. From these figures, we can see that when 
capture process proceeds, ultra-fine particles are transferred, by the action of the 
magnetic force, from depletion regions to accumulation and saturation regions. In the 
saturation region, particles accumulate highly dense and all particles contained in this 
region are separated from the fluid. When the capture process is terminated, the 
external magnetic field is shutdown and particles those are captured in saturation 
regions can be washed from the collector.
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                   Curve No.      1               2              3             4              5                6
                        τ         31 10−×    35 10−×    21 10−×    25 10−×    11 10−×   steady state

      Figure 5.8: Concentration distribution at 0θ = , π radian at various normalized
                         times in paramagnetic mode, 0 16 62 0 80ferro

WG . ,  K .= − = .
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                   Curve No.      1               2              3              4              5                6
                        τ         31 10−×    35 10−×    21 10−×    25 10−×    11 10−×   steady state

                       Figure 5.9: Concentration distribution at 2θ π= ,3 / 2π  radian at various
                                           normalized times in paramagnetic mode,
                                           0 16 62 0 80ferro

WG . ,  K .= − = .

     Figure 5.10 shows a comparison between steady-state concentration 
distribution at 0θ =  radian and 2θ π=  radian. From this comparison, we see that the 
maximum concentration ( 0.10satC = ) is about 5000  times of the minimum 
concentration. Consequently, almost total amounts of ultra-fine particles in depletion 
regions are transferred to saturation and accumulation regions.
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               Figure 5.10: Comparison between steady-state concentration distribution at
                                    θ  = 0 and / 2π  radian in paramagnetic mode,
                                    0 16 62 0 80ferro

WG . ,  K .= − = .
                               .

The family of concentration contours shown in Figure 5.7 is compared 
with the result of the former work published by L. P. Davies and R. Gerber in 1990 [8]. In 
their work, HGMS capture of Mn2P2O7.3H2O particles ( 8 31.2 10  m,  = 2.03 10pb χ− −= × × ) 
in aqueous suspension by a thin stainless steel wire of radius 55 10  ma −= ×  and 
saturate magnetization 58.61 10  A/mM = ×  is simulated in paramagnetic mode. The 
uniform external magnetic field is 7

0 1 10  A/mH = × . The factors 0 38.4ferroG = − ,
0.04305WK =  and the initial concentration is 3

0 1 10C −= × . The capture process was 
simulated until  0.20τ = . We find that the features the build-up of ultra-fine particles on 
the surface of the collector in these two results are consistent. Consequently, our 
simulation methodology in this two-dimensional case can be considered reliable.
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All results of two dimensional simulations shown in Figures 5.7 to 5.10

are achieved by using values of grid steps 2 11 10 ,  1 10ar θ− −∆ = × ∆ = ×  and 
51 10τ −∆ = × . From equation (4.53) of Chapter IV, we can estimate that the maximum 

error of the computation generated at 0.10τ = is in the order of 310− .
All results shown in Figure 5.7 to 5.9 are simulated from 0τ =  to 

0.10τ = . Now we will consider steady state of HGMS capture process in two 
dimensions. From the original continuity equation (2.5) of Chapter II, we assume that the 
magnetic force is only the force that dominates the capture process. The outer boundary 
condition is assigned that the value of particle concentration at every points on the outer 
boundary is held fix equal to the initial concentration for all normalized times. From these 
assumptions we can determine the steady-state solution of the original continuity 
equation (2.5) in two dimensions as (see Appendix G)

                                           ( ) ( ) ( ) 
=  

 

m a
s a

B

U r ,
c r , exp

k T
θ

θ λ θ ,                                   (5.1)

where  mU is the magnetic potential energy of the system of particles and fluid,

                                           ( ) ( ) ( )2
0

1
2

= −m a p f aU r , H r ,θ µ χ χ θ                              (5.2)

and ( )λ θ  is a function of θ  which make the value of ( )s ac r ,θ  satisfy the outer
boundary condition at all points on the outer boundary of the computational domain,

                                                ( ) ( )
0=

 
 
 

m aL

B

C
U r ,
k T

λ θ
θ

 ,                                                (5.3)

where 0C  is the initial concentration.
For this situation where the collector is a ferromagnetic one, from 

equation (2.13) of Chapter II, we can determine the expression of ( ).m aU r θ as
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a a

MH cos MU r , H
r r

θ
θ µ χ χ  ,          (5.4)

where M is the magnetization of the ferromagnetic collector.
From equations (5.1) to (5.4), we can generate the steady-state

concentration contours in the paramagnetic mode as shown in Figure 5.11.

             Figure 5.11: Steady-state concentration contours around the ferromagnetic
                                        collector in paramagnetic mode , 0 16 62 0 80ferro

WG . ,  K .= − = .
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In the Figure 5.11, we generate the steady-state concentration

contours in capture process of the ultra-fine paramagnetic Mn2P2O7 particle of radius 
81.2 10  m.pb
−= ×  An assembly of Mn2P2O7 particles dispersed in a static water. The 

effective magnetic susceptibility of the system (water + Mn2P2O7 particle) is
34.73 10χ −= + × . The ferromagnetic collector is considered to be homogeneous 

saturate magnetized perpendicular to its axis by a uniform external magnetic field 
6

0 1.0 10  A/mH = × points in the positive X direction and its saturate magnetization is 
61.6 10  A/m.SM = ×  The absolute temperature equal to 300 K. The factor 

0 16.62ferroG = −  and the factor 0.80WK = .  The value of initial concentration at every 
points in the computational domain is set equal to 3

0 1.0 10C −= ×  and the saturation 
concentration is set equal to 0.10satC = .

Figure 5.11 depicts the feature of the build-up of ultra-fine particles on 
the collector at steady state. Locations of saturation, accumulation and depletion 
regions are specified.

In this research, we define a variable denoted by satP  as the percent of
the volume of ultra-fine particles those captured in saturation regions from total volume 
of ultra-fine particles  in the computational domain,

       volume of ultra-fine particles captured  in saturation regions 100
total volume of ultra-fine particles in the computational domainsatP = ×  . (5.5)

From the family of concentration contours in Figure 5.7, we can
determine the variation of satP  with normalized time τ  as shown in Figure 5.12.  In 
Figure 5.12, we can see that, for this paramagnetic mode, the saturation concentration 
take places at about 0.020τ = . When 0.10τ =  the value of satP  is about 10%.
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             Figure 5.12: Variation of satP  with τ   in the paramagnetic mode,
                                                 0 16.62,  0.80ferro

WG K= − = .

Since we can determine the steady-state solution ( ),s ac r θ , It is
interested to determine how the value of satP  at steady state vary with the magnitude of 
uniform external magnetic field 0H . This result  is shown in Figure 5.13.

In Figure 5.13, if we consider at 6
0 1.0 10  A/mH = ×  which equal to the

value of uniform external magnetic field used in our simulation  then we find that the 
steady-state value of satP  for this value of 0H  equal to about 12.5%. When this data is 
compared with the result of simulation in Figure 5-12, we can estimate that , for the value 
of 6

0 1.0 10  A/mH = × , the capture process reach the steady state at normalized time τ
small amount greater than 0.10.
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Figure 5.13 can help us for adjustment the optimum value of the 

uniform external magnetic field when the certain amount of ultra-fine particles to be 
separated from the fluid is specified.

Figure 5.13: Variation of steady-state satP  with 0H  in
                                                  paramagnetic mode, 0 16.62,  0.80ferro

WG K= − = .

5.2.2 Diamagnetic Mode of the Capture

In the diamagnetic mode, the ultra-fine particle is diamagnetic gold
particle of radius 86.92 10  m.pb

−= ×  An assembly of gold particles dispersed in a static 
water. The effective magnetic susceptibility is 52.55 10χ −= − × . The ferromagnetic 
collector is considered to be homogeneous saturate magnetized perpendicular to its 
axis by a uniform external magnetic field 6

0 1.0 10  A/mH = ×  points in the positive X
direction and its saturate magnetization is 61.6 10  A/m.SM = ×  The value of initial 
concentration is set equal to 4

0 8 10C −= ×  and the saturation concentration is set equal
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to 0.10satC = . The position of the outer boundary is at 10.00aLr = and the value of 
concentration at the outer boundary is held fixed equal to 4

0 8 10C −= ×  for all normalized 
times. For this diamagnetic mode, the factors 0 17 18= +ferroG .  and 0 80=WK . .

Figure 5.14 shows the family of concentration contours around the 
collector at 0 10.τ = .

                 Figure 5.14: A family of concentration contours around ferromagnetic
                                     collector in diamagnetic mode, 0 17 18 0 80ferro

WG . ,  K .= + = ,
                                     0.10τ = .

From this figure, we see that the location of accumulation regions and
depletion regions in diamagnetic mode are opposite to those of paramagnetic mode.
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This is because the directions of magnetic traction force between paramagnetic 
mode and diamagnetic mode are opposite. We see in Figure 5.14 that the saturation 
region does not exist on the surface of the collector, this tell us that, at 0.10τ = ,
ultra-fine particles accumulate around the collector as a cloud but they are not retained
statically on the surface of the collector. Consequently, ultra-fine particles are not 
separated from the fluid. The higher value of 0H  is required to achieve a successful 
separation in this diamagnetic mode.

Figure 5.15 shows the distribution of concentration in the diamagnetic
mode at  2,  3 2=θ π π radian at various normalized times. The dash line in the figure 
represents the analytical steady-state solution at these angles. From this figure, we see 
that the concentration on the surface of the collector at / 2,  3 / 2θ π π=  radian 
increases with τ since the magnetic force is attractive at these angles.

               Curve No.    1                2              3               4              5                  6
                        τ          31 10−×     35 10−×     21 10−×     25 10−×     11 10−×    steady state

                 Figure 5.15: Time evolution of concentration distribution at / 2,  3 / 2θ π π=

                                       radian in diamagnetic mode, 0 17.18,  0.80ferro
WG K= + = .
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Figure 5.16 shows the distribution of concentration in the diamagnetic

mode at  0,  =θ π radian at various normalized times. The dash line in the figure 
represents the analytical steady-state solution at these angles. From this figure, we see 
that the concentration on the surface of the collector at 0,  θ π=  radian decrease with 
τ  since the magnetic force is repulsive at these angles.

                 Curve No.      1                2               3               4               5                   6
                        τ          31 10−×      35 10−×     21 10−×      25 10−×     11 10−×    steady state

                 Figure 5.16: Time evolution of concentration distribution at 0,  θ π=  radian
           in diamagnetic mode, 0 17.18,   0.80ferro

WG K= + = .
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Figure 5.17 shows concentration contours around the collector in 

diamagnetic mode at steady state. These contours are generated by using equations 
(5.1) to (5.4) where parameters are specified in pages 66 to 67.  Contours in Figure 5.17 
show us that, in the diamagnetic mode, particles accumulate in the direction 
perpendicular to the applied uniform external magnetic field ( )0H  and particles deplete 
in the direction parallel to the applied uniform external magnetic field. This result is 
opposite to the case of paramagnetic mode. In Figure 5.17, we see that no saturation 
region take place in this situation as we can see from the curve number 6 in Figure 5.15.

     Figure 5.17: Steady-state concentration contours around the ferromagnetic collector
                            in diamagnetic mode, 0 17.18,  0.80ferro

WG K= + = .
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The absence of the saturation region at steady state in Figure 5.17 tell 

us that ultra-fine particles accumulate around the collector as a cloud but are not 
retained statically on the surface of the collector. Consequently, at steady state,
ultra-fine particles are not separated from the fluid. The higher value of 0H  is required to 
achieve a successful separation in this diamagnetic mode. Figure 5.18 shows the 
variation of satP  at steady state with 0H  in diamagnetic mode.

          Figure 5.18: Variation of steady-state satP  with 0H  in diamagnetic mode,
                                        0 17.18,  0.80ferro

WG K= + = .

In Figure 5.18, we see that, for 6
0 1 10  A/mH = × , the value of

steady-state satP equal to zero which corresponds to the result in Figure 5.17. The result 
in Figure 5.18 can help us for adjustment the optimum value of the uniform external 
magnetic field in diamagnetic mode when the certain amount of ultra-fine particles to be 
separated from the fluid is specified.
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5.3  Two Dimensional Simulations of the Capture of Ultra-Fine Particles by
      an Assemblage of Random  Paramagnetic Cylindrical Collectors

In this research, two dimensional simulations of the capture of ultra-fine 
particles by an assemblage of random paramagnetic cylindrical collectors in static fluid 
are performed in paramagnetic mode. Our first objective is to investigate the effect of 
variation of packing fraction of cylindrical collectors in the fluid to the feature of the 
build-up of ultra-fine particles on the surface of the collector and the distribution of 
concentration around the collector in the representative cell. The second objective is to 
investigate the effect of variation of packing fraction of cylindrical collectors in the fluid 
to the volume of ultra-fine particles captured in the saturation regions on the surface of 
the collector in the same interval of normalized time. The third and final objective is to 
investigate the effect of varying the magnitude of uniform external magnetic field to the 
volume of ultra-fine particles captured in the saturation regions on the surface of the 
collector in the same interval of normalized time.

5.3.1 The Effect of Variation of Packing Fraction to
                                   Features of Concentration Distributions in the
                                   Representative Cell

In every simulations of this section, the ultra-fine particle is
paramagnetic Mn2P2O7 particle of radius 81.2 10  m.pb

−= ×  An assembly of Mn2P2O7

particle dispersed in a static water. The effective magnetic susceptibility of the system 
(water + Mn2P2O7 particles) is 34.73 10χ −= + × . The uniform external magnetic field has 
its magnitude 6

0 2.0 10  A/mH = × and points in the positive X direction which 
perpendicular to axes of all cylindrical collectors. The parameter CK  defined in the 
equation (2.17) of Chapter II is equal to 0.20. The absolute temperature is set equal to 
300 K. The value of initial concentration at every points in the representative cell is set 
equal to 3

0 1.0 10C −= ×  and the saturation concentration is set equal to 0.10satC = .  
Three values of packing fractions of cylindrical collectors in fluid are used as
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5%,  8%F =  and 10% .  For all value of packing fractions, simulations are perform in 

the same interval of normalized time as 0 0.10τ≤ ≤ .
In the first case, 5%F =  the value of factor 0

randomG for this case is equal 
to 16.95− . Figure 5.19 shows the feature of the build-up of ultra-fine particles on the 
surface of the collector and the distribution of concentration around the collector in the 
representative cell. The concentration contours are shown only in the first quadrant, 
( )0 / 2θ π≤ ≤ , since the distribution of concentration has symmetry about X and Y
axes.

       Figure 5.19: A family of concentration contours around the paramagnetic collector
                              in the representative cell, 05%,  16.95,  =0.10randomF G τ= = − .
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From concentration contours in Figure 5.19, we see that at 0.10τ =

saturation concentration take place on the surface of the paramagnetic collector in the 
representative cell. The features of the build-up and depletion of ultra-fine particles in 
regions close to the surface of the collector are similar to those in the case of single 
ferromagnetic collector in Figure 5.7. This is because the forms of the equations of 
functions ( ),r aG r θ  and ( ),aG rθ θ  are the same for these two cases but the forms of the 
factors 0

ferroG  and 0
randomG  are different. In the case of single collector, we assign the 

outer boundary condition by fix the concentration on the outer boundary of the 
computational domain equal to initial concentration for all normalized times. In this case 
of random cylindrical collectors, the capture of ultra-fine particles is considered only in a 
representative cell. The outer boundary of the representative cell is considered as an 
impervious surface. We can see the variation of concentration on the outer boundary of 
the representative cell. In the range of θ  that radial magnetic force is attractive, the 
concentration on the outer boundary decreases lower than the initial concentration. This 
is because ultra-fine particles in regions near to the outer boundary are transferred to 
other regions more closed to the collector. In the range of θ  that radial magnetic force 
is repulsive, the concentration on the outer boundary increases higher than the initial 
concentration. This is because ultra-fine particles in regions near to the surface of the 
collector are transferred to other regions faraway from the collector.

Figure 5.20 shows the distribution of concentration at 0θ =  radian at 
various normalized times for this case of 5%F = . In Figure 5.20, note that the value of 
concentration at the outer boundary is lower than initial concentration ( )30 1 10C −= ×

since the magnetic force is attractive at this angle.
Figure 5.21 shows the distribution of concentration at / 2θ π=  radian at 

various normalized times for this case of 5%F = . In Figure 5.21, note that the value of 
concentration at the outer boundary is higher than initial concentration ( )30 1 10C −= ×

since the magnetic force is repulsive at this angle.
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                                     Curve No.           1                    2                      3
                                            τ            22.5 10−×          25 10−×             11 10−×

                        Figure 5.20: Time evolution of concentration distribution at 0θ = radian
                                              in the representative cell, 05%,  16.95randomF G= = − .
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                                    Curve No.         1                    2                       3
                                          τ           22.5 10−×          25 10−×             11 10−×

                     Figure 5.21: Time evolution of concentration distribution at / 2θ π=  radian
                                           in the representative cell, 05%,  16.95.randomF G= = −
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Figure 5.22 shows the feature of the build-up of ultra-fine particles on the surface of 
the collector and the distribution of concentration around the collector in the 
representative cell for the case of 8%F = . In this case the value of factor 0

randomG  is 
equal to 17.16− .

          Figure 5.22: A family of concentration contours around the paramagnetic collector
                               in the representative cell, 08%,  17.16,  =0.10randomF G τ= = − .
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Figure 5.23 shows the distribution of concentration at 0θ =  radian at

various normalized times for this case of 8%F = .

                                        Curve No.         1                 2                   3
                                             τ            22.5 10−×       25 10−×          11 10−×

                   Figure 5.23: Time evolution of concentration distribution at 0θ = radian
                                         in the representative cell, 08%,  17.16randomF G= = − .
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Figure 5.24 shows the distribution of concentration at / 2θ π=  radian

at various normalized times for this case of 8%F = .

                                Curve No.         1                  2                   3
                                             τ            22.5 10−×       25 10−×          11 10−×

                   Figure 5.24: Time evolution of concentration distribution at / 2θ π= radian
                                         in the representative cell, 08%,  17.16randomF G= = − .
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Figure 5.25 shows the feature of the build-up of ultra-fine particles on

the surface of the collector and the distribution of concentration around the collector in
the representative cell for the case of 10%F = . In this case the value of factor 0

randomG

is equal to 17.30− .

                      Figure 5.25: A family of concentration contours around the paramagnetic
                                           collector in the representative cell,
                                           010%,  17.30,  =0.10randomF G τ= = − .
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Figure 5.26 shows the distribution of concentration at 0θ =  radian

at various normalized times for this case of 10%F = .

                               Curve No.          1                 2                   3
                                             τ            22.5 10−×      25 10−×          11 10−×

                   Figure 5.26: Time evolution of concentration distribution at 0θ = radian
                                         in the representative cell, 010%,  17.30randomF G= = − .
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Figure 5.27 shows the distribution of concentration at / 2θ π=  radian

at various normalized times for this case of 10%F = .

                                Curve No.         1                  2                  3
                                             τ            22.5 10−×        25 10−×        11 10−×

                   Figure 5.27: Time evolution of concentration distribution at / 2θ π= radian
                                         in the representative cell, 010%,  17.30randomF G= = − .
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From all results in Figures 5.19 to 5.27, we can conclude that variation 

of packing fraction of cylindrical collectors in fluid has no significant effect to the feature 
of the build-up of ultra-fine particles on the surface of the paramagnetic collector in the 
representative cell. The variation of packing fraction of cylindrical collectors in fluid also 
has no significant to the feature of concentration distribution in various regions around 
the collector in the representative cell.  These are because, features of concentration 
contours in every case, 5%,  8%, 10%F =  are very similar and features of 
concentration distributions at 0θ =  radian and / 2θ π=  radian of all values of packing 
fraction are also very similar.

          5.3.2 The Effect of Variation of Packing Fraction to the
                                 Amounts of Particles Captured in Saturation Regions

In this section, we investigate the effect of variation of packing 
fraction of cylindrical collectors in fluid to the amounts of ultra-fine particles captured in 
saturation regions on the surface of the paramagnetic collector in the representative cell.

We compare the variation of variable satP , defined in equation 
(5.5), with normalized time among three values of packing fraction, 5%,  8%, 10%F = .

For every values of packing fraction, the ultra-fine particle is
paramagnetic Mn2P2O7 particle of radius 81.2 10  m.pb

−= ×  An assembly of Mn2P2O7

particle dispersed in the static water. The effective magnetic susceptibility of the system 
(water + Mn2P2O7 particles) is 34.73 10χ −= + × . The uniform external magnetic field has 
its magnitude 6

0 2.0 10  A/mH = × and points in the positive X direction. The parameter 
CK  defined in the equation (2.17) of Chapter II is equal to 0.20. The absolute 

temperature is set equal to 300 K. The value of initial concentration at every points in the 
representative cell is set equal to 3

0 1.0 10C −= ×  and the saturation concentration is set 
equal to 0.10satC = .  The values of factor 0

randomG for packing fraction 
5%,  8%, 10%F =  are 16.95,  -17.16−  and 17.30− , respectively. The interval of 

normalized time is 0 0.10τ≤ ≤  for all values of packing fraction.
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Figure 5.28 shows the comparison of variation of satP  with τ  in the

interval 0 0.10τ≤ ≤ for three values of packing fraction.

                         Curve No.           1                  2                     3
                                    F                  5%               8%                 10%
                            Figure 5.28: Comparison of variations of satP  with τ  between
                                                 5%,  8%, 10%F = .

From the result shown in Figure 5.28, we see that the evolution of satP

with τ  is faster when packing fraction is increased. In the same interval of normalized 
time, the value of satP  is proportional to the value of packing fraction. This can be 
understood by a simple consideration, when packing fraction is increased, number of 
paramagnetic collectors in the system is increased. Consequently, more collectors can 
capture more amounts of ultra-fine particles in the same interval of τ .
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5.3.3 The Effect of Variation of Uniform External

                                   Magnetic Field to the Amounts of Particles
                                   Captured in Saturation Regions

In this section, we investigate the effect of variation of uniform 
external magnetic field ( )0H  to the amounts of ultra-fine particles captured in saturation 
regions on the surface of the paramagnetic collector in the representative cell.

We compare the variation of variable satP , with normalized time 
among three values of 0H , 6 6 6

0 1.0 10  A/m,  2.0 10  A/m, 3.0 10  A/mH = × × × .
For every values of 0H , the ultra-fine particle is paramagnetic 

Mn2P2O7 particle of radius 81.2 10  m.pb
−= ×  An assembly of Mn2P2O7 particle dispersed 

in the static water. The effective magnetic susceptibility of the system (water + Mn2P2O7

particles) is 34.73 10χ −= + × . The uniform external magnetic field ( )0H points in the 
positive X direction. The parameter CK  is equal to 0.20. The absolute temperature is 
set equal to 300 K. The value of initial concentration at every points in the representative 
cell is set equal to 3

0 1.0 10C −= ×  and the saturation concentration is set equal to 
0.10satC = . The values of packing fraction is 5%F =  and the value of factor 0

randomG  is  
16.95− . The interval of normalized time is 0 0.10τ≤ ≤  for all values of 0H .
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Figure 5.29 shows the comparison of variations of satP  with τ

in the interval 0 0.10τ≤ ≤ for three values of 0H .

                                         Curve No.                1                       2
                                                        0H                  62 10  A/m×       63 10  A/m×

                                 Figure 5.29: Comparison of variations of satP  with τ  between
                                                      6 6

0 2.0 10  A/m, 3.0 10  A/mH = × × .

From the result shown in Figure 5.29, we see that the evolution of 
satP  with τ  is increased rapidly with increased 0H . The curve of 6

0 1.0 10  A/mH = × is 
not shown since the value of satP  equal to zero at every τ  in the interval shown in the 
figure. The obtained result can be understood by consider equation (3.14) of Chapter III. 
We can see, in equation (3.14), that the factor 0

randomG  is proportional to 2
0H . 

Consequently, when 0H  is increased, the amounts of particles captured in saturation 
regions on the surface of the collector in representative cell increase rapidly.



CHAPTER VI

CONCLUSIONS

In this research, HGMS capture of ultra-fine weakly magnetic particles in 
various situations both in one dimension and two dimensions are investigated. For the 
case of single collector, former published researches are studied and more analyses 
are given in details. Furthermore, we develop a simple two dimensional theoretical 
model for describing the capture of ultra-fine particles by an assemblage of randomly 
distributed parallel cylindrical collectors. We use the effective medium treatment to 
construct the model mentioned. We simulate HGMS capture of ultra-fine particles in 
various physical situations by solving the continuity equation describing dynamics of the 
system of particles both analytically and numerically. Both time-dependent and
steady-state features of the capture of ultra-fine particles are obtained.

For the case of a single collector, Results of simulations can predict the 
features of the build-up of ultra-fine particles on the surface of the collector both in 
paramagnetic and diamagnetic modes of the capture. These results show that the build-
up of paramagnetic and diamagnetic particles on the collector have the opposite 
features. The assembly of paramagnetic particles accumulate in the direction parallel to 
the uniform external magnetic field whereas the assembly of diamagnetic particles 
accumulate in the direction perpendicular to the uniform external magnetic field. In 
addition, our results provide a basic guide for setting the strength of external magnetic 
field to achieve the required amount of particles to be separated from the fluid at steady 
state.

For the case of an assemblage of randomly distributed parallel 
cylindrical collectors, we study the effect of collector packing fraction to the feature of 
the build-up of ultra-fine particles on the collector and to the feature of particle 
concentration distribution around the collector. Results of simulations show us that the 
packing fraction has insignificant effect to those features. Furthermore, we study the 
effect of packing fraction to the amount of particles captured in saturation regions on the 



88
surface of the collector in the same interval of normalized time. Results of simulation 
show us that, in the same interval of normalized time, amount of particles captured in  
saturation regions on the surface of the collector is proportional to the packing fraction. 
Finally, we study the effect of the strength of magnetic field to the amount of particles 
captured in saturation regions on the collector in the same interval of normalized time. 
Results of simulation also show us that the amount of particles captured in saturation 
regions on the surface of the collector increases rapidly when the strength of external 
magnetic field is increased.

The theoretical model developed in this research can be used to predict 
the separation process of very small particles in many field of works  for example, 
separation of  blood component from whole blood, .etc.

The model developed in this research is for the capture of ultra-fine 
particles in static fluid. In the future, this model can be developed further to the case of 
the capture of ultra-fine particles in flowing fluid which more close to industrial 
applications of high gradient magnetic separation.
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APPENDICES



APPENDIX A

Magnetic Field Around a Ferromagnetic
Cylindrical Collector

Consider a long magnetic cylindrical collector of radius a  immersed in a
magnetic medium of permeability fµ . Both collector and medium are placed in a
uniform magnetic field of magnitude 0H  perpendicular to the axis of the collector. Let
the Z  axis of the Cartesian coordinate coincide with the axis of the collector. The
geometry of the situation can be shown in Figure A.1.

Figure A.1: A magnetic collector and surrounding medium in a uniform magnetic field.

The magnetic field in and around the collector can be determined by solving the
Laplace ,s equation

                                                              2
0M∇ Φ = ,                                                     (A.1)

where MΦ is the magnetic scalar potential.
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Equation (A.1) can be solved by using these boundary conditions

1) The magnetic field very far from the collector is a uniform one  of
      magnitude 0H  and point in the positive X − direction as shown in
      Figure A.1.
2) Magnetic field at the origin of Cartesian coordinate must finite
3) The component of magnetic field in the direction that parallel to the
      collector surface must continuous at the surface of the collector.
4) The component of magnetic induction in the direction that

perpendicular to the collector surface must continuous at the surface
of the collector.

Since the collector is long, we can approximate that the value of MΦ dose not
depend on the z coordinate and the problem will be solved in two dimensions.  By the
geometry in Figure A.1, it is convenient to solve this problem by using
two dimensional circular cylindrical coordinate ( ),r θ . Consequently, equation (A.1)
becomes

                                               
2

2 2

1 1M Mr
r r r r θ
∂ ∂Φ ∂ Φ  + ∂ ∂ ∂ 

.                               (A.2)

This equation has the general solution in the form

                          ( ) ( ) ( )
1

, cos cosn n
n n

n
r A r n B r nθ θ θ

∞
−

=

 Φ = + ∑ ,                    (A.3)

where nA  and nB  are constants would be determined.
Let 1Φ  and 2Φ  is magnetic scalar potential in the fluid and collector,

respectively. From the first and the second boundary condition we obtain

                                      ( ) ( )1 0
1

, cos cosn
n

n
r H r A r nθ θ θ

∞
−

=

Φ = − +∑                            (A.4)
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and

                                       ( ) ( )2
1

, cosn
n

n
r B r nθ θ

∞

=

Φ =∑ .                                                (A.5)

From the relation between magnetic scalar potential and the magnetic
field,
                                                      MH = −∇Φ ,                                                           (A.6)

and the third boundary condition we obtain

                                             1 21 1

r a r ar rθ θ= =

∂Φ ∂Φ   − = −   ∂ ∂   
.                                       (A.7)

When the magnetic collector is a ferromagnetic one with magnetization
M points in the same direction as the uniform external magnetic field 0H  then we
obtain

                            2 1
0 0 cos f

r a r a

M
r r

µ µ θ µ
= =

∂Φ ∂Φ   − + = −   ∂ ∂   
.                               (A.8)

When equations (A.4) and (A.5) are substituted in the equation (A.8), and by
using orthogonality property of cosine function,

                                           ( ) ( )
0

cos cos
2 nmn m d

π πθ θ θ δ=∫ ,                                        (A.9)

we obtain                            2
1 0 1 0 0f fa A B M Hµ µ µ µ− + = − ,                                     (A.10)

and                                           0,   0n nA B= =   for 1n ≠ .                                         (A.11)

When equations (A.4) and (A.5) are substituted in the equation (A.7), and by
using orthogonality property of sine function,



95

                                           ( ) ( )
0

sin sin
2 nmn m d

π πθ θ θ δ=∫ ,                                   (A.12)

we obtain                                             2
1 1 0a A B H− − = ,                                          (A.13)

From the system of linear equations (A.10) and (A.13), we can obtain

                                                ( )2 2
0 0 0

1
0

f

f

Ma a H
A

µ µ µ
µ µ
+ −

=
+

                                   (A.14)

and                                                     0 0
1

0

2 f

f

M H
B

µ µ
µ µ
−

=
+

.                                       (A.15)

Since ( )0 1f fµ µ χ= + , where fχ is the magnetic susceptibility of the fluid, in
general the value of fχ is in the order of 310−  to 510− , consequently, we can
approximate that 0fµ µ≈  and we obtain

                                                      
2

1 2
MaA ≈   and  1 02

MB H≈ − .                            (A.16)

From this equation, we can determine magnetic scalar potentials as

                                          ( )
2

1 0
cos, cos

2
ferro Mar H r

r
θθ θ  Φ = − +  

 
                       (A.17)

and

                                          ( )2 0, cos
2

ferro Mr H rθ θ Φ = − 
 

  .                                 (A.18)

From equation (A.17), we can determine the magnetic field in the fluid around
the ferromagnetic collector as
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                           ( )1 0 2 2
ˆˆ, 1 cos 1 sin

ferro W W
a

a a

K KH r H r
r r

θ θ θθ
    

= + − −    
    

 ,         (A.19)

where
                                                                 

02W
MK
H

=  ,                                           (A.20)

and
                                                                    a

rr
a

= .                                                 (A.21)



APPENDIX B

Magnetic Field for an Assemblage of Random Cylindrical
Paramagnetic Collectors

In 1998, Natenapit [13] determined the magnetic field around parallel 
cylindrical paramagnetic collectors which are randomly distributed in the formerly 
uniform external magnetic field. In that work, the effective medium approach originally 
conceived by Hashin [ref] was used.

In the effective medium approach, the system of paramagnetic collectors 
and surrounding medium is considered to be composed of cylindrical composite cells, 
each containing exactly one of the collectors. The ratio of the collector to the cell volume
( )2 2a b  is set equal to the packing fraction of collectors in the medium denoted by F .
Adjacent to each collector (permeability 2µ ) is the surrounding medium (permeability 

1µ ). In the effective medium model, only a representative cell is considered, while the 
neighbor cells are considered equivalent to a homogeneous medium with effective 
permeability µ∗  to be determined. Figure B.1 shows a representative cell.

Figure B.1: A representative cylindrical composite cell.
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To determine the magnetic field in the cell, the boundary value 

problem of coaxial magnetic cylinders subject to the boundary condition of uniform 
magnetic field at far away from the representative cell is solved. By taking z  axis of the 
circular cylindrical coordinate along the collector axis and let Φ  be the magnetic scalar 
potential satisfying Laplace, s equation for each region in Figure B.1.

                                       2

0 0                        b r∇ Φ = ≤ ≤ ∞                                        (B.1)

                                        2

1 0                        a r b∇ Φ = ≤ ≤                                        (B.2)

                                        2

2 0                        0 r a∇ Φ = ≤ ≤                                       (B.3)

with these boundary condtions

                                         ( )0 0, cos          at  r H r rθ θΦ = − →∞                                (B.4)

                                      ( ) ( )0 1, ,b bθ θ
θ θ

∂Φ ∂Φ
=

∂ ∂
                                                         (B.5)

                                      ( ) ( )1 2, ,a aθ θ
θ θ

∂Φ ∂Φ
=

∂ ∂
                                                         (B.6)

                            ( ) ( )0 1
1

, ,

r b r b

r r
r r
θ θ

µ µ∗

= =

∂Φ ∂Φ
=

∂ ∂
                                                (B.7)

and

                            ( ) ( )1 2
1 2

, ,

r a r a

r r
r r
θ θ

µ µ
= =

∂Φ ∂Φ
=

∂ ∂
                                                (B.8)

From equation (B.1) to (B.3), the general solutions, with boundary condition in
equations (B.4) assigned, of these equations are
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                              ( ) ( )0 0
1

, cos cosn
n

n
r H r A r nθ θ θ

∞
−

=

Φ = − +∑ ,                              (B.9)

                               ( ) ( )1
1

, cosn n
n n

n
r B r C r nθ θ

∞
−

=

 Φ = + ∑ ,                                   (B.10)

and                           ( ) ( )2
1

, cosn
n

n
r D r nθ θ

∞

=

Φ =∑ .                                                 (B.11)

When the boundary condition in equation (B.5) is imposed, we obtain

                                   1 1
0 1 0          for 1A CH b Bb n

b b
− + − − = =                                (B.12)

and
                                    0n n n

n n nA b B b C b− −− − =          for 1n ≠  .                             (B.13)

When the boundary conditions in equations (B.6) to (B.8) are imposed,
we obtain
                                      0n n n

n n nB a C a D a−+ − = ,        for all n                               (B.14)

                 2 2
0 1 1 1 1 1 0H Ab C b Bµ µ µ µ∗ ∗ − −− − + − = ,        for 1n =                               (B.15)

                   ( )1 1 1
1 0n n n

n n nA b B b C bµ µ∗ − − − − −+ − =  ,       for 1n ≠                               (B.16)

                    1 1 1
2 1 1 0n n n

n n nD a B a C aµ µ µ− − − −− + =  ,        for all n                               (B.17)

By solving the system of linear equations (B.12) to (B.17), we can
determine coefficients ,  ,  n n nA B C  and nD  as

                                            0n n n NA B C D= = = =      for all 1n ≠                           (B.18)
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                                     ( )( ) ( )( )
2

0
1 1 1 1 1H aA F

IF
ν ν ν ν∗ ∗ = + − − − +                (B.19)

                                             ( )0
1

2 1HB
I
ν ν

∗

= − +                                                   (B.20)

                                             ( )
2

0
1

2 1H aC
I
ν ν

∗

= −                                                  (B.21)

                                               0
1

4HD
I
ν ∗

= −                                                           (B.22)

where  ( )( ) ( )( )1 2 1/ ,   / ,   and  1 1 1 1I Fν µ µ ν µ µ ν ν ν ν∗ ∗ ∗ ∗ = = = + + − − −  .

The magnetic field in various regions in the representative cell can be
determined from
                                                               H = −∇Φ .                                                 (B.23)

However, the results are given in term of the unknown effective 
permeability µ∗ . We can determine µ∗  by using the consistency of the effective 
medium model that the magnetic induction averaged over the representative cell 
(collector plus medium) to be the volume average of the magnetic induction over the 
effective medium. That is

                   ( ) ( )2 2 1 1 0,                
1 Eff Effi i i

F H F H H Hµ µ µ∗+ − = = −∇Φ      (B.24)

where i  referred to ,  x y  or z . Substituting the magnetic field into equation (B.24)
and taking the x component of the magnetic field, we obtain the relative effective
permeability

                                                   ( ) ( )
( ) ( )
1 1
1 1
F F
F F

ν
ν

ν
∗ + + −
=

− + +
                                           (B.25)
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where 1 2 1,  ν µ µ ν µ µ∗ ∗= = .

Then we can determine the magnetic field in the meduim in the
representative cell as

                ( )1 0 2 2
ˆˆ, 1 cos 1 sin ,C C

a
a a

K KH r AH r
r r

θ θ θθ
    

= + − −    
    

  1 a
br
a

< <           (B.26)

                                                        0EffH H= ,     a
b r
a
< < ∞                                   (B.27)

where
                                                            1

1 C

A
FK

=
−

 ,                                                 (B.28)

                                                           1
1CK

ν
ν
−

=
+

                                                       (B.29)
and /ar r a= .

We note that in the limit of 
2

2 0,   1aF
b

ν ∗ 
= → → 
 

 (or 1µ µ∗ = ), 

equation (B.26) is reduced to the case of single paramagnetic collector. For 
( )2 1  i.e. 0,  1CK Aµ µ= = = , the homogeneous magnetic field 0H H=  is obtained.



APPENDIX C

Approximating Derivatives of Functions by
Finite-Difference Relations

Consider a continuous function of real variable x denoted by ( )f x , the 
derivative of this function with respect to x  at a certain value of its argument, ix , is 
defined as

                                               ( ) ( )
0

lim i i

x

f x x f xdy
dx x∆ →

+ ∆ −
≡

∆
 .                                    (C.1)

Let us assume that f is a well-behaved function, then the derivative of f with 
respect to x  can be determined in any order. Consequently, we can write Taylor,s 
expansion of ( )f x  at a point 1kx +  which advance a point kx   with an amount x∆ in the 
domain of f  as

                                 ( ) ( ) ( ) ( ) ( ) ( )
2

1 ...
2!k k k k

x
f x f x x f x f x+

∆
′ ′′= + ∆ + +     ,             (C.2)

where 1k kx x x+∆ = − .
From equation (C.2), we can determine the first-order derivative of f with

respect to x  at the point kx  as

                                   ( ) ( ) ( ) ( ) ( )1 ...
2!

k k
k k

f x f x x
f x f x

x
+ − ∆

′ ′′= − +
∆

    .                    (C.3)

The equation (C.3) can rewritten more compactly as

                                    ( ) ( ) ( ) ( )1k k
k

f x f x
f x x

x
+ −

′ = +Ο ∆
∆

 ,                                      (C.4)
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where ( )xΟ ∆  represent the terms of order ( )x∆ and higher. We can approximate the
first-order derivative of f with respect to x  at the point kx  as

                                            ( ) ( ) ( )1k k
k

f x f x
f x

x
+ −

′ ≈
∆

,                                             (C.5)

where the error of approximation is in the order ( )x∆ .
                    The equation (C.5) is called the first-order forward difference approximation.
Now if we write Taylor ,s expansion of ( )f x  at a point 1kx −  which lag a point kx   with an
amount x∆ in the domain of f  as

                              ( ) ( ) ( ) ( ) ( ) ( )
2

1 ...
2!k k k k

x
f x f x x f x f x−

∆
′ ′′= − ∆ + −  ,                   (C.6)

where 1k kx x x −∆ = − .
From equation (C.6), we can determine the first-order derivative of f with

respect to x  at the point kx  as

                                   ( ) ( ) ( ) ( ) ( )1 ...
2!

k k
k k

f x f x x
f x f x

x
−− ∆

′ ′′= + −
∆

    .                    (C.7)

The equation (C.7) can rewritten more compactly as

                                    ( ) ( ) ( ) ( )1k k
k

f x f x
f x x

x
−−

′ = +Ο ∆  ∆
 .                                  (C.8)

Then we obtain an alternative way to approximate the first-order derivative of f with
respect to x  at the point kx  as

                                     ( ) ( ) ( )1k k
k

f x f x
f x

x
−−

′ ≈
∆

  ,                                                  (C.9)
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where the error of approximation is also in the order ( )x∆ .
                The equation (C.9) is called the first-order backward difference approximation.

If equation (C.6) is subtracted from equation (C.2) we obtain

                     ( ) ( ) ( ) ( ) ( ) ( )3
1 1

22 ...
3!k k k kf x f x x f x x f x+ − ′ ′′′− = ∆ + ∆ +    .               (C.10)

From this equation we can determine the first-order derivative of f with respect to x  at
the point kx  as

                              ( ) ( ) ( )
( )

( ) ( )
2

1 1 ...
2 3!

k k
k k

f x f x x
f x f x

x
+ −− ∆

′ ′′′= − +
∆

  ,                    (C.11)

or

                               ( ) ( ) ( )
( ) ( )21 1

2
k k

k

f x f x
f x x

x
+ −−  ′ = +Ο ∆ ∆

  .                                (C.12)

From equation (C.12), we obtain an alternative way to approximate the
first-order derivative of f with respect to x  at the point kx  as

                                                ( ) ( ) ( )
( )

1 1

2
k k

k

f x f x
f x

x
+ −−

′ ≈
∆

  ,                                   (C.13)

where the error of approximation is also in the order ( )2x∆ .
                     The equation (C.9) is called the first-order central difference approximation.
When equations (C.2) and (C.6) are added we obtain

                 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
4

2 4
1 1 2 ...

12
k

k k k k

f x
f x f x f x x f x x+ − ′′+ = + ∆ + ∆ +  .   (C.14)

This equation can be rewritten as

                           ( ) ( ) ( ) ( )
( )

( )21 1
2

2k k k
k

f x f x f x
f x x

x
+ −− +  ′′ = +Ο ∆ ∆

,                     (C.15)
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where ( )2x Ο ∆   represent the terms of order ( )2x∆ and higher. We can
approximate the second-order derivative of f with respect to x  at the point kx  as

                                      ( ) ( ) ( ) ( )
( )

1 1
2

2k k k
k

f x f x f x
f x

x
+ −− +

′′ ≈
∆

,                               (C.16)

where the error of approximation is in the order ( )2x∆ .
The equation (C.16) is called the second-order central difference approximation.

These approximations are used in Chapter IV of this research.



APPENDIX D

Errors and Stability of the Computation for Simulations of
the Capture of Ultra-Fine Particles in One Dimension

D.1 Errors of the Computation

            We start with equation (4.19) of Chapter IV,

                    
( )

( ) ( )
1

1 1 1 1
2

2
2

n n n n n n n
n ni i i i i i i r

r i ii
a a ia

c c c c c c c GG c
r rr

ε
τ

+
+ − + −

     − − + − ∂
− + + =       ∆ ∆ ∂∆    

 ,      (D.1)

where n
iε  is a real number generally not equal to zero.

The value of n
iε  indicate the error of the computation occurred at a 

discrete radial position ( )a i
r  at the thn step of the computation. If the approximated 

solution n
i  approach to the analytical solution n

ic  then n
iε  approach to zero.

From equation (D.1), by using Taylor, s expansions, we can approximate
the analytical solution at each grid points as

                              ( ) ( )2 2
1

22

nn
n n
i i

i i

c cc c
τ

τ
τ τ

+ ∆  ∂ ∂ ≈ + ∆ +   ∂ ∂   
   ,                                   (D.2)

        ( ) ( ) ( ) ( )2 3 42 3 4

1 2 3 42 3! 4!

n n n n
a a an n

i i a
a a a ai i i i

r r rc c c cc c r
r r r r+

∆ ∆ ∆       ∂ ∂ ∂ ∂
≈ + ∆ + + +       ∂ ∂ ∂ ∂       

 ,     (D.3)

        ( ) ( ) ( ) ( )2 3 42 3 4

1 2 3 42 3! 4!

n n n n
a a an n

i i a
a a a ai i i i

r r rc c c cc c r
r r r r−

∆ ∆ ∆       ∂ ∂ ∂ ∂
≈ − ∆ + − +       ∂ ∂ ∂ ∂       

 .     (D.4)

When these approximations are substituted in equation (D.1), we obtain
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                        ( )
2

2

n nn
n nr
i r ii

i a a ai i i

c c c GG c
r r r

ε
τ

      ∂ ∂ ∂ ∂  ≈ − + −      ∂ ∂ ∂ ∂        

                               ( ) ( ) ( ) ( )
22 4 3

2
2 4 32 12 6

n nn
ra i

a
a ai i i

Grc c c r
r r

τ
τ

 ∆ ∆     ∂ ∂ ∂
 + − + ∆    ∂ ∂ ∂       

.         (D.5)

From this expression, we can see that the first part on the right hand side
equal to zero and we have

                         ( ) ( ) ( )22 3 4

2 3 42
2 12

n nn
an

i r i
a ai i i

rc c cG
r r

τ
ε

τ

 ∆ ∆    ∂ ∂ ∂
 ≈ + −    ∂ ∂ ∂       

.                   (D.6)

From equation (D.6), we can conclude that

             ( ) ( ) ( )22 3 4

2 3 4, , ,
max max max 2

2 12

n nn
an

i r ii n i n i n
a ai i i

rc c cG
r r

τ
ε

τ
∆ ∆    ∂ ∂ ∂

≤ + −    ∂ ∂ ∂     
.       (D.7)

D.2 Stability of the Computation

From equation (4.13) of Chapter IV

                 
( )

( ) ( )
1

1 1 1 1
2

2
2

n n n n n n n
ni i i i i i i r

r ii
a a ia

GG
r rrτ

+
+ − + −

     − − + − ∂
= − −       ∆ ∆ ∂∆    

  .     (D.8)

We write the approximated solutions at grid points as

                                                          1 1 1n n n
i i ic cδ+ + += +  ,                                          (D.9a)

                                                            n n n
i i ic cδ= +  ,                                               (D.9b)
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                                                          1 1 1
n n n
i i ic cδ+ + += +  ,                                            (D.9c)

                     and                               1 1 1
n n n
i i ic cδ− − −= +  .                                            (D.9d)

When all expressions in equations (D.9a) to (D.9d) are substituted in
equation (D.8) we obtain

( )
( ) ( )

1
1 1 1 1

2
2

2

n n n n n n n
ni i i i i i i r

r ii
a a ia

c c c c c c c GG c
r rr

δ δ δ δ δ δ δ δ
τ

+
+ − + −

      − − + − ∂ = − −       ∆ ∆ ∂∆     

                     
( )

( ) ( )
1

1 1 1 1
2

2
2

n n n n n n n
ni i i i i i i r

r ii
a a ia

c c c c c c c GG c
r rrτ

+
+ − + −

       − − + − ∂ − − + +         ∆ ∆ ∂∆       
.(D.10)

From section 4.1.2.1 of Chapter IV, the second term on the right hand
side of equation (D.10) can be replaced by ( ) ( )2arτ Ο ∆ + ∆   and we obtain

              
( )

( ) ( )
1

1 1 1 1
2

2
2

n n n n n n n
ni i i i i i i r

r ii
a a ia

c c c c c c c GG c
r rr

δ δ δ δ δ δ δ δ
τ

+
+ − + −

      − − + − ∂ = − −       ∆ ∆ ∂∆     

                                     ( ) ( )2arτ +Ο ∆ + ∆    .                                                           (D.11)

Solving equation (D.11) for 1n
icδ
+ , we obtain

                        ( )
( )

( ) ( )
( )

( ) ( )
( )

1 1
12 2

2
1

2
rn n nir

i i i
a aia a

GGc c c
r rr r

ττ τ
δ τ δ δ+ +

+

   ∆∆ ∆ ∂
= − − ∆ + −    ∂ ∆∆ ∆       

                                    ( )
( )

( ) ( )
( ) ( ) ( ) ( )212 2
r ni

i a
aa

G
c r

rr

ττ
δ τ τ+

 ∆∆  + + + ∆ Ο ∆ + ∆   ∆∆  
 .    (D.12)

In the simulation, grid steps τ∆  and ar∆  are set to make these following
expressions become true
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                                                   ( )max r

i
a i

G
r

τ ξ
 ∂

∆ ∂ 
 ,                                  (D.13)

                                                   ( ) ( )
( )

max
2r ii

a

G
r
τ

ξ
∆
∆

,                                   (D.14)

where the variable ξ  is defined in the equation (4.24) of Chapter IV.
With two expressions in equations (D.13) and (D.14) satisfied, we can

approximate equation (D.12) as

                       ( ) ( ) ( ) ( ) ( )21
1 11 2n n n n

i i i i ac c c c rδ ξ δ ξ δ δ τ τ+
+ −

 ≈ − + + + ∆ Ο ∆ + ∆  .     (D.15)

When the condition
                                                                    10

2
ξ≤ ≤                                                 (D.16)

is satisfied, all coefficients of 1,n n
i ic cδ δ +  and 1

n
icδ −  are positive and we can obtain

                  ( ) ( ) ( ) ( ) ( )21
1 11 2n n n n

i i i i ac c c c rδ ξ δ ξ δ δ τ τ+
+ −

 ≤ − + + + ∆ Ο ∆ + ∆  .     (D.17)

 Equation (D.17) can be rewritten as

                         ( ) ( ) ( ) ( )21
1 1max , ,n n n n

i i i i ac c c c rδ δ δ δ τ τ+
+ −

 ≤ + ∆ Ο ∆ + ∆   .         (D.18)

Since the inequality (D.18) hold for all indices i  then we can write

                                 ( ) ( ) ( )21max maxn n
i i ai i
c c rδ δ τ τ+  ≤ + ∆ Ο ∆ + ∆  .                  (D.19)

The inequality (D.19) means that the maximum error of computation at a
given discrete point for one step of computation increase by not more than
( ) ( ) ( )2arτ τ ∆ Ο ∆ + ∆  . Consequently, for N  steps of computation, we obtain
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                                         ( ) ( )20max maxN
i i ai i
c c rδ δ τ ≤ +Ο ∆ + ∆  .                     (D.20)

Now it is proved that, with vanishing ( )τ∆  and ( )ar∆ , conditions (D.13),
(D.14) and (D.16) are satisfied, the approximated solutions n

i converge to the analytical
solutions n

ic at any grid points and the computation is stable.



APPENDIX E

Errors and Stability of the Computation for Simulations of
the Capture of Ultra-Fine Particles in Two Dimensions

E.1 Errors of the Computation

            We start with equation (4.44) of Chapter IV,

        
( ) ( ) ( ) ( ) ( )

1
, , 1, , 1, 1, 1, , 1 , , 1

2 2 2

2 21 1
2

n n n n n n n n n n
i j i j i j i j i j i j i j i j i j i j

a aa ai i

c c c c c c c c c c
r rr rτ θ

+
+ − + − + −

    − − + − − +
= + +        ∆ ∆∆ ∆    

                             ( )
( ) ( ) ( )

,, 1, 1,
,,

,
2

n n n
r i ji j i j i j nr

r i ji j
a a a i ji

G c c c GG c
r r r

+ − −  ∂
− − −    ∆ ∂  

                            ( )
( ) ( ) ( )

, , 1 , 1 ,
,

,2

n n n
i j i j i j i j n

i j
i ja ai i

G c c c G
r r
θ θ ε

θ θ
+ − − ∂ − − +    ∆ ∂  

  ,                             (E.1)

where ,
n
i jε  is a real number generally not equal to zero.

The value of ,
n
i jε  indicate the error of the computation occurred at a

discrete radial position ( )( ),a ji
r θ  at the thn step of the computation. If the

approximated solution ,
n
i j  approach to the analytical solution ,

n
i jc  then ,

n
i jε  approach

to zero.
From equation (E.1), by using Taylor, s expansions, we can approximate

the analytical solution at each grid points as

                              ( ) ( )2 2
1

, 2
, ,2

nn
n n
i j i

i j i j

c cc c
τ

τ
τ τ

+ ∆  ∂ ∂ ≈ + ∆ +   ∂ ∂   
   ,                                (E.2)

  ( ) ( ) ( ) ( )2 3 42 3 4

1, , 2 3 4
, , , ,

2 3! 4!

n n n n
a a an n

i j i j a
a a a ai j i j i j i j

r r rc c c cc c r
r r r r+

∆ ∆ ∆       ∂ ∂ ∂ ∂
≈ + ∆ + + +       ∂ ∂ ∂ ∂       

 ,  (E.3)
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   ( ) ( ) ( ) ( )2 3 42 3 4

1, , 2 3 4
, , , ,

2 3! 4!

n n n n
a a an n

i j i j a
a a a ai j i j i j i j

r r rc c c cc c r
r r r r−

∆ ∆ ∆       ∂ ∂ ∂ ∂
≈ − ∆ + − +       ∂ ∂ ∂ ∂       

         (E.4)

   ( ) ( ) ( ) ( )2 3 42 3 4
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, , , ,2 3! 4!
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n n
i j i j

i j i j i j i j

c c c cc c
θ θ θ

θ
θ θ θ θ+

∆ ∆ ∆     ∂ ∂ ∂ ∂ ≈ + ∆ + + +      ∂ ∂ ∂ ∂       
 , (E.5)

   ( ) ( ) ( ) ( )2 3 42 3 4

, 1 ,
, , , ,2 3! 4!

n n nn
n n
i j i j

i j i j i j i j

c c c cc c
θ θ θ
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θ θ θ θ−
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 . (E.6)

When these approximations are substituted in equation (E.1), we obtain
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.  (E.7)

From this expression, we can see that the first part on the right hand side
equal to zero and we have
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G c c
r r
θ

τ
ε

τ

θ
θ θ

  ∆ ∆    ∂ ∂ ∂ ≈ + − −        ∂ ∂ ∂        
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   .       (E.8)
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From equation (E.8), we can conclude that
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.                 (E.9)

E.2 Stability of the Computation

From equation (4.42) of Chapter IV,

( ) ( ) ( ) ( ) ( )

1
, , 1, , 1, 1, 1, , 1 , , 1

2 2 2

2 21 1
2

n n n n n n n n n n
i j i j i j i j i j i j i j i j i j i j

a aa ai i
r rr rτ θ

+
+ − + − + −

    − − + − − +
= + +        ∆ ∆∆ ∆    

                       ( )
( ) ( ) ( )

,, 1, 1,
,,

,2

n n n
r i ji j i j i j nr

r i ji j
a a a i ji

G GG
r r r

+ − −  ∂
− − −    ∆ ∂  

                       ( )
( ) ( ) ( )

, , 1 , 1 ,

,2

n n n
i j i j i j i j

i ja ai i

G G
r r
θ θ

θ θ
+ − − ∂ − −    ∆ ∂  

.                                        (E.10)

We write the approximated solutions at grid points as

                                                          1 1 1
, , ,
n n n
i j i j i jc cδ+ + += +  ,                                       (E.11a)

                                                            , , ,
n n n
i j i j i jc cδ= +  ,                                        (E.11b)

                                                          1, 1, 1,
n n n
i j i j i jc cδ+ + += +  ,                                   (E.11c)

                                                           1, 1, 1,
n n n
i j i j i jc cδ− − −= +  ,                                  (E.11d)
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                                                           , 1 , 1 , 1
n n n
i j i j i jc cδ+ + += +  ,                                  (E.11e)

                                                           , 1 , 1 , 1
n n n
i j i j i jc cδ− − −= +  .                                   (E.11f)

When all expressions in equations (E.11a) to (E.11f) are substituted in
equation (E.10) we obtain

( ) ( ) ( ) ( ) ( )

1
, , 1, , 1. , 1 , , 11 1

2 2 2

2 21 1
2

n n n n n n n nn n
i j i j i j i j i j i j i j i ji i

a aa ai i

c c c c c c c cc c
r rr r

δ δ δ δ δ δ δ δδ δ
τ θ

+
+ − + −+ −

    − − + − +−= + +        ∆ ∆∆ ∆     

                           ( )
( ) ( ) ( )

, 1, 1,
, ,,

,
2

n n
r i j i j i jn nr

i j r i ji j
a a a i ji

G c c Gc G c
r r r

δ δ
δ δ+ − −  ∂

− − −    ∆ ∂  

                           ( )
( ) ( ) ( )

, , 1 , 1
,

,

1
2

n n
i j i j i j n

i j
i ja ai i

G c c G c
r r
θ θδ δ

δ
θ θ

+ −
 − ∂ − −      ∂    

                          
( ) ( ) ( )

1
, , 1, , 1. 1 1

2

2 1
2

n n n n n n n
i j i j i j i j i j i i

a aa i

c c c c c c c
r rrτ

+
+ − + −

     − − + −+ − + +        ∆ ∆∆     

                               
( ) ( )

( )
( ) ( ) ( )

,, 1 , , 1 , 1, 1,
2 2 ,

21
2

nn n n n n
r i ji j i j i j i j i j i j

r i j
a aa ii

G cc c c c c
G

r rr θ
+ − + −

   − + −
+ − −      ∆∆   

                               ( )
( ) ( ) ( )

, , 1 , 1
, ,

,,

1
2

n n
i j i j i jn nr

i j i j
i ja a ai j i i

G c c GG c c
r r r

θ θ

θ θ
+ −

 −  ∂∂  − − −      ∂ ∆ ∂      
 .   (E.12)

From section 4.2.3 of Chapter IV, the second part on the right hand side
of equation (E.12) can be replaced by ( ) ( ) ( )2 2

arτ θ Ο ∆ + ∆ + ∆   and we obtain



115
( )

( ) ( )
( )
( )

( )
( ) ( ) ( ),1

, ,2 2 22
,,

2 2 11 r i jn nr
i j i j

i ja a ai ja a a i ii

G GGc c
r r rr r r

θτ τ
δ τ δ

θα
+

  ∆ ∆   ∂∂   = − − − + + ∆    ∂ ∂  ∆ ∆     

              ( )
( ) ( )

( ) ( )
( )

,
1,2

1
2 2

r i j n
i j

a aa i

G
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r rr
τ τ

δ +

  ∆ ∆
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G
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r rr
τ τ
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,
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a aa a ii

G
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r rr r
θτ τ

δ
αα

+

  ∆ ∆
 + −    ∆∆   
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,
, 12 22

1
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i j n
i j

a aa a ii

G
c

r rr r
θτ τ

δ
αα

−

  ∆ ∆
 + +    ∆∆   

              ( ) ( ) ( ) ( )2 2
arτ τ θ + ∆ Ο ∆ + ∆ + ∆    ,                                                            (E.13)

where the variable α  is defined in the equation (4.52) of Chapter IV.
In the simulation, grid steps ,  arτ∆ ∆  and θ∆  are set to make these

following expressions become true

                                  
( )

( )
( )

( ) ( )
( ) ( )

,
2 22,

10 max 1
2

i j

i j
a aa a ii

G

r rr r
θ ττ

αα

  ∆∆
 < − <
  ∆∆ 

 ,                   (E.14)

                                  
( )

( )
( )

( ) ( )
( ) ( )

,
2 22,

10 max 1
2

i j

i j
a aa a ii

G

r rr r
θ ττ

αα

  ∆∆
 < + <
  ∆∆ 

  ,                   (E.15)

                                                           
( )22

1max 1
i

a irα
 ,                                         (E.16)

                                 ( )
( ) ( ) ( ),

,
,,

1max 1r i j r

i j
i ja a ai ji i

G GG
r r r

θ τ
θ

   ∂∂  + + ∆    ∂ ∂    
   ,          (E.17)
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                                        ( )
( )

( )
( )

( )
( )

,
2,

1max
2 2
r i j

i j
a a ai

G

r r r
τ τ  ∆ ∆

−   ∆ ∆ 
   .                 (E.18)

With all conditions in equations (E.14) to (E.18) are satisfied, we can
approximate equation (E.13) as

( ) ( ) ( ) ( ) ( ) ( ) ( )21
, , 1, 1, , 1 , 11 2n n n n n n
i j i j i j i j i j i j ac c c c c c rδ ξ δ ξ δ δ β δ γ δ τ τ+

+ − + −
 ≈ − + + + + + ∆ Ο ∆ + ∆ 

.                                                                                                                                  ,(E.19)

where β  and γ  are defined as

                                     
( )

( )
( )

( ) ( )
( ) ( )

,
2 22,

1max
2

i j

i j
a aa a ii

G

r rr r
θ ττ

β
αα

  ∆∆
 ≡ −
  ∆∆ 

,                      (E.20)

and

                                       
( )

( )
( )

( ) ( )
( ) ( )

,
2 22,

1max
2

i j

i j
a aa a ii

G

r rr r
θ ττ

γ
αα

  ∆∆
 ≡ +
  ∆∆ 

 .                   (E.21)

When the condition
                                                                    10

2
ξ≤ ≤                                                 (E.22)

is satisfied, all coefficients of 1 1, , 1,  ,  ,  n n n n
i i i j i jc c c cδ δ δ δ+ − +  and , 1

n
i jcδ −  are positive and we

can obtain

                  
( ) ( )

( ) ( ) ( ) ( )

1
, , 1, 1, , 1 , 1

2 2

1 2

               +

n n n n n n
i j i j i j i j i j i j

a

c c c c c c

r

δ ξ δ ξ δ δ β δ γ δ

τ τ θ

+
+ − + −≤ − + + + +

 ∆ Ο ∆ + ∆ + ∆ 

.      (E.23)

 Equation (E.23) can be rewritten as



117

( ) ( ) ( ) ( ) ( )2 21
, , 1, 1, , 1 , 1max , , , ,n n n n n n
i j i j i j i j i j i j ac c c c c c rδ δ δ δ δ δ τ τ θ+

+ − + −
 ≤ + ∆ Ο ∆ + ∆ + ∆ 

.                                                                                                                                   (E.24)
Since the inequality (E.24) hold for all indices i  then we can write

                           ( ) ( ) ( ) ( )2 21
, ,, ,

max maxn n
i j i j ai j i j
c c rδ δ τ τ θ+  ≤ + ∆ Ο ∆ + ∆ + ∆  .         (E.25)

The inequality (E.25) means that the maximum error of computation at a
given discrete point for one step of computation increase by not more than
( ) ( ) ( ) ( )2 2

arτ τ θ ∆ Ο ∆ + ∆ + ∆  . Consequently, for N  steps of computation, we obtain

                                  ( ) ( ) ( )2 20
, ,, ,

max maxN
i j i j ai j i j
c c rδ δ τ θ ≤ +Ο ∆ + ∆ + ∆  .            (E.26)

Now it is proved that, with vanishing ( ) ( ),  arτ∆ ∆  and ( )θ∆ , conditions
(E.14) to (E.18) and (E.22) are satisfied, the approximated solutions n

i converge to the
analytical solutions n

ic at any grid points and the computation is stable.



APPENDIX F

Approximating the Continuity Equation at the Point
on the Impervious Surface

F.1 The Impervious Surface at the Outer Boundary of the
      Representative Cell

In two dimensional simulation of HGMS capture of ultra-fine particles  by 
an assemblage of random cylindrical collectors, we use the effective medium treatment 
construct the model of the problem. The obtained model allows us to consider the 
capture process in only a representative cylindrical cell. In the simulation, the outer 
boundary of the representative cell is treated as an impervious surface. Consequently, 
the original continuity equation (2.5) of Chapter II will be approximated at all points on 
the outer boundary of the representative cell.

From the original continuity equation

                                                        0c J
t
∂

+∇ =
∂

JG JG
i    .                                                    (F.1)

In two dimensional circular cylindrical coordinates ( ),r θ  the term J∇
JG JG
i can be written as

                                                1r r JJ JJ
r r r

θ

θ
∂∂

∇ = + +
∂ ∂

JG JG
i   .                                            (F.2)

Consider the outer boundary of the representative cell as shown in 
Figure F.1. In the figure, the position of the outer boundary is specified by the symbol Q
and radial coordinate at that point is Qr . We assign a point specified by 1Q −  at the 
radial coordinate 1Qr −  which locate with a distance r∆  from the outer boundary.
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                                                                                   r∆

                                                                    1Q −                       Q
                                                                     1Qr −                         Qr

                                                                                                   outer boundary of the
                                                                                                   representative cell

Figure F.1: Impervious surface at the outer boundary of the representative cell.

From equation (F.2), we can see that the term rJ at point Q  equal to zero since point Q
is on the impervious surface. By approximating the first term on the right hand side of 
equation (F.2), we can write J∇

JG JG
i  at the point Q  in approximated form as

                                     ( ) ( ) ( ) 11 r rQ Q

Q

J JJJ
r r

θ

θ
−

− ∂
∇ ≈ +  

∂ ∆  

JG JG
i   .                                   (F.3)

Equation (F.3) obtained by approximate the term /rJ r∂ ∂ at point Q  by 
the first-order backward difference relation. From this equation we see that ( ) 0r Q

J = .
By using these expressions in the equation (F.3),

                                                        r r
cJ D v c
r
∂

= − +
∂

,                                                 (F.4)

                                                        D cJ v c
r rθ θ
∂

= − +
∂

,                                               (F.5)

where D  is diffusion coefficient , rv and vθ  are radial and angular components of
particle drift velocity, respectively,  we obtain
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                       ( ) ( ) 1

1 1
rQ

Q QQ

D c cJ v c D v c
r r r rθθ θ −

∂ ∂ ∂   ∇ ≈ − + − − +   ∂ ∂ ∆ ∂   

JG JG
i  .        (F.6)

By rearrange equation (F.6), we obtain

                   ( ) ( )
( )

2

2 2
1

1 1
rQ

QQ QQ Q

v cD c cJ v c D
r r r r

θ

θ θ −

∂  ∂ ∂ ∇ ≈ − + − −    ∂ ∂ ∆ ∂    

JG JG
i  .       (F.7)

Now the original continuity equation (F.1) can be approximated at the
point Q  on the outer boundary of the representative cell as

                     ( )
( )

2

2 2
1

1 1
r

Q QQ QQ Q

v cc D c cv c D
t r r r r

θ

θ θ −

∂  ∂ ∂ ∂   ≈ − + −     ∂ ∂ ∂ ∆ ∂      
 .          (F.8)

When equation (F.8) is rewritten in terms of normalized radial distance 
( )ar  and normalized time ( )τ , defined in equations (2.15) and (2.24) of Chapter II, 
respectively, we obtain the approximated continuity equation used in the computation of 
concentration at any point on the boundary of the representative cell as

                    
( ) ( )

( )
( )

2

2 2
1

1 1 1
r

Q a a aQ Qa Q QQ

G cc c cG c
r r rr

θ

τ θ θ
−

∂    ∂ ∂ ∂  ≈ − + −     ∂ ∂ ∂ ∆ ∂      
 .  (F.9)

The function rG  and Gθ  in equation (F.9) are defined in equations (2.26)
and (2.31) of Chapter II, respectively.
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F.2 The Impervious Surface at Surface of the Collector or the
      Surface of Saturation Regions

In this research, the surface of the collector and the surface of the 
saturation regions are considered as an impervious surface. The original continuity 
equation (2.5) will be approximated at all points on these surfaces.

Consider the surface of the collector or surface of the saturation region 
as shown in Figure F.2. In the figure, the position of impervious surface is specified by 
the symbol I  and radial coordinate at that point is Ir . We assign a point specified by 
1I −  at the radial coordinate 1Ir +  which r∆  forward the impervious surface.

             collector surface                             r∆
             or surface of
            saturation region               I                         1I +

                                                       Ir                          1Ir +

     Figure F.2: Impervious surface at the surface of the collector or the surface of
                        saturation regions.

From equation (F.2), the second term equal to zero at the impervious, By 
approximating the first term on the right hand side of equation (F.2), we can write J∇

JG JG
i  at 

the point I  in approximated form as

                                     ( ) ( ) ( )11 r rI I

Q

J JJJ
r r

θ

θ
+
− ∂

∇ ≈ +  ∂ ∆ 

JG JG
i   .                                  (F.10)
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Equation (F.10) obtained by approximate the term /rJ r∂ ∂ at point I  by the first-order 
forward difference relation. From this equation we see that ( ) 0r I

J = . By using 
expressions of rJ  and Jθ  in equations (F.4) and (F.5), we obtain

                        ( ) ( ) 1

1 1
rI

I II

D c cJ v c D v c
r r r rθθ θ +

∂ ∂ ∂   ∇ ≈ − + + − +   ∂ ∂ ∆ ∂   

JG JG
i   .             (F.11)

By rearrange equation (F.11)  we obtain

                   ( ) ( )
( )

2

2 2
1

1 1
rI

II II I

v cD c cJ v c D
r r r r

θ

θ θ +

∂  ∂ ∂ ∇ ≈ − + + −    ∂ ∂ ∆ ∂    

JG JG
i  .            (F.12)

Now the original continuity equation (F.1) can be approximated at the
point I  on the impervious of this case as

                     ( )
( )

2

2 2
1

1 1
r

I II II I

v cc D c cv c D
t r r r r

θ

θ θ +

∂  ∂ ∂ ∂   ≈ − + −     ∂ ∂ ∂ ∆ ∂      
 .              (F.13)

When equation (F.13) is rewritten in terms of normalized radial distance ( )ar  and 
normalized time, we obtain the approximated continuity equation used in the 
computation of concentration at any point on the surface of the collector or at the first 
point next to the surface of saturation region as

                    
( ) ( )

( )
( )

2

2 2
1

1 1 1
r

I a a aI Ia I II

G cc c cG c
r r rr

θ

τ θ θ
+

∂    ∂ ∂ ∂  ≈ − + −     ∂ ∂ ∂ ∆ ∂      
 .      (F.14)



APPENDIX G

Steady-State Solutions of HGMS Continuity Equation

G.1 One Dimensional Case

From the equation (4.5) of Chapter IV, we obtain the steady-state solution
of one dimensional HGMS continuity equation (2.25) of Chapter II as

                                                 ( ) ( )0 exp
ar

s a rc r C G x dx
∞

 
=  

  
∫  ,                                    (G.1)

where 0C is the initial particle concentration.
In the case of single ferromagnetic cylindrical collector, the expression of

function rG  is obtained as

                                              ( ) ( )
0 3 5

cos 2
, ferro W

r a
a a

KG r G
r r
θ

θ
 

= + 
 

,                              (G.2)

where the factor 0
ferroG  is defined in the equation (2.28) of Chapter II.

When the expression of rG in equation (G.2) is substituted in equation 
(G.1) we obtain the stead-state solution of HGMS continuity equation for the case of 
single ferromagnetic cylindrical collector as

                              ( ) ( )0
0 2 4

cos 2
exp

2 2

ferro
W

s a
a a

G Kc r C
r r
θ  

= − +  
   

 .                              (G.3)

The equation (G.3) obtain by assign the outer boundary condition at 
infinity where the influence of the magnetic force is neglect and the value of 
concentration there equal to initial concentration 0C .
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G.2 Two Dimensional Case

From the original continuity equation

                                                          0c J
t
∂

+∇ =
∂

JG JG
i   .                                                   (G.4)

At steady-state, concentration at any points in fluid does not change with
time hence / 0c t∂ ∂ =  and we obtain

                                                                  0J∇ =
JG JG
i    .                                                  (G.5)

The equation (G.5) means that, at steady state, the diffusion flux ( )DJ
JJG at 

a given point must be balanced by the particle flux due to action of the external force 
( )FJ
JJG at that point. By using expression of DJ

JJG  and FJ
JJG  in equations (2.7) and (2.8) of 

Chapter II, we obtain

                                                               0D c vc− ∇ + =
JG G    ,                                          (G.6)

where vG  is the drift velocity of the system of ultra-fine particles.
By substituting the expression of vG  from equation (2.9) of Chapter II in

equation (G.6), we obtain

                                                               c uF
c D
∇

=
JG JG

   ,                                                  (G.7)

where u is the particle mobility in fluid and FJG is the total external force acting on the
system of ultra-fine particles.

By substituting the expression of D  from equation (2.11) of Chapter II in
equation (G.7), we obtain
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B

c F
c k T
∇

=
JG JG

 ,                                                (G.8)

where T  is the absolute temperature in Kelvin.
From equation (G.8), by using the mathematical property of gradient of a

scalar function, we can write

                                                               c dcdr
c c
∇

=
JG G

i      ,                                           (G.9)

where drG  is the infinitesimal displacement of position in space.
In this research, we study the capture of ultra-fine particles by consider 

that the magnetic force is the only dominate force that has influence to the capture 
process then mF F=

JG JJG in equation (G.8). Since the magnetic force can be expressed as 
the positive gradient of the magnetic potential energy mU  in the system that is 
considered then we can write

                                                            m

B

Uc
c k T

∇∇
=
JGJG

  .                                                  (G.10)

When both sides in equation (G.10) are dotted with drG  we obtain

                                                            m

B

Udc d
c k T

 
=  

 
  .                                             (G.11)

Since /dc c can be written as ( )lnd c then, from equation (G.11) we
obtain

                                                     ( ) ( ),
, exp m a
a

B

U r
c r

k T
θ

θ
 

=  
 

 .                                 (G.12)

This equation is the steady-state solution of the continuity equation in
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two dimensions.

The magnetic potential energy of the system of fluid (permeability fµ ) 
with an assembly of ultra-fine particles (permeability pµ ) as suspensions can be 
determined as

                                          ( ) ( ) ( )2
0

1, ,
2m a p f aU r H rθ µ χ χ θ= −  .                           (G.13)

With equations (G.12) and (G.13), we can calculate the steady-state 
concentration at any points around the collector in the computational domain.
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